
Motif-GRASP and Motif-ILS: Two New Stochastic Local
Search Algorithms for Motif Finding

Mirela Andronescu
University of British Columbia

Computer Science Department

andrones@cs.ubc.ca

Baharak Rastegari
University of British Columbia

Computer Science Department

baharak@cs.ubc.ca

Abstract

Motif finding in biosequences is a very important and well-studied problem. However, the
best algorithms to date either give a poor performance on some problem instances, or are
computationally impractical. As it turns out that this problem is computationally hard, in this
work, we propose Motif-GRASP, a GRASP algorithm, and Motif-ILS, an ILS algorithm, to
solve the motif finding problem. We have tested the two algorithms on data sets generated
with the Motif-Generator we have implemented, and found that they both algorithms work
pretty well, with a better performance for the GRASP algorithm. Motif-GRASP also works
well for the CRP real data set, and both algorithms perform poorly for simulated sets from
the Challenge Problem [9]. The results presented in this work are promising, and maybe with
more improvement, we can get results comparable with state of the art algorithms for this
problem.

1 Introduction

A motif is a conserved pattern thought to exist in several biosequences, i.e. DNA, RNA or proteins.
Examples include: (1) regulatory elements of gene expression; these are relatively short stretches
of DNA (5 to 25 nucleotide-long), located in the non-coding sequence surrounding a gene; (2) the
helix-turn-helix motif, which represents a large class of sequence-specific DNA binding structures
for gene expression [3].

There have been more than one precise definition of the motif finding problem [3, 4]. We define
the problem of motif finding as follows: Given

�
biosequences ��� of lengths ��� , ���
	��� �

and a number � , find
�

sequences ��� of length � , one from each sequence ��� , such that they are
as similar to each other as possible. ��� will be close variations of a general ��������� , ���������! "� or# �%$����'&�� .

The following is an example of 10 artificially created DNA sequences of different lengths �(� . They
all share a common motif of length 8, separated by spaces from the rest of the sequences.

29

AT CCGACCAC CTCCATGATGGCTAACACG
AT CCCTCCGC TACGCACTGGAGCTGAC

ATAG CCCTCCAC TAGCAATGGGCTA
TAGGCGTGAGGCTTAGG CCACCCGC CGTAGGC

TAGGCTAGATCGG CCACCCAC GACTAGATGCCTGTAGCTAGTAGC
TAGGCGA CCGCCCGC GATACGGCGCGCTAGTGCGTATACG

TAGCGCTCAGCT CCGCCCTC AGTGC
ATGC CCCTCCAC ATCGTCGCTAGATCGTCTAAC

ATGCTAGC CCCTCCGC ATGCTGATTAGCTAG
TAGCTTAAGC CCCTCCCC TAGTCGATGATGTCGATCG

The algorithms that are guaranteed to find the optimal motif in
�

sequences are based on exhaus-
tive enumeration of all possible motifs � [7]. This leads to an exponential time complexity in
the length of the motif. Many approximation algorithms and heuristics have been tried as well
(see Section 2). We believe that a stochastic search algorithm can help us to find a good answer
in reasonable time. We think that constructing a candidate solution with good quality, and then
applying local search will result in a high quality answer. Therefore we built a Greedy Random-
ized Adaptive Search Procedure (GRASP) to solve this prolem. To find out whether the idea of
constructive search plays a big role in the quality of the final result, we have also implemented an
Iterative Local Search (ILS) method.

In Section 2, we first describe some previous work that has been done for solving this problem,
especially the ones from which we used some ideas. Then in Section 3, we describe our model
and algorithms in detail. In Section 4, we present the data sets we used to evaluate and test our
algorithms, and then in Section 5 we describe the results we observed by running our algorithms
on these data sets. In Section 6 we discuss the search space of two problem instances, in Section
7 we give some suggestions for future work, and finally conclude our work in Section 8.

2 Related Work

Several algorithms exist which are built on statistical models, greedy or local search methods.
Most of them have tried to solve the basic problem (i.e. the problem we defined in the Intro-
duction), in which the size of the motif is predefined. Few of them extend their work to address
features that make the problem harder, such as: (1) the motif does not contain any insertions or
deletions (it is one contiguous segment) and (2) every sequence in the set contains the motif ex-
actly once. Some of them suffer from ending in a local optimum rather than finding the globally
best motif.

The most relevant methods to our work are Gibbs Sampling [3], Random Projection [4] and SP-
STAR algorithm [9], which we describe in the following subsections.

30

2.1 Gibbs Sampling

Lawrence et al. [3] used a Gibbs Sampling algorithm as a stochastic analog of expectation max-
imization (EM) methods that were previously used. The Gibbs Sampler proved to yield a more
robust and faster optimization procedure than the EM methods.

The problem, as Lawrence et al. define it, is to locate and describe a pattern thought to be contained
within a set of

�
biosequences. Their algorithm provides a procedure for automatic determination

of the motif length by running the basic algorithm for a range of lengths and then choosing the
best length. It is also able to find multiple motifs and insertions/deletions in patterns.

The basic algorithm looks for motifs of a specified length � in
�

sequences � � . The following
data structures are maintained:

1. The pattern description is a matrix of � ��� , representing the probabilistic model of frequencies
of residue ����� �
	��� for each position ����� �
	 �� , where � is the size of residue alphabet (i.e.
4 for DNA/RNA, 20 for proteins). The background frequencies ���
	�������� �
	��� are defined
analogously to pattern description and represents a probabilistic model of the residues that
occur in sites not described by the pattern.

2. The alignment set is a set of positions � ��	�� ����� �
	 � for the common pattern within the
�

sequences.

The objective is to identify the most probable common pattern. Initially, random starting positions
are chosen. Then the Gibbs Sampler iterates through the following two steps, until it converges:

1. One of the
�

sequences, � , is chosen uniformly at random or in specified order, and the
values of � ��� and � � are calculated according to all sequences except � . � ��� ’s are calculated
using the formula in Eq. 1, where �!��� is the count of residue � in position � . ��� is a ”residue-
dependent” pseudocount and � is the sum of the � � . They have found that using � � 	��! � ,
where "� is a frequency of residue � in the whole sequences, is effective. They have also
found that the value # � works well for � . Each �$� is calculated simply by finding the
frequency of alphabet � in the whole set except sequence � and also except the positions
belong to motif.

2. Every possible segment % of length � in sequence � is considered as a candidate motif.
Then �'& 	�()&+*-,.& is calculated, where (/& is the probability of generating the subsequence
% from the current motif, and ,0& is the probability of generating the subsequence % from
the background. Thus, �1& gives the probability that the pattern in sequence � starts at the
starting position of % . One of them is selected randomly according to their values, and its
position becomes the new start position for sequence � (�32).

As mentioned above, � & is the probability that the pattern starts at the position % in sequence � .
The goal is to maximize the product of these ratios (for starting points in all sequences). Equiva-
lently, one may maximize the sum of the logarithms of these ratios, which gives the function 4 in

31

Eq. 2.

� ��� 	 � ����� � ���� �����
� ��� 4 	

�	
��
�

�	
��
� � ��� & � $

� ���
� �

��� �

2.2 Random Projection

Buhler et al. [4] used Random Projection for solving the motif finding problem. They define the
problem as follows: Given

�
sequences, of equal size � , look for a motif � , of length � , such that

there is one occurence of � in each sequence, that is corrupted by exactly � point substitutions in
random positions.

