
Using Racing to Automatically Configure
Algorithms for Scaling Performance

James Styles and Holger Hoos
University of British Columbia, Canada, e-mail: {jastyles,hoos}@cs.ubc.ca

Abstract. Automated algorithm configuration has been proven to be
an effective approach for achieving improved performance of solvers for
many computationally hard problems. Following our previous work, we
consider the challenging situation where the kind of problem instances
for which we desire optimised performance are too difficult to be used
during the configuration process. In this work, we propose a novel com-
bination of racing techniques with existing algorithm configurators to
meet this challenge. We demonstrate that the resulting algorithm con-
figuration protocol achieves better results than previous approaches and
in many cases closely matches the bound on performance obtained using
an oracle selector. An extended version of this paper can be found at
www.cs.ubc.ca/labs/beta/Projects/Config4Scaling.

1 Introduction
High performance algorithms for computationally hard problems often have nu-
merous parameters which control their behaviour and performance. Finding good
values for these parameters, some exposed to end users and others hidden as
hard-coded design choices, can be a challenging problem for algorithm design-
ers. Recent work on automatically configuring algorithms has proven to be very
effective. These automatic algorithm configurators rely on the use of significant
computational resource to explore the design space of an algorithm.

In previous work [7] we examined a limitation of the basic protocol for using
automatic algorithm configurators in scenarios where the intended use case of
an algorithm is too expensive to be feasibly used during configuration. We pro-
posed a new protocol for using algorithm configurators, referred to as train-easy
select-intermediate (TE-SI), which uses so-called easy instances during the con-
figuration step of the protocol and so-called intermediate instances during the
selection step. Through a large empirical study we were able to show that TE-SI
reliably out performed the basic protocol.

In this work, we show how even better configurations can be found using
two novel configuration protocols that combine the idea of using intermediate
instances for validation with the concept of racing. One of these protocols uses
a new variant of F-Race [1] and the other is based on a novel racing procedure
dubbed ordered permutation race. We show that both racing-based protocols
reliably outperform our previous protocol [7] and are able to produce configu-
rations up to 25% better within the same time budget or configurations of the
same quality in up to 45% less total time and up to 90% less time for validation.

To assess the effectiveness of our new protocols, we performed a empirical
study across five configuration scenarios, described in Section 3. All scenarios
use the freely available algorithm configurators ParamILS [5] and SMAC [4].



2 Validation using racing

Racing, as applied to algorithm configuration, evaluates a set of candidate con-
figurations of a given target algorithm on a set of problem instances, one of which
is presented in each stage of the race, and eliminates configurations from con-
sideration once there is sufficient evidence that they are performing significantly
worse than the current leader of the race. The race ends when either a single
configuration remains, when all problem instances have been used, or when an
overall time budget has been exhausted. There are three important aspects to
racing strategies: (1) how the set of candidate configurations is constructed, (2)
what metric is used to evaluate configurations, and (3) what method is used to
determine if a configuration can be eliminated from further consideration.

The first and most prominent racing procedure for algorithm configuration
is F-Race [1], which uses the non-parametric, rank-based Friedman test to de-
termine when to eliminate candidate configurations. A major limitation of this
basic version of F-Race stems from the fact that in the initial steps, all given
configurations have to be evaluated. This property of basic F-Race severely lim-
its the size of the configuration spaces to which the procedure can be applied
effectively. Basic F-Race and its variants select the instance used to evaluate
configurations for each round of the race at random from the given training set.

Slow racers make for slow races. In each round of a race, every candidate
configuration must be evaluated. If the majority of candidate configurations have
poor performance, then much time is spent performing costly evaluations of bad
configurations before anything can be eliminated. This is problematic, because
good configurations are often quite rare, so that the majority of configurations
in the initial candidate set are likely to exhibit poor performance. Therefore,
we perform racing on a set of candidate configurations obtained from multiple
runs of a powerful configurator rather than for the configuration task itself; this
way, we start racing from a set of configurations that tend perform to well which
significantly speeds up the racing process.

