
Iterative Monte Carlo Protein Design 
 

Camilo Rostoker    Reza Lotun 
University of British Columbia  University of British Columbia 
Department of Computer Science  Department of Computer Science 
rostokec@cs.ubc.ca   rlotun@cs.ubc.ca 
 

January 19, 2005 
 
 

Abstract 
 

A modification to the iterative design of proteins in the 2D 
HP model is made, employing local search of sequence space 
and Monte Carlo sampling of compact conformation space. Our 
algorithm finds supersets of the solution set, and by varying 
parameters can minimize the size of this superset to any desired 
accuracy. 

 

1 Introduction 
 
The so-called central dogma of molecular biology states that the process of decoding 
genetic data goes from DNA to RNA to proteins. A protein is composed of a chain of 
amino acids called its polypeptide chain. The three dimensional structure of a protein 
play vital roles in determining its function, thus understanding the relationship between 
its amino acid chain and structure are of vital importance. The process of determining the 
structure or conformation of a protein from its amino acid sequence is known as protein 
folding. The inverse problem – determining an amino acid sequence that folds into a 
given conformation – is the problem of protein design. 
 
The protein design problem is highly dependent on the choice of model for protein 
structure representation and amino acid interactions, and the energy evaluation of 
conformations in the model. Models can vary from atom-based quantum mechanical 
simulations, to two dimensional lattice models with a reduced amino acid alphabet. One 
simple useful model is the 2D-HP model [3] first proposed by Lau and Dill in 1989, 
where the twenty naturally occurring amino acids are categorized as either hydrophobic 
(H) or polar (P) on a two dimensional lattice or grid, and where a conformation of a 
polypeptide chain is represented as a self avoiding walk on the lattice. The energy of a 
conformation in this model usually involves a function of the number of non-adjacent HH 
contacts in the resulting structure.  
 
This simple classification is motivated by the observation that the hydrophobic force is 
the dominant force in protein folding, and that native conformations of globular proteins 



are compact with dense hydrophobic cores surrounded by a shell of polar amino acids 
exposed to the solvent. The HP-lattice simplification is also attractive in that exact 
enumerations of sequences and structures (compact ones) are possible, providing a means 
of testing correctness of a proposed design method, though exact enumeration eventually 
becomes infeasible for large sequence lengths. Self avoiding walks and lattice problems 
are also well studied and reasonably well understood, allowing for the application of 
many diverse tools to the problem domain. It is important to realize however that the HP 
model, especially applied to a two-dimensional lattice, does not give any direct indication 
of underlying protein structure, but allows for the study of other properties related to a 
protein’s structure, such as general patterns of hydrophobic interactions, and values such 
as the protein’s surface-to-volume ratio. 
 
In this paper we introduce the Iterative Design approach to protein sequence design, 
originally developed by Rossi et al, and then present a modification of this algorithm 
along with implementation details and analysis.  The remainder of the paper is structured 
as follows: Section 2 reviews some of the existing working in the field of protein 
sequence design.  Section 3 reviews the original Iterative Design algorithm, and Section 4 
presents our modified version of this algorithm with detailed discussion on rationale for 
the changes.  We conclude Section 4 by discussing various implementation details such 
as optimization using simulated annealing, reduction of sequence space using basic laws 
of symmetry, as well the methods we use to generate of self-avoiding walks of varying 
compactness.  In Section 5 we describe a series of computational experiments designed to 
investigate our algorithm, and Section 6 presents concluding remarks as well as avenues 
of exploration for future work. 
 

2 Existing Work 
 
As noted by Deutsch and Kurosky in [1], irrespective of the model used, three criteria are 
essential in determining the success of the determined sequence.  

1. The sequence should have the desired conformation when it is in its ground state 
(positive design). 

2. There should be no ground state degeneracy – that is, the sequence should always 
fold into the same conformation (negative design). 

3. There should be a large gap in energy of the ground state and the energies of the 
higher energy states – the sequence is stable. 

 
From a thermodynamic perspective, given some energy function E which depends on the 
interactions between H and P amino acids, the conditional probability of a sequence σ  
folding into conformation 0Γ  at temperature β  is denoted by 

]/),(exp[
)(

1)|( 00 TkE
Z

P Bσ
σ

σ Γ−=Γ  

where the partition function Z is defined by 

∑
Γ

Γ−= ]/),(exp[)( TkEZ Bσσ  



An often used expression called the “ensemble free energy” is given by 
)(ln)( σσ ZTF −=  

where Bk is Boltzmann’s constant (since our energy function for HP is the number of HH 
contacts and this is not physically meaningful, we usually combine the temperature and 
Boltzmann’s constant term in to TkB/1=β ). Maximizing the above conditional 
probability with respect to the sequence is difficult because it entails the exploration of 
both sequence and conformational space (as a sequence is fixed in the numerator, the 
denominator must then range over all conformations for that sequence).  
 
Early work in protein design can be viewed as a maximization of the conditional 
probability, and can be seen to approach the problem in three ways (see [3] and [7]): 
 

1. The free energy is ignored or set to a constant, and the conditional probability 
maximization is cast as a minimization of ),( 0 σΓE . This is usually a fast 
approach, but may produce spurious sequences (all H’s), thus some constraints or 
parameters are added to enforce the desired ratio of H’s to P’s in the sequence. 
This is theoretically unsatisfactory and fails on a number of examples.  