The Random Projection algorithm projects � -dimensional Hamming distance onto � dimensional
subspace. Briefly, it works as follows: (1) choose a projection by selecting � positions uniformly
at random; (2) for each � -tuple in input sequences, hash into bucket based on letters at � selected
positions; (3) recover motif from bucket containing multiple � -tuples.

The bucket with the hash value � � ��� is called the planted bucket. It is expected that the planted
bucket contains more motif instances than random sequences. They also set a low bucket size
threshold # , and at the end of the algorithm they select buckets which contain more than # � -tuples,
with the assumption that the motif should belong to one of them. At this point, the algorithm found
some candidates for � positions of the motif � . The information in other � � � positions are used
as starting points for local refinement schema, e.g. EM or Gibbs sampler to find out the motif � .
Thus, this algorithm eliminates some parts of the search space, which are less likely to contain
optimal solutions, and produce a smaller search space for the EM or Gibbs Sampler to work on.

2.3 WINNOWER

Pevzner et al. [9] introduced the WINNOWER algorithm, in which they used the same problem
definition as in the Random Projection algorithm.

The algorithm starts by constructing a graph � � � 	 ��	���� . The vertices of this graph is the set of all
subsequences of length � . There is an edge between 2 vertices if the Hamming distance between
them is less than or equal to

� � and the vertices are subsequences from two different sequences.
The problem is then reduced to finding large cliques in this graph. Finding large cliques in a graph
is an NP-complete problem, however � is a multi-partite graph.

In their notation, a vertex � is a neighbour of a clique � if adding � to the list of vertices in �
results in another clique in � . A clique is extendable if it has at least one neighbour in every part of
the multi-partite graph � . An edge is called to be spurious if it does not belong to any extendable
clique of size � . Edges which belong to a minimum number of extendable cliques are in maximal
� -cliques, too. Their algorithm is based on the idea of removing edges which do not belong to the
minimum number of extendable cliques. WINNOWER is an iterative algorithm that proceeds on
� until it converges to a small collection of extendable cliques. This collection can be explored
for the motif.

32

2.4 SP-STAR

Due to the substantial computational resources (time and memory) that WINNOWER needs,
Pevzner et al. introduced another algorithm named SP-STAR [9].

They first introduced sum-of-pairs scoring as evaluation function. If � is a candidate signal and
the best instances of � in sequences are � � 	����-	 ���� , then the sum-of-pairs scoring function
will be � � � 	 � � 		� ��
 �� ��
�� � � � � 	�� � � , where � � ��� 	�� � � denotes the number of different
pairs in � � and � � . SP-STAR first finds a pattern � which minimizes � � � 	 � � (for all W in S).
Then it tries to improve the initial found signal by using a local improvement strategy.

They also extend their algorithm to work for unknown length signal. For this purpose they in-
troduced another evaluation function, which is based on scoring the similiarity between each two
instances. The similarity score for W is defined as:

� � � � 	 	
��
 �� ��
�� � � � � 	�� � � � �

��� ��� � 	
where � � � � 	�� ��� is the similarity between � � and � � , which is defined as the sum of premiums
for matches and penalties for mismatches (they found that using +2 as the match premium and
-1 as the mismatch penalty works well). If the � � � � score is positive, then the positions are
significant.

Starting from some &�����& (assume that the length of motif is in the range � &�����&$	 &��(��� , SP-STAR
changes the scoring approach by scoring the best substring of length between &��(��� and & ����& ,
which maximize the sum-of-column score. It then performs local search, in which the position
of the best-scoring substrings are considered for finding the best instances of the majority in each
string.

3 Our Algorithms

Our problem, as described in Section 1, is to find a set of ���������! "� # (or ! � � #). This is equivalent
to finding the starting positions � � of these words in each sequence ��� . We consider all words ���
of equal length. Our algorithm will assume the length � of the motif is given. Once ��� and the
length � are known, one can easily infer the words � � .

Our two stochastic search algorithms are defined by the following components:

" a candidate solution is a set # � � , �$�� �$�&% , where � � � [� , ��� � � � �], � � ��� �
	 � ;" all candidate solutions, made of all possible combinations of � � assigments constitute the
search space;" two candidate solutions are neighbours if they have some � � ’s in common. Thus, two can-
didate solutions are k-exchange neighbours if they differ in exactly k starting positions. In

33

our local search procedures, we use one-exchange neighbourhood, i.e. they differ in exactly
one starting position, regardless if the new position is close to the old one or not." for the evaluation function, we considered two alternatives: (1) the 4 function that Lawrence
et al. [3] used in the Gibbs Sampling algorithm (Eq. 2); (2) the similarity score function �
that Pevzner et al. [9] used in the SPSTAR algorithm (Eq. 3). In the remainder of this
paper, we refer to the former function as Lawrence function, and to the latter function as the
Similarity function.

We explored the benefit in using a constructive search, followed by a local search procedure.
This leads us to a GRASP algorithm [1, 2]. To experimentally test and observe the benefit of the
constructive search, we have also built an ILS algorithm, which is not a constructive method, and
compared it with GRASP.

The details of the GRASP algorithm and the ILS algorithm are described in the following two
subsections. Because many of the motif finding problems are hard, a solution that finds an approx-
imate result (e.g. finds

��� � correct starting positions and one incorrect position) might be good
enough. For this reason, we need to evaluate the quality of the results. In this respect, a solution of
quality 1 would mean a perfect solution, a solution of quality 0 would be completely wrong, and
a solution of quality 0.9 would be pretty good.

We came up with a function to describe the solution quality, as follows: Let � 	 � 	 � be the
real starting positions of the motifs in the

�
sequences. We first define the ��(function to measure

the quality of every single starting position separately: for each sequence � , ��(� � �(� ��� ��� � !� � * �
if
� �'� � � ��� � , and 0 otherwise. This means that for each sequence � , if the predicted starting

point is near to the real one, the solution quality of that sequence is high. Then we define the (
function that measures the quality of the whole solution:

(
� ��
 �
�� ��(� � �� ��� �

3.1 Motif-GRASP

We have implemented a constructive search algorithm inspired from GRASP, which we call Motif-
GRASP. Figure 1 shows a pseudocode of our algorithm. The main idea is to construct a high
quality candidate solution as a starting point of the local search.

In the construct procedure, we first choose a random starting point in the first sequence and update
the data structures accordingly. Then we take the second sequence and calculate the weights � &
for all possible starting points % of the motif. The data structures that are updated and the way we
calculate the weights � & are dependant on the evaluation function 4 we use:

" 4 = Lawrence function: In this case we update the � and � matrices as our data structures.
We also calculate the weights according to these data: � & 	 (1&+*-,.& ." 4 = Similarity function: In this case, �)& is the similarity score. This means that we just

34

procedure Motif-GRASP
input: problem instance � (i.e.

�
seqs. ��� of length ��� , motif length �), objective function �

output: solution 	
 (i.e.
�

positions � � where motifs start)
 := � ;
	
 :=
 ;
while not terminate(� ,
) do
 := construct (�);
 := localSearch (� ,
);

if (���
 ���� ����	
 �)
	
 :=
 ;

end if
end while
return solution 	
 ;

end procedure Motif-GRASP.

