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Motivation 1: Algorithm Configuration

Most algorithms have parameters

I Decisions that are left open during algorithm design

– numerical parameters (e.g., real-valued thresholds)
– categorical parameters (e.g., which heuristic to use)

I Provide flexibility

I Instantiate to optimize empirical performance

Automated Approaches for Parameter Optimization

I Eliminate most tedious part of algorithm design and end use

I Can generate custom algorithms for different problem types

I Save development time & improve performance

2
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Motivation 2: Model-Based Approaches

Model-free techniques are limited

I Only return a good parameter setting
I Do not provide additional information

– How important is each of the parameters?
– Which parameters interact?
– For which types of instances is a parameter setting good?

Model-based approaches can help

I Construct response surface model

– predictive model of algorithm performance

I Use model to answer the questions above

 Inform algorithm designer

I Use model for algorithm configuration
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Outline

1. Predictive Models of Algorithm Performance

2. Sequential Model-Based Optimization

3. Summary
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Models of algorithm performance: basics

Data: algorithm performance in previous algorithm runs

I Parameter settings θ1, . . . ,θn, θi ∈ Θ
I Observed algorithm performances y1, . . . , yn, yi ∈ R
I For now: assume just a single instance

Offline model training

I Learn a function f : Θ→ R

I To minimize a loss function, such as
∑n

i=1(yi − f (θi ))2

Performance prediction for new algorithm run

I Given a new configuration θi+1

I Predict performance as f (θi+1)
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Models of algorithm performance:
which machine learning model to use?

Typical types of models used

I Linear regression

I Gaussian process (GP) regression

I Regression trees

I Random forests (forests of regression trees)

Requirements in the context of algorithm configuration

I Handle many data points

I Handle mixed continuous/discrete parameters

I Quantify uncertainty of predictions
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Picking the next configuration with the model

Balance exploration and exploitation

I High predicted variance is good (exploration)

I Low predicted mean is good (exploitation)

E.g. probability of improvement

I Pr(θ is better than incumbent)

I Closed form expression for Gaussian predictive distribution

E.g. expected improvement

I Ecost(θ)[max(0, cost(incumbent)− cost(θ))]

I Closed form expression for Gaussian predictive distribution

I Also for Gaussian predictive distribution in log space
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Sequential Model-Based Optimization (Vanilla)

Blackbox function optimization; function = algo. performance

0. Run algorithm with initial parameter settings

1. Fit a model to the data

2. Use model to pick promising parameter setting (EIC)

3. Perform an algorithm run with that parameter setting

I Repeat 1-3 until time is up
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General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)
~Θnew ← SelectNewParameterSettings(M, θinc)
[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)

~Θnew ← SelectNewParameterSettings(M, θinc)
[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)
~Θnew ← SelectNewParameterSettings(M, θinc)

[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)
~Θnew ← SelectNewParameterSettings(M, θinc)
[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)
~Θnew ← SelectNewParameterSettings(M, θinc)
[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



General Algorithm Framework:
Sequential Model-Based Optimization

[R, θinc ] ← Initialize()

repeat

M← FitModel(R)
~Θnew ← SelectNewParameterSettings(M, θinc)
[R,θinc ]← Intensify(~Θnew , θinc , R)

until time budget exhausted

return θinc

11



Sequential Model-Based Optimization: roots

Experimental design literature in statistics

I Expected improvement [Mockus et al., 1978]

I Efficient Global Optimization (EGO) [Jones et al., 1998]

– Optimization of expensive blackbox functions without noise
– Popularized the approach

I Sequential Kriging Optimization [Huang et al., 2006]

– Also allowed noise
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Sequential Model-Based Optimization:
adaptation for optimizing algorithms

I Sequential Parameter Optimization (SPO)
[Bartz-Beielstein et al., ’05-present]

– SPO toolbox
– Set of interactive tools for parameter optimization

I More robust completely automated tool [Hutter et al, GECCO-09]

– Studied SPO components
– How many runs to perform for each θ

– “Intensification mechanism” inspired by FocusedILS
 : SPO+

I Time-Bounded SPO [Hutter et al, LION-10]

– Reduced computational overheads due to the model
– Removed need for costly initial design
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Sequential Model-Based Optimization:
algorithm configuration

I Categorical parameters [Hutter, PhD thesis ’09; in preparation for CP-10]

– Different kernel for Gaussian processes
– Random forest model

I Multiple benchmark instances
[Hutter, PhD thesis ’09; in preparation for CP-10]

– Include instance features in the model
– Predict marginal performance across the training instances

 ActiveConfigurator 1.0
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Sequential Model-Based Optimization:
performance

Optimizing algorithms for single instances

I Outperforms FocusedILS in most cases

I Is more robust than FocusedILS

I No need to discretize continuous parameters

Optimizing algorithms for multiple instances

I Performed somewhat better than FocusedILS

I But need to perform more comparisons
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Sequential Model-Based Optimization:
issues yet to be addressed

I Capping (as in ParamILS)

– Tricky for learning: if i-th run capped → yi is only lower bound

I Conditional parameters

– Tricky to exploit in learning

I Use of model for

– Active selection of instances
– Active selection of captimes
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Model-free vs model-based

I Advantages of model-free approach

– Conceptual simplicity
– Simple to integrate adaptive capping
– Simple to integrate conditional parameters
– Implementation robustness (less things can break)

I Advantages of model-based approach

– Can interpolate & extrapolate
– Can handle continuous parameters
– Enable future, more sophisticated techniques

I Active selection of most informative instance
I Active selection of cutoff time
I Per-instance approaches
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Summary

Predictive Models of Algorithm Performance

I Are learned from previously gathered performance data

I Map from a parameter setting to the predicted performance

Sequential Model-Based Optimization (SMBO)

I Iteratively selects promising parameter configuration

I Updates the model on the fly

Existing Extensions

I Handle noise better: intensification mechanism

I Keep computational overhead at bay

I Outperform ParamILS for single instances
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