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Abstract. Automated algorithm configurators have been shown to be
very effective for finding good configurations of high performance algo-
rithms for a broad range of computationally hard problems. As we show
in this work, the standard protocol for using these configurators is not
always effective. We propose a simple and computationally inexpensive
modification to this protocol and apply it to state-of-the-art solvers for
two prominent problems, TSP and computer Go playing, where the stan-
dard protocol is unable or unlikely to yield performance improvements,
and one problem, mixed integer programming, where the standard pro-
tocol is known to be effective. We show that our new protocol is able
to find configurations between 4% and 180% better than the standard
protocol within the same time budget.

1 Introduction

Many high performance algorithms for computationally hard problems have nu-
merous parameters, some exposed to end users and others hidden as hard-coded
design choices and magic constants, that control their behaviour and perfor-
mance. Recent work on automated configurators has proven to be very effective
at finding good values for these parameters [4, 6, 7, 8, 12, 13, 14, 16, 17]. The
standard protocol for using automated configurators, such as ParamILS [14], to
optimize the performance of a parametric algorithm for a given problem is as
follows:

1. Identify the intended use case of the algorithm (e.g., structure and size of
expected problem instances, resource limitations) and define a metric to be
optimized (e.g., runtime).

2. Construct a training set/scenario which is representative of the intended

use case. The performance of the configurator depends on being able to

evaluate a large number, ideally thousands, of configurations. Training in-
stances/scenarios must be chosen to permit this.

Perform multiple independent runs of the configurator, typically 10-25 [14].

Validate the final configurations found by each run on the training set.

5. Select from the final configurations found by the independent runs the one
with the best performance on the training set.
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While this protocol has been successfully applied to many problems and solvers,
we have observed that it is not always feasible. In particular, for Step 2, choosing
a training set becomes problematic if the time taken to evaluate a configuration
on the training settings is too large. This is the case for Fuego [9], a state-of-the-
art computer Go player based on Monte Carlo tree search (MCTS). The time
taken to evaluate a single configuration of Fuego for competition level play can
take hours or even days (see Section 5.3). For ParamILS to have any hope of
finding a good configuration, each run would have to be allowed to take several
years. In situations of this nature, a training set significantly easier than the
intended use case must be used. Unfortunately, the use of easier training sets
may lead to configurations whose performance may not scale up to the intended
use case.

In this paper, we explore a simple modification to the standard protocol for
using automated configurators that attempts to resolve this problem in a generic
manner. We apply our new protocol to three well-known problems and configu-
ration scenarios. The first of these is the traveling salesperson problem (TSP),
a widely studied combinatorial optimization problem with numerous industrial
applications, for which we configure Keld Helsgaun’s implementation of the Lin-
Kerninghan algorithm (LKH) [11], the best incomplete solver for TSP currently
known (and far superior to any complete solver in terms of finding optimal or
near-optimal solutions fast). In an early stage of our work, described in Section 2,
we found that the standard protocol is ineffective for this configuration scenario.
Our second scenario concerns computer Go playing, a grand challenge in artificial
intelligence, using the state-of-the-art Monte Carlo tree search (MCTS) based
player Fuego [9]. Evaluating configurations for this scenario requires playing hun-
dreds of games (see Section 4.3) which becomes prohibitively expensive for the
intended use case. This makes using the standard protocol infeasible. The third
scenario we consider involves solving mixed integer programming (MIP) prob-
lems, which are widely used for representing constrained optimization problems
in academia and industry, using the state-of-the-art commercial solver CPLEX
[2]. Unlike for the other two scenarios, the standard protocol has been proven
to be very effective for this configuration scenario [12]; our primary motivation
for studying it here is to verify that our new protocol does not lead to compro-
mised configuration performance in cases where the standard protocol is already
effective.

The remainder of this paper is structured as follows. Section 2 illustrates the
problems we have encountered using the standard protocol for configuring LKH.
Section 3 presents our new protocol. Section 4 describes the three configuration
scenarios we consider in this work in more detail. Section 5 explains the experi-
mental setup we used for evaluating our new configuration protocol, and Section
6 presents the empirical results we obtained. Section 7 provides conclusions and
an overview of ongoing and future work.

