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Abstract

Weighted Max-CSP is one of the NP-hard problems that has been studied for a long time due
to its relevance for various research areas e.g. operations research. Nevertheless, stochas-
tic local search methods for solving weighted Max-CSP remain largely unexplored. In this
project we developed different variants of Iterated and Dynamic Local Search algorithms and
empirically analyzed them. The obtained results give a solid basis for a further development
of more sophisticated algorithms for weighted Max-CSP.

1 Introduction

An instance of the constraint satisfaction probléd$P) is defined by a set of variables, a domain

for each variable and a set of constraints. A solution is a variable assignment for all variables
that satisfies all constraintdlax-CSP can be regarded as the generalization of CSP; the solu-
tion maximizes the number of satisfied constraints. Max-CSP is usually considered with regards
to over-constrained CSP instances, in which it is often impossible to satisfy all constraints. In
weighted Max-CSP, each constraint is associated with a positive real value as a weight. The
solution maximizes the total sum of the satisfied constraints weights. Weights reflect the impor-
tance of constraints. In particular, they might be used to encode distinction between hard and soft
constraints.

Solving the weighted max-CSP problem is computationally hard, as it is the generalization of the
CSP problem, which i8/P-complete.

An example of a problem that can be naturally encoded into Max-C8Riversity examination
timetabling([6]). Another practical example idio link frequency assignme(itl], [2]). Such
problems involve different categories of constraints according to their relevance.
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1.1 Formal Definitions

The formal definitions 0€SP instancenveighted CSP instanceariable assignmerandweighted
Max-CSP problenare as follows [9]:

Definition 1.1 (CSP instance)A CSP instances a tripleP = (V,D, C), whereV = {z1,z9,
..., xy,} is afinite set ok variables,D is a function that maps each variabig to the seD(x;)

of possible values it can take (domainxgj andC = {C1,Cs,...,Cy,} is a finite set of con-
straints. Each constrainf’; is a relation over an ordered sé&far(C;) of variables fromV, i.e.,
for Var(C;) = {y1,v2,-- -, yx}, C; € D(y1) x D(y2) x ... x D(y,). The elements of the set
C; are calledsatisfying tuples o’; andk is calledthe arity of the constraint’;

In abinary CSP instance the constraints are unary or binary.

Definition 1.2 (Weighted CSP instance)A weighted CSP instancis a pair (P, w), whereP is
a CSP instance andr : {C;]j € [1,2,...,m]} — R* is a function that assigns a positive real
value to each constrair'; of P. w(C}) is called theweightof constraintC);

Definition 1.3 (Variable assignment) Given the CSP instancP = (V, D, C), a variable as-
signmentof P is a mappinga : V — [ J{D} that assigns to each variablg € V a value from
its domainD(z;). AssignP) denotes the set of all possible variable assignments for P.

Definition 1.4 (Weighted Max-CSP) Given a weighted CSP instan&¥ = (P, w), let f(P’, a)
be the total weight of constraints Bf satisfied under variable assignment

f(P' a) = Z{W(Cj)|(]j is a constraint oP anda satisfiesC; }.
j=1

The weighted Max-CSPproblem is to find a variable assignmeat that maximizes the total
weight of the satisfied constraints¥:

a* € argmin{ f(P’,a)|a € Assign(P)}.

As
argmin{ f(P’,a)|a € AssignP)} =
= argmax{)_ w(C;) — f(P’,a)|C; is a constraintoP A a € AssignP)},
weighted Max-CSP might be considered as a minimization problem, where the objective is to find

a variable assignment which minimizes the total weight of the unsatisfied constraints. In our paper
we use the minimization approach.

In the rest of this paper, we focus on the binary weighted Max-CSP with positive integer Weights
andD(xl) = D(ZL‘Q) =...= D($n) C N

This does not result in the loss of generality,raary relations can be described using binary relations and real
weights can be scaled into integers.
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2 Related Works

Among the previously applied methods for solving Max-CSP, complete algorithms like branch-
and-bound and backtracking based techniques [18] play an important role. Exponential growth
of the complexity with growing instance size is their main disadvantage. Besides, for practice re-
lated problems like scheduling as well as for large-scale instances, achieving a guaranteed optimal
solution might be extremely time consuming.

As both the best solution quality and the required run time (CPU-time or iterations number) are
important criteria for measuring the performance of a Max-CSP solver, incomplete techniques get
more interesting. Even though not much work has been done in this area, several stochastic local
search algorithms have been developed that had a major impact on all later contributions.

2.1 The Min-Conflict-Heuristic

One of the first major efforts for solving the CSP using SLS has been made by Minton et al. [13].
Although their algorithm addresses the CSP rather than the Max-CSP, it inspired several of the
later native Max-CSP solvers. As it is often used as a comparison criterion for the performance of
the different algorithms, we will also consider this algorithm in our experiments.

The Min-Conflicts heuristids driven by the idea of "repairing a complete but inconsistent assign-
ment by reducing inconsistencies”. The original version of the algorithm starts with an initial
random assignmert : V — [ J{D} and a valuef(a) of the objective function. In each local
search step first a variabig is chosen uniformly at random from the conflict 8é&). Given the
assignment, the conflict set is defined as the set of all variahles V that appear in at least

one currently violated constraint (see Figure 1). In a second step ad/a@ua(x;) is chosen1-
exchange neighborhood) such, that by assigditaz; the total number of subsequently violated
constraints is minimized. Among several values that satisfy this criterion, one is chosen uniformly
at random.

Based on this value-ordering heuristic, kerated Improvementariant can be applied to the
Max-CSP, theMICH . In this case the objective function value is given by sum of weights of all
violated constraints under the assignmeantAfter generating an initial random assignment, in
each search step the algorithm tries to minimize the total weight of the violated constraints for
the randomly selected variable. After randomly choosing a variapbfeom the current conflict

set, MCH computes the sum of the weights of the violated constraints related to this variable

for all possible domain values. From the best-scored values (there might be several candidates
with equal objective function value) the algorithm then selects one uniformly at random. MCH
terminates when the specified solution quality has been achieved or a fixed number of iterations
has been exceeded. The step function implementation is using the neighborhood evaluation table
presented in 5.3, of complexity(|D|). The resulting pseudo code is listed in Figure 1.