2. Approximation of the free energy is made via a high-temperature Taylor 
expansion [1] of F, taking lower order terms and ignoring constants. While more 
accurate than energy minimization, the assumption of high temperature is 
inaccurate since folding takes place at low temperature. 

3. Using Monte Carlo (MC) approaches to estimate F, either in the form of nested 
MC approaches by fixing the sequence, or using multisequence MC approaches 
where both the sequence and conformation are updated simultaneously [2]. Such 
methods are more advantageous than the former two since they make no 
temperature assumptions and take the free energy into account, but can be 
computationally intensive, since large parts of conformation space are needlessly 
taken into account when calculating the free energy F. 

 
In this work we present an algorithm which attempts to intelligently search through 
sequence and structure space, retaining the accuracy of a method which takes the 
ensemble free energy into account, but one which does not “waste” time on spurious 
solutions. The following section describes one such solution approach, and Section 4 
describes our improvements to it. 

3 Iterative Design Approach 
 
A novel approach incorporating an iterative design strategy is presented in [5] and [6]. 
The idea is to incorporate negative design by maintaining a set of decoy structures which 
compete with the target native state to “weed out” spurious sequence solutions. The 
approach is independent of the specific function used to calculate amino acid interaction 
potentials and also works for three dimensional lattice approaches. 
 



Let )|( σβ ΓP  be the probability of the conformation given the sequence at temperature 
1−β . For a sequence s with native state Γ, the folding temperature 1−

Fβ is defined so that 

2
1)|( >Γ σβP  

for all Fββ > . Given some conformation Γ, all sequences σ  with a probability of 
folding into Γ larger than 1/2 will have their unique ground state in Γ and folding 
temperature greater than 1−β . Thus 

           

[ ] (*))2ln()(),(
)2ln()(),(

)2ln()(),(

)2ln())),(exp(ln(),(

2
1

)),(exp(
)),(exp(

0

0

0

0

0

<−Γ
<−Γ
−>+Γ−

−>Γ−−Γ−

>
Γ−

Γ−

∑

∑

Γ

Γ

σσβ
σββσ
σββσ

βσβσ

βσ
βσ

FE
FE
FE

EE

E
E

 

 
provides a check to isolate sequences that could fold into the given conformation 0Γ . The 
problem with this approach is that the calculation of )(σF ranges over the entire space of 
structures, and must be performed each time anew with the given σ .  
 
The iterative design strategy attempts to restrict the sum in F to a subset of conformation 
space. We define the decoy set D as this subset, which is initially empty or set to the 
target conformation itself. At each iteration we exhaustively check conformation space 
(or more realistically all compact conformations) and test our set of possible solutions 
produced by filtering sequence space by (*), and discard those sequences that have lower 
energies on conformations other than the target. We discard those sequences that do have 
lower energies on other conformations, but add those conformations to D. At the next 
iteration (*) ranges over the new D, and the process continues until we have a sufficient 
number of solutions or we reach some maximum iteration limit. 
 

1. Initialization: 
a. TARGET = the given target structure 
b. SEQUENCES = set of all sequences amongst which solutions will be 

exhaustively searched 
 

2. Initialize Decoys: 
a. DECOYS = set of decoys, is initially empty or set to target structure 

 
3. ITERATE until STOP criterion is met: 

 
a. Exhaustively search out sequence space to find a sequence S such that: 

i. S has minimum energy on TARGET (where S is not already in the 
solution set) 

ii. S has lowest energy on all structures in DECOYS 
 

b. Explore the structure space of compact structures to find the lowest 
energy state(s) LES of S and compare it to the energy obtained on TARGET.  
 

c. Compare lowest energy states obtained in 3(a) with TARGET: 



 FOREACH L in LES 
 isSolution = true 

  If L ≠ TARGET and energy(S,L) <= energy(S,TARGET)  
   isSolution = false 
   L is added to DECOYS 

   
 if (isSolution) 

  add S to the set of solution sequences 
 

STOP criterion is: 
- A sufficient number of solutions has been found 
- No more sequences can be found satisfying equation in step 3(a) 

 

Listing 3.1: Pseudo-code for Iterative Design Algorithm 
 
Given a target conformation and energy function, an exhaustive enumeration of sequence 
space is performed to obtain a sequence of minimum energy for that target. This 
sequence is then fixed and an exhaustive search over conformational space is made to 
find conformations of equal or lower energy. If none are found, the sequence is added to 
the list of known solutions, and is removed from sequence space, and the procedure 
continues. If there are conformations other than the target for the sequence, then those 
conformations are added to our set of decoys. Another search of sequence space is 
performed, but this time the potential sequence solution S must have minimum energy E 
on our target structure such that E is greater than any energy obtained by S on all 
structures from the decoy set. 
 
The above iterative procedure takes into account the free energy and also has complexity 
comparable to fast energy minimization approaches [5]. However, exhaustive searches of 
sequence space (for fixed conformation) and compact conformation space (for fixed 
sequences) are made which could present a hindrance for the algorithm to scale to large 
conformations. Also, increasing the amino acid alphabet would adversely affect running 
time. The choice of the number and type of decoy structures affects the accuracy of the 
method as well. 
 
