
Hoe�ding Races: Accelerating ModelSelection Search for Classi�cation andFunction ApproximationOded MaronArti�cial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridge, MA 02139 Andrew W. MooreRobotics InstituteSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractSelecting a good model of a set of input points by cross validationis a computationally intensive process, especially if the number ofpossible models or the number of training points is high. Tech-niques such as gradient descent are helpful in searching throughthe space of models, but problems such as local minima, and moreimportantly, lack of a distance metric between various models re-duce the applicability of these search methods. Hoe�ding Races isa technique for �nding a good model for the data by quickly dis-carding bad models, and concentrating the computational e�ort atdi�erentiating between the better ones. This paper focuses on thespecial case of leave-one-out cross validation applied to memory-based learning algorithms, but we also argue that it is applicableto any class of model selection problems.1 IntroductionModel selection addresses \high level" decisions about how best to tune learningalgorithm architectures for particular tasks. Such decisions include which functionapproximator to use, how to trade smoothness for goodness of �t and which fea-tures are relevant. The problem of automatically selecting a good model has beenvariously described as �tting a curve, learning a function, or trying to predict future



1 3 5 7 9

0.12

0.14

0.16

0.18

0.2

0.22

k Nearest Neighbors Used

Cr
oss

 V
ali

da
tio

n E
rro

r

Figure 1: A space of models consisting of local-weighted-regression models withdi�erent numbers of nearest neighbors used. The global minimum is at one-nearest-neighbor, but a gradient descent algorithm would get stuck in local minima unlessit happened to start in in a model where k < 4.instances of the problem. One can think of this as a search through the space ofpossible models with some criterion of \goodness" such as prediction accuracy, com-plexity of the model, or smoothness. In this paper, this criterion will be predictionaccuracy. Let us examine two common ways of measuring accuracy : using a testset and leave-one-out cross validation (Wahba and Wold, 1975).� The test set method arbitrarily divides the data into a training set and atest set. The learner is trained on the training set, and is then queried withjust the input vectors of the test set. The error for a particular point is thedi�erence between the learner's prediction and the actual output vector.� Leave-one-out cross validation trains the learner N times (where N isthe number of points), each time omitting a di�erent point. We attempt topredict each omitted point. The error for a particular point is the di�erencebetween the learner's prediction and the actual output vector.The total error of either method is computed by averaging all the error instances.The obvious method of searching through a space of models, the brute force ap-proach, �nds the accuracy of every model and picks the best one. The time to �ndthe accuracy (error rate) of a particular model is proportional to the size of the testset jTEST j, or the size of the training set in the case of cross validation. Supposethat the model space is discretized into a �nite number of models jMODELSj |then the amount of work required is O(jMODELSj�jTEST j), which is expensive.A popular way of dealing with this problem is gradient descent. This method canbe applied to �nd the parameters (or weights) of a model. However, it cannot beused to �nd the structure (or architecture) of the model. There are two reasons for



this. First, we have empirically noted many occasions on which the search space ispeppered with local minima (Figure 1). Second, at the highest level we are selectingfrom a set of entirely distinct models, with no numeric parameters over which tohill-climb. For example, is a neural net with 100 hidden units closer to a neural netwith 50 hiden units or to a memory-based model which uses 3 nearest neighbors?There is no viable answer to this question since we cannot impose a viable metricon this model space.The algorithm we describe in this paper, Hoe�ding Races, combines the robustnessof brute force and the computational feasibility of hill climbing. We instantiated thealgorithm by specifying the set of models to be memory-based algorithms (Stan-�ll and Waltz, 1986) (Atkeson and Reinkensmeyer, 1989) (Moore, 1992) and themethod of �nding the error to be leave-one-out cross validation. We will discusshow to extend the algorithm to any set of models and to the test set method in thefull paper. We chose memory-based algorithms since they go hand in hand withcross validation. Training is very cheap - simply keep all the points in memory, andall the algorithms of the various models can use the same memory. Finding theleave-one-out cross validation error at a point is cheap as making a prediction: sim-ply \cover up" that point in memory, then predict its value using the current model.For a discussion of how to generate various memory-based models, see (Moore etal., 1992).2 Hoe�ding RacesThe algorithm was inspired by ideas from (Haussler, 1992) and (Kaelbling, 1990)and a similar idea appears in (Greiner and Jurisica, 1992). It derives its name fromHoe�ding's formula (Hoe�ding, 1963), which concerns our con�dence in the samplemean of n independently drawn points x1; :::; xn. The probability of the estimatedmean Eest = 1nP1�i�nxi being more than epsilon far away from the true meanEtrue after n independently drawn points is bounded by:Pr(jEtrue�Eestj > �) < 2e�2n�2=B2where B bounds the possible spread of point values.We would like to say that with con�dence 1� �, our estimate of the mean is within� of the true mean; or in other words, Pr(jEtrue� Eestj > �) < �. Combining thetwo equations and solving for � gives us a bound on how close the estimated meanis to the true mean after n points with con�dence 1� �:� =qB2 log(2=�)2nThe algorithm starts with a collection of learning boxes. We call each model alearning box since we are treating the models as if they were black boxes. Weare not looking at how complex or time-consuming each prediction is, just at theinput and output of the box. Associated with each learning box are two pieces ofinformation: a current estimate of its error rate and the number of points it hasbeen tested upon so far. The algorithm also starts with a test set of size N . Forleave-one-out cross validation, the test set is simply the training set.