Figure 1: Pseudocode for Motif-GRASP; details are discussed in the text.

need to calculate the similarity score for this set of starting positions (where % is the starting
position in the second sequence)

At each construction step, we take the � best � & and randomly choose one of these % ’s as the
starting point for the second sequence. Then we update the data structures according to the first
two sequences and continue this procedure until starting points for all sequences are defined.

In the localSearch procedure, starting from the candidate solution which has been found in the
construct part, we try to improve the value of the 4 function until we reach a local maximum. We
use a one-exchange neighbourhood, i.e. the new candidate solution differs by one starting point
from the previous candidate solution. We tried two different iterative improvement algorithms:

" first-syst is a first improvement method: every time a neighbour has a higher 4 value, it will
become our new current candidate solution. We use a systematic procedure for searching
in the neighbourhood region. In the first step of the local search, we start from the first
sequence and let the starting point get different values from 1 to � � � � . Once we found a
higher value for 4 , we move to that candidate solution. If we didn’t find any higher value
for 4 , we will try the second sequence and continue until we reach a higher value for 4 .
If, for the next step of the local search, we start again from the first sequence, then it may
happen that the neighbour which has a good value of 4 , but differs in the starting position
of the last sequences, takes a low chance to be observed. To solve this problem, for the next
step of the local search we will not start from the first sequence again. Instead, assuming
that the first improvement occured in sequence � in the previous step, we start searching the
neighbours from sequence � � � in the new step." pseudo-best improvement: this is a hybrid of best and first improvement. It is the same as
the First Improvement we described before, but every time we check neighbours which are
all different in the starting point of the same sequence, if there are neighbours with higher
4 , we take the best one, and this will become our new candidate solution.

When the local search finishes, we check if the new local maximum is greater than the best so-

35

lution found so far. In this case, the best solution will be updated. These 3 steps, i.e. construct,
localSearch and deciding the best solution, will be repeated for a given number of times, Num-
Restarts(e.g. Num-Restarts = 30). This is the termination criterion which will make the routine
end. The best solution found will be reported as the result.

There are four parameters for the Motif-GRASP algorithm, that we will tune in Section 5:

" Num-Restarts: The number of iterations for the 3 steps (construct, localSearch and updating
the solution). A greater value for this parameter allows visiting more regions in the search
space, but at a longer time cost. Finding a good value for Num-Restarts is essential and
useful." RCL parameter is the number � we described above. A smaller value means that we are
more greedy and select one of the few best candidate solutions in each step. It gives us
more intensification. A greater value helps us to check more regions in the search space and
increases diversification. A balance between intensification and diversification is required
for good performance." The Evaluation-Function parameter: The possible values for this parameter are the two
functions described above: Lawrence and Similarity." The LS-Function parameter: The possible values for this function will be first-syst, pseudo-
best and none. The first were described before, and the last one means no local search after
the construction step.

3.2 Motif-ILS

We have also implemented a non-constructive search algorithm, i.e. Iterated Local Search, that
we call Motif-ILS. Figure 2 shows a pseudocode of our implementation. The initialization step
consists of randomly picking a position � � in each of the

�
input sequences � � . This will give

a candidate solution # . Then, starting with # , we search for a local maximum in the localSearch
routine. Each new step in the localSearch procedure represents a one-exchange step: we pick a
sequence � uniformly at random, and change the value of � � by other valid value (i.e. in the range
�
	 � � � �), uniformly at random. These one-exchange steps are repeated until a local maximum
is reached. For time efficiency reasons, in this localSearch procedure, we do not check all the
possible neighbours (note that there are � � � � �

neighbours). Instead, we consider we reached
the local maximum when no improving step appears after a fixed number of steps (e.g. 30).

Then, a perturbative local search, followed by an acceptance criterion, iterates for a fixed number
of steps (e.g. 1000). A new candidate solution #�� is obtained by applying a perturbation to the
previously found candidate solution # . Then, starting with # � , the localSearch is performed, which
will yield the candidate solution # � � .

Up to an input parameter, the perturbation procedure consists of a two-exchange neighbour, a
three-exchange neighbour or a four-exchange neighbour. In this case, a k-exchange neighbour
means that k different sequences are chosen unformly at random, and then their starting positions

36

procedure Motif-ILS
input: problem instance � (i.e.

�
seqs ��� of length ��� , motif length �), objective function �

output: solution 	
 (i.e.
�

positions � � where motif starts)
 := initialize(�);
 := localSearch (� ,
);
	
 :=
 ;
while not terminate (� ,
) do
 := perturb (� ,
);
 := localSearch (� ,
);

if (���
 � � ��� 	
 �)
	
 :=
 ;

end if
 := accept (� ,
 ,
);
end while
return solution 	
 ;

end procedure Motif-ILS.

Figure 2: Pseudocode for the Motif Finding Iterated Local Search algorithm; details are discussed
in the text.

are changed with other values, chosen uniformly at random from the possible values of each
sequence.

The same as in the case of Motif-GRASP, we have two alternatives for the evaluation function:
Lawrence function and Similarity function.

The acceptance criterion we use is as follows: with probability � (e.g. 0.9), # becomes # � � if
the evaluation function value 4 of # � � is greater than the evaluation function value of # . With
probability � � � (e.g. 0.1), we continue with # � � (i.e. # is # � �), regardless of the quality of # � � . Thus,

�# will contain the best solution found, and will be returned at the end of the procedure, after the
termination criterion (i.e. a specified number of steps) is satisfied.

In Section 5, we tune four parameters for Motif-ILS:

" The Perturbation parameter: the possible values are 2-ex, 3-ex and 4-ex. 4-ex means more
diversification than 2-ex." The Accept-Probability parameter is important to decide from which of the two local opti-
mum # and # � � the search will continue." The Evaluation-Function parameter is identical to the corresponding parameter in Motif-
GRASP. The two values are Lawrence function and Similarity function." The Cutoff parameter decides after how many iterations to terminate. A higher value will
give the algorithm a higher chance to get a better result.

37

4 Data Sets

Finding data sets on which we can test our algorithms is not easy. To our best knowledge, there
are very few available real sets. Even those that exist are hard to find.

Pevzner et al. [9] have created the Challenge Problem. This is a generator that creates sets of se-
quences containing a randomly planted motif of length � , and with exactly � mismatches between
any two motifs. They showed that the Gibbs Sampling algorithm by Lawrence et al. [3] performs
very poorly on Challege sets containing sequences longer than 300 residues. Unfortunately, the
Challenge Problem is not publicly available. We obtained 20 sets from Sohrab Shah, but all these
have sequences of length 600. These sets are known to be hard.

Given our need to have data sets of different characteristics, and given the lack of such data sets
from other sources, we created a data set generator, that we call Motif-Generator. The following
subsections describe the generator and the data sets we have created or obtained, and used in our
testing.

To avoid confusion, in the remainder of this paper, different notations will be used for a set of
sequences and for a set (or group) of data sets. For the former one, we conventionally use Set or
set, and for the latter one we use SET.