2 A first attempt at configuring LKH

The starting point for this work was an attempt to configure LKH [11] using
ParamILS. In particular, we were interested in reducing the time taken to find
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Fig. 1. Comparison between the selection and testing (PAR10) speedup, relative to the
default configurations, for 300 configurations of LKH found by ParamILS using the easy
instances, see Section 4.1, for both training and selection. Configurations shown in the
CPU time column of Table 1 are filled in and coloured red. The size of the points for
these configurations corresponds to the time required for finding them.

optimal (or near optimal) solutions for structured instances like those found
in the well-known TSPLIB benchmark collection [15], with a focus on instances
containing several thousand cities, on which LKH’s default configuration can take
several CPU hours on our reference machines (see Section 5) to find near-optimal
solutions. As ParamlILS requires thousands of evaluations [14] of an algorithm
to reliably achieve good results, using such instances directly for training would
result in individual configuration experiments with a duration of up to one year.
Since this is infeasible, we decided to perform training on similarly structured,
but significantly smaller (200-1500 node) instances which takes less than a CPU
minute for the default configuration of LKH to solve.

Since LKH is an incomplete solver, there is no guarantee on the quality of
solution found by a given run. We are therefore interested in the runtime of a
configuration on an particular instance as well as the quality of solution found.
To avoid constructing a Pareto front, we combine these two raw performance
metrics using penalized average runtime (PARI10). This metric uses the total
running time of a given run and then penalizes runs which are unable to achieve
a target solution quality within some time cutoff. As we do not know the optimal
solution quality for every instance used, we determine the target solution quality
by using the final solution found by a single long run of the default configuration.
On instances with a known optimal solution, the target quality chosen is often
equivalent to the optimal for small instances and within 1% of the optimal for
large instances.

Following the standard protocol, we performed multiple independent 24-hour
runs of ParamILS using this easier training set and optimizing for penalized aver-
age runtime (PAR10). The configurations found by these experiments performed
very well on the training set, but often turned out to be worse than the default
configuration when evaluated on the testing set, consisting of the larger instances
we were ultimately interested in solving.



To further explore the reasons for this apparent failure of the standard pro-
tocol, we expanded our experiment to include 300 independent 24-hour runs of
ParamILS using the same metric and the same training set and evaluated the
final configuration found by each of these runs on the entire testing set. As seen
in Figure 1, we found that while the standard protocol for ParamILS was able
to find good configurations, it was unlikely to select them. This is due to the
fact that the performance of a configuration of LKH on the training set is not
a good predictor of that configuration’s performance on the testing set. Despite
being ineffective as a predictor of testing set performance, the training set was
able to guide runs of ParamILS to configurations with a speedup factor of up to
3.19, which suggests it still has value in the configuration process.

3 Automated algorithm configuration for scalable
performance

To address the problem encountered in Section 2, we devised a simple modifica-
tion to the standard protocol for using configurators such as ParamILS. Instead
of selecting between the final configurations found by independent configurator
runs based on their performance on the training set, we select based on their
performance on a set of intermediate instances that are harder than the train-
ing set, but easier than the testing set. For this work, we define intermediate
difficulty based on percentiles of the distribution of running time for the default
configuration of a given solver over the testing set. This protocol has three ad-
vantages over alternative approaches: (1) it does not require any modifications
to the underlying configurator; (2) it can reuse the results of existing configura-
tion experiments; and (3) it can be set up to require only a moderate amount
of additional processing time (in our experiments, the overhead is always be-
low 50% of the total time budget). To assess this protocol, which we dubbed
Train-Easy, Select-Intermediate (TE-SI), we compare it to the original proto-
col, Train-Easy, Select-Easy (TE-SE), and to an alternative approach, in which
training is directly performed on the harder instances used for selection, Train-
Intermediate, Select-Intermediate (TI-SI), always correctly accounting for the
overhead required for evaluating configurations at the selection stage.

4 Configuration scenarios
4.1 Solving TSP using LKH

LKH [11] is a two-phase, incomplete solver for the TSP. It first performs deter-
ministic preprocessing using subgradient optimization, which modifies the cost
function of the given TSP instance while preserving the total ordering of solu-
tions by tour length. The main goal of this first phase, which can sometimes
already reach the desired solution quality, is to make an instance easier for the
subsequent phase to solve. The second phase consists of a stochastic local search
procedure based on chaining together so-called k-opt moves.