While efficient in terms of run time, the algorithm has no possibility to escape from a local min-
imum and the Min-Conflicts heuristic has a major drawback: stagnation. Based on this, several
other variants have been developed. In their studies on the unweighted Max-CSP, Galinier and
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procedure basicMCH(7")
input: problem instance’ € I’
output: solutions € S(=’) or 0);
s:=init(7")
5:=s
while not terminatér’, s) do
s:= mchstegn’, s)
if f(x',s) < f(x’,5)then
5:=s
end
end
if $ € 5'(n") then
return §
else
return ()
end
endbasicMCH

procedure mchsteg, s)
input: problem instance, candidate solutiog;
output: candidate solutior’;

C = {z; € V|z; is avariable currently in confli¢t
x;:= randomfrom_se(C)
T*(s,x;) = {d € D(x;)|d minimizes the total weight of currently violated constrains
in which x; appear$
d*:= randomfrom_se{Z*(s, z;))
s'= 5|$i:d*
return s’
end mch.step

Figure 1: MCH on Max-CSP; inftr’) returns a random candidate solution using a uniform dis-
tribution; randomfrom_se{ A) returns a random element from séusing a uniform distribution;

S’(n') is the set of feasible solutions; a feasible solution is defined as a variable assignment and
according to the Definition 1.3, depends¥randD.

Hao [8] compared the performance of their Tabu Search variant to that of a Min-Conflict algo-
rithm combined with a random-walk strategy, \WeMCH [19].

After choosing a conflicting variable; as already mentioned, the WMCH picks randomly a value

d from thez; domain spac® (z;) with probabilitywp. With probability 1 — wp, it performs like

a basic MCH step. Considering the weight of violated constraints instead of their number, one can
easily extend this algorithm to solve Max-CSP (Figure 2). This basic noise strategy leads to an
improved performance, as can be concluded from our experimental results (see Figure 10).
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procedure WMCH (7', wp)
input: problem instance’ € IT', walk probabilitywp;
output: solutions € S(=’) or 0;
s:=init(n’)
5=s
while not terminatér’, s) do
with probabilitywp do
C = {x; € V|z; is a variable currently in confligt
x;:= randomfrom_se{(C)
d:= randomfrom_se{D(z;))
S.= 5|$i:d
otherwise
s:= mchstegn’, s)
end
if f(7',s) < f(m,35)then

S.=8
end
end
if $ € S'(7') then
return s
else
return (
end
end WMCH

Figure 2: WMCH on Max-CSP; inftr’) returns random candidate solution using uniform distribu-
tion; randomfrom_se{ A) returns random element from sétusing uniform distribution;5’(r")
is the set of feasible solutions.

2.2 Tabu Search for Max-CSP

In order to solve Max-CSP, Galinier and Hao [8] combined the Min-Conflicts heuristic with tabu
search by applying the tabu tenure to e&el-iable, value) pair. Even though extremely expen-
sive in terms of run time, th€SGH successfully escapes from local minima.

Besides introducing a tabu tenure, in each search step algorithm considews-able, value)
combinations for a potential flip which intensifies the search. The underlying idea for choos-
ing the next flip is again the Min-Conflict Heuristic. After computing the performance of each
(variable, value) pair as the sum of the weights of all violated constraints that one violated when
assigning the valud to a variablex;, TSGH chooses the pair with the best performance. The
termination criteria are similar to the MCH. Figure 3 shows the pseudo-code of the TSGH applied
to the Max-CSP.

The implementation of the tabu search variant requires the careful consideration of the underlying
data structures. In each search step we consideValk |D| (variable, value) combinations
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procedure TSGH(«', f, tl)
input: problem instance’ € IT’, objective functionf (II'), tabu tenure/;
output: solutions € S(=’) or 0;

s:=init(n’)
init_tabulist(¢7)
§:=s

while not terminatér’, s) do
Z(s) = {(xi,d),z; € V,d € D(x;)|(w;,d) not tabu orf (7', 5,,—q) < f(7',3)}
Z*(s) = {(x;,d) € Z(s)| assigningl to x; minimizes the total weight of conflicts far; }
(xf, d*):= randomfrom_se{Z*(s))
updatetabulist((z;, d*), tl)
S.= S\xi:d*
if f(7',s) < f(#',38)then
§:=s
end
end
if $ € S'(n’) then
return s
else
return ()
end
end TSGH

Figure 3: TSGH on Max-CSP; irfit’) returns candidate solution chosen randomly using a uni-
form distribution; inittabulist(¢/) randomly initializes the tabu list using a uniform distribution;
randomfrom_se{ A) returns a random element from séusing a uniform distribution;
updatetabulist((z;, d), tl) adds the paifx;, d) to the tabu list and removes the oldest pair if the
length of the tabu list is greater thah S’(7') is a set of feasible solutions.

instead of allk possible values for one randomly chosen variable. As already mentioned the
computation of the evaluation function value for each ofjMéx |D| pairs requires timé&(|D|).
Consequently, the implementation of the step function of the TSGH has time comah&k\yf x

D).

Since the choice of the next step is much greedier, we expect a better performance in terms of
solution quality, but a worse performance in terms of run time. In order to compensate for the
higher complexity of each search step, we can use special data structures to find the neighbor with
the best evaluation function in the current neighborhood (see Section 5).

Figure 10 compares the performance of all algorithms on randomly generated instances from the
Uniform Binary Random Model (see section 6.1) from the same instance classes as used by Galin-
ier and Hao [8], but additionally using constraint weights, each random uniformly chosen from a
domainlo, ..., 99].

In Section 5 we present major implementation issues more in detail, as well as their impact on the
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performance of the so far described algorithms and on the instance size used for the experimental
work.

2.3 Randomized Rounding with MCH

The latest major contribution by Lau [11] combines a new approximation method based on ran-
domized rounding and semidefinite programming with the already described MCH. His experi-
mental results show this new algorithm to perform better than both the MCH and WMCH on solv-
able, random instances. Unfortunately, he does not compare the performance of his new algorithm
to that of the TSGH. The satisfiable randomly generated instances used by Lau are also available
in an unweighted version on the web site of van Beek [4], whose main research concentrates on
solving binary CSPs using backtracking methods.

