A Hybrid Genetic Algorithm for the 2D HP Protein Folding
Problem

Alena Shmygelska Rosalia Aguirre-Hernandez
University of British Columbia University of British Columbia
Computer Science Department Institute of Applied Mathematics

oshmygel@cs.ubc.ca. rosalia@cs.ubc.ca

April 15, 2002

Abstract

A hybrid between local search heuristics and genetic algorithms has shown to be
effective approach for global optimization on a number of combinatorial problems.
In this paper we consider a new Hybrid Genetic Algorithm (GA) for the protein
folding problem using the 2D HP Model. We study the impact of several algorithmic
factors on the given problem: the use of local search, the location of the starting
folding point, elitist versus non elitist strategy during the selection of individuals
to the next generation, the effect of the crossover operation, and non-random mating
versus random mating. Further, we compare the obtained results with the results from
Ant Colony Optimization (ACO) implemented for the Stochastic Search Algorithms
class [14]. Both of these algorithms have not been studied in the context of the protein
folding problem.

1 Introduction: Protein Folding Problem

The protein folding problem is one of the most challenging in current biochemistry and
molecular biology, and is a very rich source of interesting problems in local and global
optimization. After the successful deciphering of the genetic code that defines how the
amino acid sequences of proteins are coded in the DNA, one of the major missing steps
in understanding the chemical basis of life is the protein folding problem: the task of un-
derstanding and predicting how the information coded in an amino sequence of proteins
at the time of their formation translates into the 3-dimensional structure of the biologi-
cally active protein. Since it is already known how to use genetic engineering to produce
proteins with a given amino acid sequence, knowledge of how such a protein would fold
would allow one to predict its chemical and biological properties. If we were able to solve
the protein folding problem, it would greatly simplify the task of interpreting the data
collected by the Human Genome Project, understanding the mechanism of hereditary
and infectious diseases, designing drugs with specific therapeutic properties, and growing
biological polymers with specific material properties.

13

Currently, biochemists use techniques such as MRI (magnetic resonance imaging) and
X-ray crystallography on protein crystals in order to determine the conformation of the
protein. These techniques are expensive in terms of equipment, computation and time.
Additionally, they require isolation, purification and crystallization of the target protein.
Therefore, the study of various computational models is widely employed.

2 Motivation and Background

The objective of this project is as follows: given the sequence of amino acids of a protein,
predict its structure on a simple two dimensional Hydrophobic - Polar lattice model (2D
HP) using a Hybrid GA approach, a combination of GA and a local search. We will study
the behavior of the Hybrid GA algorithm, and try to find how to improve its performance
based on what we learn about the search space of this problem during the experimental
phase of the project. Specifically, we are interested in studying the effect that different
variants of the genetic operators (mutation, macro-mutation, crossover and selection) have
on the behaviour of the Hybrid GA algorithm. In order to study the advantages that GA
provides, we will compare the running time of a GA plus local search with the local search
alone. Finally, we will evaluate the performance of the algorithm and compare it with the
performance described in literature (Krasnogor et al. [6], Patton et al. [9] and Unger &
Moult [15]), and also compare with the Ant Colony Optimization (ACO) that has been
implemented for the Stochastic Search Algorithms class [14].

We chose to study GA because it has been shown that it produces good results for the
2D HP protein folding problem. Our goal was to develop new Hybrid GA and to conduct
a complete empirical study of the GA, that will help in development of better algorithms
for the protein folding problem.

2.1 The 2D HP Lattice Model

The Hydrophobic-Polar model (HP model) was proposed by Dill [8]. In the HP model the
sequence is “folded” on a lattice. The feasible protein folds are represented as self-avoiding
walks on a lattice in which vertices are labeled by the amino acids. The amino acids are
classified as hydrophobic (H) or polar (P).

It was previously discovered using wet lab techniques that:
1. native structures of proteins are compact and have well-packed cores which are highly
enriched in hydrophobic residues [10].
2. hydrophobic interaction is the driving force for protein folding [8].

3. native structures of proteins have minimal solvent-exposed non-polar surface areas

[8]-

14

4. the hydrophobicity of amino acids is the main force for development of a native
conformation of small globular proteins [10].

Globular proteins tend to form one or more hydrophobic cores, i.e., the more hydrophobic
amino acids are concentrated in the compact cores whereas the more hydrophilic amino
acids are located on the surface of the protein.

One strategy for finding good folds is to look for configurations that maximize the number
of H-H contacts. The HP model adds a value of € (usually -1) for every pair of hydrophobic
residues that form a topological contact and are not neighbors on the chain. For example,
Figure 1 represents a particular conformation of the protein hphpphhphpphphhpphph where
the black squares represent hydrophobic amino acids and the white squares represent polar
amino acids. The dotted lines represents the H-H contacts. The fold in Figure 1 has an
energy of —9 which is the minimum energy for this protein.

Figure 1: Optimal conformation of the protein hphpphhphpphphhpphph

The folding of a protein is encoded either in absolute coordinates € { U(up), D(down),
R(right), L(left)} or in relative (to the previous amino acid) coordinates € { S(straight),
L(left), R(right) } on the 2D square lattice. The absolute and relative representations for
the protein in Figure 1are (g, r, u, u, I, d, |, u, |, w, I, d, d, r, d, I, d, r, v, u) and (g, g, [,
s, LLr,r,l,r, L1 s I, r,r 11 s) respectively. Note that one amino acid in absolute
coordinates and two amino acids in relative coordinates are fixed (g-grounded) because it
is necessary to have a reference point.

In order to make the mutations during the local search phase more efficient we used relative
coordinates. It has been shown that there is a greater chance to get a valid conformation
by flipping the direction coded in relative coordinates since flipping corresponds to a
rotation [15].

Of course, this model is very simplistic. Interactions in a realistic protein are much more
complex and are three dimensional. But this model allows us to study techniques for global
optimization (in this case, GA) for simplified version of the protein folding problem. As
mentioned above, this simplistic model has valid biomolecular reasons for existence.

