
Embedding Balanced Binary Trees in the Hypercube

Markus Aderhold
University of British Columbia

Department of Computer Science

aderhold@cs.ubc.ca

James Slack
University of British Columbia

Department of Computer Science

jslack@cs.ubc.ca

Abstract

In the context of parallel computing, the problem of embedding binary trees that represent
communication structures arises. Whereas much research has focused on arbitrary trees, we
concentrate on the subclass of balanced binary trees. We investigate various stochastic lo-
cal search approaches, aiming to find perfect embeddings quickly. The performance of the
resulting algorithms is empirically assessed on trees with different structural properties. In
particular, we show that all strongly balanced binary trees with 32 nodes can be embedded
without dilation into the corresponding hypercube.

1 Introduction

Hypercube multiprocessor systems are a very prominent type of parallel machines, because their
recursive structure and the fact that they contain structures like rings, 2-D-meshes, and higher di-
mensional meshes make them suitable for a large variety of problems. Many parallel algorithms
use communication structures which can be represented by binary trees. In order to run these algo-
rithms on a hypercube multiprocessor system, their communication graphs need to be embedded
in the corresponding hypercube.

A particular embedding of a tree with � nodes in a hypercube can be represented by a permutation
of the � nodes (we will give a formal definition of an embedding in Section 2). Even for moderate
parallel systems (e.g., hypercubes with up to ������� nodes) the search space of candidate em-
beddings is quite big; for � nodes, there are � �	��

��� candidate permutations for embeddings (we
already ignore embeddings that differ only in the embedding of the root node but are otherwise
“isomorphic”). Therefore, a reasonably fast embedding algorithm is needed.

Wagner [7] presented a heuristic algorithm to realize an embedding of a binary tree in two steps:
First, the binary tree is mapped into a strongly balanced binary tree, where some edges may be
dilated. Then, this strongly balanced binary tree is embedded into the optimal-sized hypercube
by a “folding” algorithm. Wagner’s algorithm relies on a conjecture about the “foldability” of
strongly balanced binary trees into (smaller) strongly balanced binary trees; a tree with just one
node can be trivially embedded into the zero-dimensional hypercube and the embedding of the

1

original tree can be obtained by unfolding this trivial tree again. If this conjecture about strongly
balanced binary trees is true, the proposed folding yields a special way of embedding a strongly
balanced binary tree in a hypercube without dilating any edges in this step. Wagner’s conjecture
can be seen as a special case of a conjecture by Havel and Morávek [2]:

Conjecture (Havel and Morávek). Every balanced binary tree with ��� vertices is a spanning
tree of � � , the � -dimensional hypercube.

Wagner’s heuristic algorithm for binary trees has a polynomial time complexity. In general, em-
bedding trees in the hypercube is NP-complete [8], but the complexity of embedding binary trees
is unknown; the proof of the NP-completeness given in [8] uses “bushy” trees and therefore cannot
be applied to the embedding of binary trees.

Smedley [6] analyzed and compared various embedding methods, including stochastic local search
algorithms such as Simulated Annealing and a Greedy Approach. Simulated Annealing was found
to have the worst performance among the algorithms under consideration, whereas the constructive
greedy approach, combined with a subsequent local search phase, showed the best performance
with respect to solution quality; the quality of an embedding is measured by its total (or average)
dilation. Whereas Smedley investigated how to embed arbitrary binary trees in hypercubes, in
this paper we focus on embedding balanced binary trees and in particular look at the associated
decision problem whether there exists an embedding of (maximal) dilation 1. The Simulated
Annealing algorithm accepts a swap of the embedding of two nodes based on the Metropolis
acceptance criterion, which takes into account the current temperature and the increase in total
dilation caused by the swap. The Greedy Approach by Smedley begins with an empty embedding
and successively embeds single nodes that at each step have a maximum “gain”. The gain is
influenced both by the dilation of the edge under consideration and by the number of embedded
neighbours of a given node.

Another approach by Helmer and Eisenberg [3] is based on the idea of a generic complete search
algorithm that involves backtracking but also uses some randomization. They found that an algo-
rithm that uses a depth first ordering of the tree nodes usually got trapped and had to backtrack very
frequently, so its overall performance was quite poor. A breadth first embedding strategy, com-
bined with a hypercube-dimension based heuristic and what they called “intelligent backtracking”
proved to be much more suitable. They also identified classes of “easy” and “difficult” trees for
the embedding problem, which we used for the evaluation of our embedding algorithms.

In this paper, we focus on devising algorithms for embedding balanced binary trees into the
optimal-sized hypercube (which according to Havel’s conjecture should always succeed) as fast
as possible. We adopt the two-exchange neighbourhood for our Iterative Best Improvement al-
gorithm that Smedley used for the Simulated Annealing algorithm. We improve the performance
by proposing a new evaluation function. Our greedy construction process is completely different
and uses a breadth first ordering of the tree nodes. Furthermore, we explore the use of a tabu
mechanism and a population-based approach. In passing, we prove a special case of Havel’s con-
jecture, namely that all strongly balanced binary trees with 32 nodes can be embedded into the
corresponding hypercube.

The paper is organized as follows: In Section 2, we introduce the relevant terminology for the em-
bedding problem. The Randomized Breadth First approach by Helmer and Eisenberg [3] is given

2

in Section 3. Section 4 explains how to transform the embedding problem into a propositional sat-
isfiability (SAT) or constraint satisfaction problem (CSP). An algorithm to solve the resulting CSP
encodings is given. We develop and discuss two stochastic local search approaches in Section 5.
Finally in Section 6, we evaluate and compare our algorithms on many different balanced binary
trees with up to 64 nodes, where we especially focus on the embedding of “hard” trees.

2 Definitions

An embedding of a binary tree � � ������� � , ����� � � � for some � �"! , in the corresponding
hypercube1 � � is an injective function #�$%�'& (
)*�,+,+,+
�-�.� �
�/ such that 0*12��#3�54 � ��#3�56 �7�8�9

for all �54:�76 � �;� , where 0<1;$.!"=>!@?A! denotes the Hamming distance between two numbers
in binary representation. (Note that this implies that # is also surjective.)

A perfect matching of � is a subset �CB"DE� of its edges such that each node 6��;� is the endpoint
of exactly one edge in the matching. � is called strongly balanced if it has a perfect matching. We
say that a binary tree � is (colour-)balanced if there exists a bipartition of the vertices into two
equal-sized sets such that no edge lies entirely within one of the parts. This means that there exists
a two-colouring which uses the two colours equally.