For the following experiments, we used a version of LKH 2.02, which we have
extended to allow several parameters to scale with instance size and to make



use of a simple dynamic restart mechanism to prevent stagnation behaviour we
had observed in preliminary experiments. The original configuration space is
preserved by these modifications (i.e., it is possible to replicate the behaviour of
any configuration for the original LKH 2.02 using our extended version).

Training and testing were done using instances from the well-known TSPLIB
benchmark collection [15]. TSPLIB is a heterogeneous set consisting mostly of
industrial and geographic instances. The original TSPLIB set contains only 111
instances; since we consider this too small to allow for effective automated con-
figuration and evaluation, we generated new TSP instances based on existing
TSPLIB instances by randomly selecting 10%, 20%, or 30% of the existing in-
stance’s nodes to be removed. These TSPLIB-like instances retain most of the
original structure and are comparable in difficulty to the original instance, rang-
ing from requiring a factor of 30 less time to a factor of 900 more time for the
default configuration of LKH to solve.

The modified version of LKH 2.02 and the TSPLIB-like instances will be
made available on our website upon publication.

4.2 Solving MIP using CPLEX

CPLEX is one of the best-performing and most widely used solvers for mixed
integer programming problems. It is based on a highly parameterized branch-
and-cut procedure that generates and solves a large number of linear program-
ming (LP) subproblems. While most details of this procedure are proprietary,
at least 76 parameters which control CPLEX’s performance while solving MIP
problems are exposed to end users.

Our work on this scenario aims to mirror recent work by Hutter et al. [12] for
configuring CPLEX 12.1 on the CORLAT instance set, for which the standard
protocol for using ParamlILS was able to achieve a 52-fold speedup over the
CPLEX default settings. The CORLAT instance set consists of 2000 instances
based on real data modeling wildlife corridors for grizzly bears in the Northern
Rockies [10]. Our goal in considering this scenario is to show that our new
configuration protocol is effective even in scenarios where the default protocol is
known to work well.

Hutter et al. [12] used CPLEX 12.1, the most recent version available at the
time of their study. CPLEX 12.3, the current version at the time of this writing,
performs significantly better on the CORLAT instances, achieving a speedup
factor of up to 90 on the hardest instances in the set. To compensate for this sig-
nificant improvement of the default configuration, we performed a 1/50th time
scale replica of the configuration experiments conducted by Hutter et al. [12].
Reducing the runtime of ParamILS and the per-instance cutoffs preserves both
the percentage of training instances that the default configuration is capable of
solving within the time cutoff as well as the number of evaluations ParamILS is
able to perform within the total configuration time budget. The results of our
experiments depend only on the ratio of per-instance runtime to total configu-
ration time and are invariant with respect to the overall time scale. While we
used significantly reduced configuration times, we believe that our results should
generalize to longer configuration runs using harder instances.



The metric being optimized for this scenario is penalized average runtime
(PAR10). We measure the total running time of given run and penalize if it is
unable to find the optimal solution within a cutoff of 1 hour for testing, 6 seconds
for training on easy and 24 seconds for training on intermediate. CPLEX is a
complete solver, so every run of a configuration that does not exhibit errant
behaviour is guaranteed to find the optimal solution to every instance given
enough computational resources. For this scenario, cutoffs and penalties are only
used to limit the total computational effort of performing these experiments.

We also applied the TE-SI protocol to CPLEX 12.1. We found configurations
that offered significant speedups (> 52) compared to the default configuration
of 12.1, improving upon the results found in [12]; however, the overall result
remained qualitatively similar to our work with CPLEX 12.3. We do not present
our results for CPLEX 12.1 due to space limitations.

4.3 Playing Go using Fuego

Developing programs for the game of Go has been a topic of intense study over
the last five decades. Only recently, with the advent of Monte Carlo Tree Search
(MCTS), has the strength of Go programs caught up with top human players,
at least on small board sizes (up to 9 x 9). MCTS combines position evaluation
by randomized playouts of the remainder of a game with a new, selective search
approach that balances exploration and exploitation: the algorithm combines
exploration of parts of a game tree that are still underdeveloped with exploitation
by deep search of the most promising lines of play. The open-source project Fuego
[9] contains both a game-independent framework for MCTS and a state-of-the-
art Go program. The program was the first to beat a top human professional
player in an even game on the 9 x 9 board and has won numerous computer
competitions [1].