 

4 Our Modification to the Iterative Design Algorithm 
 
The main idea behind our proposed modifications is to utilize a combination of the 
iterative design strategy and two approximation methods, namely Monte Carlo sampling 
and simulated annealing. Our work takes a novel approach to the Protein Design problem 
by providing a flexible means to specify the degree of desired accuracy of the solution 
set. We do this by eliminating the exhaustive steps of searching sequence and 
conformation space, and replace them with approximation methods that can adjusted to 
achieve different results with respect to the tradeoff between accuracy and efficiency. We 
also introduce two new ideas into the iterative design: pre-populating the decoy set, and a 
refinement step in which the set of solution sequences is “refined” in order to detect 



degenerate sequences that have been falsely accepted.  The figure below shows the 
pseudo-code for our algorithm. 
 

1. Initialization: 
a. TARGET = the given target structure 
b. SEQUENCES = set of all relevant sequences amongst which solutions will 

be searched 
 

2. Initialize the collection of decoy structures 
a. DECOYS = batch_of_pivots(targetStructure) 
 
 

3. ITERATE until STOP criterion are met: 
     

a. S = search sequence space using Simulated Annealing and an Approximate 
Free Energy Sum calculation 

 
b. nativeStates = search conformation space using Iterative Growth Walk 

Monte Carlo sampling 
 

c. Determine if S has unique ground state on TARGET: 
 
 if isempty(nativeStates) 

   add S to set of solution sequences 
          numSolutions = numSolutions + 1          
  else         
          S is not a solution    

  add nativeStates to DECOYS 
 

d. Refine solutions 
 

4. STOP criterion is: 
a. A sufficient number of solutions has been found 
b. No more sequences can be found satisfying equation in step 3(a) 
c. After step 3, if no solutions found and refining yields no degenerate 

solutions, then consider the search “stale” and quit. 

Listing 4.1: Pseudo-code for our new algorithm 
 
 

4.1 Representation of Conformations 
 
Self avoiding walks (SAWs) on a 2D lattice are represented in three ways: 
 

1 Coordinate Representation: Beginning at the origin (0,0) a list of 
coordinates occupied by the SAW is given in an Nx2 matrix, where (N-1) is 
the length of the Self-avoiding walk (since we start at the origin). This is the 
principal representation used by most of the algorithms in our codebase. 
 

2 Quad Representation: The standard representation in the literature for 2D 
SAWs represents them as strings of letters from {U, R, D, L} denoting the 
directions of “Up”, “Right”, “Down”, and “Left” on the lattice respectively. 
This representation is also useful as an intermediate representation between 
the coordinate representation and ternary representation described below. 
 

3 Ternary Representation (Balanced Ternary): A self-avoiding walk is 
described by a series of local moves and is represented by a string of letters 



from {F, R, L} denoting the moves “Forward”, “Right” and “Left” 
respectively. Such strings can be represented by ternary (base 3) strings {L=1, 
F=2, R=3} or even more conveniently as balanced ternary {L=-1, F=0, R=1}. 
The primary use of ternary representation is in checking for symmetrical 
SAWs (walks that have been rotated, or reflected along the horizontal, 
vertical and diagonal axes). Adopting a convention of representing the first 
move of a SAW by “Forward” in balanced ternary, all symmetrical walks will 
be represented in either the same balanced ternary string, or some string 
where R and L are interchanged (this can be conveniently achieved by 
multiplying one walk by -1). 

 

4.2 Pre-populating the decoy set 
 
One of the keys to the iterative design is the concept of decoy structures.  As discussed by 
Rossi et al. in [5], the most significant contribution to the conformational free energy of a 
given sequence summed over all possible conformations comes from those structures that 
have a similar set of H-H contacts as the native structure [5].  Thus, it is clear that the set 
of decoys contribute to the accuracy of the free energy approximation, which in turn 
directly affects the quality of the solutions and hence the overall efficiency of the 
algorithm.  Moreover, these “competing” structures are used to minimize the sequence 
space that must be searched by enforcing an additional integrity check on the sequence 
before the costly step of searching for low energy states through the vast regions of the 
conformation space.   
 
The original Iterative Design algorithm starts with an empty decoy set, and in a follow-up 
paper[6], the authors initialize the decoy set to include the target structure as well as one 
other compact structure.  In our algorithm, we have incorporated a method that, given a 
target native structure, can construct a relatively good set of decoy structures.  As we 
derived previously, the constraint set by the original authors, [ ] )2ln()(),( 0 <−Γ σσβ FE , 
simply suggests that the approximation must imply that the sequence has a more than 
likely chance of folding to the given conformation at temperatureβ .  Thus, the decoy set 
plays an increasingly dominant role as the algorithm proceeds.  Initially, when there are 
only a few decoys, the free energy sum is rough and imprecise, but as the number of 
decoys increase, the approximation becomes more accurate.  Our algorithm therefore 
attempts to overcome this problem by populating the decoy set a priori, resulting in an 
increased performance when searching both sequence and conformation space.  In order 
to accomplish this, we use a modification of the Pivot Method [10,13]. This works by 
randomly choosing a pivot site in the self avoiding walk, and randomly applying one of 
seven fundamental group transformations of the dihedral group of order 4 (i.e. rotation by 
90, 180, 270, reflection across vertical, horizontal and two diagonals) to the structure at 
the chosen pivot point. We do this iteratively until we have a set of decoys which are all 
highly correlated to the given target structure, and then proceed with the algorithm as 
usual. 
   