Not all binary trees can be embedded in the corresponding hypercube. But if such a tree represents
the communication structure of a parallel program, this does not mean that this program cannot
be executed on a hypercube multiprocessor system. The program can still run on the system if
some edges (i.e., communication paths) are dilated. Especially for local search algorithms, we
will consider such candidate embeddings as well. These embeddings differ from the (perfect)
embeddings introduced above in that they violate the Hamming distance constraints. Formally, an
edge �542�76 � �F� is dilated by a candidate embedding # if 0<1G��#3�54 � ��#3�56 �7�IHJ
 . The dilation of a
candidate embedding # is the maximum dilation over all edges:1LKNMPORQSKUTLV���# � $ � WYX�Z[]\R^ _�`SaLb 0<12��#c�54 � ��#3�56 �7�
Consequently, a candidate embedding # is an embedding if 1RKNMPORQSKUTLV���# �d�e
 . Finally, note that
as soon as there exists one embedding of a tree in the corresponding hypercube, there are always
many other (perfect) embeddings in addition: We can map the root of the tree to any node of the
hypercube and adjust the remainder of the embedding accordingly. Furthermore, we can use the
hypercube’s symmetry and rotate the embedding arbitrarily.

3 Randomized Breadth First Embedding

Following from Helmer and Eisenberg’s results [3], we implemented a breadth first embedding
algorithm as a baseline for the empirical evaluation of our new stochastic methods. The breadth
first algorithm is simply a randomized greedy construction algorithm that embeds the root node

1Throughout this paper we will use the terminology “corresponding hypercube” to denote a hypercube with exactly
the same number of nodes as the tree under consideration.

3

input: binary tree � � ���f��� � , � � (g6.hL�,+,+,+g�76Li.jlk /
output: embedding # of � in the corresponding hypercube�nmpo5qsrRtR� �:�#umpvw TLx�ysM]K{z|Q}m�~|x���O.1RQ50L�}KNx�z�Q-��x7OL�L�,x-zg����x7TgTRQ ��,� x�x7�,V�Q{�dT
1.��m��Cqs���*o5���
�|�)���,� x�x7�,V�Q{�dT
1.�.+�0.�����|x �,� ~-��� �*� ~-�,x�m�)�,� x�x7�,V�Q{�dT
1.��m �g� x�x��|V�Q{��Tg1.�.+PV%�-��Q,�>TLx�y
while �g� x�x��|V�Q{��Tg1.�� � v do

if ¡ a random ���£¢¤�¥�)*��� �¦
 � such that��#c� �g� x�x��|V�Q{��Tg1.�.+¨§©OLx7�,V�Q � xor �R�7ª B) has not been assigned to some 6 ª then
// Assign tree node to hypercube node#3� �,� x�x7�,V�Q{��Tg1.� � m«#c� �g� x�x��|V�Q{��Tg1.�.+¨§©OLx7�,V�Q � xor �R�7ª B�g� x�x��|V�Q{��Tg1.�Im �,� x�x��|V¬Q{�dTg1���+PV­����Q,�;TLx-y

else
// Backtrack#3�S®�4��L��¯ � �±°;qL�<¯ � mAv�g� x�x��|V�Q{��Tg1.�Im �,� x�x��|V¬Q{�dTg1���+ �%x7�,�¬�>TLx�y

Figure 1: Randomized Breadth First Algorithm

and traverses the binary tree by following the breadth of the tree. Nodes are embedded in a first-fit
heuristic with backtracking and no global evaluation function.

Helmer and Eisenberg argued that depth first heuristics for selecting the next candidate node were
inferior since the heuristic delayed the complete embedding of degree 3 nodes and their children,
which they claim constrained the embedding. Their explanation seemed to be purely from em-
pirical evidence of the trees that they could embed with their algorithm. Their algorithm failed
to embed trees with mostly nodes of degree 3 but was very successful in trees that were long
and stringy. To compare their algorithm with our stochastic algorithms, we implemented their
pseudo-code as a single program as accurately as possible. Figure 1 gives the pseudo-code for this
algorithm.

Simple evaluation of run times with our implementation of this algorithm reinforces the claim by
Helmer and Eisenberg that backtracking methods for this problem perform poorly. Due to our poor
run time results during a simple empirical evaluation, please refer to [3] for a complete evaluation
of the families of trees that were successfully embedded. It is worth noting from this paper that this
algorithm performs poorly even under attempts to use multiple independent processors working
with balanced subsets of the problem domain. Furthermore, Helmer and Eisenberg limited the
number of backtracks and used a small number of complete restarts after reaching their backtrack
limit to obtain most of the successful embeddings. We do not provide run time distributions since
the algorithm was unable to complete embeddings for colour balanced trees with many nodes of
degree 3.

4

4 Encoding as SAT and CSP Problems

The embedding problem can be expressed in various encodings. Several different well studied and
optimized methods can be used when problems are encoded in a specific logic format. One of
our original goals was to encode our problem as a satisfiability (SAT) problem and use an existing
SAT solver. Other encodings were also explored when it was determined that our SAT encoding
of the embedding problem has an exponential number of clauses. The most promising encoding, a
variant of the finite discrete constraint satisfaction problem (CSP), was then analyzed empirically.

4.1 Encoding as a SAT Problem

An alternative approach to embedding a hypercube is encoding the embedding problem as a sat-
isfiability problem (SAT) and using a generic optimized SAT solver to determine an embedding.
The embedding problem can be written in a very simple set of statements:

1. All tree nodes must be mapped to unique hypercube nodes.

2. If two tree nodes are connected by an edge, then the tree nodes must have a hypercube
embedding Hamming distance of exactly 1.

Our first attempt to formalize the embedding as SAT produced the set of equations in Equations 1
to 4.

² � ³´´µ ¶h�·�¸
¹�B©¹�i¸�º»%¼ [B `.½ B8º»%¼ [¸ ` 1RK ¾C�,x7�,V�Qg��¿¯ ¸ ��¿¯,B ��À,ÁÁÂÄÃ (1)³´´µ ¶h�·�¸ ^ BÅ¹�iB »%¼ [¸ ` �Æª » k 1RK ¾C�,x±TRV�M¨�l��¿¯ ¸ �.¿¯gBd�7� � À,ÁÁÂ
where ¿¯ ¸ � ¯ ¸ ^ k ¯ ¸ ^ t +,+,+|¯ ¸ ^ � �U¯ ¸ ^ ª �F(
)*�
�/��� embedding of node � in � � ()YÇ��ÉÈ �),¢ ��Ê �U� � $ÌË node ¢ is the parent of node �

1LK ¾C�|x7TLV�M]�G��¿¯ ¸ ��¿¯,B��7� � $ � �£¯ ¸ ^ ª xor ¯gB ^ ª � Ã ¶k7·�Íg· �Í�º» ª ��¯ ¸ ^ Í xor ¯,B ^ Í � (2)

1LK ¾8�|x��|V�Q,��¿¯ ¸ �.¿¯ B � $ � �Æª » k �U¯ ¸ ^ ª xor ¯ B ^ ª � (3)

5

¯ ¸ ^ ª xor ¯,B ^ ª $ � � ¯ ¸ ^ ª�Î ¯,B ^ ª � Ã �U¯ ¸ ^ ª�Î ¯,B ^ ª � (4)

However, it was not clear if the number of conjunctive normal form (CNF) clauses in the equations,
which is required as input to generic SAT solvers, was exponential in the number of nodes, � .
Therefore, rather than attempt to expand the complex logical operations into CNF, we derived
an alternative embedding for all nodes being different. This produced the set of equations in
Equations 5 to 7.