Like the other configuration scenarios we study in this work, Fuego has a large
number of configurable parameters. The performance metric to be optimized is
the win rate of a configuration when played against the default configuration.
Note that the baseline is not necessarily 50%: For certain board sizes and playout
limits, the default configuration is stronger playing black than white, while for
other board sizes and playout limits, the opposite holds.

Noisy evaluations Since Fuego uses a randomized playout strategy in its core
MCTS procedure, the win rate of any set of test games played with Fuego varies.
This introduces a significant source of noise when evaluating configurations of
Fuego. This noise must be compensated for by playing additional games; other-
wise, the observed win rates are meaningless (e.g., with 10 games played, there
is a more than 40% chance that the observed win rate of a configurations dif-
feres from its true win rate by at least 10%). The exact number of games needed
depends on the true win rates of the configurations being compared, but often
hundreds, if not thousands, of games are required to reduce the chance of incor-
rectly ranking two configurations to less than 1%. A key point is that the closer
two configurations are in true win rate, the more games are needed to correctly
rank them. We note that while in principle, similar concerns arise for many



other configuration scenarios involving randomised algorithms, the amount of
evaluation noise in the case of Fuego (and other randomised game players) is
particularly large, due to the fact that individual games have binary outcome.

This is particularly problematic for automatic configurators like ParamILS,
which often rely on a sequence of small incremental improvements to a config-
uration. If the improvement is too small, then it will be dwarfed by the noise
in the evaluations and it is impractical to play a sufficient number of games,
potentially thousands, to adequately compensate. We compromise by playing as
many games as are necessary to evaluate a configuration, up to a limit of 200,
during training. We note that when comparing two configurations with true win
rates (as determined in playing against some reference configuration) within 1%
of each other, there is a 20.7% chance of incorrectly ranking them based on a
set of 200 games.

5 Experimental setup

For each configuration scenario, we defined three instance sets of distinct difficul-
ties: an easy instance set, designed to allow ParamlILS to perform at least several
hundred evaluations of candidate configurations; a hard instance set, designed to
represent the difficulty of instances/situations that we are interested in optimiz-
ing the target algorithms performance for; and a set of intermediate instances
with a difficulty between the easy and hard instances. The exact definition of
easy, intermediate and hard is specific to each the configuration scenario.

Using these sets, we performed three sets of configuration experiments using
independent runs of ParamILS. (We chose ParamILS, because it is the only
readily available algorithm configuration procedure that has been demonstrated
to work well on configuration scenarios of the difficulty considered here.) In the
first set of experiments, we used the easy instances during training and then
selected a configuration, from the set of the final configurations produced across
a number of independent runs of ParamILS, according to its performance on the
same (easy) set (this is the standard protocol, TE-SE). The second set used the
easy instances set for training, but intermediate instances for selection (this is
our new protocol, TE-SI). The third set used the intermediate instances for both
training and selection (TI-SI). All testing was performed on the hard instances.
(Recall that we are interested in the case where the hard instances are too
difficult to be used in training.)

LKH and CPLEX experiments were performed on the 384 node DDR par-
tition of the Westgrid Orcinus cluster; Orcinus runs 64-bit Red Hat Enterprise
Linux Server 5.3, and each node has two quad-core Intel Xeon E5450 64-bit
processors running at 3.0 GHz with 16GB of RAM.

Fuego experiments were performed on the 512 node Westgrid Lattice cluster.
Lattice runs 64-bit Linux CentOS 5.5, and each node has two quad-core Intel
Xeon L5520 64-bit processors running at 2.27 GHz with 12 GB of RAM.



5.1 Solving TSP using LKH

The hard instance set consists of 3192 instances containing up to 6000 cities,
drawn from both the original TSPLIB and TSPLIB-like instances. The default
configuration of LKH takes approximately 214 CPU hours on our reference ma-
chines to run on the entire set. The 99th percentile difficulty is 2900 CPU seconds.

The intermediate instance set consists of instances which take the default
configuration between 350 and 580 CPU seconds to solve; this range corresponds
to between 12.5 and 20 percentile difficulty found in the hard instance set. The
default configuration takes approximately 20 CPU hours to run on the entire
intermediate instance set. All instances in the intermediate set are drawn from
a set of TSPLIB-like instances disjoint from the hard instance set. When used
for training, a per-instance cutoff of 780 CPU seconds is used.