ε

box #0

Bound
Upper

Estimated Error

0

box #1

ERROR

#6#5#4#3#2 box box box box box 
learninglearninglearning learninglearninglearninglearninglearningFigure 2: An example where the best upper bound of learning box #2 eliminateslearning boxes #1 and #5. The size of � varies since each learning box has its ownupper bound on its error range, B.At each point in the algorithm, we randomly select a point from the test set. Wecompute the error at that point for all learning boxes, and update each learningbox's estimate of its own total error rate. In addition, we use Hoe�ding's boundto calculate how close the current estimate is to the true error for each learningbox. We then eliminate those learning boxes whose best possible error (their lowerbound) is still greater than the worst error of the best learning box (its upperbound); see Figure 2. The intervals get smaller as more points are tested, thereby\racing" the good learning boxes, and eliminating the bad ones.We repeat the algorithm until we are left with just one learning box, or until werun out of points. The algorithm can also be stopped once � has reached a certainthreshhold. The algorithm returns a set of learning boxes whose error rates areinsigni�cantly (to within �) di�erent after N test points.3 Proof of CorrectnessThe careful reader would have noticed that the con�dence � given in the previoussection is incorrect. In order to prove that the algorithm indeed returns a set oflearning boxes which includes the best one, we'll need a more rigorous approach.We denote by � the probability that the algorithm eliminates what would havebeen the best learning box. The di�erence between � and � which was glossed overin the previous section is that 1 �� is the con�dence for the success of the entirealgrithm, while 1 � � is the con�dence in Hoe�ding's bound for one learning box



during one iteration of the algorithm.We would like to make a formal connection between � and �. In order to do that, letus make the requirement of a correct algorithm more stringent. We'll say that thealgorithm is correct if every learning box is within � of its true error at every iterationof the algorithm. This requirement encompasses the weaker requirement that wedon't eliminate the best learning box. An algorithm is correct with con�dence � ifPrf all learning boxes are within � on all iterationsg � 1��.We'll now derive the relationship between � and � by using the disjunctive proba-bility inequality which states that PrfA_Bg � PrfAg+ PrfBg.Let's assume that we have n iterations (we have n points in our test set), and thatwe have m learning boxes (LB1 � � �LBm). By Hoe�ding's inequality, we know thatPrf a particular LB is within � on a particular iterationg � 1� �Flipping that around we get:Prfa particular LB is wrong on a particular iterationg < �Using the disjunctive inequality we can sayPrf a particular LB is wrong on iteration 1 _a particular LB is wrong on iteration 2 _:::a particular LB is wrong on iteration ng � � � nLet's rewrite this as:Prf a particular LB is wrong on any iterationg � � � nNow we do the same thing for all learning boxes:Prf LB1 is wrong on any iteration _LB2 is wrong on any iteration _:::LBm is wrong on any iterationg � � � n �mor in other words:Prf some LB is wrong in some iterationg � � � n �mWe ip this to get:Prfall LBs are within � on all iterationsg � 1� � � n �mWhich is exactly what we meant by a correct algorithm with some con�dence.Therefore, � = �n�m . When we plug this into our expression for � from the previoussection, we �nd that we have only increased it by a constant factor. In other words,by pumping up �, we have managed to ensure the correctness of this algorithm withcon�dence �. The new � is expressed as:� =qB2(log(2nm)�log(�))n