3 Iterated Local Search

As one of the rather straight-forward but powerful SLS methtds,(Iterated Local Search) tries

to achieve a good tradeoff between intensification via local search methods and diversification by
using a perturbation procedure after each encountered local minimum. As a further important ele-
ment of this framework, an acceptance criterion is used to control the balance between perturbation
and local search.

Clearly the ILS depends highly on the quality of the underlying stochastic local search procedure.
The greedier this procedure is, the more effective the perturbation is required to be. The com-
bination of the already mentioned key elements of an Iterated Local Search algorithm is ideally
chosen in such a way that the results achieved are better than just sequentially performing several
stochastic local search steps.

Based on the mentioned in Section 2 local search strategies we considered several variants of
ILS: ILS-MCH , ILS-WMCH andILS-TSGH. Due to the different run-time performance and
achieved solution quality it is not obvious that the greediest local search strategy, TSGH, would
lead to better results in this more general framework.

For perturbation we choose between different approaches. Besides random picking, we can use a
fixed number of random walk steps. Using a random noise strategy shows considerable improve-
ment in the case of the WMCH. Consequently, a perturbation procedure based on a fixed number
of random walk steps should likewise help escaping from local minima. We also considered a
third perturbation strategy - a random flip of a non-conflicting variable - but tests showed that it
did not improve solution quality.

We denote algorithms with random picking as perturbation with the sufie*, those with ran-
dom walk steps with the suffixRS".

The acceptance criterion compares the current solution to that one of the previous iteration and
chooses the better with respect to the objective funcfion s) with a certain acceptance proba-
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procedure ILS-WMCH(#', wp, bp, ws)
input: problem instance’ € I, objective functionf (I1’), walk probabilitywp,
acceptance probabilityp, number of random walk stepss;
output: solutions € S(=’) or (;

s:=init(7’)
s:= Is-WMCH(#', f, wp, s)
S=s

while not terminatér’, s) do
s':= perturliz’, s, n)
§":=Is-WMCH(7’, s')
if f(x',s") < f(m,3§)then
5:=s"
end
s:= acceptr’, s, s”, bp)
end
if $ € .5'(n') then
return s
else
return ()
end
end ILS-WMCH

Figure 4: ILS-WMCH on Max-CSP; inftr’) returns a random candidate solution using a uniform
distribution; Is-WMCH is equivalent to WMCH presented in Figure 2, except it does not have the
initialization procedure$’(n’) is a set of feasible solutions.

bility bp. The higher the acceptance probability the greedier the algorithm, and the more likely is
that we will return to the local minimum encountered during the previous iteration. In this case a
stronger perturbation is required, e.g. a higher number of random walk steps.

The additional complexity due to the ILS framework combined with the distinct stagnation be-
havior of the subsidiary local search procedures, except TSGH, motivated an appropriate control
mechanism. When the evaluation function value does not change over a fixed humber of itera-
tions, the underlying local search is terminated. This fixed number is subject to carefully tuning
and varies considerably among the different algorithms. A more detailed description of the tuning
process is givenin 7.1.1.

For each of the developed ILS variants the stagnation control mechanism was motivated as follows:

ILS-MCH: Stagnation is the main drawback of the basic MCH. By including MCH into the ILS
scheme we expect to diminish this problem. Using appropriate perturbation and acceptance
strategies, we try to escape from the local optimum achieved in the local search procedure.
Even a very naive perturbation (e.g. random picking) combined with a greedy acceptance
procedure will surely achieve a better solution quality than the initial MCH.

On the other side this approach increases time complexity @ofW | x |D|) for the basic
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MCH to O(max_ils_iterations x |V| x |D|), where maxls_iterations is the maximum
number of performed ILS iterations. Consequently, we expect a considerable longer run-
time and worse performance in comparison to other non-ILS approaches (e.g. setting the
maxdls_iterations to|V| x |D| leads to the same complexity in case of TSGH).

ILS-WMCH: Although less greedy than the TSGH, WMCH is, due to it's lower complexity,
better with respect to the run-time. The resulting algorithm is presented in Figure 4.

ILS-TSGH: Based on the already presented perturbation and acceptance procedures and in com-
bination with a TSGH as local search method, we developed the ILS-TSGH. The interesting
question arising in this context is about the efficiency of ILS-TSGH compared to that one
of the ILS-WMCH. TSGH considers in each move the entiexchange-neighborhood and
tries to find the move that leads to the best performance, meaning to minimize the weight
of violated constraints for the respective variable. WMCH considers gnlpf this neigh-
borhood. An appropriate choice of perturbation and acceptance methods could compensate
for the additional quality achieved by the TSGH. As in case of the TSGH, by keeping the
maximum number of performed ILS iterations (misciterations) belowV| x |D|, we ex-
pect especially in case of very large instances to have a comparably good performance. For
the TSGH, experimental work is required in order to conclude on the gain of using the ILS
framework.

4 Dynamic Local Search

Applying Dynamic Local SearchDLS) to more prominent NP-hard problems (particularly to
SAT) leads to algorithms that outperform other approaches. Based on this - and additionally moti-
vated by the similarities between MAX-SAT and MAX-CSP - we implemented a DLS algorithm
for weighted MAX-CSP.

Unlike all other approaches presented so far, DLS uses a dynamic adjustment of the evaluation
function in order to escape from local minima. When the subsidiary local search procedure en-
counters an optimum, the algorithms changes the evaluation of the found solution such that further
improvement can be done. Penalizing the affected solution components is one common way of
implementing this.

Our DLS algorithm is based on the random walk variant of the min-conflicts based iterative im-
provement, WMCH (see Section 2.1), as subsidiary local search procedure. Usirgxitieange-
neighborhood, the WMCH is a local conflict driven best improvement algorithm; each move is
chosen in a two-step decision process that has 61l{D|) complexity compared to the usual
O(|V| x |DJ) required for scanning the entire neighborhood. The best DLS for SAT uses the stan-
dard best improvement technique as underlying local search strategy. However, in case of MAX-
CSP, the size of the neighborhood can be considerably larger, due to the nature of the problem.
Therefore, a complete scan of the neighborhood is less likely to bring significant improvement.