15

2.2 Simple Genetic Algorithm

Before giving a description of the different types of GAs found in the literature, we will
explain the characteristics of a simple GA algorithm. GAs are population based search
procedures that are based on the mechanism of natural selection. GA works with a
population of individuals that represent candidate solutions to a given problem. The fitness
of an individual is the objective function value of a corresponding candidate solution. In
each iteration, three genetic operators are applied to a population producing a new set of
individuals. The genetic operators are selection, mutation and crossover. The selection
operator chooses members from the population in a way that is proportional to their fitness.
Thus, the fittest individuals have higher probability to appear in the next generation.
Selection process intensifies the search. The crossover operator combines two individuals
(parents) in a way that the resulting offspring is likely to share desirable properties of both
parents while improving over their fitness. This operator diversifies the search process.
The mutation operator perturbs candidate solutions using small exchange neighborhood.
Mutation also diversifies the search. Crossover and mutation are usually applied with a
certain probability to each individual in the population. The general outline of a GA
algorithm is as follows:

procedure GeneticAlgorithm
t<0
initialize the population at time t, P(t)
while (not terminate) do
t—t+1
crossover of P(t)
mutation of P(t)
selection from P(t)
end
end

2.3 Review of existing work

Recent computational analysis of the protein folding problem has shown that the protein
folding problem is intractable (NP-hard) on simple lattice models [6]. Consequently,
heuristic optimization methods have been widely used on this problem. Solutions to the
2D HP model were obtained using Simulated Annealing (SA) (variations of the Monte
Carlo method) [12] and Genetic Algorithms (GA) [13]. In particular, GAs have been
shown to be robust and effective global optimization techniques for protein structure
prediction [6].

An early application of GAs to protein structure prediction was that of Unger and Moult
[13, 15]. They presented a nonstandard GA that has characteristics of SA. Conformations
were codified with absolute coordinates.

Unger’s and Moult’s GA only considers feasible conformations that are self-avoiding paths

16

on the lattice. The crossover operator tries to rejoin the sequence at a 0, 90 or 270 degree
angle (in random order) and produces only one child. Figure 2 represents an example of
crossover with the crossover point after residue 14 (position B in Figure 2) and with a 90
degree rotation.

Parent1 Parent 2 Child

CuD
A

D

Figure 2: One point crossover mechanism.

Unger and Moult also incorporated characteristics of SA into their algorithm. After a
conformation is mutated or a child is generated by a crossover operation, the new confor-
mation is accepted if its energy is less than the energy of the old conformation. On the
other hand, if the energy of the new conformation increases, it is accepted with probability:

Ej; — By
Ck

)

exp(

where E; and E}, are the energies of the old and the new conformations respectively, and ci,
is the temperature parameter. Unger and Moult fold sequences of length ranging from 20
to 64 residues (see Table 1). They obtained the optimum conformation for every sequence
except for Sequence 8. In this case the best value they achieved was -37. Unger and Moult
do not include an empirical evaluation of their algorithm; they only report the average
number of energy evaluations performed to find the optimum.

Patton et al. [9] described a GA that significantly outperforms the GA used by Unger
and Moult [15]. They employed a coordinate representation that uses relative directions.
The authors penalize infeasible conformations instead of eliminating them from the search
space. Patton et al. argue that preserving diversity or preventing convergence seemed
to played a major role in the success of their implementation. Indeed, they used a high
crowding factor and an incest reduction to preserve diversity. The crowding factor is
the replacement of the closest individual in terms of the Hamming distance out of a
pool of n individuals selected for replacement. The incest reduction consists of choosing
an individual farthest in terms of the Hamming distance from the pool of n individuals
selected for breeding.

Krasnogor et al. [7] implemented another GA in which the conformations are represented
in relative coordinates. They introduce macro-mutations which consist of selecting two
points of the sequence and modifying the directions between these two points in one of
the following ways:

17

Seq. No | Length | Opt. | Protein

1 20 -9 | hphpphhphpphphhpphph

2 24 -9 | hhpphpphpphpphpphpphpphh

3 25 -8 | pphpphhpppphhpppphhpppphh

4 36 -14 | ppphhpphhppppphhhhhhhpphhpppphhpphpp

5 48 -22 | pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh

6 50 -21 | hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh

7 60 -34 | pphhhphhhhhhhhppphhhhhhhhhhphppphhhhhhhhhhhhpppphh
hhhhphhph

8 64 -42 | hhhhhhhhhhhhphphpphhpphhpphpphhpphhpphpphhpphhpphp
hphhhhhhhhhhhh

9 20 -10 | hhhpphphphpphphphpph

Table 1: Benchmark problems.

1. randomly, where random directions are chosen for each position between the two

points

2. unfold the segment

3. rotate the segment by 0, 90, 180 or 270 degrees

4. horizontal/vertical reflection, see Figure 3.

N
Ead

Figure 3: Macro-mutation: horizontal and vertical reflection.

Krasnogor et al. [7] empirically evaluated mixtures of evolutionary operators (mutations,
macro-mutations, crossover) that are most useful for solving the protein folding problem for
the HP model. Their experiments compared GAs that used these operators with different
combinations of probabilities. For the instances they studied, the best combination of
parameters had a small crossover probability and high mutation and macro-mutation
probabilities. Their results suggest that (1) one point crossover along was not able to
transfer building blocks and (2) the macro-mutation was more important than crossover
for searching the optimum. Krasnogor et al. [7] found the optimum value for Sequences 1

18

Seq.No. | Length | Opt. Unger Krasnogor
Energy (no. evaluations) | Energy (no. evaluations)

6 50 | -21 -21 (592,887) -21 (50,085)
7 60 | -34 -34 (208,781) -33 (40,014)
8 64 | -42 -37 (187,393) -39 (20,067)

Table 2: Results from Unger and Moult and Krasnogor et al..

through 6 and 9. The best value they achieved for Sequence 7 was -33 and for Sequence 8
was -39. They report less energy evaluations than Unger and Moult, see Table 2. As Unger
and Moult, Krasnogor et al. do not include an empirical evaluation of the algorithm.