We wanted to see exactly what kind of affect decoys have with 
respect to the free energy approximation of a sequence. We therefore 
created a test using the standard benchmark conformation (shown in 
figure 4.2.1 on the right) for sequence length N=16, and used four 
sequences: one which is a designing sequence (a solution sequence), 
the all H and all P sequences, and another chosen at random.  We 
then calculated the free energy approximations for an increasing 
number of decoys, obtained using the modified pivot method 
described above to produce conformation highly similar to the target 
structure.  Figure 4.2.2 below shows the result: 

Figure 4.2.1 

   

 
Figure 4.2.2: minimum free energy approximation vs. # of decoys (fitness is free energy) 

 
As shown by the plot, when there are only a few decoys the free energy approximation of 
incorrect sequences is relatively low, and thus it is possible one may be falsely accepted 
as a solution.  However, as the number of decoys increase, the approximation becomes 
evidently more accurate and the incorrect solutions are quickly assigned large free energy 
values. 
 

4.3 Searching Conformation Space 
 
In step 3(b), the current algorithm determines all the lowest energy states of S (chosen as 
a possible solution sequence) using a Hamiltonian function, which assigns a score based 
on the number of H-H contacts.  For short amino-acid sequences, this exhaustive 



technique is satisfactory, but for realistic protein sequences with lengths in the hundreds 
and thousands, exhaustive enumeration is impractical. 
 
Our proposed strategy replaces this bottleneck step with a Monte Carlo-style approach 
that performs stochastic sampling of the associated structure space.  
 
The Interacting Growth Walk (IGW) algorithm of Narasimhan et al. described in [17] is a 
Monte Carlo approach to sample the space of compact self avoiding walks. Let the initial 
coordinate of the SAW )0,0(0 =r and 1r be chosen at random from amongst the 
neighbours of (0,0). Let the set  { }3,...,0| ≤= j

m
j zmr be the possible choices for the jth 

step (that is, the subset of the nearest neighbours of 1−jr which do not contain coordinates 

already occupied by the SAW). Let )( jnm
NN be the number of non-bonded nearest 

neighbours of m
jr . Then the probability that m

jr is chosen at the jth step of the walk is 
given by 

∑
=

−

−
=

jz

m

m
NN

m
NN

jm

jn

jnrp

1
0

0

))(exp(

))(exp()(
εβ

εβ  

where TkB/1=β and 0ε is defined so that if NNn are the number of non-bonded nearest 
neighbour contacts in a self avoiding walk, then the energy for that SAW is 0εNNnE = (for 
the 2D HP case we set it to 1 since the energy function for a 2D HP SAW is the number 
of HH contacts – this will slightly overestimate the actual energy according to the 
model). 
 
function nativeStates = foldSequence(SEQ,eTarget,perConf) 
// SEQ: potential solution sequence obtained in step 3(a) 
// eTarget: energy of SEQ on TARGET conformation 
nativeStates = {empty}  
numSamples = {perConf fraction of upperbound on size of conformation space} 
for i = 1 to numSamples 
    betaTemp = {calculate beta temperature parameter} 
    SAW = makeSAW_IGW(n,betaTemp) 
    eNew = energy(SEQ,SAW) 
    if eNew <= eTarget AND notMember(SAW,nativeStates) 
 nativeStates = nativeStates U SAW 
return nativeStates 

Listing 4.3.1: Pseudo-code for foldSequence algorithm 

 
Although the conformation space becomes exponentially large as N increases, the 
number of compact conformations remains relatively small in comparison.  The Iterative 
Growth Walk algorithm generates nearly maximally compact self-avoiding walks.  This 
allows our algorithm to both exploit the fact that most ground state conformations are 
compact, but also allows for the option of exploring conformation that are not maximally 
compact.  The IGW algorithm takes a parameter called beta (temperature beta) that 
controls the level of compactness of the SAW’s that it generates.  A second parameter, 
eps, is also used for controlling compactness, however it remains constant for all 2D 
lattices.  Figure 5.4.1 plots the average density of a large batch of SAW’s produced with 



IGW with varying beta and eps parameters. We define the density as the ratio of N to the 
perimeter of the bounding box of the SAW in the plane. 

 
Fig. 4.3.1 – How average density behaves by changing parameters in IGW algorithm 

 
 
In order to use IGW to sample both compact and less compact SAW’s, we dynamically 
update beta during the sampling process.  Figure 5.4.2 shows the calculation of beta as 
a monotonically decreasing function, providing a majority of the samples with a large 
beta (maximally compact) and a small portion of the samples with a lower beta (less 
compact). The function used resembles a cooling schedule of the form: 

 
T(i) = (0.5 *(To – Tf)*(1-tanh(10*i/Tc – 5))+Tf) 

 
where To is the initial temperature, Tf is the final temperature, Tc is the current 
temperature. 



 
Fig. 4.3.2 – Decrease in temperature as samples increase 

 
 

Fig. 4.3.3 shows typical examples of self-avoiding walks of length N=26 generated by 
the IGW algorithm for beta values 1, 5 and 10 respectively. 