² � ³µ ¶k7·lÏP· � ¶Ð£Ñ [�Ò¨`UaLÓ*[�Ò¨`
³µ ÆÐ£ÑÕÔ Ö []Ò]`Sa Ð£Ñ []Ò¨` � ª ^ Í.�So � Ã ÆÐ£ÑÕÔ Ö []Ò]`Sa Ð£Ñ [�Ò¨` � ª ^ Í��So � ÀÂ ÀÂ Ã (5)³´´µ ¶k7·�B ^ ¸s·�iB »%¼ [¸ ` Æ×gÑ aLØ �|¿¯,B��¨Ù ª � Î ¿¯ ¸ �¨Ù ª �7� À,ÁÁÂ Ã (6)

¶k7·�B ^ ¸s·�iB »%¼ [¸ ` ¶k7· ª ¹�Íg· �
�SÚ�Û Ô ÑNÜ Ú�Û Ô Ö-Ü Ú�Ý Ô Ñ Ü Ú�Ý Ô Ö � ½�SÚ�Û Ô ÑNÜ Ú�Û Ô Ö-Ü Ú�Ý Ô Ñ Ü Ú�Ý Ô Ö � ½� Ú�Û Ô ÑNÜ Ú�Û Ô Ö-Ü Ú�Ý Ô Ñ Ü Ú�Ý Ô Ö � ½� Ú�Û Ô Ñ{Ü Ú�Û Ô Ö�Ü Ú�Ý Ô Ñ Ü Ú±Ý Ô Ö � (7)

where ¿¯ ¸ � ¯ ¸ ^ k ¯ ¸ ^ t +,+,+�¯ ¸ ^ � �U¯ ¸ ^ ª �Þ(
)*�
�/��� embedding of node � in � � ()YÇE�ßÈ �),¢ ��Ê �U� � $ÌË node ¢ is the parent of node �à � all á iiRâ±t�ã:k�ä permutations of �:å �çæ
 tree nodes

from a tree with � nodesà �So � � a column
 Ç¦ofÇE� of S� ª �So � � a single permutation enumerated as � from
à

at

dimension o� ª ^ Í �So � � a single bit value of node è in � ª �So � corresponding

to some ¯ B ^ Ò� (s)*�
�/é � set of all truth value assignments from 0 to � � �¦
� bits wide¿¯ B �¨Ù ª � � application of permutation of truth values Ù ª to ¿¯ B
with disjunctions¯R+ r�+¬$�¿¯ B �
)R)

� $ÌË«¯ B ^ k Î ¯ B ^ t Î ¯ B ^ ê Î ¯ B ^ ë

These equations work in a similar manner as the previous equations. Equation 5 will only allow �
bit positions in all embedded nodes to be set to the value
 as well as only allowing � bit positions

6

in all embedded nodes to be set to the value) . This restriction is quite strong and is very difficult
to encode in CNF; it does not take much effort to arrive at a � t clause disjunctive normal form
(DNF) encoding to restrict embeddings in a similar way. The CNF equation does this by requiring
all sets of � /2 + 1 nodes that there must be at least 1 node with a different bit value than the other
n/2 nodes; since the bits are restricted to two values, either half of the equation must hold.

Equations 6 and 7 form the bounds on all adjacent binary tree nodes. First, Equation 6 is used
to force adjacent nodes to be different in at least one bit position. It does this by requiring that
when an embedding value of ¿¯ B (between) and �u�ì
) fails to match in any bit with a certain
permutation, it must be true that ¿¯ ¸ , which is identical to ¿¯sB in the equation must match at least
one bit. Then, Equation 7 is used to force adjacent nodes to be different in at most one bit position.
This is achieved by looking at any two bits of ¿¯LB and ¿¯ ¸ in the same bit position. If any of the
parts of any of the four sub-equations in Equation 7 fail, that means that there are at least two
bits different in ¿¯ B and ¿¯ i . Therefore, the two equations work together to force the number of
bit differences to be strictly greater than zero and strictly less than two; the adjacent nodes thusly
must differ in exactly one bit.

Careful analysis of these equations reveals the complexity of encoding our problem as a SAT
instance as being exponential in the number of nodes in our binary tree. This can be observed
from Equation 5. The first line of this equation, which effectively constrains the problem such that
all tree nodes are embedded in unique locations in the hypercube, requires:

Number of clauses 5 � (� dimensions)(á iiLâ±t�ã:k±ä permutations)(2 clauses) disjunctions� � iiRâ±t�ã:k á iiLâ±t�ä disjunctions of length �:å �©æ

Since á iiRâ±t�ä grows exponentially with � , the number of clauses in our SAT encoding also grows
exponentially with � . The other two Equations 6, 7 yield a substantially smaller number of clauses:

Number of clauses 6, 7 � (�	�E
 sets of 2 connected nodes)

(� � permutations of dimensions +

(� clauses)(á � t�ä ways to select 2 dimensions)) disjunctions� � �	�E

� � � æ � á � t�ä � disjunctions of length �L� and �
The number of clauses in these parts of our encoding grows with � t . This information does
not help reduce the number of clauses required for the complete equation, and therefore, our
encoding has an exponential number of terms. Of course this means that encoding our problem as
a SAT problem will take exponential time with respect to generating the clauses; the complexity
of the SAT encoding encouraged us to find alternative methods of encoding the problem. The next
section describes our constraint satisfaction problem (CSP) encoding.

4.2 Encoding as a CSP Problem

Following the disappointing number of clauses in general SAT encodings, we discovered that the
problem is fundamentally encodable as a constraint satisfaction problem (CSP). Our SAT encoding

7

prompted attempts to assign hypercube dimensions to tree edges instead of assigning hypercube
nodes to tree nodes. This can be observed from the exponential length of our SAT encoding, which
is due to the complexity of ensuring no hypercube node has two binary tree nodes assigned. Our
CSP encoding attempts led to an encoding with a single constraint type that we could then employ
a CSP based algorithm to solve. Simply put, our CSP algorithm attempts to assign dimensions
to edges and succeeds when the assignment does not violate the constraints. This means that for
each edge of the tree there is a variable with domain (
)*�,+,+,+���� �ì
�/ . However, no analysis has
been done to turn a CSP encoded instance into a SAT encoded instance based on the complexity
of the CSP constraint expressed as a SAT encoding.

The single constraint to this solution is that the paths described by adjacent edges cannot form
cycles. A set of edges in a path forming a cycle is equivalent to embedding two binary tree nodes
in the same hypercube node. Our CSP solution effectively works since we can enumerate all paths
in a given tree and only have to look at a subset of paths that might contain cycles. The number of
paths in a tree with � nodes is á i t,ä , but some of those paths are not able to contain a unique cycle.

We know that paths with an even number of edges may form a cycle if each edge is used an even
number of times. This is trivial with paths of 2 edges; traveling along dimension � twice will form
a cycle for any node and any dimension. By enumerating all binary tree paths with even length,
we can search for cycles by maintaining counts of the dimensions being used; paths of all even
lengths from 2 to the maximum even length path are necessary for this algorithm to work. Hence,
for each such path there is a constraint on the variables denoting edge dimensions so that not all
dimensions along this path are used an even number of times.