The easy instance set consists of instances which take the default configu-
ration between 1 and 52 CPU seconds to solve. The default configuration takes
19 minutes to run on the entire easy instance set. All instances in the easy set
are drawn from a set of TSPLIB-like instances disjoint from those used in the
hard and intermediate sets. When used for training, a per-instance cutoff of 120
seconds is used.

Using these sets, we performed two sets of configuration experiments. The first
set consists of 300 independent 24-hour runs of ParamILS using the easy set for
training. The second set consists of 100 independent 24-hour runs of ParamILS
using the intermediate set for training.

The TE-SE protocol requires 1459 CPU minutes per run of ParamILS. The
TE-SI and TI-SI protocols require 2640 minutes per run of ParamILS.

5.2 Solving MIP using CPLEX

The hard instance set consists of 1650 instances drawn from the set of COR-
LAT instances used in [12]. The default configuration takes approximately 11.5
CPU hours to evaluate the entire instance set. The 99th percentile difficulty is
448 CPU seconds.

The intermediate instance set consists of instances which take the default
configuration between 54 and 90 seconds to evaluate; this range corresponds to
between 12.5 and 20 percentile difficulty found in the hard instance set. The
default configuration takes approximately 1.1 CPU hours to evaluate the entire
intermediate instance set. The instances in the intermediate instance are disjoint
from the hard instance set. When used for training, a per-instance cutoff of 24
CPU seconds is enforced.

The easy instance set consists of instances which take the default configu-
ration between 1 and 10 seconds to evaluate. The default configuration takes
approximately 18 CPU minutes to evaluate the entire easy instance set. The
easy instance set is disjoint from both the hard and intermediate instance sets.
When used for training, a per-instance cutoff of 6 CPU seconds is enforced.

Using these sets, we performed two sets of configuration experiments. The first
set consists of 100 independent 24-hour runs of ParamILS using the easy set for



training. The second set consists of 100 independent 24-hour runs of ParamILS
using the intermediate set for training.

The TE-SE protocol requires 4531 CPU seconds per run of ParamILS. The
TE-SI and TI-SI protocols require 7456 seconds per run of ParamILS.

5.3 Playing Go using Fuego

The hard setting consists of playing 5000 games on a 7 x 7 board with 300 000
playouts. For 5000 games there is a [100%, 99.8%, 91%)] chance of correctly
determining the true win rate of a configuration to within [3%, 2%, 1%].

The intermediate setting consists of playing 1000 games on a 7 x 7 board
with 100000 playouts for selection and 5000 such games for testing. For 1000
games there is a [97%, 88%, 60%)] chance of correctly determining the true win
rate of a configuration to within [3%, 2%, 1%).

The easy setting consists of playing 1000 games on a 7 x 7 board with 10 000
playouts for selection and 5000 such games for testing,

Using these sets, we performed two sets of configuration experiments. The first
set consists of 80 independent 24-hour runs of ParamILS using the easy set for
training. The second set consists of 80 independent 24-hour runs of ParamILS
using the intermediate set for training. Each set of configuration experiments is
split evenly across configuring for playing black or playing white.

The TE-SE protocol requires 5904 CPU hours per run of ParamILS. The
TE-SI and TI-SI protocols require 7200 hours per run of ParamlILS.

6 Results

We are interested in how effective the TE-SI protocol is in a typical setting where
1025 independent runs of the configuration procedure are performed (tyically in
parallel). To assess the variation in the results of such configuration experiments,
we have performed a significantly higher number of configurator runs for each
of our configuration scenarios and then performed a bootstrap analysis based on
the data thus obtained.

For a specific protocol and a target number n of ParamILS runs, we generated
100000 bootstrap samples by selecting, with replacement, the configurations
obtained from the n runs. For each such sample R, we chose a configuration
according to the selection criteria of the protocol under investigation and used
the performance of that configuration on the testing set as the result of R.

We present the results from these analyses in two ways. In Table 1, we show
the median performance of the bootstrap samples for each protocol when using
different numbers of independent ParamILS runs and overall CPU time budget.
In Figure 2, we show the median performance and the ranged spanned by the
5th and 95th percentile performance of bootstrap samples versus total CPU
time budget. For reference, we also show the quality of the default and of the
best known configuration for each scenario. The data in Table 1 thus represents
several time slices from Figure 2.