3 Our Genetic Algorithm

Our approach is based on a genetic local search algorithm, i.e., a GA combined with an
additional local search method. In this algorithm, the GA effectively searches the space
of local optima found by the local search method. The local search gives more search
intensification which is generally needed in pure GA algorithms. The GA algorithm works
with a population of individuals. In the protein folding problem, the individuals represent
different conformations or folds of a given protein in the 2D HP model.

The genetic operators that have been used and evaluated in our implementation of the
GA are as follows:

1. Mutation. We studied how the probability of mutation affects the overall per-
formance and convergence of the algorithm. The algorithm converges when the
standard deviation of the fitness of the individuals in the population is zero or close
to zero.

2. Crossover. We implemented one point crossover, and studied the effect of the
random and non-random mating strategy for choosing parents.

3. Local Search. In order to increase the intensification of the search and drive
the solution to the local optima we used local search, specifically, we implemented
iterative first improvement and compared it with the genetic local search algorithm
(GA + iterative first improvement).

4. Selection. The selection process was implemented as a roulette wheel selection. [2]
Here we studied the effect of having selection process between children and parents
(intensification strategy) or just children (diversification strategy).

Infeasible conformations generated after mutation and crossover were eliminated.

19

4 Empirical evaluation

We used the benchmark instances listed in Table 1 that are found on William Hart and
Sorin Istrail’s web site [3]. The optimal energies for the first three sequences were validated
by full enumeration of the energies of all valid conformations.

The methodology for the empirical analysis of the GA algorithm is based on a run-time
distribution (RTD) of the known optimal solution for individual problem instances [4]. The
RTDs were computed as follows: we run GA 100-200 times for each instance to ensure
that the estimates for the RTD is sufficiently stable. In each run we recorded whenever the
new best solution is found and the time (CPU time [sec| / search step) needed to obtain it.
We sorted solution quality traces and obtained cumulative qualified RTDs. All plots are
done on a semi-log graph [5] to give a better view of the distribution over its whole range.
On the z-azis we plot log time (CPU sec) and on the y-azis we plot proportion of the runs
that have reached the desired (optimal) solution quality. The results for larger sequences
are not graphically represented since the number of times the optimum was found is too
low for plotting RTD graphs. All results have been measured on a Pentium V processor
with 566 MHz. At least 100 generations of GA were performed for each instance. The
cut off point is when there has been no improvement of the global best energy for a set
number of generations (usually a 100-1000 depending on the length of the sequence).

In the following subsections we conduct an empirical study of a number of algorithmic
issues for GA: generation of the initial population, population size, mutation rate, mating
strategy, local search, selection process. During the testing process we studied one varia-
tion of a single parameter at a time, since there is a number of parameters and variations
that can be studied, and an exact relation between parameters is difficult to infer.

4.1 Initial Population

The initial population for Hybrid GA is generated randomly, following the generally ac-
cepted approach [16]. During the initial construction process entanglement poses a big
problem for large proteins, therefore we developed a new backtracking scheme. While con-
structing a protein we check the feasibility of the conformation every time a new residue is
added. If there are no feasible directions for the current residue we backtrack half the dis-
tance already folded (various modifications of the backtracking were tested, this particular
one showed fast and reasonable performance).

All individuals in the population have the same starting point, since it simplifies operation
of the crossover. Generally in literature protein is folded starting from the first residue
[6, 13, 15], but we considered different starting folding points: beginning, middle and end
residue, since it has been shown that proteins employ folding pathways to avoid extensively
searching the whole conformation space [11]. Proteins fold by hierarchical condensation,
therefore it is not unreasonable to consider various choices for the starting folding point.
We fold first one part of the protein, and then the other. This idea is based on the fact
that real proteins have folding nuclei [1], and it should be most efficient to start from

20

such a nucleus.

,’/",/‘
T
e
0.8 ”
g
‘/ :

06 5 s
c r :
o | ..
<3 ﬁ First residue is fixed
o I
o i Middle residue is fixed --------

0.4 - J i exponential 1-2**(-x/10)]

1 10 100
log cpu time

Figure 4: Effect of the position of the starting folding point, Sequence 1.

Results for Sequences 1 and 3 can be seen in Figure 4 and Figure 5. In some cases the
choice for the starting point was very successful and speed up the search substantially,
in others it did not. We take this observation as an indication that in various sequences
the end group already provide an effective nucleation site. We also tried to grow the
chain on both sides simultaneously. However, it turned out that this is not effective
computationally.

4.2 Population Size

Population size is an important factor in any GA. In our Hybrid GA it plays even more
important role, since if the population is too large it is inefficient to conduct the local
search. We tested Hybrid GA with different population sizes (PopSize), see Figure 6 for
results from Sequence 1. Increased population size increases diversity thereby reducing
convergence speed, but at the same time requires more CPU time per generation step.
When population size was set to 20 we observed premature convergence especially for larger
sequences. We used much smaller population size compared to the general literature since
the population in our hybrid GA consists of local optima. The population size between
50-100 was the most optimal.

In general, optimal population size was correlated with the duration of the local search.

21

1 ———
,/”
0.8 |
1
)
!’774
|
|
0.6 /
c I
o /
5 [
[=X |
° |
o ; |
0.4) (\
— First residue is fixed
|
| : Middle residue is fixed --—------
0.2 | i exponential 1-2**(-x/6)
[
/
|
0)
10 100 1000

log cpu time

Figure 5: Effect of the fixed point, Sequence 3.

If we have a large population, local search (the time crucial step) takes longer. On the
other hand, if the population size is too small, there is not enough diversification to find

good solutions quickly.

4.3 Mutation

We wanted to identify the mutation parameter range that is optimal in our implementation
of Hybrid GA. It was expected that the optimal mutation parameter would be higher than
the generally accepted mutation rate of 0.01 since we are dealing with the population of

the local optima and more diversification is possibly needed.