4.1 Motif-Generator

The Motif-Generator we have created takes the following parameters as input: the motif length � ,
the number of sets

� � to create, the number of sequences
�

in each set, the minimum sequence
length � � ��� , the maximum sequence length ������& , the sequence type

�
(i.e. DNA or PROTEIN)

and the probability threshold � . Thus, the output is a SET of
� � sets, each containing

�
sequences

of length between ���(��� and � ����& and of type
�

. They have a motif of length � , planted at random
positions. The motif base probability have a lower bound � . More details follow:

1. Given some threshold probability � (higher than 0.5), we first create the matrix of proba-
bilities for the residues within the motif. For each position � in the motif, the probability
of the residue which will appear most frequently will be generated uniformly at random in
the interval � �.	!�" . For the other residues, new different probabilities will be generated in
the remaining interval. The probability of the last residue is the remaining value, such that
they all sum up to 1. The following is an example of a probability matrix, where � 	�� ,
� 	��� ���� and

� 	 DNA:
	�
 	� 	� 	�� 	� 	� 	� 	�

A 0.71 0.09 0.20 0.22 0.05 0.76 0.10 0.00
C 0.11 0.05 0.00 0.78 0.04 0.19 0.06 0.02
G 0.06 0.04 0.74 0.00 0.82 0.03 0.81 0.98
T 0.12 0.82 0.06 0.00 0.09 0.02 0.03 0.00

As the bolded probabilities show, the most probable motif is ATGCGAGG. The generated

38

sequences will contain slight variations of this motif.

2. We generate
�

sequences of length randomly chosen between a maximum and a minimum
value (� � � � , � ����&). Then we choose a position to be the starting position of the motif
in each sequence, uniformly at random. The residues within the motif will be generated
according to the probability matrix described above, the residues outside the motif will be
generated using a uniform distribution. We repeat this procedure

� � times, thus generating� � sets, each in a different file, in FASTA format[11].

4.2 Artificially Created Data Sets

We have created five groups of data sets, each of them having a specific purpose:

" For tuning the parameters of Motif-GRASP and Motif-ILS, we created 50 sets, each of them
containing 10 DNA sequences of length 50. The motif size � was set to 15, and the prob-
ability threshold to 70. In the remainder of this paper, we call this SET Art-Tune-SET. We
give one set of these sets in the Appendix 1." For studying the influence of the number of sequences, � , on the performance of the al-
gorithms, we created 10 DNA sets for each of the different � (� = 15, 20, 25, 30). In all
of them � 	 ��� , � 	 ��� and length of the sequences is 200. This SET will be called
Art-Num-Seq-SET." To see the influence of sequence length on the performance, we created 10 DNA sets for �
= 100, 200 ... 900. They contain 20 sequences each, � is 15 and � is equal to 70. Let the
name of this SET be Art-Seq-Len-SET." We also want to see the influence of motif size on the performance of the algorithms. There-
fore we created 10 DNA sets for each of � = 5, 10, 15, 20, 25. Each set contains 20
sequences of length 200, and � is equal to 70. We will refer to this SET as Art-Motif-SET." For observing the influence of the different value for � , we created 10 DNA sets for each of
the different � (� = 50, 60, 70, 80, 90). Each set contains 20 sequences of length 200, each
of them containing a motif of length 15. This SET will be further called Art-Prob-SET.

4.3 Simulated Data - Challenge Problem

We have obtained 20 sets generated by the Challenge Problem [9]. We have used 10 of them and
we call this set Challenge-SET.

4.4 Real Data Set

We used the CRP data set as real data [11] (which is found in nature): CRP-Set. It consists of
18 DNA sequences of length 105, each containing 1 or 2 motifs of length 22. The sequences are
shown in the appendix with the motif area separated from the rest of the sequences by spaces.

39

5 Evaluation

In this section, we perform empirical tests to evaluate the performance of the two algorithms de-
scribed in the previous sections: Motif-GRASP and Motif-ILS. We start by tuning four parameters
for each of Motif-GRASP and Motif-ILS on Art-Tune-SET. This step will find the optimal values
for these parameters. Using these values, we further compare Motif-GRASP versus Motif-ILS.
The winner, Motif-GRASP, will be tested on harder artificial sets. Then, some discussion on the
Challenge-SET data is provided. We close this section by testing Motif-GRASP on the real data
set CRP-Set.

We note that we have obtained GIBBS, the implementation of the Gibbs Sampling algorithm de-
scribed in the Related Work section. Unfortunately, we were not able to test GIBBS and compare
it with our algorithms because we did not understand exactly the input parameters it gets. We tried
to test it on the CRP-Set, but, although several papers report GIBBS performs well on this set, the
results it gave us were very poor.

All tests in this section measured the algorithm performance in terms of solution quality, unless
otherwise stated. The solution quality was calculated as described in Section 3. For each input set,
we ran the algorithm 10 times, and than took the average of the 10 solution qualities thus obtained.

5.1 Tuning Motif-GRASP Parameters

In this subsection, we tune the four parameters of Motif-GRASP: Num-Restarts, RCL, Evaluation-
Function and LS-Function. We tested them on the 50 sets of Art-Tune-SET. Evaluating perfor-
mance on many sets (in this case 50) definitely allow us to make more accurate tuning than evalu-
ating on very few sets. However, this is far from being a thorough test, which would have required
tests on sets with a variety of different characteristics.

For all the tests in this section, we varied one of the 4 parameters, while keeping the others fixed.
We guessed some values for the parameters in our preliminary tests, and fixed them: Num-Restarts
= 10, RCL = 5, Evaluation-Function = Lawrence, LS-Function = first-syst.

Testing the Num-Restarts Parameter

Intuitively, the higher the Num-Restarts is, the better the solution quality will be. But this comes
at a cost of a greater time spent by the algorithm. Figure 3 shows the solution quality for tests on
four different values for Num-Restarts: 5, 7, 9 and 11. The top-left figure and the top-right figure
show 7 is better than 5, and 9 is better than 7, respectively. The bottom-left figure shows that
the values 9 and 11 lead to roughly the same performance. Finally, the bottom-right figure shows
clearly the difference in performance between values 5 and 11. Our conclusion is that after some
point, the likelihood that an improvement will happen becomes very small. The results show the
optimal value for the Num-Restarts parameter is around 10.

40

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of restarts in GRASP: 5

N
um

be
r

of
 r

es
ta

rt
s

in
 G

R
A

S
P

: 7

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of restarts in GRASP: 7

N
um

be
r

of
 r

es
ta

rt
s

in
 G

R
A

S
P

: 9

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of restarts in GRASP: 9

N
um

be
r

of
 r

es
ta

rt
s

in
 G

R
A

S
P

: 1
1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of restarts in GRASP: 5

N
um

be
r

of
 r

es
ta

rt
s

in
 G

R
A

S
P

: 1
1

Figure 3: Comparison of performance in terms of solution quality for different values of the Num-
Restarts parameter: 5, 7, 9 and 11. We consider the optimal value is 10.

Testing the RCL Parameter

The next parameter to test is the RCL parameter. Figure 4 shows tests for different values of RCL:
1, 3, 5, 7, 9, 11 and 13. As expected, the results show that if RCL is too low, the performance is
poor, since the algorithm is too greedy. If RCL is too high, the algorithm is too randomized. A
trade-off between greediness and randomization seems to be the best solution.

The top-left figure shows a value of 3 is clearly better than a value of 1. Note the performance
values for RCL=1 are in a broader range (i.e. � �� �� � � �� ����) than for the case RCL=3 (� �� � � � �
 � �-).
A good way to visualize this is to note that the points in the top-left triangle are much more spread
and far from the diagonal than the points in the bottom-right triangle.