 
Fig. 4.3.3 – Various SAWs  of length 26 at different temperatures as produced by IGW 



 
 

4.4 Solution Refinement Step 
 
At the beginning of the algorithm, when there are a minimal number of decoys, the 
optimization procedure of searching for putative solutions has a higher chance of finding 
sub-optimal solutions.  If the sampling rate is insufficient to capture low-energy states of 
the sub-optimal solution, then it can be falsely accepted as a true solution.  However, as 
the algorithm proceeds, more and more decoys are added to the decoy set.  Due to the 
fact that all decoys are unique, each new decoy added has the potential to be a low energy 
state for a sub-optimal solution.  We therefore perform occasional refinements by 
checking if any of the sequences in the solution set have low-energy states amongst the 
decoys – and thus signaling a degenerate sequence that can be removed from the solution 
set.  Fig. 4.3.1 shows how the solution count of a typical run can fluctuate during runtime 
due to the refinement process.   

 
Figure 4.4.1: A fluctuating solution count for N=10 

 
Through all our testing there were only a few instances when solutions were removed 
from the solution set due to the refinement process.  However, we believe that this is 
partly related to the small amount of sampling as well as the small number of solutions 
available for the sequence sizes were tested.  Moreover, the computational overhead is 
negligible for performing the refinement step, and considering it has the potential to weed 
out spurious solutions, we consider the refinement process a worthy addition to our 
algorithm. 
 

4.5 Implementation Details 
 



In this section we provide additional details concerning the implementation of our 
algorithm.  In particular we discuss our approach to reducing the initial sequence space, 
the simulated annealing approach to searching sequence space, and details on how we 
generate self-avoiding walks in order to sample conformation space. We do not discuss 
any additional details concerning hardware or software resources, but we will mention 
that our algorithm was written in MATLAB 6.5 and executed on a shared Sun Fire V880 
with 8x1.2 GHz UltraSPARC III processors, 32GB RAM, running SunOS 5.9. Since 
computations on lattices and self-avoiding walks are at the core of the algorithms 
involved in the approach described, MATLAB was chosen as the environment in which 
to implement our routines. Its fast matrix handling abilities, high-level interface, data-
visualization capabilities and portability make it a convenient choice. 
 

4.5.1 Reducing Initial Sequence Space 
 
Conveniently, HP sequences can be encoded as binary numbers. In our project we use the 
notation H=1 and P=0. For this reason, storing, saving and accessing the actual sequences 
is of little computational effort. For an HP sequence of length N, there are 2N possible 
sequences. Fortunately, due to symmetries in the sequences, it is not necessary to include 
all these combinations. For example, consider the sequence HHPH and HPHH. Clearly, 
these two sequences are identical with respect to the HP model, and so we only need to 
keep one of them.  In [9], an efficient method for enumerating this subset of sequences 
was proposed, which takes binary numbers (HP sequences) and splits them in the middle 
in order to create a doublebit number.  Considering an even length N sequence, starting 
from the bits on each side of the split, bits are paired with each other, called “doublebits”, 
and each of these doublebits is assigned a value. The values used for each HP 
combination are HH=3, HP=2, PH=1, PP=0.    To enumerate all sequences then, we 
would simply generate a set of quaternary numbers, skipping doublebits of HP=2 unless 
there exists a doublebit of higher significance (greater q) that is equal to PH=1 
(symmetry). 
 
Next we provide a brief example of the conversion to and from a doublebit number: 
 
Converting from binary to doublebit Converting from a doublebit to binary 

HP Sequence P P H P H P 
Binary Sequence 0 0 1 0 1 0 
Doublebit index 2 1 0 0 1 2 
Doublebit Sequence 0 1 2  

012  
012XXX (the sequence is double the length)  
P12XXP (since PP=0) 
PP2XHP (since PH=1) 
PPHPHP (since HP = 2) 

 
As shown, the doublebit number corresponding to the above sequence is 012. This means 
doublebits allow us to effectively store only half the binary sequences, taking symmetry 
into account.   To extend this method to odd-length sequences, we realize they are simply 
even length sequences with either an H or a P in the middle position of the sequence. 
 



4.5.2 Simulated Annealing 
 
Simulated annealing was used to optimize searching through sequence space.  The 
standard algorithm was applied using a proportional cooling schedule.  Candidate 
sequences are generated by performing one of two different local moves: randomly 
switching up to N randomly chosen sequence positions, or replacing an entire segment 
from another randomly chosen sequence.  A Metropolis acceptance criterion is used to 
decide if the new sequence should be accepted.  Numerous tests were performed to find 
optimal settings for the algorithms parameters such as number of iterations and number 
of alterations.  To calculate the initial and final temperatures, as well as the cooling rate 
(i.e. the cooling schedule), we use the following formulas obtained from [19]: 

 
kTi = -dEi/ln(Pi) 

 
kTi is the initial temperature, -dEi is the change in the cost function that is expected at 
the start, and Pi is the probability we accept that change.  The energies we are calculating 
are between 0 and log(2) = 0.6391.  At the start we are willing to accept an increase in 
energy of 0.32 (approximately 50% of the expected energy range) with probably 0.25. 
The initial temperature is then: 

 
kTi = -dEi/ln(Pi) = kTi = -0.32 /ln(0.25) = 0.23 

 
We calculate the final temperature similarly, choosing to allow an increase of 0.07 (about 
10% of energy range) with a probability of 0.05, resulting in the final temperature of: 

 
kTf = -dEf/ln(Pf) = kTf = -0.07/ln(0.05) = 0.0234 

 
Finally, the proportional cooling factor Cprop is calculated as follows: 
 

Cprop = exp(ln[(kTf)/(kTi)]/N) 
 
where NkT is the # of iterations. Using our initial and final temperature, and setting NkT=50, 
we obtain: 
 

Cprop = exp(ln[0.0234/0.23]/50) = 0.9553 
 
This means after each iteration, we decrease the temperature by approximately 5%, 
resulting in a slow, stable cooling process. 
 