Two kinds of mutation operators were used in our implementation of the GA. The first
mutation operator is called macro-mutation. Macro-mutation changes conformation dra-
matically, it is employed in the local search stage, and it was implemented as described in
Krasnogor et al. [6] where the direction of the residues between 2 points are changed ran-
domly. The second mutation operator is point mutation, which employs a one-exchange
neighborhood, and is used in the mutation stage of the GA algorithm to diversify the
search. One point mutation consists on selecting randomly a residue of the sequence and

changing randomly its direction.

Each individual in the population was mutated with probability P, (we tried various
combinations, this particular one was easy to implement and worked reasonably well).

22

1 L SPSLA Srper P 824 D
! ‘/
g
i
0.8 L
T/
!
S/
//
st J
0.6 :
5 :: ’
<) !
0.4 (_
; /""/
:‘ . |
[- PopSize =50 ——
) ;/H PopSize =200 --------
02 e exponential 1-2**(-x/9) i
11/7777
[r‘
N
o |
' 10 100
log cpu time

Figure 6: Run time distribution for the Hybrid GA algorithm with various population
sizes on Sequence 1.

If the individual is selected for mutation, the number of one point mutations that the
algorithm performs on it depends on the fitness f; of the individual. Specifically, the
algorithm performs one point mutation on a sequence while

1-f

7 > random number
opt

where fo,; is the optimal energy of the given protein. The number of point mutations is
bounded by the length of the protein. Note that performing mutation in this way makes
individuals that have more H-H interactions (lower Gibbs free energy) have less point
mutations than individuals with fewer H-H interactions.

The effect of the mutation rate on the example of Sequence 1 can be seen in Figure 7.
A mutation rate of about 0.1 - 0.3 has been shown to be optimal, since the mutation
operator performs “jumps” in the corresponding search spaces and most likely drives the
solution away from the local optima. It is best to set the mutation parameter to a low
value when the local optima are located close to the global optima (this is the case for
Sequence 1 shown in Figure 7) and to a high value otherwise, but it is necessary to perform
fitness-distance correlation analysis to obtain required information about the distance to
the optimum for various sequences. Unger and Moult have shown that there is a single
global optima for Sequence 1 by enumeration. For other sequences the search space has
not been analyzed yet [15].

23

1 S &
Jr
0.8 fhst
P
i
i/
0.6 f
§ ¢
2 [
g Ve
£ S
0.4 7
/ mutation rate =0.10 ———
[,, ~ f mutation rate =0.50 ------- -
0.2 F - ---" exponential 1-2**(-x/14)
(
(' __________ v
‘/’J
o |
1 10 100 1000

log cpu time

Figure 7: Effect of the probability of mutation P, on Sequence 1.

4.4 Cross-over

Crossover is a special operator that distinguishes GA from other algorithms. Here, we
studied the usefulness of a simple one-point crossover for the Hybrid GA algorithm.

4.4.1 The mechanism of crossover

During a one-point crossover we pick a pair of parents (the choice of parents will be
considered next), a random crossover point is chosen, and the bond directions (“genes”)
are swapped up to the crossover point (if the structure is unfeasible we rejoin at 0, 90
or 270-degree angle as described by Unger and Moult). As a result of the crossover we
produce one child as described in a general GA literature [16].

4.4.2 TUsefulness of crossover

Crossover should enhance the ability to leave regions with a large number of H-H in-
teractions. A major reason for the maintenance of a population in a GA is the hope
of increased performance via direct communication of information between individuals
through crossover. Crossover should produce offsprings of similar or even better fitness
(objective fitness value); if not it is a severe disadvantage, and the GA algorithm may

24

not, on average, perform any better than a variety of simpler algorithms that are not
population-based. Therefore, the efficiency of a GA depends in a crucial way on the
proper selection of crossover rules.

The idea of crossover is to combine building blocks from two individuals into offspring
whose fitness exceeds either parent. Even when there is no reason to believe that both
parents have an above average chance of contributing above average material to the off-
spring, crossover may still be useful simply through performing macro-mutation (thus
considering the higher order neighborhood) via its mechanics.

In our experiments the usefulness of the crossover was determined by testing the GA al-
gorithm on the same instance with and without crossover. In this way we can determine
whether crossover is an important operator for the behaviour of the algorithm or is bet-
ter to use simpler algorithms that do not work with crossover or with a population of
individuals.

The experimental results for Sequence 2 of the runs with random crossover (which will be
described in Section 4.4.3) and without crossover are shown in Figure 8.

. I
o
/ :
0.8 . /
S T
-
I
J
0.6
j r
£ f
g P No crossover
o J
o I exponential 1-2**(-x/12) --------
0.4 S
e J""
f
|
L ,//
0.2 - //J
e
—
0 .
1 10 100

log cpu time

Figure 8: Crossover versus no crossover, Sequence 2.

Crossover appears to be useful (since disabling it results in worse performance), but in fact,
its usefulness may be not more than a consequence of the macro-mutation it is performing
since the worsening in performance is very small.

25

4.4.3 Non-random versus random mating strategy

Two strategies for selecting parents were implemented: (1) non-random, and (2) random.

It is known from biology that homologous exchange encourages changes of a very narrow
and specific type, genetic material is exchanged in a manner that preserves the function of
the all-important transcription segments (genes) [16]. Inspired by the biological metaphor
we considered a non-random mating strategy between the parents. Another reason to use
non-random mating is that it is very unlikely to produce feasible conformations under
the crossover operation. If the 2D structure of the crossover region of two individuals
is more similar, the possibility of their mating should increase due to greater chance of
obtaining a feasible offspring. The measure of similarity between the two parents used
was the Hamming Distance.