Empirical evidence suggests that there are exactly i t � i t �¦

� even length paths in colour balanced
binary trees with � nodes. This is not true for all trees with � nodes; as a simple counterexample,
consider a single node with �	�E
 children. However, this does not affect the algorithm, so it will
not be discussed further.

A straightforward way to obtain all even length paths is to use an algorithm for determining All-
Pairs-Shortest-Paths (APSP) using a simple � ê algorithm like Floyd’s algorithm so the paths can
be recovered. In order to use such an algorithm, the instance is converted into an � -by- � distance
matrix; if two tree nodes � and è are connected in a binary tree, then the matrix entries (� , è) and
(è , �) are set to
 , otherwise the entries are set to) . Since the size of the matrix, � t , is sufficiently
small, this step does not add significant overhead to the running time; this step is only intended
to be performed once for initializing. The edge indices are stored in lists of paths and each edge
has a list of paths of which it belongs. This aids in the update of the evaluation functions as the
neighbourhood is explored.

After finding all paths and effectively encoding a CSP instance, an algorithm based on the Min-
Conflict Heuristic (MCH) [5] was used to solve the instance and find a solution. The neighbour-
hood of interest for a current edge embedding can be thought of as a one-exchange neighborhood;
the neighbours of an edge assignment are all edge assignments that differ in exactly one dimension-
to-edge assignment. Since restarting the algorithm would be costly due to expensive restarts, an
algorithm variant that probabilistically uses either the MCH approach or a random walk seemed
appropriate.

Starting with the generic MCH algorithm, we developed a variant called WeightedMCH for our

8

input: binary tree � � ���f��� � , � � (g6.hL�,+,+,+g�76Li.jlk / ,)íÇî�çï<oU� é �RqLð�ï*ð��£o5����ñÉÇEò;ó©ô;�Ióçõ:ö
output: embedding # of � in the corresponding hypercube�71LKNz�Q�OLV � �-ò¥ORQSx�KP�÷���*ORQ50RòøORQSx�K�� � mAóC§úù<§n�N� �#umpv�|�R�|V<§©ORQ50�zCmüûÅ�gQ{ýú�L�,V<§ÅO�Q50�z<�S�����g�±ï � ®,¯sþÿï����L���:�SÙ¬ï�� � þÿï����L��� ���1��<��zCm��ÅOLV¬1�T � ó�z-z�K���V ��V �� V�z|ORQ}m K{z�ù¬ORQSKNz	�3�-1�
.��ý ��OLM � ORQ£�-ý©1����|z����-1����|z �7�
while � V�z,ORQ do

with probability w OLM yg§úx7T.~�O�~|K5M¨KSQS� å ò;ó©ô;�Ióçõ:ö
// Random walk step� V�z,ORQ}m KNz�ù¬ORQSKNz	�ú��1�
���� OLV¬1�T � �;OLM yl����1��<��zR���,�L�|V*§ÅORQ50�z �7�

else
// Weighted probabilistic step� V�z,ORQ}m KNz�ù¬ORQSKNz	�ú��1�
��L�;�|K��L0�Q£�-1
ò�
�� ����1�����zR�s�,�L�|V*§ÅORQ50�z �7�#um ��1����-ó�z-z�K���V �U¯
�Rr<¯s� �

Figure 2: CSP based algorithm for embedding problem

CSP based approach. WeightedMCH selects an edge to flip randomly by looking at all edges that
can be flipped using dynamic information to bias the decision. Bias is used in the edge decision
such that the edge to be flipped is weighted based on the number of unsatisfied paths/constraints the
edge is currently in; more unsatisfied constraints results in a higher probability that the edge will be
selected next; edges that are only in satisfied constraints will never be selected by WeightedMCH.

WeightedMCH randomly, uniformly chooses a new dimension for a chosen edge. Any new dimen-
sion choice for an edge in an unsatisfied path is sufficient; limited empirical evidence suggests this
approach is reasonable due to the amount of computational effort required to find the best di-
mension. If the new edge/dimension in the embedding assignment has at least as few unsatisfied
constraints as the previous edge/dimension assignment, then the algorithm will continue with the
edge assigned to the new choice in dimension. Otherwise, a backtrack is made to the previous
edge/dimension. Backtracks are inexpensive with the data structure decisions in our implementa-
tion. Figure 2 is a high-level pseudo-code representation of our CSP based algorithm that uses the
modified MCH algorithm.

Deciding on the optimal walk probability is essential to optimizing the performance of our al-
gorithm. The probability is determined by first running the algorithm with a small number of
runs with varying walk probabilities. Figure 3 shows a fine grained run-time distribution (RTD)
evaluation that ran with
)R)R) runs on an informed range of walk probabilities. An optimal walk
probability was determined for each tree that we used to evaluate our functions with, but empir-
ically, a walk probability of
���å<
)R)R) proved optimal for a small set of trees from several classes
that we tested. Figure 4 is a plot of RTDs for these classes and shows the relation between the
classes of trees tested with our determined walk probability. See Section 6 for more analysis of our
algorithm, including fitting an exponential function and comparisons of the trees we tested versus
other trees in their class.

9

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

P
(s

ol
ve

)

run-time in seconds

wp 10
wp 15
wp 20
wp 25

Figure 3: Determining the optimal walk probability for CSP based algorithm,
)R)R) runs

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

bbt64-02
bbt64-05
bbt64-10

sbbt64

Figure 4: Comparing different classes of trees with CSP based algorithm, walk probability
���å<
)R)R) with
)R)R) runs

10

5 Stochastic Local Search Algorithms

The general idea of local search is to start with a candidate embedding and to improve it “locally”
by applying small changes until a valid solution is found. Our local search approach works as
follows: The input of the algorithm is a binary tree � � ������� � , where ���ß� � � � for some ���	! .
The set � ª of candidate embeddings of � in � � is the set of all injective mappings from � to(
)*�,+,+,+s�-� � �¦
�/ , i.e., � ª $ � (�#î�R# $<� &ü(
)*�,+,+,+��-� � �¦
�/R/ +
In order to guide the local search, we need a way to assess the quality of candidate embeddings.
The notion of the (maximum) dilation of an embedding from Section 2 is not very differentiating,
because it does not take the number of dilated edges into consideration. Therefore, we use the
total dilation � of a candidate embedding,

� $�� ª ? ! $�#��? �[]\R^ _�`Ua�b 0<1:��#3�54 � ��#3�56 �7� +
With � as an objective function, we now have an optimization (minimization) problem. A very
straightforward evaluation function � Ú turns the total dilation value into values that are easier to
interpret, because they indicate the excess dilation of edges:

� Ú $�� ª ?p! $�#��?��	��# �f� � �ß� � �[]\R^ _�`Ua�b ��0<1:��#3�54 � ��#3�56 �7�c�¦