Table 1. Overview of the speedup versus the default, for LKH and CPLEX, and the
win rate versus the default, for Fuego, during testing for the configurations found by the
three protocols. The performance of each configuration on the instances/settings used
for selection is shown in parentheses. Values presented are the medians over 100 000
bootstrapped samples. The best known performance on easy, intermediate and testing
instance sets / settings are provided for reference. Configurations shown in the CPU
Time column are highlighted in the scatter plots in Figures 1, 3 and 4.

[

Speedup Factor (PAR10) vs Default Configuration

select inter.

LKH best easy: 5.29, best intermediate: 2.58, best testing: 3.19
Runs of ParamILS CPU Time
10 25 50 20 Days 50 Days| 100 Days
train easy
select easy 0.82 (2.78)| 0.73 (3.47)| 0.67 (4.09)|| 0.76 (3.26)| 0.67 (4.09)| 0.61 (4.88)
train easy
Y 1129 (1.29)(1.52 (1.59)|1.71 (1.84)|1.29 (1.31)|1.52 (1.61)|1.71 (1.98)
train iter. g g5 (1 95y 0.97 (2.06)| 0.97 (2.08)|| 0.92 (1.25)| 0.97 (2.06)| 0.97 (2.08)

select inter.

CPLEX best easy: 1.53, best intermediate: 2.77, best testing: 3.03
Runs of ParamILS CPU Time
10 25 50 1 Day| 2.5 Days 5 Days
train easy
seloct ony | /03 (1:20)| 163 (1.26)| 1.61 (1.38)|| 1.63 (1.28)| 1.61 (1.26)| 2.36 (1.53)
train easy
Y 1194 (1.54)(2.24 (1.83)|2.64 (1.92)|2.00 (1.54)|2.36 (1.83)(2.64 (1.92)
train inter. -y o4 63y 1.96 (1.88)| 1.98 (1.99)|| 1.87 (1.71)| 1.98 (1.88)[ 1.98 (1.99)

[

Relative Win Rate (Configuration Win Rate / Default Win Rate)

Fuego - Black

best easy: 1.04, best intermediate: 1.21, best testing: 1.22

select inter.

Runs of ParamILS CPU Time

10 15 30 50 Days 75 Days| 150 Days
train easy
select, easy 1.08 (1.02)| 1.08 (1.02)| 0.94 (1.04)|| 1.08 (1.02)| 1.08 (1.02)| 0.94 (1.04)
train easy
select inter. 1.12 (1.17)(1.13 (1.20)|1.17 (1.21)||1.12 (1.17)(1.13 (1.20)|1.17 (1.21)
train inter.
select inter. 1.10 (1.10)| 1.06 (1.21)| 1.06 (1.21)| 1.10 (1.10)| 1.06 (1.21)| 1.06 (1.21)
Fuego - White best easy: 1.07, best intermediate: 1.13, best testing: 1.45

Runs of ParamILS CPU Time

10 15 30 50 Day 75 Days| 150 Days
train easy
seloct cagy | 113 (1:05)] 113 (1.05)| 1.25 (1.07) | 1.13 (1.05)| 1.13 (1.05)| 1.25 (1.07)
train easy
select inter. 1.27 (1.08)]1.41 (1.13)|1.41 (1.13)|| 1.27 (1.08)|1.41 (1.13)|1.41 (1.13)
frain mter. 1y 39 (1.12)| 1.32 (1.12)| 1.34 (1.12)||1.32 (1.12)| 1.32 (1.12)[ 1.34 (1.12)
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Fig. 2. Relative performance of the configurations found using the three protocols
versus overall CPU time budget spent, including the median and [5th,95th] percentiles
over 100 000 bootstrapped samples for every protocol as well as the quality of the default
and best known configurations for reference. For all three configuration scenarios, the
TE-SI protocol yields the best overall results.
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Fig. 3. Comparison between the selection and testing (PAR10) speedup, relative to the
default configurations, for configurations of LKH found by 300 runs of ParamILS using
TE-SI (left pane) and 100 runs of ParamlILS using TI-SI (right pane). Configurations
shown in the CPU time column of Table 1 are filled in and coloured red. The size of
the points for these configurations corresponds to the time required to find them.

6.1 Results for configuring LKH

The TE-SI protocol was able to reliably improve upon the default configuration
(see Fig. 2). The other two protocols tend to either produce configurations with
quality similar to the default (TI-SI) or notably worse than the default (TE-SE).