5 Experiments & Analysis 
 
We tested our algorithm with three different structures with 8, 10 and 12 residues.  From 
the analysis in Section 4.2, we concluded that having a small initial decoy set of 5 is 
sufficient to help the free-energy approximation overcome the initial underestimates.  The 
parameters for the Simulated Annealing remained constant (as specified in Section 4) 
throughout these experiments.  For each of the three test sequences, we use small and 



large number of samples in order to determine how the quality of the solution is affected.  
Sample sizes were calculated using numSamples = NX*C where 1.5 <= X <= 2.5 and C is 
some scaling constant.  In our tests, small samples sizes use X=1.5 and large sample sizes 
use X=2.5. 
 
Because conformation space grows exponentially with N, the number of samples we 
chose did not grow exponentially with N, but were instead chosen heuristically to be as 
large as possible while remaining computationally feasible. 
 
Test Case #1: Test Case #2: Test Case #3: 

N = 8  
URDDLLU 
2 solutions 

N = 10    
URDRDLDLU 
3 solutions 

N = 12  
URURDDLDLLU 
4 solutions 

 
  

Solutions/energy: 
  HPPHPHPH 3 
  HHPHPHPH 3 
 

Solutions/energy: 
  HPPHPPHPPH 4 
  HHPHPPHPPH 4 
  HPPHPPHPHH 4 
 

Solutions/energy: 
  HPHPPHPHPHPH 5 
  HHHPPHPHPHPH 5 
  HPHHPHPHPHPH 5 
  HHHHPHPHPHPH 5 

Table 5.1 – The main test cases 
 

Tables 5.2, 5.3 and 5.4 display results for multiple experiments using the same sequence 
length of 8, 10 and 12 respectively.  
 
The column abbreviations are as follows.    
 
sampling exponent (SE) The exponent value used to calculate how much we sample 

# of Samples taken The actual number of values taken, calculated using the following formula: 
numSamples =  NSE*10   where N = sequence length 

# iterations to finish How many iterations before reaching one of the stopping criteria 
max iterations Simulated Annealing parameter: maximum iterations for each run  

max alterations Simulated Annealing parameter: Maximum alterations of a candidate 
sequence at a given temperature 

actual # of solutions The true number of solutions (obtained from benchmark results [16] ) 
# solutions returned Total # of solutions returned (correct and incorrect) 
# of correct solutions # of correct solutions 
 
 

N sampling 
exponent 

# of 
samples 

taken 

# iterations 
to finish 

max 
iterations

max 
alterations 

Actual # of 
solutions 

# solutions 
returned 

# of 
correct 

solutions 



8 1.7 342 6 20 100 2 5 2 

8 1.7 342 7 50 30 2 4 2 

8 2.3 1194 5 20 100 2 3 2 

8 2.3 1194 7 50 30 2 5 2 
Table 5.2: Results for sequence length 8 

 
Analysis: Both correct solutions were found each time, along with a few other incorrect 
solutions.  As a rule of thumb, we always requested the algorithm to find N solutions.  In 
general, when we requested less solutions (i.e. the exact number of solutions), the results 
were less accurate.  This is because of the tradeoff between accuracy and performance; 
that is, the cost versus benefit of stochastically searching a larger or smaller subset of 
conformation space. 
 

N Sampling 
Exponent 

# of 
samples 

taken 

# iterations 
to finish MI MA Actual # of 

solutions 
# solutions 

returned 
# of 

correct 
solutions 

 10  1.7  501 11 20 100  3 10 2 

 10  1.7  501 11 50 30  3 10 3 

 10  2.3 1995 13 20 100 3 10 3 

 10  2.3 1995 12 50 30 3 10 3 
Table 5.3: Results for sequence length 10 

 
Analysis: All three solutions were found each time.  The algorithm was requested to find 
ten solutions, so it returned the three correct solutions and another 7. 
 

N Sampling 
Exponent 

# of 
samples 

taken 

# iterations 
to finish 

Max 
Iterations

Max 
Alterations 

Actual # of 
solutions 

# solutions 
returned 

# of 
correct 

solutions 

 12  1.7  683 14 20 100  4 12 4 

 12  1.7  683 14 50 30  4 12 4 

 12  2.3  3034 15 20 100  4 12 4 

 12  2.3  3034 14 50 30  4 12 4 
Table 5.4: Results for sequence length 12 

 
Analysis: Again, all the correct solutions were found but mixed incorrect solutions.  The 
algorithm was asked to return 12 solutions, so it continues finding solutions even after it 
has obtained the correct ones. 
 