�
Since each # ��� ª is injective, 0<1G��#3�54 � ��#3�56 �7���e
 for each edge �542�76 � � � , so a candidate
embedding is a perfect embedding if and only if �>��# �©� � ��� , which is equivalent to � Ú ��# �©�) .
Unfortunately, this evaluation function still does not provide much guidance; it does not take
into account which edges are dilated. If we aim at finding perfect embeddings, however, it is
a big difference whether an edge in the middle of the tree is dilated or an edge close to a leaf
node. In the first case, after repairing the dilation, the embedding of all subtrees may have to be
adjusted, so there is no point of fixing the embedding of leaf nodes beforehand. Therefore, we
will also consider (and prefer) an evaluation function that weights the dilation by the size of the
corresponding subtree:

� Ð $�� ª ? ! $�#��? �[¨\R^ _�`Ua�b ��0*12��#3�54 � ��#3�56 �7�c�¦

�! z�K#"
�<�N� _ � �
where z�K�"s���N� _ � denotes the size of the subtree of � that is rooted at node 6 (we assume that all
edges �542�76 � �	� are given such that 6 is a child node of 4). This evaluation function preserves the
property that all perfect embeddings are characterized by � Ð ��# �d�) , but it especially penalizes
edge dilations at higher levels. Besides, it does not create extensive plateaus in the search space,
as we shall see later. If we do not explicitly mention that we used another evaluation function, we
used � � � Ð .
In the following subsections, we discuss various stochastic local search techniques that are based
on these ideas. The run-length and run-time distributions we show in this section in order to
support our claims are all based on the first instance of the test set BBT64-02, the hardest test set
among those that we found (see Section 6.1 for a description).

11

5.1 Initialization Techniques

Probably the simplest initialization method is Random Picking, which just randomly chooses a# �$� ª . Another approach is Greedy Randomized Construction Search. It starts with a partial
embedding #¥$<�&% (
)*�,+,+,+��-�R� �d
�/ that only maps the root node to 0. Then, as long as there exists
a node 6u�î�$')(+* W # such that 6 ’s parent node 4 has already been assigned a hypercube node
number (i.e., 4F�,(�* W #), # is extended by mapping 6 to a value ¢ �Þ(
)*�,+,+,+��-��� �;
�/ 'G#3��� � that
is randomly picked among those values which minimize 0<12��#3�54 � �7¢ � . Unless otherwise stated,
we use the greedy initialization for our local search approaches.

The latter construction mechanism already gives rise to a simple stochastic local search algorithm:
Repeatedly construct a candidate embedding # until an embedding with �f��# �ø�) is found.
Obviously, the ordering of the nodes has an influence on the construction search. Similar to the
algorithm by Helmer and Eisenberg [3], we use a breadth first ordering. However, our algorithm
never backtracks, which is a very important difference (see also Section 6.3).

5.2 Iterative Best Improvement

An Iterative Best Improvement local search algorithm can use one of the initialization functions
from the previous subsection and then improve this candidate embedding by searching in a certain
neighbourhood. Two candidate embeddings # k ��# t �-� ª are neighbours if and only if there exist
two nodes 42�76ß�;� , 4 � 6 , such that

. #�k0//2143 � #:t+//2143 , where ��5¬$ � �6'C(g42�76 / , and

. #:t��54 �}� #�ks�56 � and #:t��56 ��� #�ks�54 � .
Intuitively, #÷t can be obtained from #ck by swapping the embedding of nodes 4 and 6 . In each step,
one of the neighbouring candidates with minimal evaluation function value is randomly selected
according to a uniform distribution. Figure 5 gives the pseudo-code for this algorithm for an
evaluation function � (e.g., � � � Ð). Since we are only interested in perfect embeddings, there is
no need to keep track of an incumbent candidate embedding (the best embedding found so far),
because we can terminate the search as soon as we hit a perfect embedding. The algorithm also
includes a limited tabu mechanism: In order to avoid immediately undoing a worsening step, the
two nodes involved in the swap are declared tabu (alternatives are discussed below). At any time
only two nodes are tabu so that the search is not overly restricted. The search is terminated and
immediately restarted if no improving step has been found after a specified number of steps (see
below).

Of course we would like to know if the tabu mechanism is a good choice. Therefore, we measured
run-length distributions which count the number of search steps for various tabu mechanisms and
dynamic cutoff values. The tabu mechanisms we considered are:

tabu0 After a worsening swap, no nodes are declared tabu.

12

input: binary tree � � ���f��� � , � � (g6�kg�,+,+,+g�76Li /
output: embedding # of � in the corresponding hypercube or v#um87#9�7#:|�N� �Q�O.~ � mAv
while not Q£�|x � KNV¬O�Q£� and (�f��# �úH)) do (° mAv

for � �J
 to �	�¦
 do
for è � �­æ
 to � do

if (Q�O.~ �<; (g���£è /d� v) then (#=5�m?>�# with #c�56 ª � and #3�56gÍ � swapped @°emp°BA;(�# 5 //¢ m W 7C9%(D�f��# 5 � ��# 5 �	° /# 5 mE> randomly chosen from (�# 5 �	°p�F�f��# 5 ��� ¢ / @
if (�f��#=5 �úH �f��# �) then Q�O.~ � m (g�3�Þ(
 �,+,+,+
� � / ��#=5U�56 ª � � #3�56 ª �-/#umA# 5/

if (�f��# ���)) then return # else return v
Figure 5: Iterative Best Improvement Algorithm

tabu1rel One of the two nodes involved in the worsening swap (randomly chosen) is declared
tabu. After an improving step, the tabu status is released.

tabu1 One of the two nodes involved in the worsening swap (randomly chosen) is declared tabu,
but the tabu status is not released after an improving step. (The tabu status of this node is
automatically released after another non-improving step.)

tabu2rel Both nodes whose embeddings were swapped are declared tabu as a result of a worsen-
ing step. After an improving step, the tabu status is released for both nodes.

tabu2 Both nodes whose embeddings were swapped are declared tabu, but the tabu status is not
released after an improving step. (Again, the tabu status is automatically released after
another non-improving step.)

Since the optimal dynamic restart strategy may vary between those alternatives, we determined for
each tabu mechanism the optimal number of non-improving steps after which the search should be
restarted among 20, 50, 100, 150, 200, 300, and 400. As Figure 6 (which is based on the individu-
ally approximately optimal restart strategies) shows, the differences between the tabu mechanisms
are very marginal, which gives some interesting insight into the topology of the search space: For
each neighbour of a local minimum, there are typically several other neighbours that are at least as
good as the local minimum, so the search rarely falls back into a previously visited local minimum.
As the tabu2 variant performed slightly better than tabu0 and tabu1 in the initial phase (up
to 5000 search steps), we chose this tabu mechanism for our future investigations. The “release”

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

P
(s

ol
ve

)

run-length in search steps

tabu 0
tabu 1

tabu 1rel
tabu 2

tabu 2rel

Figure 6: Comparison of five tabu mechanisms for Iterative Best Improvement

variants showed better performance in the initial search phase, but later on were not quite as good
as tabu2.