It doesn’t take a marathon to separate the good from the bad. The first
few stages of racing are the most expensive. Yet, during this initial phase, there
is not yet enough information to eliminate any of the configurations, so the entire
initial candidate set is being considered. We know how the default configuration
of an algorithm performs on each validation instance, which gives us an idea for
the difficulty of the instance for all other configurations of the target algorithm.
By using instances in ascending order of difficulty, we reserve the most difficult
(i.e., costly) evaluations for later stages of the race, when there are the fewest
configurations left to be evaluated.

Judge the racers by what matters in the end. The configuration scenarios
examined in this work involve minimising a given target algorithm’s runtime.
While rank-based methods may indirectly lead to a reduction in runtime they are
more appropriate for scenarios where the magnitude of performance differences
does not matter. We therefore propose the use of a permutation test instead of
the rank-based Friedman test, focused on runtime, for eliminating configurations.

In detail, our testing procedure works as follows. Given n configurations
c1, . . . cn, and m problem instances i1, . . . , im considered at stage m of the race,



we use pk,j to denote the performance of configuration ck on instance ij , and
pk to denote the aggregate performance of configuration ck over i1, . . . , im. In
this work, we use penalised average run time, PAR10, to measure aggregate
performance, and our goal is to find a configuration with minimal PAR10. Let
c1 be the current leader of the race, i.e., the configuration with the best ag-
gregate performance among c1, . . . , cn, We now perform pairwise permutation
tests between the leader, c1, and all other configurations ck. Each of these tests
assesses whether c1 performs significantly better than ck; if so, ck is eliminated
from the race. To perform this one-sided pairwise permutation test between c1
and ck, we generate 100 000 resamples of the given performance data for these
two configurations. Each resample is generated from the original performance
data by swapping the performance values p1,j and pk,j with probability 0.5 and
leaving them unchanged otherwise; this is done independently for each instance
j = 1, . . . ,m. We then consider the distribution of the aggregate performance
ratios p′1/p

′
k over these resamples and determine the q-quantile of this distribu-

tion that equals the p1/pk ratio for the original performance data. Finally, if,
and only if, q > α2, where α2 is the significance of the one-sided pairwise test,
we conclude that c1 performs significantly better than ck. Different from F-race,
where the multi-way Friedman test is used to gate a series of pairwise post-tests,
we only perform pairwise tests and therefore need to perform multiple testing
correction. While more sophisticated corrections could be applied, we decided to
use the simple, but conservative Bonferroni correction and set α2 := α

n−1 for an
overall significance level α.

We refer to the racing procedure that considers problem instances in order
of increasing difficulty for the default configuration of the given target algorithm
and in each stage eliminates configurations using the previously described series
of pairwise permutation tests as ordered permutation race (op-race), and the
variant of basic F-race that uses the same ordering as ordered F-race (of-race).

The TE-FRI and TE-PRI configuration protocols. We now return to the
application of racing in the context of a configuration protocol that starts from
a set of configurations obtained from multiple independent runs of a configura-
tor. In this context, we start op-race and of-race from the easiest intermediate
difficulty instance and continue racing with increasingly difficult instances until
either a single configurations remains, the time budget for validation has been
exhausted, or all available intermediate instances have been used.

This yields two new protocols for using algorithm configurators: (1) train-
easy validate-intermediate with of-race (TE-FRI) and (2) train-easy validate-
intermediate with op-race (TE-PRI). We have observed that both protocols are
quite robust with respect to the significance level α (see extended version) and
generally use α = 0.01 for TE-FRI and α = 0.1 for TE-PRI.