The next figures show that the higher RCL is, the performance decreases gradually. We think the
optimal value of RCL is around 3-5, and chose 5 to work with.

41

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 1

G
R

A
S

P
 −

 R
C

L:
 3

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 3

G
R

A
S

P
 −

 R
C

L:
 5

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 5

G
R

A
S

P
 −

 R
C

L:
 7

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 7

G
R

A
S

P
 −

 R
C

L:
 9

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 9

G
R

A
S

P
 −

 R
C

L:
 1

1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − RCL: 11

G
R

A
S

P
 −

 R
C

L:
 1

3

Figure 4: Comparison of performance in terms of solution quality for different values of the RCL
parameter: 1, 3, 5, 7, 9 and 11. We consider the optimal value is 5.

Testing the Evaluation-Function Parameter

Next, we tested which of Lawrence and Similarity evaluation functions gives more accurate results.
Figure 5 shows that the Lawrence function gives slightly better performance.

42

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

GRASP − evaluation: Lawrence

G
R

A
S

P
 −

 e
va

lu
at

io
n:

 S
im

ila
rit

y

Figure 5: Comparison of performance in terms of solution quality for two different evaluation
functions: Lawrence and Similarity. The former function is better than the latter.

Testing the LS-Function Parameter

The left plot in Figure 6 shows Motif-GRASP’s performance for no local-search versus pseudo-
best local search (red-stars cloud), and for no local-search versus first-syst local search (blue-
crosses cloud). The plot clearly shows that the first-syst local search function gives a much better
performance than the other options. The right graph shows the same values in a different way,
where the green line corresponds to no local search, the blue line - to pseudo-best local search,
and the red line - first-syst local search.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

GRASP − LS: none

G
R

A
S

P
 −

 L
S

: f
irs

t−
sy

st
 a

nd
 p

se
ud

o−
be

st

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GRASP − LS: none

G
R

A
S

P
 −

 L
S

: f
irs

t−
sy

st
 a

nd
 p

se
ud

o−
be

st

Figure 6: Comparison of performance in terms of solution quality for two different local search
functions: first-syst and pseudo-best, and no local search. The first-syst function is definitely much
better than the other one or than no local search function.

43

5.2 Tuning Motif-ILS Parameters

This section tests the four parameters of Motif-ILS: Perturbation, Accept-Probability, Evaluation-
Function and Cutoff. Similarly to Motif-GRASP, we tested them on the 50 sets of Art-Tune-SET.

Interestingly, the points in the Motif-ILS plots are much more spread than the points in the Motif-
GRASP plots, the range of the solution quality values being larger. This means that Motif-ILS
performs less robustly than Motif-GRASP.

For all the tests in this section, we varied one of the 4 parameters, while keeping the others
fixed. The fixed values, determined by preliminary tests, are: Perturbation = 2-exchange, Accept-
Probability = 80, Evaluation-Function = Lawrence, Cutoff = 100.

Testing the Perturbation Parameter

For the perturbation function, we tried different � -exchange neighbourhoods, with � = 2, 3 and 4.
Figure 7 shows that there is not much difference between 2-exchange, 3-exchange and 4-exchange.
It seems that 3-exchange is slightly better than the other two. A higher � means a bigger jump in
the search space. In the section Search Space Analysis we explain why these results are so close
to each other.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − perturbation: 2−exchange

IL
S

 −
 p

er
tu

rb
at

io
n:

 3
−

ex
ch

an
ge

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − perturbation: 3−exchange

IL
S

 −
 p

er
tu

rb
at

io
n:

 4
−

ex
ch

an
ge

Figure 7: Comparison of performance in terms of solution quality for different perturbation func-
tions: 2-exchange, 3-exchange and 4-exchange. It appears that 3-exchange is slightly better than
2-exchange and 4-exchange.

Testing the Accept-Probability Parameter

The values of the Accept-Probability parameter we tested were: 75%, 80%, 85% and 90%. The
same as for the previous parameter, the results are very close to each other (Figure 8). For further
tests, we chose the value 80%.

44

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − accept: 75

IL
S

 −
 a

cc
ep

t:
80

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − accept: 80

IL
S

 −
 a

cc
ep

t:
85

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − accept: 85

IL
S

 −
 a

cc
ep

t:
90

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − accept: 80

IL
S

 −
 a

cc
ep

t:
90

Figure 8: Comparison of performance in terms of solution quality for different values of the
Accept-Probability parameter: 75%, 80%, 85% and 90%. It is not clear which if them is better,
the results being very close to each other. The value we chose to work with is 80%.

Testing the Evaluation-Function Parameter

Similarly to Motif-GRASP, we tested which of the two evaluation functions: Lawrence and Sim-
ilarity give better results. Similarly to the case of Motif-GRASP, the Lawrence function is better
(Figure 9).

Testing the Cutoff Parameter

Definitely a higher Cutoff parameter will yield better solution quality, but at the cost of additional
time. Figure 10 shows Motif-ILS performance when the Cutoff parameter is set to 100, 300 and
1000, respectively. We decided to choose the value 500 for further tests.

45

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − evaluation: Lawrence

IL
S

 −
 e

va
lu

at
io

n:
 S

im
ila

rit
y

Figure 9: Comparison of performance in terms of solution quality for two different evaluation
functions: Lawrence and Similarity. The former function is better than the latter.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − cutoff: 100

IL
S

 −
 c

ut
of

f:
30

0

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ILS − cutoff: 100

IL
S

 −
 c

ut
of

f:
10

00

Figure 10: Comparison of performance in terms of solution quality for different Cutoff values:
100, 300 and 1000. The highest value we tested on (i.e. 1000) gives the best performance. How-
ever, because of the additional time cost, we chose the value 500.

5.3 Comparison between Motif-GRASP and Motif-ILS

After testing the specific parameters of Motif-GRASP and Motif-ILS separately, we now com-
pare the two algorithms with each other. For all tests, we used the optimal values found in the
previous two subsections. First, we compared them on the same set: Art-Tune-SET, and we mea-
sured the performance in terms of the average solution quality. Second, we compared Run Time
Distributions (RTDs) [1] for four sets from Art-Tune-SET.

46

Motif-GRASP vs. Motif-ILS on Art-Tune-SET

Figure 11 shows the results in terms of the average solution quality on the Art-Tune-SET. As we
expected, the GRASP algorithm performed better than ILS. It shows that the construct routine of
GRASP has a considerable role in finding good quality solutions, and suggests that construction
search methods are useful for this problem. Also, the range of solution quality is larger for Motif-
ILS (� �� �� � � �
 � �-) than for Motif-GRASP (� �� � � � �
 � �-). However, we notice that for this simple
data set, Motif-ILS performs pretty well, too.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Motif−GRASP

M
ot

if−
IL

S

Figure 11: Comparison of performance in terms of solution quality for Motif-GRASP vs Motif-
ILS on the Art-Tune-SET data set. Motif-GRASP performs slightly better, and the range of solu-
tion quality is narrower.

RTDs of Motif-GRASP and Motif-ILS

Next, we compared the Run Time Distributions of Motif-GRASP and Motif-ILS on four sets from
the Art-Tune-SET. We ran the two algorithms 1000 times, using the optimal parameters found in
the Tuning Parameters sections. Then, we took the instances that found the exact solution (i.e.
had solution quality 1.00) and drew the graphs in Figure 12. The platform we used was Pentium
III dual processor at 1GHz, running Linux 2.4.18.