As mentioned above, we optimized the restart strategy for each tabu mechanism. Figure 7 illus-
trates our experiments for the “winner” of the competition, tabu2. The three worst performing
strategies restart the search after 20, 50, or 100 non-improving search steps, respectively. This
indicates that a good amount of “patience” is necessary to escape from locally minimal evaluation
function values and to finally reach a global minimum. At the same time, we see that “impatience”
is punished: The search needs a certain time to reach promising regions of the search space, so
restarting too eagerly discards this initial effort. On the other hand, the performance decreases if
we spend too much time in a non-promising region before giving up and restarting. We observed
this performance drop beginning at cutoff values of 300, so our value of choice is 200. (Of course,
the optimal value depends on the instance. Since we are mainly interested in embedding the “hard-
est” trees, we chose 200 for all instances; the “easier” the trees are, the less important becomes the
cutoff value, because embeddings are typically found quite early.)

Let us now have a quick look at two other implementation choices. Firstly, we could use another
evaluation function, in particular � Ú . Secondly, the initialization could be done by Random Pick-
ing. In Figure 8, we see that Random Picking causes the algorithm to perform considerably more
search steps. Even worse is the situation for the evaluation function � Ú . The main reason for this
is that with � Ú , the search landscape has undesirable plateaus: The (discrete) evaluation function
values often are in the range between 1 and 7, and many steps arbitrarily trade off the dilation
of one edge against the dilation of another edge. The use of � Ð , however, directs the search, so
the embedding of the roots of big subtrees is fixed before the “details” towards the embedding of
leaf nodes are settled. Note that both evaluation functions lend themselves to an efficient cache-
and-update implementation. Each pair of connected nodes contributes “locally” to the evaluation

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

P
(s

ol
ve

)

run-length in search steps

ibi 020
ibi 050
ibi 100
ibi 150
ibi 200
ibi 300
ibi 400

Figure 7: Determining the optimal dynamic restart strategy for Iterative Best Improvement

function value, so after every swap only few calculations are necessary to assess the quality of the
modified candidate embedding.

One might argue that a Random Picking initialization is much easier (and thus faster) to compute
than the more complicated Greedy Construction. This is true to some extent, but at a closer look
the Greedy Construction does not take too much time: As long as there are “sufficiently many”
unused hypercube nodes, it is possible to embed a node at Hamming distance 1 to its parent node,
which limits the choice considerably; all nodes at a greater distance do not need to be considered.
This intuitive explanation is backed up by Figure 9, which is based on actual running times and
not on the number of search steps (we will describe the running environment in Section 6).

We conclude the description of the Iterative Best Improvement algorithm with the following sum-
marizing observation: The algorithm is fairly robust with respect to parameter settings (tabu mech-
anism and restart strategy). Although the presented analyses of run-time behaviour used an in-
stance from the test set BBT64-02, we obtained very similar results for other balanced binary
trees. Since most other instances are “easier”, it is more important to optimize the algorithm for
the difficult cases. For example, a generous setting of the cutoff value has a rather limited effect,
because the search is terminated anyway if a solution is found earlier.

5.3 A Population-based Algorithm

As the necessity of dynamic restarts indicated, some diversification is needed to find perfect em-
beddings. On the other hand, it is not always advisable to just restart the whole search process.
Often it is a good idea to merely swap the embeddings of two subtrees, because the current candi-
date embedding might use some regions of the hypercube inefficiently. This forms the idea of our

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

P
(s

ol
ve

)

run-length in search steps

ibi GreedyInit
ibi RndPicking
ibiE GreedyInit

Figure 8: Using Random Picking or � Ú in the Iterative Best Improvement approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10

P
(s

ol
ve

)

run-time in seconds

ibi GreedyInit
ibi RndPicking

Figure 9: Run-time distributions for different initialization techniques

16

input: binary tree � � ���f��� � , � � (g6�kg�,+,+,+g�76Li /
output: embedding # of � in the corresponding hypercube or v
for � �
 to � do (# ª mHGI:KJML X :N7�OFJ�PQJ�RK:KG WTS LN*�OFJ W J�90:R�U7#9�7�:g�N� �7�

if (�f��# ª ���)) then return # ª/
while not Q£�|x � KNV¬O�Q£� do (

// Mutation
for � �J
 to � do (> randomly choose a node 4 of � with 2 children, 6�k and 6Rt�@# ¸,ã ª mE>�# ª with # ª �56<k � and # ª �56Rt � swapped @/
// Local Search
for � �J
 to � do (> Mark one of the nodes in which # ¸,ã ª and # ª differ as tabu for the local search phase @# ¸,ã ª mHGI:KJML X :N7�OFJ�PQJ�RK:KG WTS LN*�OFJ W J�90:R��# ¸|ã ª �

if (�f��# ¸,ã ª �f�)) then return # ¸,ã ª/
// Selection��# ª � k7· ª ·�¸ mE> the � best candidate embeddings from ��# ª � k7· ª ·�t7¸ @/

return v
Figure 10: A population-based local search algorithm

population-based local search algorithm.

The population-based approach maintains a set of � candidate embeddings, which are indepen-
dently generated by an initialization function (Greedy Randomized Construction). Each candidate
embedding is locally optimized by the Iterative Best Improvement technique from above. Due to
the hypercube’s symmetry, there are many ways of embedding the same tree in the hypercube (if
there is one at all), so there is little hope that a recombination of two candidate embeddings yields
a useful candidate embedding. This is why our algorithm is only loosely related to the idea of
genetic algorithms. One can also see it as a population-based Iterated Local Search algorithm.

To each of the � candidate embeddings we apply a mutation step (in the Iterated Local Search
context, this is called perturbation). It randomly selects a node with two child nodes and swaps
the embedding of those two children (not of the whole subtree). Iterative Best Improvement then
leads these new candidate embeddings to local optima (for example, by adjusting the embeddings
of the subtrees). In order to avoid that the mutation is immediately undone, one of the child nodes
is declared tabu for the local search phase. The ��¯goU¯g®����£q � process then selects the � best candidate
embeddings among the �R� candidates for the next generation, where ties are broken randomly.
Figure 10 shows pseudo-code of this algorithm. It terminates when a fixed number of generations
has been generated or, of course, when an embedding has been found.

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06 1e+07

P
(s

ol
ve

)

run-length in search steps

5
10
15
25
50

100

Figure 11: Effect of the population size � on the population-based algorithm

Obviously, we need to find a suitable population size � . Figure 11 shows the run-length dis-
tributions for population sizes between 5 and 100. For low run-lengths (È
)R)R)R)), there is no
significant difference between the varying population sizes. This is not very surprising, because in
this range we basically have the Iterative Best Improvement algorithm from above with a limited
number of restarts (given by the population size). If those attempts do not succeed, however, the
very limited amount of diversification in small populations results in a decreasing success proba-
bility for longer runs. But it is interesting to note that for very long runs we still reach a success
rate of 100%. This indicates that the mutation (or perturbation) mechanism is strong enough to
prevent complete stagnation; it simply takes many generations until sufficiently diverse candidate
embeddings have been explored. A population of size 25 seems to be a good compromise between
a sufficient amount of diversification and the cost of maintenance.