During non-random mating we selected the first parent randomly with the probability
proportional to its fitness, in the second step we found the second parent such that the
Hamming distance among residue orientations is minimal between two individuals in the
population. Results are compared with the random mating strategy (that is widely used
in literature) when both parents are selected randomly with the probability proportional
to their fitness. See Figure 9 for results, Sequence 1.

,f/’/
L
v
)
pay
0.8 o
Ry
J
peye
e
e -~

0.6 /f
c /,’ }/
o
£ “/ _
§_) / Non-random mating
N A exponential 1-2%%(-x/12) -

0.4 /‘

|
“,
0.2 -
— ”/"'
T
- _
I 4
s
0
1 10 100

log cpu time

Figure 9: Non-random versus random mating strategy, Sequence 1.

Our results show a slight disadvantage of non-random mating over random mating for all
sequences. This could be explained by the fact that two similar parents can produce a

26

child that is very similar to both of the parents, therefore crossover is no longer really an
advantage since it creates individuals similar to their parents.

4.5 Selection process

In this section, we studied if the selection process responsible for the intensification of the
search should be more elitist for our Hybrid GA. The selection process was implemented
as a roulette selection, one of the widely accepted selection schemes [16]. The probability
of an individual to be selected is P; = f;/ Y f, where f; is the fitness of the individual and
> f is the total fitness of the individuals in the population. We use an elitist GA, in order
to ensure that at least one copy of the best individual of a generation is guaranteed to
survive into the subsequent generation, because otherwise the results are not competitive.

Since elitist strategy seem to work better we considered selection process between children
(crossover generates PopSize children) and their parents (PopSize) and a selection just
between children (crossover generates 2 %+ PopSize children) as described in GA literature
[16]. Results for Sequence 1 are given in Figure 10.

/ji'ff"':(K»egping Parents + Children
/ exponential 1-2*%(-x/12) --------
0.8 7
s
e
i
pre
0.6]
5 T
]
2 [
S /
o .
0.4 e
T
)
0.2]
. J/J
)
o /
1 10 100 1000
log cpu time

Figure 10: Selection among parents and children versus selection among children only,
Sequence 1.

Carrying over parents was shown to be advantageous for all sequences, because it helps
to intensify the search. Crossover and mutation, along with the local search that incor-
porates perturbing moves (macro-mutations) diversify the search and therefore carrying

27

over parents fulfills the intensification role in our implementation of Hybrid GA.

4.6 Local search - Iterative First Improvement

In order to enhance performance of the GA algorithm we incorporated a local search
phase. Local search (LS) algorithms start from a complete initial solution - protein con-
formation, and try to find the solution with the lowest energy in an appropriately defined
neighborhood of the current solution. We considered two types of neighborhoods:

1. macro-mutation neighborhood — two candidate solutions differ by one or more (up
to sequence length) directions of the sequential residues.

2. point mutation neighborhood — two candidate solutions differ by a direction of a
single residue.

We implemented Iterative First Improvement where the first solution (conformation) found
with better fitness (lower energy) than the previous one replaces the current solution. The
algorithm searches first in the macro-mutation neighborhood. During macro-mutation two
points are chosen randomly, and the direction of the residues between those two points are
changed randomly as described by Krasnogor et al [6]. The new conformation is accepted
if its energy is better than the energy of the previous one. Otherwise, the algorithm
continues the search in the previous conformation. Then, point mutation is performed
in the following way: the algorithm first generates a permutation pips - - - p, of residues,
where n is the number of residues in the protein. Then, it performs one point mutation
on the residue that is located in position p; within the protein. The new conformation
is accepted if its energy is better than the energy of the previous one and the search
continues until we are done scanning through the permutation. We repeat the search
starting from the macro-mutation neighborhood. Note that the search alternates between
the macro-mutation and the point mutation neighborhoods. These steps are repeated
until no improving neighbor solutions are found for a number of iterations, the last being
a parameter (nolmpr).

The macro-mutation neighborhood is higher order neighborhood, and we observed that
it yields better results than a simple point mutation neighborhood. For this reason we
implemented local search that uses both neighborhoods.

Results of the local search alone versus Hybrid (GA + Local search) are provided in Table
3. Thus we can see that the GA algorithm is responsible for the smallest but the hardest
part of the optimization process, since GA+LS has a significant advantage over LS alone.

In order to set the parameters right we tested the GA algorithm with different threshold
values for local search (no improvement parameter nolmpr, which indicates for how long
we will continue a local search while seeing no improving steps). Results for a various
number of steps with no improvement for Sequence 2 are given in Figure 11. There is
a trade-off between how long one is willing to wait for an improvement and the quality

28

Instances GA + local search local search
No | Length | Opt. | sq nopt/nruns tavg 8q nopt/nruns tavg
CPU sec CPU sec
1 20 -9 -9 | 3473/3473 | 18.70 -9 | 100/258 111.43
2 24 -9 -9 741/741 38.45 -9 8/113 162.15
3 25 -8 -8 | 634/634 34.93 -8 | 44/129 125.42
4 36 -14 -14 | 25/151 543.21 -14 | 5/72 136.10
5 48 -22 -21 | 3/8 1555.08 | -20 | 1/20 1780.74
6 50 -21 -20 | 3/81 6220.29 | -18 | 3/18 1855.96
7 60 -34 -33 | 1/1 900.39 -30 | 2/20 1623.21
8 64 -42 -33 | 1/1 982.79 -28 |1 2/9 1441.88
9 20 -10 -10 | 1295/1295 | 19.24 -10 | 5/202 134.57

Table 3: Comparison of the genetic local search (GA + local search) and the local search
algorithms where sq is the best solution quality over multiple runs, ny,; is the number
of runs the algorithm finds sq, nyyns is the number of runs, and ¢4, is the average time
required by the algorithm to find sq.

of the solution obtained. The optimal number of the nolmpr parameter depends on the
length of the sequence. For small sequences, its optimal value is 50-100, for larger ones
100-500. The higher the value of nolmpr, the more efficient the local search is, and the
less chance that we will observe stagnation behavior as seen in the case when noImpr is
set to 30.