Note that, as this problem is a combinatorial optimization problem, in each run, the programs
continue searching until the termination criterion is satisfied. We measured the CPU time spent
until the best solution was found. Therefore, if more time was spent to search for a better solution,
but no better solution was found, this time was not considered.

Figure 12 shows that Motif-GRASP is faster than Motif-ILS. Moreover, out of the 1000 runs,
Motif-GRASP was successful in 553, 742, 793 and 756 cases, respectively. Motif-ILS was suc-
cessful in only 186, 237, 232 and 379 cases, respectively. This clearly shows Motif-GRASP’s
superiority when compared to Motif-ILS. The RTDs in Figure 12 contain the successful runs only.
Note that a more thorough evaluation would be to show incomplete RTDs, which do not go to
100% probability of solve, but to the percentage of successful runs.

47

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

P
ro

ba
bi

lit
y

of
 s

ol
ve

CPU time

../results/test_grasp_rtd/generated.50-50.10.15.70.0000.rtd
../results/test_ils_rtd/generated.50-50.10.15.70.0000.rtd

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

P
ro

ba
bi

lit
y

of
 s

ol
ve

CPU time

../results/test_grasp_rtd/generated.50-50.10.15.70.0001.rtd
../results/test_ils_rtd/generated.50-50.10.15.70.0001.rtd

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

P
ro

ba
bi

lit
y

of
 s

ol
ve

CPU time

../results/test_grasp_rtd/generated.50-50.10.15.70.0002.rtd
../results/test_ils_rtd/generated.50-50.10.15.70.0002.rtd

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

P
ro

ba
bi

lit
y

of
 s

ol
ve

CPU time

../results/test_grasp_rtd/generated.50-50.10.15.70.0003.rtd
../results/test_ils_rtd/generated.50-50.10.15.70.0003.rtd

Figure 12: RTDs of Motif-GRASP vs. Motif-ILS on four sets from Art-Tune-SET. Motif-GRASP
is clearly superior to Motif-ILS.

The representation we used also explains why the RTD top tails do not have the typical � shape
(too few solutions found, especially in the case of Motif-ILS).

5.4 Performance of Motif-GRASP on Different Artificial Sets

Now, after we convinced ourselves that Motif-GRASP is better than Motif-ILS, we tested its
performance on harder sets, that have different characteristics.

Figure 13 shows the results of Motif-GRASP (from left to right, top to bottom) on the four sets
introduced in the Data section: Art-Motif-SET, Art-Num-Seq-SET, Art-Prob-SET and Art-Seq-
Len-SET. They all contain several groups of 10 sets. In the figures, the groups are separated by
green lines and every two adjacent groups are drown in different colors (red and blue) and symbols
(stars and crosses). Moreover, each group corresponds to a � % 	 % � � interval on the % -axis. For
example, the interval 1-10 in the first figure shows the results for sets that contain motifs of length
5, the interval 11-20 contains the results for the sets with motif length 10 and so on.

The top-left figure shows that motifs of length � are hard to find, the performance of Motif-GRASP
being poor, i.e. between � and �� � . The sets with motif length 10 are easier, and on the sets with
motif length 15, 20 and 25, Motif-GRASP gives a good performance (between 0.9 and 1).

48

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial sets of motif lengths: 5, 10, 15, 20, 25

G
R

A
S

P
: s

ol
ut

io
n

qu
al

ity

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial sets with #sequences: 15, 20, 25, 30

G
R

A
S

P
: s

ol
ut

io
n

qu
al

ity

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial sets with prob. threshold: 50, 60, 70, 80, 90

G
R

A
S

P
: s

ol
ut

io
n

qu
al

ity

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Artificial sets of sequence length: 100, 200, ..., 900

G
R

A
S

P
: s

ol
ut

io
n

qu
al

ity

Figure 13: Performance of Motif-GRASP on sets with different characteristics. Details are ex-
plained in the text.

The top-right figure shows that Motif-GRASP behaves well for sets with different number of
sequences, all of them having performance between 0.85 and 1.

The bottom-left figure shows the sets created with the probability threshold 50 and 60 are harder
to solve, whereas the sets with a higher probability threshold, as expected, are easier.

The bottom-right figure shows the greater the sequence length in the set, the harder the sets are
to solve. For longer sequences, using different values for the parameters (e.g. the RCL or Num-
Restarts) might be necessary.

5.5 Performance of Motif-GRASP and Motif-ILS on the Challenge-SET

Pevzner et al [9] created the Challenge Problem and they report the Gibbs Sampling algorithm
performs very poorly on these sets. For sets that have sequences of length 600, like our Challenge-
SET, the GIBBS’ performance is 0.12. The performance of Motif-GRASP and Motif-ILS is very
poor, too. Figure 14 shows the performance of Motif-GRASP vs. Motif-ILS using the Lawrence

49

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

GRASP on Challenge Sets using Lawrence function

IL
S

 o
n

C
ha

lle
ng

e
S

et
s

us
in

g
La

w
re

nc
e

fu
nc

tio
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

GRASP on Challenge Sets using Similarity function

IL
S

 o
n

C
ha

lle
ng

e
S

et
s

us
in

g
S

im
ila

rit
y

fu
nc

tio
n

Figure 14: Performance of Motif-GRASP and Motif-ILS on the Challenge-SET, using Lawrence
function and the Similarity function. In all cases, the performance is poor.

evaluation function (left) and using the Similarity evaluation function. All of them give average
solution quality between 0.02 and 0.18.

5.6 Performance on Real Data: the CRP-Set

The only real data we could test on was the CRP-Set. We ran Motif-GRASP 50 times and obtained
three types of good results that appeared more frequently. Table 1 describes these results. Motif-
ILS did not give good results for this set. Column 2 shows the names of the 18 DNA sequences.
Column 3 contains the real starting points of the motif in each sequence. Some sequences contain
2 positions of the motif, and the alternative starting points are shown in paranthesis. L+R starting
positions, in column 4, are the ones reported in [10]. Column 5 contains the best starting positions
reported in [11].

Column 6 shows the first type of results we have got, which occured the most frequently (in 19
runs out of 50) and has quality solution of 0.82. For this type, all predicted starting points are
shifted right by 2 positions comparing to the real starting points, except for trn9cat (sequence 17)
that is predicted incorrectly.

Column 7 shows the second type of results, having quality solution of 0.85, which occurs in 8 (out
of 50) of runs. For this type, all predicted starting points are shifted left by 1 position comparing to
the real starting points, except the starting points for eco gale (sequence 7) and trn9cat (sequence
17), which are predicted incorrectly.

Finally, the last column shows the third type of results which occurs in 8 (out of 50) of runs. This
is the best result according to the solution quality measure (i.e. 0.89) and the predicted starting
positions. For this type, all starting points were determined correctly, except for eco gale (sequence
7) and trn9cat (sequence 17).

The solution quality of the remaining 15 runs was worse than those presented here.