When penalizing the encountered local minimum, we have to consider the interaction with the
original weights associated with each of the constraints. Therefore we choose to penalize each
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procedure DLS-WMCH-PR7’)

input: problem instance’ € IT';

output: solutions € S(«’) or 0);

s:=init(7")

§:=s

init_penaltie$r’)

while not terminatér’, s) do
g = g+ > {penalties[i][s[i]]|i = 1,...,|V]|}
s:=IsSWMCH(7', ¢, s)
penalties:= updatepenaltieér’, s, penalties)
if f(7',s) < f(«’,5) then

§:=s

end

end

if $ € S'(n') then
return s

else
return ()

end

end DLS-WMCH-PP

procedure updatepenaltiesr, s)
input: problem instance’, candidate solutios;
output: penalties tabl@enalties;

C = {x; € V|z; is a variable currently in confli¢t
for eachx; € C do
penalties|i][s[i]]:= penalties]i][s]i]] + p
end
return penalties
end MCH_step

Figure 5: DLS-WMCH-PP on Max-CSP; ifiit’) returns a random candidate solution using a
uniform distribution;penalties is a|V| x |D| matrix in which each elemertt, j) indicates the
penalty for consideringz;, d;) as a solution componenienalties matrix is initialized with zeros

by procedure inipenaltie$r’); ¢’ guides the local search of the underlying WMCH based local
search procedur§.is then-dimensional solution matris’(7’) is a set of feasible solutions.

solution component, in our case each (variable, value) pair of the solution and derive the following
evaluation function:

g (n',s) = > (w(Cy)|C;is an unsatisfied constraint foy-s
> (penalties(x;, d;)|(x;, d;) is a solution componeht

Penalizing eaclwariable, value) pair leads to a similar effect as using a tabu tenure (see Section
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5.2) but has three major differences:

e Reduced complexity when choosing the next flip compared to TSGH

e Using incremental penalties instead of a fixed tabu tenure leads to algorithms that avoid a
certain solution component but not forbid it for a fixed number of iterations.

e The tabu status of @ariable, value) pair is reset after a fixed number of iterations, while
the penalties, even in the case of smoothing, tend to remain or even increase.

Initially all weights are set t@® as we assume that randomly generated assignment is not a local
optimum. The algorithm penalizes (after each local search phase) the encountered solution by
incrementing the respective components by a constant penalty factor. Due to the fact that WMCH
has no special escape mechanism, and due to the increased number of total iterations (inner and
outer loop), we use - as in case of the ILS - a stagnation based termination (see Section 3). The
resulting pseudo-code is presented in the Figure 5.

Depending on which of the solution components are penalized at the end of the local search phase
we distinguished, implemented and experimented the three following different variants:

DLS-WMCH-TP: The total penalization variant increases weights fofwall-iable, value) pairs
involved in the currently encountered local optimum. The idea is to simply change the
evaluation function in such a way that it avoids already analyzed positions in the search
space.

DLS-WMCH-PP: Here the penalization is restricted(tazriable, value) pairs that involve vari-
ables from the current conflict set. The motivation behind this variant is to keep good solu-
tion components and avoid the rest.

DLS-WMCH-NP: The non-conflicting penalization variant increases weights only of those vari-
ables that are currently not violating any constraints. The resulting moves might lead new
solutions that could not be encountered else due to the accepted deterioration of the evalua-
tion function.

5 Implementation

In the following we describe interesting implementation aspects that we encountered during the
project.

5.1 Data Structures

During our project, we used a data structure that allows the representation of sufficiently large
unary and binary instances. IN¥| x |V | matrix, whereV is the set of variables, we consider all
possible unary and binary constraints. Each of the elements of this matrix consis$i3|of D |
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matrix, whereD is domain of variables. Th@| x |D| matrix at position(z, j) in the V| x | V]|
matrix encodes one constraint between two variabljeandz;. Position(a, b) in the constraint
matrix at position(z, j) specifies the penalty for assigning the valdgsndd, to z; respectively

x;. If the value of the elemerit,, d;) is different from0, a constraint is broken when the men-
tioned assignment occurs. The elemght d;,) corresponds to the weight of this constraint. If the
value of (d,, dp) is equal to0, no constraint is broken or its weight@s For representing large
problem instances, it turned out to be extremely important to only allocate memory for existing
and not for all possible constraints, since tNé x |V| matrix tends to be sparse.

5.2 Tabu List Implementation

For the implementation of the tabu list we considered two data structures: a linked list of the
tabu set elements and¥| x |D| array for the tabu status of each of thewriable, value) pairs.
Whereas the notion of tabu list suggests rather the first alternative, the latter one is the more
efficient option. The time needed for retrieving an element out of a list is linear in the length of the
list, which corresponds to the tabu tenufe Therefore, it is comparatively expensive to find out

if an element is set tabu. The larger the instance, the higher the optimal tabu tenure is likely to be
and consequently the retrieval time. As opposed to this, retrieval from an array requires constant
time. Given the fact that time performance in this context is more important than used memory,
we decided in favor of the second alternative.

5.3 Neighborhood Evaluation

Especially in the case of the TSGH, in which we consider the etterchange-neighborhood in

each local search step, the implementation of the neighborhood evaluation is an important issue.
Based on the technique described in [8] we use¥ ax |D| array for storing the evaluation
function values for each move. The elemény) in the |V | x |D| matrix specifies the resulting
weight of violated conflicts for variable; that occur when assigning the valigto the variable

x;. After the random initialization at the beginning of the local search procedure, we compute all
matrix values. Hence we only have to update|i¢affected values in theV| x |D| matrix after

each move. Consequently the complexity of each mo¥[j¥/|).

5.4 Random Number Generation

As for every stochastic local search the random number generator is extremely important. In
our case we use a linear congruential generator implementation provided by AT&T (urand.c).
The random number generator is initialized by using the current calendar time (functiat time
time(timet *tp) from the time.h C library). Alternatively the user can specify a random seed for
initialization in order to make results deterministic.
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6 Instances

6.1 Random Instances - Uniform Random Binary CSP Model

In order to measure and compare the performance of our algorithms to both complete and in-
complete approaches, we conducted experiments on randomly generated binary instances. Our
instances are currently generated according tolthdorm Random Binary CSP modgL6]).