Table 1: Test problemsProblem DescriptionROBOT 10 input attributes, 5 outputs. Given an initial and a �nal descriptionof a robot arm, learn the control needed in order to make the robotperform devil-sticking (Schaal and Atkeson, 1993).PROTEIN 3 inputs, output is a classi�cation into one of three classes. This is thefamous protein secondary structure database, with some preprocessing(Zhang et al., 1992).ENERGY Given solar radiation sensing, predict the cooling load for a building.This is taken from the Building Energy Predictor Shootout.POWER Market data for electricity generation pricing period class for the newUnited Kingdom Power Market.POOL The visually perceived mapping from pool table con�gurations to shotoutcome for two-ball collisions (Moore, 1992).DISCONT An arti�cially constructed set of points with many discontinuities. Lo-cal models should outperform global ones.Clearly this is an extremely pessimistic bound and tighter proofs are possible (Omo-hundro, 1993).4 ResultsWe ran Hoe�ding Races on a wide variety of learning and prediction problems.Table 1 describes the problems, and Table 2 summarizes the results and comparesthem to brute force search.For Table 2, all of the experiments were run using � = :01. The initial set of possiblemodels was constructed from various memory based algorithms: combinations ofdi�erent numbers of nearest neighbors, di�erent smoothing kernels, and locallyconstant vs. locally weighted regression. We compare the algorithms relative tothe number of queries made, where a query is one learning box �nding its error atone point. The brute force method makes jTEST j�jLEARNING BOXESj queries.Hoe�ding Races eliminates bad learning boxes quickly, so it should make fewerqueries.5 DiscussionHoe�ding Races never does worse than brute force. It is least e�ective when allmodels perform equally well. For example, in the POOL problem, where therewere 75 learning boxes left at the end of the race, the number of queries is onlyslightly smaller for Hoe�ding Races than for brute force. In the ROBOT problem,where there were only 6 learning boxes left, a signi�cant reduction in the number ofqueries can be seen. Therefore, Hoe�ding Races is most e�ective when there existsa subset of clear winners within the initial set of models. We can then search overa very broad set of models without much concern about the computational expense



Table 2: Results of Brute Force vs. Hoe�ding Races.Problem points Initial #learningboxes querieswithBruteForce querieswithHoe�dingRaces learningboxesleftROBOT 972 95 92340 15637 6PROTEIN 4965 95 471675 349405 60ENERGY 2444 189 461916 121400 40POWER 210 95 19950 13119 48POOL 259 95 24605 22095 75DISCONT 500 95 47500 25144 29
20 40 60 80

20000

40000

60000

80000

Figure 3: The x-axis is the size of a set of initial learning boxes (chosen randomly)and the y-axis is the number of queries to �nd a good model for the ROBOTproblem. The bottom line shows performance by the Hoe�ding Race algorithm,and the top line by brute force.



of a large initial set. Figure 3 demonstrates this. In all the cases we have tested,the learning box chosen by brute force is also contained by the set returned fromHoe�ding Races. Therefore, there is no loss of performance accuracy.The results described here show the performance improvement with relatively smallproblems. Preliminary results indicate that performance improvements will increaseas the problems scale up. In other words, as the number of test points and thenumber of learning boxes increase, the ratio of the number of queries made bybrute force to the number of queries made by Hoe�ding Races becomes larger.However, the cost of each query then becomes the main computational expense.AcknowledgementsThanks go to Chris Atkeson, Marina Meila, Greg Galperin, Holly Yanco, andStephen Omohundro for helpful and stimulating discussions.References[Atkeson and Reinkensmeyer, 1989] C. G. Atkeson and D. J. Reinkensmeyer. Using asso-ciative content-addressable memories to control robots. In W. T. Miller, R. S. Sutton,and P. J. Werbos, editors, Neural Networks for Control. MIT Press, 1989.[Greiner and Jurisica, 1992] R. Greiner and I. Jurisica. A statistical approach to solv-ing the EBL utility problem. In Proceedings of the Tenth International conference onArti�cial Intelligence (AAAI-92). MIT Press, 1992.[Haussler, 1992] D. Haussler. Decision theoretic generalizations of the pac model for neuralnet and other learning applications. Information and Computation, 100:78{150, 1992.[Hoe�ding, 1963] Wassily Hoe�ding. Probability inequalities for sums of bounded randomvariables. Journal of the American Statistical Association, 58:13{30, 1963.[Kaelbling, 1990] L. P. Kaelbling. Learning in Embedded Systems. PhD. Thesis; TechnicalReport No. TR-90-04, Stanford University, Department of Computer Science, June 1990.[Moore et al., 1992] A. W. Moore, D. J. Hill, and M. P. Johnson. An empirical inves-tigation of brute force to choose features, smoothers and function approximators. InS. Hanson, S. Judd, and T. Petsche, editors, Computational Learning Theory and Nat-ural Learning Systems, Volume 3. MIT Press, 1992.[Moore, 1992] A. W. Moore. Fast, robust adaptive control by learning only forward mod-els. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in NeuralInformation Processing Systems 4. Morgan Kaufmann, April 1992.[Omohundro, 1993] Stephen Omohundro. Private communication, 1993.[Pollard, 1984] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.[Schaal and Atkeson, 1993] S. Schaal and C. G. Atkeson. Open loop stable control strate-gies for robot juggling. In Proceedings of IEEE conference on Robotics and Automation,May 1993.[Stan�ll and Waltz, 1986] C. Stan�ll and D. Waltz. Towards memory-based reasoning.Communications of the ACM, 29(12):1213{1228, December 1986.[Wahba and Wold, 1975] G. Wahba and S. Wold. A completely automatic french curve:Fitting spline functions by cross-validation. Communications in Statistics, 4(1), 1975.[Zhang et al., 1992] X. Zhang, J.P. Mesirov, and D.L. Waltz. Hybrid system for proteinsecondary structure prediction. Journal of Molecular Biology, 225:1049{1063, 1992.