50

No Sequence name Real Sites L+R [11] Type 1 Type 2 Type 3

1 cole 1 61 (17) 61 61 63 60 61
2 eco arapob 55 (17) 55 55 57 54 55
3 eco bglrl 76 76 76 78 75 76
4 eco crp 63 63 63 65 62 63
5 eco cya 50 70 50 52 49 50
6 eco deop 7 (60) 7 7 9 6 7
7 eco gale 42 42 24 44 23 24
8 eco ilvbpr 39 39 39 41 38 39
9 eco lac 9 (80) 9 9 11 8 9
10 eco male 14 14 14 16 13 14
11 eco malk 61 (29) 29 61 63 60 61
12 eco malt 41 41 41 43 40 41
13 eco ompa 48 48 28 50 47 48
14 eco tnaa 71 71 71 73 70 71
15 eco uxul 17 17 17 19 16 17
16 pbr-p4 53 53 53 55 52 53
17 trn9cat 1 (84) 84 5 57 4 5
18 (tdc) 78 78 78 78 77 78

Table 1: Starting points for the common motif in the CRP data set. The table contains the names
of the DNA sequences, the real starting points, starting points reported by two other algorithms,
and the three type of results which are found more frequently by the Motif-GRASP algorithm.

6 Search Space Analysis

In this section we try to get an idea of how the search spaces for two problem instances look like.
We use an easy set from the Art-Tune-SET, and a hard set from the Challenge-SET. First, we use
the Motif-ILS algorithm and watch the steps it performs between a local minimum and a jump to
a new local minimum. Next, we draw a Fitness-Distance Correlation (FDC) plot and calculate the
correlation coefficient.

6.1 Search Space Samples Using Motif-ILS Trajectory

Figure 15 shows four samples from the search space of one relatively easy set from Art-Tune-
SET. (The set is given in Appendix 1). For this purpose, we ran Motif-ILS 4 times with Cutoff
= 50. This means that 50 local-search - perturbation cycles were performed. For each step, two
evaluation function values are drawn in the plots: (1) the value for the local maximum, and (2) the
value for the new candidate solution after a new jump in the search space was performed. Note that
these figures do not show how hard is to find a local maximum (i.e. how many local search steps
are performed), but only the difference between the candidate solution quality in a local maximum
and after a jump. The graphs show that there are many local maxima. For this set, the optimal
evaluation function value is 132.78.

Figure 16 shows a sample of the search space for a hard set from the Challenge-Set. As in Fig-

51

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

110

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
20

40

60

80

100

120

140

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

Figure 15: Motif-ILS search trajectory for one set from Art-Tune-SET. Each graph represents
a trajectory starting from a different random pick. The graphs show that there are many local
maxima and the level of ruggedness is high.

ure 15, we can see that, again, there are many local maxima.

6.2 Measuring Fitness-Distance Correlation

Figure 17 shows FDC plots for the same two sets used in the previous subsection. We created these
plots in the following way: we performed a random pick of a candidate solution and then applied
local search until we found a local maximum. This point was a point in the plot. We repeated this
step � times. Clearly, a higher � will give a more accurate FDC plot. For the set from the Art-
Tune-SET (left), � 	 � ��	 � � � . For the set from the Challenge-SET (right), � 	 �
	 � � � , because
reaching a local maximum takes much longer. We note that this yields an incomplete FDC plot
for this case.

The distance is measured as the number of sequences for which the starting positions in this local
maximum solution are different from the real starting positions. Thus, if all positions are correct,
the distance will be � , and if all positions are wrong, the distance will be

�
, where

�
is the number

52

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

Step number in Motif−ILS

E
va

lu
at

io
n

fu
nc

tio
n

va
lu

e

Figure 16: Motif-ILS search trajectory for one set from the Challenge-SET. As in Figure 15, the
level of ruggedness is high.

0 10 20 30 40 50 60 70
10

0

10
1

10
2

Distance

F
itn

es
s

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Distance

F
itn

es
s

Figure 17: FDC plots for a set from Art-Tune-SET and for a set from Challenge-SET (incomplete).

53

of sequences in the set. So, if the distance is % , where � � % � �
, the minimum number of steps

to the global optimum is % , i.e. by changing one position to the correct one at a time.

The fitness is measured as � * � � � & � ��� , where � � � & �%��� is the solution quality value measured as
described in Section 3. The � � � & � ��� is a value between 0 and 1, thus � * � � � & �%��� will be a value
between 1 and infinity. (For practical reasons, we set a bound to this value). The higher the
solution quality, the lower � * � � � & �%��� will be.

In the left figure, we can see the good-quality candidate solutions are at the bottom of the plot.
There are many local maxima with the highest possible distance (i.e. 10), and their quality ranges
from a pretty good one to a very bad one. We note that the local maximum candidate solutions
which have a lower distance also have a better quality. The Fitness-Distance correlation coefficient
for this set was 0.76, which shows that the problem is pretty easy, but still has many local maxima.
For this case, perturbation is better than restart, and this explains why both Motif-GRASP and
Motif-ILS work pretty well for this instance.

Although it is incomplete, the right figure shows that most of the local maxima are concentrated
around

�
, i.e. 20. The FDC coefficient for this set is 0.55, that shows clearly that this set is much

harder to solve than the previous one. None of Motif-GRASP and Motif-ILS perform well on this
set.

7 Conclusions and Future work

In this paper we have studied two new stochastic search algorithms for the motif finding problem
in biosequences: a constructive method, Motif-GRASP, and a non-constructive method, Motif-
ILS. We performed many tests on artificially generated data and a few tests on simulated and real
data. The results show that a constructive method is a good fit to this problem. The search space
analysis we have performed explained why this is the case: there are many local maxima, with
different solution qualities, at a range of distances from the global maximum. This makes the
search hard. However, on the CRP-Set, our Motif-GRASP performed nearly as good as Gibbs
Sampler and the algorithms reported in [10, 11] . We think these are promising results, and with
further improvement, which could be done in the future, maybe we can achieve performances
comparative to the state-of-the-art algorithms for this problem.

As future work, first of all, testing our algorithm on CRP data set showed that the Lawrence
evaluation function does not necessarily give a maximum value for global optimum (real motif
positions). This means that trying to find a solution with better (greater) evaluation function, may
not always lead to the real answer. Therefore finding an evaluation function which has not this
weakness might improve the performance of the algorithm.

Other improvements of our Motif-GRASP are appropriate, such as: using a more randomized
local search function, tuning the parameters on more diverse data sets, changing some parameters
adaptively. Also, search space analysis is very useful for algorithm design. Doing such analysis
more thoroughly may help us understand why the sets from the Challenge-SET are so hard to
solve.

54

Trying other and more complex local search method can also be considered as future work. It
might happen that a more complex algorithm as local search leads us to a higher quality candidate
solution.

There are also some important limitations of our algorithms, that can be addressed in the future:

" Unknown motif length: Currently our algorithm requires the motif length as input. It does
not work for data sets in which the length of motif is unknown. However, in real life, the
length of the motif is not exactly known. All we know is that they cannot be too low or too
high. The estimated value is between 5 and 25." Insertions and Deletions : We assumed the motif in each sequence is a contiguous segment.
Our algorithm cannot handle the situation when the motif is partitioned into more than one
contiguous segment." Each sequence has exactly on motif: More occurences of the motif in a sequence or no
occurence in some sequences in the set can appear in real data. In real life, we do not
know whether or not some sequence in the set has the motif, or how many times some motif
appears.