Each instance is characterized by the number of variahldse domain siz€ as well as the den-

sity p and the tightnessg of constraints. The density describes the probability of a constraint
occurring between two CSP variables, whjlspecifies the conditional probability that a value

pair is allowed given that there is a constraint between the two variables.

The highemrp and lowery is, the less likely the instance is to be satisfiable. In the rest of our paper

we call such instances hard. The loweand higherg is, the more likely the instance is to be
satisfiable. In the rest of our paper we call such instances easy. In our experiments we generated
instances from the same classes as used by Galinier and Hao [8] up to a nurhlierafiables

and 15 values in each of the respective domains. As also used by [11], we generated instances
with 20 variables in order to make performance results more comparable. Valyearidy were

chosen so that we cover both easier and harder instances. For our tests we used eighteen test-sets,
with ten instances in each test-set.

For all instances generated based on the Uniformed Random Binary CSP model we use one weight
for all constraints between each two variables. Full profit of our data structure as described in
subsection 5.1 is only taken by the crafted data. Constraint weights are generated uniformly at
random in a range frorb, . .., 99].

6.2 Crafted Instances

We planned to use instances of the International Timetabling Competition [12]. The data consists
of 20 instances defining scheduling problems with upi® events inl0 — 11 rooms andt5 time

slots 6 days,9 hours each day). Additional constraints (hard and soft with different weights)
are motivated by feature characterization of events and rooms (Updiferent features in one
instance), room sizes and student preferences (8pdstudents). All instances have a perfect
solution with no broken constraints.

After in-depth analysis of the problem of encoding such instances into weighted Max-CSP in-
stances, we decided not to use this data. The reason for this is that timetabling instances involve
a lot of k-ary constraints fok > 2. Such constraints might be encoded as multiple binary con-
straints (as we only consider unary and binary constraints), but this is fairly difficult, results in
growth of number of constraints, requires vast amount of memory space for data structures (or
requires functional encoding of constraints) and makes the description of the problem not natural.
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Figure 6: Network structure of the Philadelphia problems (left); denizh(tight) (source: [7]).

6.3 Real World Instances

We considered using eitheports tournament schedulingstances (e.g. in [20]) direquency
assignment problerfFAP) instances. We decided to use the latter ones, as different formulations
of the FAP problem are conceptually easier, and instances as well as experiment results are widely
available ([7], [5], [15]).

6.3.1 Frequency Assignment Problem

The frequency assignment problem (sometimes also called channel assignment problem) arises in
the area of wireless communication (e.g. GSM networks). One can find many different models of
the FAP problem (due to many different applications), but they all have two common properties:

i frequencies must be assigned to a set of wireless connections so that communication is
possible for each connection

ii interference between two frequencies (and what follows, quality loss of signal) might occur
in some circumstances which depend on:
(a) how close the frequencies are on the electromagnetic band
(b) how close connections are to each other geographically.

There are also many objectives, which define the quality of an assignment - the goal is to obtain
the highest possible quality. Survey [2] gives an extensive overview on different models, prob-
lem classifications, applied methods and results. We decided to use the soRtal&tklphia
instanceswhich are one of the most widely studied so far in the FAP area.

6.3.2 Philadelphia Instances

Philadelphia instances were introduced in paper [3] in 1973. They describe a cellural phone net-
work around Philadelphia (Figure 6, left). The cells of a network are modeled as hexagons

2Nowadays this simplified approach is no longer used. Nevertheless, Philadelphia instances are still being explored
- the most recent results are available at [7].
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Figure 7: Reuse distanc®d (left); R2 (center);R3 (right) (source: [7]).

Instance| Demand vector Total demand Reuse distancé Minimal span
P1 D1 481 R1 426
P2 D1 481 R2 426
P3 D2 470 R1 257
P4 D2 470 R2 252
P5 D3 420 R1 239
P6 D3 420 R2 179
P7 D4 962 R1 855
P8 D1 481 R3 524
P9 D5 1924 R1 1713

Figure 8: Philadelphia instances (source [7])

each cell requires some number of frequencies (Figure 6, right). Tag#sumber, number of
frequencies requirgdorm ademand vectorConsidered demand vectors include:

D1 = (8,25,8,8,8,15, 18,52, 77,28, 13, 15, 31, 15, 36, 57, 28, 8, 10, 13, 8),

D2 = (5,5,5,8,12, 25, 30, 25, 30, 40, 40, 45, 20, 30, 25, 15, 15, 30, 20, 20, 25),

D3 = (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20),

D4 = (16, 50, 16, 16, 16, 30, 36, 104, 154, 56, 26, 30, 62, 30, 72, 114, 56, 16, 20, 26, 16),

D5 = (32,100, 32, 32, 32,60, 72, 208, 308, 112, 52, 60, 124, 60, 144, 228, 112, 32, 40, 52, 32).

The distance between different cell centers.i§requencies are denoted as positive integer num-
bers. Interference of the cells is characterized by a reuse distance (&ctor, ds, ds, d4, ds): di

denotes the smallest distance between centers of two cells, which can use frequencies that differ by
at leastk without interference. Figure 7 shows graphical representation of reuse distance vectors
R1 = (v12,v/3,1,1,1,0),R2 = (v/7,v/3,1,1,1,0) andR3 = (/12,2,1,1,1,0).

The objective is to find frequency assignments which result in no interference and minimize the
span of frequencies used, i.e., the difference between maximum and minimum frequency used.