3 Experimental Setup and Protocol

The result of a single, randomized, configuation experiment (i.e., a set of con-
figurator runs and the corresponding global validation step) may be misleading
when trying to assess the quality of a configuation procedure. We therefore per-
formed a large number of configurator runs, up to 300, for each scenario, and



fully evaluated the configuration found by each run on the training, validation
and testing sets. For a specific protocol and a target number n of configurator
runs, we generated 100 000 bootstrap samples by selecting, with replacement,
the configurations obtained from the n runs. For each such sample R, we chose a
configuration with the selection criteria of the protocol under investigation and
used the performance of that configuration on the testing set as the result of R.

For all experiments, we measured the performance of configurations on a
given instance, using penalised average runtime required for reaching the opti-
mal solution and a penalty factor of 10 times the scenario-specific cutoff for every
run that failed to reach the optimal solution. For all scenarios, we configured the
target algorithm for minimised PAR-10 using a set of easy training instances
defined as being solvable by the default configuration within the per-instance
cutoff used during training. We then defined the set of intermediate instances as
being in the 12.5th to 20th percentile difficulty of the testing set. The easy, in-
termediate and testing instance sets are disjoint for each scenario. Each scenario
can then be defined by: the target algorithm, the instance set, the configurator
time budgets and the per-instance cutoffs enforced during training and testing.

TSP solving using LKH. The first scenario we considered involves configuring
Keld Helsgaun’s implementation of the Lin-Kerninghan algorithm (LKH), the
state-of-the art incomplete solver for the traveling salesperson problem (TSP) [3],
to solve structured instances similar to those found in the well known TSPLIB
benchmark collection [6, 7]. Each run of ParamILS and SMAC was given a
time budget of 24 hours. A 120 second per-instance cutoff was enforced during
configuration and a 2 hour per-instance cutoff was enforced during testing.

MIP solving using CPLEX. The final three scenarios we considered involve
configuring CPLEX, one of the best-performing and most widely used industrial
solvers for mixed integer programming (MIP), for solving instances based on real
data modeling either wildlife corridors for grizzly bears in the Northern Rockies
[2] (CORLAT instances) or the spread of endangered red-cockaded woodpeckers
based on decisions to protect certain parcels of land (RCW instances).

The first CPLEX scenario considered configuring CPLEX 12.1 for CORLAT
instances. Each run of ParamILS was given a time budget of 20 hours. A 120
second per-instance cutoff was enforced during configuation and a 2 hour per-
instance cutoff was enforced during testing. The second CPLEX scenario con-
sidered configuring CPLEX 12.3 for CORLAT instances. Each run of ParamILS
and SMAC was given a time budget of 3456 seconds. A 15 second per-instance
cutoff was enforced during configuation and a 346 second cutoff was enfored
during testing. The third CPLEX scenario considered configuring CPLEX 12.3
for RCW instances. Each run of ParamILS and SMAC was given a time budget
of 48 hours. A 180 second per-instance cutoff was enfored during configuration
and a 10 hour cutoff was enforced during testing.

Execution environment. All our computational experiments were performed
on the 384 node DDR partition of the Westgrid Orcinus cluster; Orcinus runs 64-
bit Red Hat Enterprise Linux Server 5.3, and each DDR node has two quad-core
Intel Xeon E5450 64-bit processors running at 3.0 GHz with 16GB of RAM.



Table 1. Speedups obtained by our configuration protocols, using ParamILS, on con-
figuration scenarios with different overall time budgets. An increase in overall configura-
tion budget corresponds to an increase in the number of configuration runs performed,
rather than to an increase in the time budget for individual runs of the configurator.
This means larger time budgets can be achieved by increasing either wall-clock time
or the number of concurrent parallel configurator runs. The highest median speedups,
excluding the oracle selector, for each configuration scenario and time budget are bold-
faced.