4.7 Comparison of the Hybrid GA with the ACO

In this section we conduct comparison of the two algorithms that we have implemented.
Since some of the components used in both algorithms are the same, for example, genera-
tion of initial population, checking feasibility, and local search, this comparison will provide
further indication of what approaches are successful for the protein folding problem.

The population size for all instances of GA was 50, while ACO used 15 ants.

Figures 13 and 14 show RTDs for various sequences as compared with RTDs for the
ACO algorithm implemented for the Stochastic Algorithms Course. We can see that the
performances of the GA and the ACO algorithms are very similar on small instances, and
the cumulative run-time distribution follows the exponential distribution, which means
that the chance of getting an optimal-quality solution over k runs of time ¢ is the same as
running it once for time k * ¢.

Results for the GA algorithm versus ACO algorithm are given in Table 4. From Table
4 we can see that GA found optima for Sequences 1-4 and 9 (20 - 25 amino acid long),
and came really close to the optima on sequences of length 48, 50 and 60 residues. ACO
found the optimal solution for all sequences (lengths ranging from 20 residues up to 60)

29

0.8 :
P
[
/
y
: e
0.6 =
c ; /
o
g [nolmpr=30 ——
S J
a ; J nolmpr = 100 --------
0.4 T nolmpr = 200 i
Lo
0.2 — et
i
0 -
1 10 100
log cpu time

Figure 11: Effect of no improvement parameter, Sequence 2.

but failed to find the optimum for sequence of length 64. The GA algorithm was faster on
all small sequences (length 20-36). Basic solution quality distribution (SQD) statistics for
Sequences 1 and 3 are given in Tables 5, 6, 7 and 8. The solution quality in these tables
is defined as energy of the corresponding conformation. Note that for both sequences the
GA algorithm finds a better mean SQD than the ACO algorithm in less number of steps.
For Sequence 1, the mean SQD is 7.716 in step 10 for the ACO algorithm and 8.156 for the
GA algorithm. For Sequence 3, the mean SQD is 8.116 in step 10 for the ACO algorithm
and 8.922 for the GA algorithm. It should also be noted that it takes a very long time
for both GA and ACO to find the optimum/suboptimum for sequences of length 36 - 60,
and the success rate is not very high (cut off was the number of no improvements for 1000
iterations).

The stagnation behavior was observed for large sequences for both GA and ACO. Poor
performance on larger sequences can be due to the fact that better initial solutions, more
diversification, and more aggressive local search is required; while performance on the
smaller sequences follows the exponential distribution even in the tail section, as shown in
Figure 15 and 16.

The largest sequence that the GA algorithm could fold optimally is Sequence 4 of 36 amino
acids. On the other hand, the largest sequence that the ACO algorithm fold optimally
is Sequence 7 of 60 residues long. The optimal conformation is given in Figure 12. The
large hydrophobic core is prominent.

30

Due to the fact that both algorithms considered are population-based we can also obtain
some information about the algorithms by studying the mean solution quality of the
whole population of individuals and their standard deviation over time, Figures 17 and
18. Note that the solution quality is defined as energy of the corresponding conformation.
The GA algorithm mean solution quality tends to slightly improve over the run and the
standard deviation tends to slightly decrease (the optimal solution quality was obtained
before stagnation occurred). ACO mean solution quality is not as stable as GA mean
solution quality, it tends to oscillate, and standard deviation tends to stay the same or
even increase, which indicates a need for intensification.

A general conclusion from the RTD-based analysis of the GA and the ACO algorithms is
that the GA takes an initial time to find good solutions for small to medium sequences, but
after a certain time it tends to outperform the ACO algorithm or give similar solutions,
while the ACO algorithm tends to quickly find optimal solutions at the beginning, but is
rather slow later. It is also interesting to note that the GA algorithm gets trapped in the
local optima for large sequences and therefore doesn’t reach the optimum, while the ACO
algorithm is able to escape but the success rate is still rather low.

- CHHO Dl

L] 1 1160
[]
]

Figure 12: Optimal conformation for Sequence 7 (energy = -34).

31

Instances GA ACO
No | Length | Opt. | 5¢ | Neopt/Nruns | tavg, CPUsec | sq | Nopt/Mruns | tavg, CPUsec
1 20 -9 -9 | 3473/3473 | 18.70 -9 | 711/711 23.90
2 20 -10 -10 | 1295/1295 | 19.23 -10 | 596/596 26.44
3 25 -8 -8 | 634/634 34.92 -8 | 120/120 35.32
4 36 -14 | -14 | 25/151 543.20 -14 | 21/128 4746.12
5 48 -22 -21 | 3/8 1555.07 -22 | 1/151 1920.93
6 50 -21 -20 | 3/81 6220.28 -21 | 18/43 3000.28
7 60 -34 |-33 |11 2900.39 -34 | 1/119 4898.77
8 64 -42 -33 | 1/1 4982.79 -32 | 1/22 4736.98
9 24 -9 -9 | 741/741 38.44 -9 | 247/247 43.48
Table 4: Comparison of the Hybrid GA and the ACO.

step number | mean | stddev | stddev/mean | min | max | median | Q25 | Q75 | Q10 | Qoo
10 7.716 | 0.483 | 0.063 6 9 8.000 7 8 7 8
20 7.869 | 0.377 | 0.048 7 9 8.000 8 8 7 8
30 7.942 | 0.289 | 0.036 7 9 8.000 8 8 8 8
40 7.986 | 0.220 | 0.028 7 9 8.000 8 8 8 8
50 8.000 | 0.183 | 0.023 7 9 8.000 8 8 8 8
60 8.021 | 0.202 | 0.025 7 9 8.000 8 8 8 8
70 8.038 | 0.192 | 0.024 8 9 8.000 8 8 8 8
80 8.000 | 0.000 | 0.000 8 8 8.000 8 8 8 8
90 8.024 | 0.154 | 0.019 8 9 8.000 8 8 8 8
100 8.000 | 0.000 | 0.000 8 8 8.000 8 8 8 8