Our bootstrap analysis reveals that for small overall time budgets, there is a
> 5% chance for both the TE-SE and the TI-SI protocols to produce configura-
tions which perform better than the default (see 95th percentile curve). However,
as the CPU time budget is increased to 100 CPU days and beyond, this probabil-
ity decreases significantly. The reason underlying this phenomenon is apparent
from Figures 1 and 3: Both protocols encounter, with some probability, configu-
rations with excellent selection performance but poor testing performance, and
as more runs of ParamILS are performed, the chances of obtaining at least one
such misleading configuration increases. We note that the precise location and
magnitude of the drop in 95th percentile shown here depends on the set of runs
from which we obtained our bootstrapped samples and would likely be some-
what different if the entire experiment were repeated. However, we expect that
drops of some magnitude are likely to occur.

6.2 Results for configuring CPLEX

This is a scenario where the standard protocol is known to be effective [12], and
this result is confirmed by our results shown in Figure 2. While both protocols
that select on intermediate are able to reliably find and selected good configu-
rations, the protocol we propose generally provides the best results. For TE-SE
there is still a significant (> 5%) chance that the final configuration selected will
be worse than the default; this is can be attributed to two configurations found,
see Figure 4, with training speedups between 1.3 and 1.4 and testing speedups
of 0.5.



Similar to the results for LKH, there is a decrease in the 95th percentile
quality for configurations found using TE-SE. Again, this can be explained by
the existence of misleading configurations seen in Figure 4.

6.3 Results for configuring Fuego

Like the previous scenarios, using the TE-SI protocol provides the best over-
all performance when configuring Fuego for either playing black or white (see
Figure 2). Interestingly, our results indicate that it is much easier to improve
upon the default configuration of Fuego for playing white, and the majority of
configurations found by all three protocols for playing white were indeed better
than the default, see Figure 2.

Similar to the other scenarios, the TE-SE protocol suffered degrading per-
formance when given additional computational resources, but surprisingly, the
TI-SI protocol suffered from this as well when configuring for playing black.
Looking at Figure 4, we can see that this is due to the presence of one outlier of
particularly good quality (w.r.t. testing quality).

We are only presenting the scatter plots for configurations of Fuego trained
to play black due to limited space. The results were qualitatively similar.

7 Conclusions and future work

In this paper we have shown that the TE-SI protocol provides benefit over the
alternatives whenever it is infeasible to train directly for the intended use case of
an algorithm given the available computational resources. Our simple modifica-
tion to the standard protocol for using automated configurators does not require
any modification to the underlying configurator and allows existing experiments
to be reused. We have then demonstrated, through a large empirical study, the
effectiveness of the TE-SI protocol across three different configuration scenarios.
For solving MIP with CPLEX, a scenario where the standard TE-SE protocol is
known to be effective, the TE-SI protocol was able to improve upon the results
of the standard protocol for short configurator runs; we believe it will continue
to provide benefit for longer runs using harder instances and are currently inves-
tigating this hypothesis. In the other two scenarios, where the standard protocol
is either unable (for solving TSP using LKH) or unlikely (for playing Go us-
ing Fuego) to yield good configurations, the TE-SI protocol is reliably able to
produce better configurations than both the TE-SE and TI-SI protocols and
facilitates substantial improvements over the default configurations.

We see three main avenues for future work. First, we are currently extending
the analysis of our new protocol by testing it on additional configuration scenar-
ios, including CPLEX 12.3 applied to a harder set of MIP instances, based on
real-world data modeling the spread of red-cockaded woodpeckers [3], as well as
Concorde [5], the state-of-the-art complete TSP solver, on TSPLIB instances.
We also plan to evaluate how well our new protocol works in conjunction with
other algorithm configuration procedures, in particular, the latest version of
SMAC [13]. Second, we have begun to investigate the use of predictive models in
improving the effectiveness of selecting configurations. Finally, we plan to apply
the methods presented in this paper as well as any that result from future work
to configuring new versions of Fuego for upcoming Go competitions.
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Fig. 4. Comparison between the selection and testing performance of CPLEX (left
side), measuring PAR10 speedup, and Fuego (right side) trained for playing black,
measuring relative winrate, found by multiple independent runs (100 for CPLEX and
40 for Fuego) of ParamILS using the TE-SE (top), TE-SI (middle) and TI-SI (bottom)
protocols. Configurations shown in the CPU Time column of Table 1 are filled in and
coloured red. The size of the points for these configurations corresponds to the time
required to find them.
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