Figure 8 defines the Philadelphia instances explored in the literature (rrai¥fe@in conformity
with [17]) and provides the value of the optimal solution (minimal span). The instahéethe
original instance motivated by the above mentioned cellural phone network.
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6.3.3 Encoding into Weighted Max-CSP

We encoded Philadelphia instances into the weighted Max-CSP problem structure in the following
way:

variables: each frequency requirement is represented as a single variable, e.g. for demand vector
D1 there are 481 variable8,of them correspond to the demand of cel5 correspond to
the demand of cel, etc.

domains: each variable has the same integer donf&i, . ..,/ + [1 x WORST.OPT]], wherel
is the minimal upper bound known for the particular inst&rared WORSTOPT> 1.0is a
real constant.

constraints: constraints are divided into two groups:

hard binary constraints: correspond to the requiment of no occuring interference. A hard
constraint between two locations is set based on the network structure and the reuse
distance vector for particular instances. Weights of hard constraints are equal to some
integer number greater than the maximum sum of the weights of the broken soft con-
straints.

soft unary constraints: correspond to the minimization of the used frequencies span. Each
possible variable value is “penalized” by a unary soft constraint with weight:
valuex FORCEMIN, where FORCEMIN > 1.0 is a real constant andalue is a
value of the variable.

Setting value of two constants WORSIPT and FORCEMIN involves following tradeoffs:

o the larger WORSTOPT (which implies bigger domain size), the easier the algorithm may
satisfy hard constraints, but also the bigger the search space will be,

¢ the larger FORCBMIN (which implies larger weights for soft constraints) the more likely
the algorithm minimizes span, but the more is the algorithm attracted to the smallest fre-
guency values (which might occur to be the main weakness of such encoding).

Storing such weighted Max-CSP instances in data structures described in Section 5.1 is not real-
istic as it would require approximatel2G B — 24T B of memory. Functional encoding of con-
straints would result in loss of efficiency. A solution of this problem is based on the observation,
that in each instance there are only five types of binary hard constrajnts£; > 1,2; — z; >
2,...,x; —x; > 5) and 6ize of domaipdifferent types of the unary soft constraints.

Constraints are stored in six two-dimensional arrays (five for each hard constraint and one for all
soft constraints), indexed with domain values. Numbers in the arrays describe the total sum of
weights of broken constraints for particular value assignm&nh constraint broken). Finally, a
two-dimensional array - which is indexed with variable names - contains for(each var;) pair

3For Philadelphia instances, the best lower bound known is actually the optimal solution, but one may start with
6xnumber of variabless an obvious upper bound and change it later using results from performed experiments.
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REPETITIONS of LS| STAGNATION FRACTION
Algorithm Number of variables Number of variables

20 | 50 100 20 | 50 100
ILS-MCH 200 | 100 40 10 | 25 50
ILS-WMCH 100 | 20 10 20 | 25 50
ILS-TSGH 200 | 100 - 10 | 25 —
DLS-WMCH-TP | 20 | 10 10 20 | 25 50
DLS-WMCH-PP | 20 | 10 10 20 | 25 25
DLS-WMCH-NP | 20 | 10 10 20 | 25 25

Figure 9: Local search repetitions and stagnation parameter settings for random instances.

a pointer to one of the six arrays, or a NULL pointer if there is no constraint between the variables.
Particularly, for all pair§var;, var;) a pointer points to the array storing the soft constraints. All
arrays are allocated dynamically, which gives freedom in changing the WABESITparameter.

7 Experiments

All experiments were performed using the LSF load distribution system running on Linux ma-
chines. Tuning tests were run on dual 1GHz Intel Pentium l1ll, 256KB cache, 4GB/2GB RAM
computers, final tests were run on dual 2GHz Intel Xeon, 512KB cache 4GB/2GB RAM comput-
ers. The algorithms were implemented in C and compiled with gcc 2.92.2.

7.1 Random Instances

As the instance generator does not guarantee that instances satisfiable and because of the size of
the instances (exhaustive search would be intractible) we usabgwute ratio(sum of weights

of satisfied constraints divided by sum of weights of all constraints) to measure and compare the
achieved solution quality. In the following, we use the absolute ratio as indicator for the solution
quality. All tuning tests (except stagnation tuning) were quality driven, and time was taken into
account if a decision was not possible based on quality performance.

7.1.1 Testing Protocol

All algorithms were tested according to the following rules:

e The number of iterations for MCH, WMCH and TSGH was set®p000.

e The number of repetitions of ILS and DLS local search and the stagnation limit (determining
termination - see section 3) of ILS and DLS local search were determined through some pre-
tuning tests (in case of ILS with random picking as perturbation and probability of accepting
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a better solution set tb.0, in case of DLS with penalty set tol). The stagnation limit was
tuned in order to obtain the highesbves/iterations ratio and minimum iterations num-

ber without significant loss of solution quality. The number of repetitions was tuned to
achieve an overall number of iterations of local search of approximafe00 — 20, 000

(but no less repetitions ther)). Number of iterations of local search had cut-6#000
(providing the stagnation criterion did not make it terminate earlier) in order to ensure rea-
sonable experiments time. Figure 9 shows the final setting of the parameters.

The stagnation limit showed to be fairly difficult to tune. We found out that some reactive
mechanism changing this parameter during search progress might be a better solution.

e ILS and DLS local search algorithms were tuned due to the results obained while testing
them as stand-alone procedures.

e Parameters tuning: consisted of two stages:

Range estimating: 10 runs were performed on each instance in each test-set in order to
bound range of parameter values. For each instance and each parameter value, the
mean absolute ratio was calculated, and then for each test-set the mean over mean
absolute ratios for test-set members was calculated and used to compare performance.

Parameters setting: Based on the results from the previous point, ugadifferent pa-
rameter values were chosen and test runs perfori@edufs on each instance). As
previously, mean over mean absolute ratios for the test-set members was used to de-
termine the optimal parameter setting for each test-set of instancess.

e Experiments: Using an optimal parameter setting for each test-set of instances obtained
during tuning (optimal in sense of obtained solution quality), two kinds of tests were per-
formed:

General: 100 runs were performed on each instance in each test-set. For each instance were
calculated: the mean absolute ratio, minimum and maximum absolute ratio, the mean
number of iterations, the mean number of moves (iterations in which some variable
was flipped, it does not include random steps in WMCH and perturbation stepsin ILS),
the mean moves per iterations fraction, the mean time to perfof000 iterations,
and the mean time to perfori®0, 000 moves. Then for each test-set were calculated:
the mean over mean absolute ratios for test-set members, minimum and maximum
mean absolute ratios (Figures 10, 11, and 12), the mean over mean iterations, over
mean moves, over mean moves per iterations fraction (Figures 13, 14, 14 and 16),
the mean over mean time to perfor0, 000 iterations, and over the mean time to
perform100, 000 moves (Figures 17, 18 and 19).