Table 5: Basic SQD statistics for different run-lengths, Sequence 1, ACO
step number | mean | stddev | stddev/mean | min | max | median | Q25 | @75 | Q10 | Qoo
1 7.883 | 0.447 | 0.057 7 9 8.000 8 8 7 8
2 8.041 | 0.348 | 0.043 7 9 8.000 8 8 8 8
3 8.080 | 0.344 | 0.043 7 9 8.000 8 8 8 8
4 8.074 | 0.262 | 0.032 8 9 8.000 8 8 8 8
5 8.093 | 0.291 0.036 8 9 8.000 8 8 8 8
6 8.060 | 0.237 | 0.029 8 9 8.000 8 8 8 8
7 8.100 | 0.300 | 0.037 8 9 8.000 8 8 8 8
8 8.161 | 0.367 | 0.045 8 9 8.000 8 8 8 9
9 8.062 | 0.242 | 0.030 8 9 8.000 8 8 8 8
10 8.156 | 0.362 | 0.044 8 9 8.000 8 8 8 9

Table 6: Basic SQD statistics for different run-lengths, Sequence 1, Hybrid GA

32

step number | mean | stddev | stddev/mean | min | max | median | Qo5 | Q75 | Q10 | Qoo
10 8.116 | 0.549 | 0.068 7 10 8.000 8 8 8 9
20 8.365 | 0.506 | 0.060 8 10 8.000 8 9 8 9
30 8.456 | 0.521 0.062 8 10 8.000 8 9 8 9
40 8.497 | 0.521 0.061 8 10 8.000 8 9 8 9
50 8.568 | 0.513 | 0.060 8 10 9.000 8 9 8 9
60 8.603 | 0.510 | 0.059 8 10 9.000 8 9 8 9
70 8.615 | 0.502 | 0.058 8 10 9.000 8 9 8 9
80 8.646 | 0.504 | 0.058 8 10 9.000 8 9 8 9
90 8.623 | 0.494 | 0.057 8 10 9.000 8 9 8 9
100 8.650 | 0.521 0.060 8 10 9.000 8 9 8 9
Table 7: Basic SQD statistics for different run-lengths, Sequence 3, ACO

step number | mean | stddev | stddev/mean | min | max | median | Qo5 | Q75 | Q10 | Qoo
1 8.138 | 0.684 | 0.084 7 10 8.000 8 8 7 9
2 8.467 | 0.648 | 0.077 7 10 8.000 8 9 8 9
3 8.585 | 0.609 | 0.071 8 10 8.000 8 9 8 9
4 8.714 | 0.598 | 0.069 8 10 9.000 8 9 8 9
5 8.702 | 0.573 | 0.066 8 10 9.000 8 9 8 9
6 8.842 | 0.608 | 0.069 8 10 9.000 8 9 8 10
7 8.843 | 0.601 0.068 8 10 9.000 8 9 8 10
8 8.814 | 0.536 | 0.061 8 10 9.000 8 9 8 9
9 8.891 | 0.528 | 0.059 8 10 9.000 9 9 8 9
10 8.922 | 0.436 | 0.049 8 10 9.000 9 9 8 9

Table 8: Basic SQD statistics for different run-lengths, Sequence 3, GA

33

e
exponential ygiﬁ(«ﬂé) ——————
L
A
0.8 e,
P
s
,”///(
S

0.6 . ,//’,/
c e
g 7
5 /,"/
) 7
@ B

0.4 o

e
S
S
0.2 gt
e
0
1 10 100
log cpu time

Figure 13: Marginal run time distribution for Sequence 1, Hybrid GA and ACO.

5 Conclusions

In this paper we developed new Hybrid GA algorithm and experimentally studied its
behavior on the 2D HP protein folding problem. We then collected some information
about how our GA behaves on various instances of the problem based on various strategies
and parameter settings.

The Hybrid GA algorithm described in this work is a genetic local search algorithm that
performs better on small to medium sequences than the simple GA because it improves
the intensification of the search. Another advantage of the genetic local search is that
it is possible to work with a small population because the population consists of local
optima. The size of the population is an important factor in our implementation because
local search is the time crucial step and appropriately chosen population size reduces time
needed to perform local search on all of the individuals of the population while keeping
enough diversity.

The local search considered was Iterative First Improvement with macro-mutation and
point mutation neighbourhoods. We found that an Iterative First Improvement that
includes also the macro-mutation neighborhood performs better than the simple Iterative
First Improvement that only uses the point mutation neighborhood.

According to our experimental results, we found that it is important to implement a

34

ACO ——
J/ exponential 1-2%(-x/14) -
S
o8 A
,'//' /

0.6 ot
: Ny
5 /
] .
S
o y

0.4 /

0.2

S
L
7
,/7/7/
I I
1 10 100 1000
log cpu time

Figure 14: Marginal run time distribution for Sequence 3, Hybrid GA and ACO.

mechanism to generate random feasible conformations since for long proteins there is a
problem of entanglement. The backtrack procedure that reconstructs infeasible conforma-
tions showed good performance. We also considered different starting folding points for
protein conformations. According to the results, the optimal folding point that leads to a
better performance of the algorithm depends on the given protein.

We observed that the mutation operator plays an important role in the performance of our
Hybrid GA. A probability that a conformation is mutated, P,,, about 0.1-0.3 was optimal.
This value is higher than the typical value of 0.01 used in standard GA algorithms, since
we are working with the population of the local optima. We also observed that one point
mutation that is usually implemented in standard GA algorithms is not enough in terms
of the diversification of the search. In our algorithm we perform more than one point
mutation on a given conformation. The number of mutations on a given conformation
depends on its energy: conformations with low H-H interactions are mutated more often.

We compared a non-random crossover (parents with low Hamming distance) with the
traditional random crossover and observed that the last one performs better for the Hybrid
GA. We also tested the Hybrid GA algorithm without crossover and observed that the
crossover operator is useful in our implementation of the GA.