We also studied the impact of “migration”: Here, we only keep � � �V5 of the best candidate
embeddings of a generation and introduce � 5 new, re-initialized candidate embeddings, hoping
to increase the diversification even more. Interestingly, this had virtually no influence on the
behaviour of the algorithm; the run-length distributions are almost perfectly congruent with the
original ones (and we therefore do not present them graphically). This underlines once more that
the mutation mechanism works successfully and at the same time gives us the benefit of being
computationally cheaper than a re-initialization.

We already pointed out that the number of embeddings of a tree is typically quite large. This makes
an analysis of the search landscape relatively difficult, because properties such as Fitness-Distance
Correlation [4] are hardly identifiable if the set of all perfect embeddings is unknown. However,
we already found some indirect clues about the search space topology when we analyzed the
Iterative Best Improvement algorithm. Furthermore, the population-based algorithm in Figure 10
is actually based on this insight: The Iterative Best Improvement algorithm does not keep track

18

of the best candidate embedding that has been found during the search phase. We argued that
this was not necessary, because we were not interested in a candidate embedding unless it was a
perfect one. But in the population-based approach we are interested in the result of the subsidiary
local search phase even if it did not succeed. Hence, one might wonder if the additional effort to
store an incumbent candidate embedding could pay off. The answer is: No. Recall that we saw
that the different tabu mechanisms had virtually no effect on the performance of the Iterative Best
Improvement algorithm. We concluded that after each worsening step there always seems to be
an alternative step that brings us to a different, but at least equally good candidate embedding as
the one we left before. Consequently, we immediately regain the solution quality we just lost.
In fact, experiments showed that the quality of the candidate embedding returned by the Iterative
Best Improvement algorithm is not worse than the quality of the best candidate embedding that
has been encountered during the search.

In addition, we tried some alternate selection criteria. Limited experiments did not show any in-
crease in performance (often rather a decrease), so we just briefly mention two major alternatives:

. Random Selection: From the �R� candidate embeddings, � candidate embeddings are ran-
domly selected regardless of their evaluation function values.

. Pairwise Selection: Since # ¸,ã ª is obtained from # ª , we select � candidate embeddings from
the set of �R� candidate embeddings by pairwise comparing the evaluation function values of# ª and # ¸,ã ª , always selecting the better one. (Notice that this variant is very closely related
to Iterated Local Search, performed on all members of the population.)

6 Performance Evaluation

Having presented several embedding algorithms, we now analyze their relative performance on
various balanced binary trees. In Section 6.1, we describe the test sets. Afterwards, we briefly
report our results on the extensive embedding experiment of all strongly balanced binary trees
with 32 nodes. Finally, we evaluate the performance of the embedding algorithms on trees of
varying difficulty. All of our experiments were run on Intel Xeon 2 GHz dual processor machines
running under Linux. Our run-time distributions are based on CPU seconds.

Previously, we already used run-length distributions to assess the quality of single embedding
algorithms. Figure 12 shows that there exists a linear correlation between the number of local
search steps and the run-time of the Iterative Best Improvement algorithm. As neither mutation
nor selection cause significant overhead, this result also holds for the population-based algorithm.
While this justifies the use of run-length distributions for tuning a single algorithm, we present run-
time distributions for our comparative evaluation of different algorithms, because the complexity
of local search steps varies considerably between them.

19

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

ru
n-

tim
e

in
 s

ec
on

ds

run-length in search steps

ibi

Figure 12: Correlation of run-length and run-time (Iterative Best Improvement on bbt64-02)

6.1 Tree Generation

The “easiest” binary trees are the strongly balanced ones. In order to prove that all strongly
balanced binary trees with 32 nodes can be embedded into the corresponding hypercube (see
Section 6.2), we generated this set exhaustively according to the algorithm described in [1]. Using
the same algorithm, we generated some strongly balanced binary trees with 64 nodes as well,
which we refer to as SBBT64.

Since we are interested in seeing how our algorithms perform on “harder” trees, we followed the
approach by Helmer and Eisenberg [3] and generated trees that they reported to be the most diffi-
cult ones. The idea is to generate a tree with few nodes of degree 2 and many nodes with degree 3,
because the degree 3 nodes pose tighter constraints on the embeddings. The generation works as
follows, where ¢ is a parameter that controls the number of degree 2 nodes (the description is
taken from [3]):

1. Generate a full tree of �É� ¢ nodes.

2. Randomly choose a node to “stretch” by adding a new node between it and its parent.

3. Repeat step 2 until the tree contains �	�î
 nodes.

4. Choose the last node to stretch such that stretching this node will result in a colour balanced
tree. It is possible that there is no node with this property. When this occurs, restart with
step 1.

In this paper, the sets of trees generated according to this algorithm are referred to as BBT64-MM,

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

P
(s

ol
ve

)

run-length in search steps

SBBT32

Figure 13: Statistics of the embedding of all strongly balanced binary trees with 32 nodes

where MM indicates the value of ¢ (all trees have 64 nodes in total). We write bbt64-MM to
denote the first instance of the corresponding test set.

6.2 Embedding All Strongly Balanced Binary Trees with 32 Nodes

The simple Repeated Greedy Randomized Construction Search algorithm from Section 5.1 was
already good enough to embed all 368,422,352 strongly balanced binary trees with 32 nodes into
the corresponding hypercube. Due to the tremendous amount of data, we measured the run-lengths
in multiples of 10, so the averaging run-length distribution (number of initializations) over all those
trees in Figure 13 begins at 10.2 The simplicity of embedding this kind of trees is reflected in the
fact that 64,891,995 trees (17.5%) were successfully embedded after less than 10 tries. Only
12,219 trees (less than 0.00332%) needed more than 1,000 guesses until an embedding was found,
which explains the long right tail in the plot. Besides, every tree was embedded exactly once,
so the variability in search cost also stems from the underlying “random guesses”. In total, this
experiment took about 17 CPU hours.

6.3 Performance Comparison

Although presenting only sparse performance results, Helmer and Eisenberg found the trees of
BBT64-02 to be very difficult to embed (in fact, they found them so difficult that their embedding

2Each run of the embedding algorithm generates an integer value, the run-length, which amounts to about 1.4 GB
of data. Storing the run-lengths in bins of size 10 reduces the amount of data significantly. However, we can no longer
differentiate between runs of lengths between 1 and 10, for example.

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

ibi
pop
csp
rep

Figure 14: Run-time distributions for bbt64-02

algorithm had a “success rate” of 0%). This is most probably due to their use of backtracking. Our
reimplementation of this randomized breadth first search confirmed the bad performance, so there
was no way of measuring run-time or run-length distributions within a reasonable amount of time.
The run-time distributions in this section therefore focus on the other algorithms, all of which
reached a success rate of 100% within a few seconds.

Figure 14 shows the run-time distributions of our Iterative Best Improvement algorithm (ibi), the
related population-based algorithm (pop), the local search algorithm for a CSP representation
of the corresponding embedding problem from Section 4.2 (csp), and the simple repeated ini-
tialization approach (rep) for the first instance of BBT64-02. The population-based algorithm
probabilistically dominates the Iterative Best Improvement algorithm only very marginally. The
CSP variant performs nearly equally as good, whereas repeated initialization search takes approxi-
mately ten times as long to find embeddings. For bbt64-05, shown in Figure 15, the situation is
quite similar, although IBI and POP are almost indistinguishable in their overall performance. The
repeated initialization approach works slightly faster than for bbt64-02, indicating that trees in
bbt64-05 are “easier” in the sense that an embedding is easier to guess.