 
Additional tests with longer sequence lengths: 
 

Test Case #4: Test Case #5: 

N = 12 
URULULDLDRD 
12 solutions 

N = 16    
URULURRRDLDRDLL 
2 solutions 



  
Solutions/energy: 
  PHPPHPPHPPHP 4 
  HHPPHPPHPPHP 4 
  PHHPHPPHPPHP 4 
  HHHPHPPHPPHP 4 
  PHPPHHPHPPHP 4 
  PHPPHPHHPPHP 4 
  PHHPHPHHPPHP 4 
  PHPPHPPHPHHP 4 
  PHPPHHPHPHHP 4 
  PHPPHPPHPPHH 4 
  HHPPHPPHPPHH 5 
  PHPPHPPHPHHH 4 

Solutions/energy: 
  HHHHHPHHPHHHHPHH 9 
  HHHHHHHHPHHHHPHH 9 

Table 5.5 – Challenging test cases 
 

N Sampling 
Exponent 

# of 
samples 

taken 
# iterations 

to finish 
Max 

Iterations
Max 

Alterations 
Actual # of 
solutions 

# solutions 
returned 

# of 
correct 

solutions 

 12 1.7  683 14 50 30 12 12 1 

 12  2.3  3034 16 50 30 12 12 2 

16  1.9 1114 12 20 100 2 10 1 

16  1.9 11143 13 50 30 2 10 1 
Table 5.6: Results for challenging test cases, with sequence lengths 12 and 16 

 
Analysis: Here we present two dramatically different results.  For N=16, the algorithm 
performs well and returned one of the two true solution sequences.  Considering the 
sampling exponent of 1.7, which really only samples a very small portion of the actual 
conformation space, this shows that the algorithm is able to take advantage of the decoys 
and the free energy approximation, as well as the compact conformation sampling, and 
find one of the two solutions amongst a large solution space.  The test for N=12, is a 
different story.  Unfortunately, it was only able to find 1 or 2 solutions (this experiment 
was repeated several times with the same result).  However, we believe this is due to the 
characteristic of the solution sequences.  As shown above, the set of solution sequences 
contains one sequence with energy -5, and the rest all have energy -4.  Interestingly, the 
algorithm returned all solution sequences with energy -5.   These sequences are incorrect, 
and should have been weeded out during the sampling phase by finding the low energy 
states, but with such a large conformation space and so many putative solution sequences 
with energy -5, our algorithm continually converged to this same result.  Moreover, these 
sequences should have been weeded out in the simulated annealing step by the free 
energy approximation constraint [ ] )2ln()(),( 0 <−Γ σσβ FE , but we can now see that the 
decoy set was insufficiently large to produce a reasonable approximation.  Therefore we 



can conclude that this problem can most likely be remedied by performing a more 
thorough sampling of conformation space, which should result in more putative solutions 
being labeled as degenerate, as well as a larger set of decoy conformations, which in turn 
will help to improve the free energy sum approximation. 
 

6 Conclusions and Future Work 
 
In this work we present a novel approach to the Protein Design problem, our principal 
contribution being the ability to specify the degree of accuracy desired in the solution set. 
We achieve this by replacing the exhaustive search steps of the original Iterative Design 
[6] algorithm with Monte Carlo sampling of conformation space and a Simulated 
Annealing search of sequence space. There is an obvious theme that can be interpreted 
from this work: designing long protein sequences will inevitably require non-exhaustive 
search techniques in order to solve the problem in a realistic amount of time. We believe 
our approach is a step in this direction, which will ultimately allow for designing relevant 
and realistic proteins.  Our modifications to the original Iterative Design algorithm 
provide glimpses of a non-exhaustive protein sequence design algorithm utilizing Monte 
Carlo sampling and simulated annealing optimization, as well as incorporating several 
other concepts that result in additional integrity constraints and improved approximations 
to the free energy sum calculation.  While doing so, we also provide a flexible framework 
for manipulating the relative degree of accuracy in tradeoff for runtime efficiency.  This 
level of control allows the algorithm to explore various levels of solution quality, and 
thus adjust the settings to suit the task at hand.  For example, if only the exact solution 
sequences are desired, we can increase the sampling rate and sequence search parameters 
to move closer to the global optimum.  Now consider the case where a researcher may 
only need a set of designed sequences which may only contain a few optimal solutions, 
but requires them in a very short amount of time.  In this case the sampling rate and 
sequence search parameters can be adjusted to return a best approximation within a 
reasonable amount of time. 
 
While our algorithm shows some promise, there remain many avenues of exploration for 
future work.  First of all, an obvious step to demonstrating the power of our algorithm 
would be in tackling larger sequence sizes.  The main reason for our limited testing sizes 
was due to insufficient resources.  Theoretically, because our algorithm used relative 
sampling ratios, it has the ability to scale to large sequence sizes, although we 
acknowledge that as the sequence sizes increase, so does the margin for error.  To solve 
this, rigorous research into the fine-detailed characteristics of the problem space may 
result in finding ways to optimize the sampling parameters such that the sampling rate is 
sufficiently likely to find the low energy states in a large conformation space.  We believe 
that our algorithm will be well-suited to be ported into the 3-dimensional domain, where 
the search spaces become even larger.  There is also ample room for research into how 
our approximation method handles proteins with more than two amino-acid classes or 
alternative interaction matrices.  Lastly, we admit that Simulated Annealing might not be 
the best strategy for searching sequence space, and perhaps there exists another 
optimization procedure more suited for the task.  One particular method we have already 