The selection process was implemented as a roulette selection. We studied the effect of
having a selection process between children and parents or just between children as a
standard GA algorithm. The selection operator that considers parents was shown to be

35

\;777 GA ——

Proportion
4

0.1
1 10 100

log cpu time

Figure 15: Right tail of the marginal run time distribution for Sequence 1, ACO.

advantageous for all sequences because it helps to intensify the search.

Our GA found the global optima of Sequences 1-4 and 9 (20-25 amino acids long) listed
in Table 1. The ACO, on the other hand, found the optimal solution for all sequences
except the largest one of length 64. We observed that the GA algorithm was faster on
small sequences (length 20 - 36). For sequences larger than 25, both algorithms take long
time to find optimum or suboptimum conformations and the success rate (number of runs
that find the optimum or suboptimum conformation) is low.

The GA algorithms described by Unger and Moult and by Krasnogor et al. outperforms
our Hybrid GA. Unger and Moult did not find the optimum conformation for Sequence 8
and Krasnogor et al. for Sequences 7 and 8. However, it is difficult to compare our GA
algorithm with their algorithm because they did not include an extensive evaluation.

During our study we found that the protein folding problem is hard combinatorial problem
even in 2D for sequences larger than 36 residues. By watching and studying the perfor-
mance of our Hybrid GA on various instances, we found that the search space of the 2D
HP protein folding problem is very likely to include a large number of local optima in
which algorithms can be easily trapped.

36

— GA ——

Proportion

0.1 ‘\

1 10 100
log cpu time

Figure 16: Right tail of the marginal run time distribution for Sequence 1,Hybrid GA.
6 Future Work

There are several issues for future research. Search space analysis of the 2D HP folding
problem, using fitness distance correlation analysis, is one of the possible directions for the
research. The distance between two sub-optimal solution can be defined in terms of the
Hamming distance (the number of directions of residues that vary between two solutions).
The study of the correlation of how close the sub-optimal solutions are to each other,
and the global optimum, and how close the energy values are to the optimal can provide
necessary insight for the future successful development of the algorithms for this problem.

The Hybrid GA should also benefit from additional diversification, such as other kinds
of macro-mutations. It would be interesting to limit the rank of the neighborhood of
the macro-mutation and consider this value as an additional parameter. Some of the
intensification strategies can be considered, for example use more than one elitist individual
in the population.

In general, our results indicate that the performance of both new algorithms: ACO and
Hybrid GA can be significantly improved.

37

7 T
meansq ———
mean - sd’ --------

6.5

6
5 5 \ //4‘\
3 =\ A N av
3 . / N N AN e Y L
s V/ ‘
E
o
a

4.5

4

35

3

0 10 20 30 40 50 60 70 80

Time CPU sec

Figure 17: Mean solution quality over time, Sequence 1, Hybrid GA

7 Contributions

Rosalia: project proposal 50 percent, coding 10 percent, correcting project proposal 100
percent, project update 40 percent, testing 20 percent, writing final report 50 percent.

Alena: project proposal 50 percent, coding 90 percent, correcting proposal 0 percent |,
project update 60 percent, testing 80 percent, writing final report 50 percent.

References

[1] Creighton, T. E., Proteins. Structure and Molecular Principles. Freeman, New York
1984.

[2] Goldberg, David E. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Pub. Co., 1989.

[3] Hart W., Istrail S., “HP Benchmarks”,
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html

[4] Hoos H., Stiitzle T., On the empirical evaluation of Las Vegas algorithms.Proceeding
of the IJCAT’99 Workshop on Empirical AT,1999.

38

[5]

[6]

[10]

[11]

7.5 T

6.5

Solution Quality

0 10 20 30 40 50 60
Time CPU sec

Figure 18: Mean solution quality over time, Sequence 1, ACO.

Hoos H., Stochastic local search-methods, models, applications. PhD thesis, TU Darm-
stadt, 1998.

Krasnogor N., Hart W. E., Smith J., Pelta D. A. Protein structure prediction with
evolutionary algorithms. Proceedings of the Genetic & Evolutionary Computation
Conference, 1999.

Krasnogor, N., Pelta D. A., Lopez P. M., Mocciola P., and E. de la Canal. Genetic
algorithms for the protein folding problem: a critical view. In C. F. E. Alpaydin,
editor, Proceedings of Engineering of Intelligent Systems. ICSC Academic Press, 1998.

Lau K.F., Dill K.A. A lattice statistical mechanics model of the conformation and
sequence space of proteins. Macromolecules 22:3986 - 3997, 1989.

Patton A., W. P. III, and E. Goldman. A standard GA approach to native protein
conformation prediction. In Proc 6! Intl. Conf. Genetic Algorithms, pages 574-581.
Morgan Kauffman, 1995.

Richards, F. M. Areas, volumes, packing, and protein structures. Annu. Rev. Biophys.
Bioeng. 6:151-176, 1977.

Rose, G. D. Hierarchic organization of domains in globular proteins. J. Mol. Biol.
134:447-470, 1979.

39

[12]

[13]

[14]

[15]

[16]

Sali, A., E. Shakhnovich and M. Karplus, How Does a Protein Fold, Nature, 369,
248-251, May 1994.

Unger, R., and J. Moult. Genetic algorithms for protein folding simulations. Journal
of Molecular Biology, 231 (1): 75-81, 1993.

Shmygelska A., Aguirre-Herndndez R. Ant Colony Optimization for Protein Folding,
2D HP model. CPSC 532D project, to appear.

Unger, R., and J. Moult. A genetic algorithm for three dimensional protein folding
simulations.In Proc 5* Intl Conf on Genetic Algorithms, pages 581-588. Morgan
Kaufmann, 1993.

Wolfgang B., P. Nordin, R. Keller, F. Francone, Genetic Programming: An Introduc-
tion. Morgan Kaufmann Publishers, Inc. San Francisco, California, 1998.

40