Acknowledgements. We gratefully thank Holger Hoos for giving us the idea of tackling this
problem for our course project, for useful discussions and for the feedback. We also thank Sohrab
Shah for providing us the Challenge-SET and the CRP-Set, and for giving us access to his previous
achievements.

References

[1] H. H. Hoos and T. Stützle, Stochastic Local Search - Foundations and Applications, Morgan
Kaufmann Publishers, to appear.

[2] T. A. Feo and M. G. Resende, Greedy randomized adaptive search procedures, Journal of
Global Optimization 6 (1995), 109-133.

[3] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald and J. C. Woot-
ton, Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment,
Science, 1993 Oct 8;262(5131):208-14.

[4] J. Buhler and M. Tompa, Finding Motifs Using Random Projection, Proceedings of the Fifth
Annual Conference on Computational Molecular Biology, 2001

[5] M. Blanchette, Algorithms for phylogenetic footprinting, Proceedings of the Fifth Annual
Conference on Computational Molecular Biology, 2001

[6] T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover
motifs in biopolymers, Proceedings of the Second International Conference on Intelligent
Systems for Molecular Biology, pp. 28-36, AAAI Press, 1994.

55

[7] M. Blanchette, B. Schwikowski and M.Tompa, An exact algorithm to identify motifs in or-
thologous sequences from multiple species, Proceedings of the Eigth International Confer-
ence on Intelligent Systems for Molecular Biology, 2000, AAAI Press

[8] Y-J. Hu, Finding subtle motifs with variable gaps in unaligned DNA sequences, Computer
Methods and Programs in Biomedicine 70 (2003) 11-20

[9] P.A. Pevzner and S.H. Sze Combinatorial Approaches to Finding Subtle Signals in DNA
Sequences, American Association for Artificial Intelligence, AAAI Press, 2000

[10] C.E. Lawrence and A.A. Reilly An Expectation Maximization (EM) Algorithm for the Identi-
fication and Characterization of common sites in unaligned biopolymer sequences, Proteins,
7:41-51,1990.

[11] S. Shah, Making sense of ’junk’: An EM algorithm for discovering motifs in intergenic DNA,
Project report for the 530A course at Computer Science, UBC, December 2002.

[12] S. Shah, Computational motif finding: A review of current methods in pattern finding in
biosequences, September 2002.

56

Appendix: Sequence sets that share a common motif

This Appendix shows some sample data sets we used in our tests. The fragments inside the
brackets are the real motifs shared by each set. The sequences are aligned such that the motifs
start at the same position in the line.

CRP-Set The sets consist of 18 DNA sequences of length 105, each containing a motif of
length 12.

TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATAGCGCGTGGTGTGAAA
GACTGT (TTTTTGATCGTTTTCACAAAAA) TGGAAGTCCACAGTCTTGACAG

GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCA
CATTGA (TTATTTGCACGGCGTCACACTT) TGCTAT GCCATAGCATTTTTATCCATAAG

ACAAATCCCAATAACTTAATTATTGGGATTTGTTATATATAACTTTATAAATTCCTAAAATTACACAAA
GTTAAT (AACTGTGAGCATGGTCATATTT) TTATCAAT

CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGATGTA
CTGCAT (GTATGCAAAGGACGTCACATTA) CCGTGCAGTACAGTTGATAGC

ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAAT
CAGCAA (GGTGTTAAATTGATCACGTTTT) AGACCATTTTTTCGTCGTGAAACTAAAAAAACC

AGTGAA (TTATTTGAACCAGATCGCATTA) CAGTGATGCAAACTTGTAAGTAGATTTCCTTA
ATTGTGATGTGTATCGAAGTGTGTTGCGGAGTAGATGTTAGAATA

GCGCATAAAAAACGGCTAAATTCTTGTGTAAACGA
TTCCAC (TAATTTATTCCATGTCACACTT) TTCGCATCTTTGTTATGCTATGGTTATTTCATACCATAAGCC

GCTCCGGCGGGGTTTTTTGTTATCTGCAATTC
AGTACA (AAACGTGATCAACCCCTCAATT) TTCCCTTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGT

AA
CGCAAT (TAATGTGAGTTAGCTCACTCAT) TAGGCACCCCAGGCTTTACACTTTATGCTT
CCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC

ACATTAC
CGCCAA (TTCTGTAACAGAGATCACACAA) AGCGACGGTGGGGCGTAGGGGCAAG
GAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTA

GGAGGAGGCGGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATGT
AAGGAA (TTTCGTGATGTTGCTTGCAAAA) ATCGTGGCGATTTTATGTGCGCA

GATCAGCGTCGTTTTAGGTGAGTTGTTAATAAAG
ATTTGG (AATTGTGACACAGTGCAAATTC) AGACACATAAAAAAACGTCATCGCTTGCATTAGAAAGGTTTCT

GCTGACAAAAAAGATTAAACATACCTTATACAAGACTTTTT
TTTCAT (ATGCCTGACGGAGTTCACACTT) GTAAGTTTTCAACTACGTTGTAGACTTTACATCGCC

57

TTTTTTAAACATTAAAATTCTTACGTAATTTATAATCTTTAAAAAAAGCATTTAATATTGCTCC
CCGAAC (GATTGTGATTCGATTCACATT) TAAACAATTTCAGA

CCCATGAGAG
TGAAAT (TGTTGTGATGTGGTTAACCCA) ATTAGAATTCGGGATTGACATGT
CTTACCAAAAGGTAGAACTTATACGCCATCTCATCCGATGCAAGC

CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCAC
CATATG (CGGTGTGAAATACCGCACAGAT) GCGTAAGGAGAAAATACCGCATCAGGCGCTC

(CTGTGACGGAAGATCACTTCGC) AGAATAAATAAATCCTGGTGTCCCTGTTGAT
ACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACG

GATTTTTATACTTTAACTTGTTGATATTTAAAGGTATTTAATTGTAATAACGATACTCTGGAAAGTATTGA
AAGTTA (ATTTGTGAGTGGTCGCACATAT) CCTGTT

A set from the Art-Tune-SET The sets consists of 10 DNA sequences of length 50, each con-
taining a motif of length 15.

CCCCTCGAACGTATGTCAGGCAATCTGCGGT (GTGACAATATCCTAG) CCAT

GATGT (GTTACAATATCCTTG) GGGGGCCATTATAGCCTTCGCTACCCCGCA

TACTCTGAATGTGACCCGCTCACCAGTCTCGC (GAGACAACATCCTAA) ACA

GCTTGAGCGCTATCCGCAGCGAAGACCGG (TTGACATTAACCTTG) GTGTTT

TAAGCTGGTAC (GTGACAATATCCGTG) TAGAATCTCCGCCGCGCGAGCACA

CAGGCCCT (GAGAGAATATCCTTG) TTAACTTCAGACTTAAAATGATCCGAA

TCTTTCGGCTCCTAATCCAATCATTACCC (GTGACAATATCCTTC) TTAATT

GTTTAAT (GAGACAATATCCTTG) GGGCACGTCCACAATTAAACCTCAGGTT

GTAAACATGGGTTCGCTCCTGGCACAAATAGC (ATGACAATATCCATG) TGC

GGCTGAGGCATCTGTGGGCTCAAACGAGCACTG (TTGACAGTAACCATC) AG

58