Specific: 1000 runs were performed on one instance from each test-set. The obtained data
was used to produce plots.

e ILS and DLS local search algorithms were tuned due to the results obained while testing
them as stand-alone procedures.
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7.1.2 Tuning

WMCH: Tests with walk probabilitywp set t00.00, 0.20, 0.40, 0.60, 0.80 suggested a range
of [0.00,0.40]. Additional tests withwp set t00.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
were performed. The valu@05 resulted in the best performance for all test-sets except
20.10.50.65. Interestingly,0.20 was the second best value for many instances, and the
best value for instances in the test-86110.50.65 (which happend to consist of solvable
instances). Most likely, more detailed tests would result in setiipgo a value smaller
then0.05 for many test-sets.

TSGH: Tests with tabu lengtt set to0, 50, 100, 150, 200 (except test-sets witk0 variables - it
would put all possiblévariable, value) pairs on the tabu tenure) suggested rai3gel 50]
for 20 variables]70, 200] for 50 variables and140, 230] for 100 variables. Additional tests
with ¢l changing byl0 in every range for corresponding test-sets of instances were done.

For test-sets witR0 variables, values betwed and100 resulted in the best performance

for all test-sets. Interestingly, fot equal tol 50, mean differed from one for optimal setting

on the3rd decimal place while testing test-sets withvariables and size of domalif. This
suggests, that implementation of the algorithm which uses techniques prefering strongly
least recently flipped variables might be worth considering.

For test-sets witth0 variables, values betweétd and 150 variables resulted in the best
performance. Fot00 variablest/ set to140, 150 for test-sets consisting of easy instances
and set t@10, 230 for test-sets consisting of hard instances was optimal.

Very long running time for test-sets witt)0 variables, did not allow us to test ILS algo-
rithms with TSGH as local search on those test-stes.

All tests for TSGH showed that, the harder the instance test-sets as well as the higher the
number of variables, the longer the tabu tenure is needed in order to achieve optimal perfor-
mance.

ILS-MCH-RP: Tests with probability of accepting the best so far solutipset to0.25, 0.5 and
0.75 suggested no change in solution quality for different valués oAdditional tests with
bp set to0.1, 0.2, 0.35, 0.45, 0.5, 0.65 and0.8 confirmed this observation. It is quite natural,
that the tests had rather debugging motivation, as using random picking as the perturbation
method renders the acceptance criterion irrelevant. The Ga8ugas chosen arbitrarily (as
time also did not vary).

ILS-MCH-RS: Tests with probability of accepting the best so far solutipset to0.25, 0.5 and
0.75 and number of random walk steps set to10, 20 and50 (all possible combinations of
those two parameters) showed thatequal t00.75 is the best among three tested settings.
The number of random stepss set to half of the number of variables usually resulted in
the best performance.

Additional tests withbp set t00.65, 0.75, 0.85 andws set to the previously obtained op-
timal value for a particular test-set, to valGdarger and to valué smaller (all possible
combinations obp andws) were run to determine the parameters with a higher precision.

ILS-WMCH-RP: Tests with probability of accepting the best so far solutiprset to0.25, 0.5
and0.75 suggested no change in solution quality for different valuésoAdditional tests
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with bp set t00.15, 0.35, 0.45, 0.55, 0.65, 0.7 and0.8 confirmed this observation. Again the
tests had rather debugging motivation. The valiewas chosen arbitrarily (as time also
did not vary).

ILS-WMCH-RS: Tests with probability of accepting the best so far solutiprset t00.25, 0.5
and0.75 and number of random walk steps set to10, 20 and50 (all possible combina-
tions ofbp andws) showed thabp equal t00.75 is the best among three tested settings. The
number of random stepss equal tol0 and20 usually resulted in the best performance.

Additional tests withbp set0.65, 0.75, 0.85 andws set to the previously obtained optimal
value for a particular test-set, to vala¢arger and to valué smaller (all possible combina-
tions of bp andws) were run to determine the parameters with a higher precision.

ILS-TSGH-RP: Tests with probability of accepting the best so far solutipset to0.25, 0.5 and
0.75 suggested no change in solution quality for different valués oAdditional tests with
bp sett00.15, 0.35, 0.45, 0.55, 0.65, 0.7 and0.8 confirmed this observation. Again the tests
had rather debugging motivation. The valu& was chosen arbitrarily (as time also did not
vary).

ILS-TSGH-RS: Tests with probability of accepting the best so far solutipset to0.25, 0.5 and
0.75 and number of random walk steps; set to10, 20 and50 (all possible combinations
of those two parameters) showed thatqual t00.75 is the usually best among three tested
settings. The number of random stepsset to10 usually resulted in the best performance.

Additional tests withbp set to previously obtained optimal value for particular test-set, to
value0.1 larger and to valu8.1 smaller andvs set to previously obtained optimal value for
a particular test-set, to valddarger and to valug smaller (all possible combinations g
andws) were run to determine the parameters with a higher precision.

DLS-WMCH-TP: Tests with penalty set tol, 5 and10 were performedp settingl resulted in
the best performance. Additional tests wjtlset to2, 3 and4 showed that values and2
are optimal settings for all test-sets.

DLS-WMCH-PP: Tests with penalty set tol, 5 and10 were performedp settingl resulted in
the best performance. Additional tests wjtlset to2, 3 and4 showed that values and2
(in case of test-sef00.15.10.50 - 4) are optimal settings for all test-sets.

DLS-WMCH-NP: Tests with penalty set tol, 5 and10 were performed. They showed great
variety in optimal settings. Additional tests wighset to2, 3, 4, 6, 7, 8, 9, 11 and 12
confirmed this observation. Valués2, 3, 5, 68, 10 and11 resulted in optimal performance
for different test-sets.