CSP cannot exploit the decreasing difficulty of the embedding problem for trees with an increasing
number of nodes of degree 2. Whereas the curves for IBI, POP and REP move constantly to the
left, the run-time distribution for CSP remains almost invariant when we move on to test instance
bbt64-10, shown in Figure 16. The repeated initialization approach is even able to “overtake”
CSP. Most amazingly, CSP has the most difficulties with strongly balanced binary trees that are
fairly easy for the other algorithms according to Figure 17. This may be due to the long paths in
strongly balanced trees. However, the analysis of this phenomenon would require examining the
number of unsatisfied constraints over time for classes of paths grouped by length. If long paths
cause problems and it is often harmful to have unsatisfied long paths, the WeightedMCH algorithm

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

ibi
pop
csp
rep

Figure 15: Run-time distributions for bbt64-05

may need some modifications so that longer paths are more likely to be satisfied. Perhaps adding
a tabu mechanism to the edges in the longest paths once the constraints have become satisfied may
improve the competitiveness of this algorithm with respect to our other approaches, but this area
of interest has not been explored.

Altogether, we conclude that there is virtually no difference in performance between the Iterative
Best Improvement and the population-based algorithm. Both run-time distributions fit almost
perfectly an exponential distribution such as
©� J ZWS � �I
 + �R� .
) j ë kX � � for bbt64-02. Maybe
a more intelligent perturbation mechanism could push the search even more quickly towards a
solution, but it would have to be a computationally cheap mechanism; otherwise we might merely
reduce the run-length and not the total run-time.

6.4 Comparing Representative Trees

Thus far for each class of trees we have only used one representative tree for the analysis of our
algorithms. For a more complete analysis of the classes of trees we compared our representative
tree (the first one of each class) against more trees that are in the same class of difficulty. Fig-
ure 18 shows run-time distributions of five randomly sampled trees from classes BBT64-02 and
BBT64-10 using the Iterative Best Improvement algorithm.3 Obviously, the classes appear clus-
tered in the run-time distribution. While two adjacent classes like BBT64-09 and BBT64-10,
for example, may well overlap (meaning that an instance of the “more difficult” class probabilis-
tically dominates an instance of the “easier” class), there is an overall trend that trees of the same
class are about of the same difficulty.

3We only found five trees in BBT64-02, so we actually sampled all trees. The other classes that we considered
contain considerably more trees, however.

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

ibi
pop
csp
rep

Figure 16: Run-time distributions for bbt64-10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

ibi
pop
csp
rep

Figure 17: Run-time distributions for sbbt64

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1 10

P
(s

ol
ve

)

run-time in seconds

BBT64-10/1
BBT64-10/2
BBT64-10/3
BBT64-10/4
BBT64-10/5
BBT64-02/1
BBT64-02/2
BBT64-02/3
BBT64-02/4
BBT64-02/5

Figure 18: Run-time distributions for samples of BBT64-02 and BBT64-10

Because CSP showed unexpected results on strongly balanced binary trees, for further analysis
we compared the run-time distribution of the representative tree with an averaging run-time dis-
tribution of up to 10,000 trees from the same class. This produced Figures 19 to 22. As shown in
the figures, bbt64-02, bbt64-05, and bbt64-10 show similar run-time distributions as the
“average” trees of the respective classes. Although CSP performed relatively poorly on sbbt64,
we can see that according to the average run-time distribution of trees from SBBT64 this tree is
not the most difficult one for CSP.

7 Conclusions

In this paper, we explored various approaches to embedding balanced binary trees in hypercubes.
We described how to encode the problem as SAT and CSP instances. Furthermore, we presented
two stochastic local search algorithms with a specialized evaluation function that is specifically
tailored to trees that are very likely to be embeddable. In particular, we justified implementation
choices and parameter settings by empirical evaluations.

For the comparative evaluation of our algorithms, we generated and successfully embedded bal-
anced binary trees with different characteristics. It turned out that an Iterative Best Improvement
approach consistently showed best performance. While our algorithms are naturally unable to
prove or disprove Havel’s conjecture, they may yet be useful in attempts of disproving it: When
looking for a counterexample (i.e., a tree that cannot be embedded in the hypercube), one can
quickly run one of the algorithms to find out if there is no simple way of embedding the tree—that
is, one can quickly reject false counterexamples.

It might be interesting to investigate the performance of the presented algorithms on other em-

25

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

P
(s

ol
ve

)

run-time in seconds

1 tree
all trees

Figure 19: Comparing the first tree with all trees of BBT64-02 using CSP based algorithm

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

P
(s

ol
ve

)

run-time in seconds

1 tree
all trees

Figure 20: Comparing the first tree with all trees of BBT64-05 using CSP based algorithm

26

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

P
(s

ol
ve

)

run-time in seconds

1 tree
all trees

Figure 21: Comparing the first tree with all trees of BBT64-10 using CSP based algorithm

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100 1000

P
(s

ol
ve

)

run-time in seconds

1 tree
all trees

Figure 22: Comparing the first tree with all trees of SBBT64 using CSP based algorithm

27

beddable, but not necessarily balanced binary trees. Our algorithms do not explicitly exploit the
balance of trees, so they can be applied to more general classes of trees. Future research could
compare the difficulty of embedding those trees versus balanced binary trees. Concerning the al-
gorithms, a clever recombination operator, which might combine good embeddings of subtrees,
could lead to a genetic algorithm and thus improve on the performance of our population-based
algorithm. Another interesting approach may use the concept of Ant Colony Optimization, where
the pheromone trails might mark promising embeddings of particular nodes.

References

[1] M. Aderhold. Embedding strongly balanced binary trees in the hypercube. University of
British Columbia, December 2002.

[2] I. Havel and J. Morávek. B-valuations of graphs. Czechoslvak Math. J., 22:338–351, 1972.

[3] S. Helmer and A. Eisenberg. Exploring issues of embedding color balanced binary trees into
64 node hypercubes. University of British Columbia, December 2002.

[4] H. H. Hoos and T. Stützle. Stochastic Local Search—Foundations and Applications, chapter 5.
Morgan Kaufmann Publishers, USA, to appear.

[5] H. H. Hoos and T. Stützle. Stochastic Local Search—Foundations and Applications, chapter 6.
Morgan Kaufmann Publishers, USA, to appear.

[6] G. Smedley. Algorithms for embedding binary trees into hypercubes. Master’s thesis, Univer-
sity of British Columbia, 1989.

[7] A. S. Wagner. Embedding all binary trees in the hypercube. Journal of Parallel and Dis-
tributed Computing, 18:33–43, 1993.

[8] A. S. Wagner and D. Corneil. Embedding trees in the hypercube is NP-complete. SIAM
Journal on Computing, 19(4):570–590, June 1990.

28