considered is Particle Swarm Optimization, a relatively new stochastic optimization 
technique, which uses the power of collective intelligence within a population to 
efficiently search a rugged landscape[18].  PSO shares many similarities with other 
evolutionary computation models, such as Genetic Algorithms (GA).  The main 
difference is that PSO represents solutions as particles in an N-dimensional search, and 
these particles “fly” through the search space looking for the optimal solution.  A 
variation of the PSO is the Binary PSO (BPSO), where each bit is a dimension of the 
solution vector.  For example, if we have a sequence PPHHPP we can represent it as 
110011 and perform a BPSO by defining an appropriate fitness function.  We therefore 
believe that binary PSO is a perfect candidate for searching the sequence space for the 
lowest free energy sequence given the target structure and some decoy structures.   
 
Searching conformation space can be improved as well. Since many self-avoiding walks 
correspond to one contact-map, Monte Carlo algorithms to sample contact-map space 
could provide a significant speedup in the sampling phase of the algorithm. Though the 
Interacting Growth Walk produces compact walks, it does not produce a set of them. 
Batch methods analogous to the pivot [13] and perm [14] algorithms could be employed 
in such a way that compact conformation space is searched instead. In addition, more 
experiments to show the relationship between sampling and sequence size should be 
shown to provide a conceptual framework for how to change sampling based on a given 
conformation length. 
 
 
Acknowledgements: We would like to thank Cristian Micheletti for fruitful 
email correspondence. 
 



References 
 

[1]  J. Deutsch, and T. Kurosky: New Algorithm for Protein Design. Physical 
Review Letters, Vol 76, Num 2, pp. 323-326, 1996. 

 
[2]  A. Irback, C. Peterson, F. Pottharst, and E. Sandelin: Monte Carlo procedure 

for protein design. Physical Review E, Vol 58. Num 5, pp. 5249-5252, 1998. 
 

[3]  A. Irback, C. Peterson, F. Pottharst, and E. Sandelin: Design of Sequences 
with Good Folding Properties in Coarse-grained Protein Models. Structure 
with Folding & Design, Vol 7, 347, 1999. 

 
[4]  K. F. Lau and K. A. Dill., A lattice statistical mechanics model of the 

conformation and sequence spaces of proteins. Macromolecules, 22:3986-
3997, 1989. 

 
[5]  C. Micheletti, A. Maritan, J. Banavar: A comparative study of existing and 

new design techniques for protein models. J. of Chem. Physics, Vol 110, 
Num 19, pp. 9730-9738, 1999. 

 
[6]  A. Rossi, A. Mariton, C. Micheletti, A novel iterative strategy for protein 

design. J. of Chem. Physics, Vol 112, Num 4, pp. 2050-2055, 1999. 
 

[7]  E. Shakhnovich: Protein design: a perspective from simple tractable models. 
Folding & Design, 3:R45-R58, June 1, 1998. 

 
[8]  Betancourt, M. R. and D. Thirumalai, "Protein sequence design by energy 

landscaping." Journal of Physical Chemistry 106: 599-609, 2002. 
 

[9]  Reinhard Schiemann: Exact Enumeration of 3D Lattice Proteins. Diploma 
thesis, Institute for Theoretical Physics, University of Leipzig, Sept. 2003. 

 
[10]  Alan D. Sokal: Monte Carlo Methods for the Self Avoiding Walk. Monte 

Carlo and Molecular Dynamics Simulations in Polymer Science, edited by 
Kurt Binder, Oxford University Press, 1995. (hep-lat/9405016). 

 
[11]  Balanced Ternary Webpage. http://perun.hscs.wmin.ac.uk/~jra/ternary/, 

Accessed: Oct. 2004. 
 

[12]  Brian Hayes: How To Avoid Yourself. American Scientist, Volume 86, 
Number 4, 1998. 

 
[13]  Tom Kennedy: A Faster Implementation of the Pivot Algorithm for Self-

Avoiding Walks. J. Stat. Phys. 106, 407-429, 2002. 
 



[14]  Peter Grassberger: Pruned-Enriched Rosenbluth Method: Simulations of 
Theta Polymers of Chain Length up to 1 000 000. Phys. Rev. E, volume 56, 
number 3, 3682, 1997. 

 
[15]  Peter Grassberger: Sequential Monte Carlo Methods for Protein Folding. 

NIC Symposium 2004, Proceedings, Jon von Neumann Institute for 
Computing, NIC Series, Vol. 20, pp.1-10, 2003. 

 
[16]  Anders Irback and Carl Troein: Enumerating Designing Sequences in the HP 

Model. Journal of Biological Physics, 28:1-15, 2002. 
 

[17]  S.L. Narasimhan, P.S.R. Krishna, K.P.N.Murthy and M. Ramanadham: A 
New Monte Carlo Algorithm for Growing Compact Self Avoiding Walks, 
(cond-mat/0108097 v4 27 Aug. 2001). 

 
[18]  J. Kennedy, R. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann 

Academic Press, 2001. 
 

[19]  B.T. Luke: Simulated Annealing. Learning from the Web, 
http://members.aol.com/btluke/featur05.htm/. Accessed: November 2004. 

 