7.1.3 Results

MCH, WMCH and TSGH Based on the absolute ratios (Figure 10) we can conclude that
among the three algorithms WMCH achieves on the average the higher absolute ratios and there-
fore the best quality for the same number of iterations. On solvable instances, TSGH always
succeeds to solve the instance, but 00 variables it performs significantly worse in terms of
solution quality than WMCH and even sometimes than MCH.
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Figure 20: QRLD for instancé0.10.30.30.1. Relative deviation of solution qualitin% (left)
and5% (right) from the best solution encountered during our experiments (semilog plot).
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Figure 21: QRTD for instanc&).10.30.30.1. Relative deviation of solution qualityo% (left) and
5% (right) from the best solution encountered during our experiments.

From Figure 13 we can conclude that TSGH stagnates less than the other two, which is also
expected due to the use of the tabu tenure.

In terms of run-time all three algorithms achieve similar performance on instances withbQp to
variables and 0 domain size values (see Figure 17). On much larger instances, TSGH behaves
considerably worse.

We may conclude that WMCH is the better algorithm in case not satisfiable instances.

ILS-MCH-RP and ILS-MCH-RS In terms of quality (Figures 10 and 11) ILS-MCH-RS al-
ways achieved better results.

ILS-MCH-RP performed more iterations than ILS-MCH-RS (Figures 13 and 14) and had higher
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Figure 22: QRTD for instancg0.10.30.30.1; relative deviation of solution quality% from the

best solution encountered during our experiments (left). Set of QRLD for WMCH on instance
50.10.30.30.1; relative deviation of solution quality af0%, 5%, 2% and0.01% from the best
solution encountered during our experiments (right).

moves /iterations ratio (which implies that it stagnated less). Nevertheless that did not help it
obtain better solution quality.

ILS-MCH-RP was slightly slower than ILS-MCH-RS (Figure 17) in terms of run time.

To summarize, ILS-MCH with random steps is, as expected, a better algorithm than ILS-MCH
with random picking.

Compared to WMCH, which is the best from the first group, the ILS-MCH-RS performs less good
in terms of absolute ratios for instances withand respectively0 variables. Forl00 variables
ILS-MCH-RS shows better performance than WMCH. Nevertheless we have to consider the iter-
ations performed by the ILS-MCH-RS in order to achieve this result5@cand 100 variables it

did approximately up to twice as many iterations as WMCH (Figure 14). From Figure 17 we con-
clude that the required run time to perform a certain number of iterations is the approximately the
same for both algorithms which implies that ILS-MCH-RS spent twice as much time to achieve
the above mentioned quality.

ILS-WMCH-RP and ILS-WMCH-RS  With regard to the absolute ratios, ILS-WMCH-RP be-
haves in case &0 variables similar to the best so far analyzed algorithm, WMCH 5Baariables
ILS-WMCH-RP is worse than both WMCH and ILS-MCH-RS. A0 variables ILS-WMCH-RP
shows the best so far performance (Figure 11).

Based on the same criterion, ILS-WMCH-RS outperforms all other algorithms considered in this
paper.

When considering the above mentioned results, we have to point out tedt &md 50 variables
both ILS-WMCH-RP and ILS-WMCH-RS performed about twice as many iterations as WMCH
(and respectively twice as many and comparable as many as ILS-MCH-RS)0F-oariables
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it performed nine times more iterations that WMCH (five times as many as ILS-MCH-RP) - see
Figure 14. The run time performance (for the same number of carried iterations) is similar to that
in case of the ILS algorithms based on MCH (Figure 18).

As in case of the ILS algorithms based on MCH as a subsidiary local search procedure, again
ILS-WMCH-RS outperforms ILS-WMCH-RP in terms of the achieved solution quality.

ILS-TSGH-RP and ILS-TSGH-RS Both ILS-TSGH-RP and ILS-TSGH-RS showed very week
performance in terms of quality (Figure 11) - fab variables it is worse than MCH and even its
subsidiary local search procedure TSGH. Borand 50 variables the performed up to twice as
many iterations as WMCH (results fo00 variables are not available).

In terms of run time ILS-TSGH-RP is from five-teen times (fifr variables) up to fifty times
slower (for50 variables) than other ILS algorithms (for the same number of carried iterations) -
see Figure 18. The same applies to ILS-TSGH-RS.

DLS-WMCH-TP, DLS-WMCH-PP and DLS-WMCH-NP  Among the three DLS variants, no
significant difference in terms of achieved absolute ratios can be observed. As different weighten-
ing procedures are used, we can conclude that that both conflicting and non-conflicting variables
have an impact on the stagnation behavior.Consequently a more sophisticated penalization proce-
dure needs to be developed.

Together with the ILS-WMCH-RS, the DLS variants achieved the best absolute ratios among alll
twelve algorithms. Even though the required iterations number and respectively CPU run-time are
by far higher than compared to the WMCH. This conclusion is also clearly showed in the Figures
20, 21 and 22. For lower quality bounds WMCH reaches considerably faster the required solution
quality.

7.2 Real World Instances

Preliminary tests on real world instances were quite disappointing. We have applied various algo-
rithms and all of them had problems with satisfying hard constraints and did not minimize span.

8 Conclusions and Future Work

From our experimental work we can conclude that improving the performance of algorithms for
the Max-CSP with respect to both solution quality and run-time is not an easy task. Even though
our algorithms sometimes achieve better approximation ratios, the required time is higher than in
case of the WMCH, which proved to be the best among the previously proposed methods.

Future work comprises both experimental as well as implementation aspects.
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First it would be interesting to complete the picture of the already initiated tests. In order to
make results more comparable to previous work, we could consider testing on the same randomly
generated instances as used by Lau in his experiments. Furthermore tests could be carried on
instances with non-uniform distribution, as those are closer to real-world related problems. Longer
tests with the same total cut-off time for all algorithms and with subsequent comparison of the
achieved solution quality, could also lead to more significant conclusions.

New implementation issues include the dynamical adjustment of the number of random walk steps
while searching the state space. Similar the reactive stagnation could bring further improvement.
With respect to our Dynamic Local Search approach, we could investigate further aspects of ad-
justing penalties. Unlike other DLS algorithms our current implementation does not penalize
broken constraints but solution components. Constraint based penalization should also therefore
be considered.
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