Median [10%, 90%] Speedup (PAR10)
Time Budget

TE-SI TE-FRI TE-PRI
Oracle

(CPU Days) Selector
Configuring LKH for TSPLIB, using ParamILS
20 1.33 [0.96, 2.29] 1.34 [1.00, 2.11] 1.34 [0.95, 2.11] 1.71 [1.33, 3.11]
50 1.52 [1.06, 3.10] 1.60 [1.25, 3.10] 1.85 [1.25, 3.10] 2.11 [1.46, 3.19]
100 2.10 [1.24, 3.19] 2.11 [1.46, 3.19] 2.29 [1.38, 3.19] 2.29 [1.85, 3.19]
Configuring LKH for TSPLIB, using SMAC
20 0.99 [0.71, 1.23] 1.00 [0.73, 1.23] 1.08 [0.89, 1.23] 1.12 [0.89, 1.25]
50 1.08 [0.89, 1.23] 1.08 [0.92, 1.23] 1.08 [0.89, 1.23] 1.23 [1.08, 1.25]
100 1.08 [0.89, 1.23] 1.23 [1.00, 1.23] 1.23 [0.89, 1.25] 1.25 [1.23, 1.25]
Configuring CPLEX 12.3 for RCW, using ParamILS
40 1.11 [0.97, 1.39] 1.12 [0.96, 1.39] 1.08 [0.98, 1.42] 1.23 [1.08, 1.42]
100 1.12 [1.03, 1.42] 1.16 [1.06, 1.42] 1.16 [0.98, 1.42] 1.39 [1.16, 1.42]
200 1.13 [1.11, 1.42] 1.37 [1.06, 1.42] 1.42 [0.98, 1.42] 1.42 [1.37, 1.42]
Configuring CPLEX 12.3 for RCW, using SMAC
40 0.79 [0.54, 1.01] 0.79 [0.54, 1.24] 0.79 [0.54, 1.01] 0.95 [0.77, 1.24]
100 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 0.82 [0.77, 1.24] 1.01 [0.84, 1.24]
200 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 1.24 [0.77, 1.24] 1.24 [0.98, 1.24]
Configuring CPLEX 12.1 for CORLAT, using ParamILS
40 54.5 [42.2, 61.1] 53.8 [42.9, 61.1] 55.8 [48.3, 61.1] 60.0 [48.8, 68.3]
100 60.1 [49.0, 68.3] 60.6 [53.4, 68.3] 61.1 [50.3, 68.3] 61.3 [60.0, 68.3]
200 61.5 [53.8, 68.3] 68.3 [60.1, 68.3] 68.3 [60.6, 68.3] 68.3 [60.6, 68.3]
Configuring CPLEX 12.3 for CORLAT, using ParamILS
1.0 2.00 [1.02, 2.64] 1.93 [1.19, 2.64] 2.24 [1.00, 3.04] 2.36 [1.94, 3.04]
2.5 2.36 [1.95, 3.04] 2.36 [1.95, 3.04] 2.36 [1.93, 3.04] 2.64 [2.24, 3.04]
5.0 2.64 [2.24, 3.04] 3.02 [1.95, 3.04] 3.02 [2.24, 3.04] 3.04 [2.64, 3.04]
Configuring CPLEX 12.3 for CORLAT, using SMAC
1.0 2.41 [1.46, 3.66] 2.41 [1.39, 3.66] 2.89 [1.54, 3.66] 2.89 [2.16, 3.84]
2.5 3.26 [1.94, 3.84] 3.26 [2.19, 3.84] 3.26 [2.41, 3.66] 3.66 [2.93, 3.84]
5.0 3.66 [2.89, 3.84] 3.66 [3.26, 3.84] 3.66 [2.41, 3.66] 3.84 [3.66, 3.84]

4 Results

Using the methods described in Section 3 we evaluated each of the four proto-
cols on all five configuration scenarios. The results are shown in Table 1, where
we report bootstrapped median quality (in terms of speedup over the default
configurations, where run time was measured using PAR10 scores) of the con-
figurations found within various time budgets as well as bootstrap [10%,90%]
percentile confidence intervals (i.e., 80% of simulated applications of the respec-
tive protocol fall within these ranges; note that these confidence intervals are not
for median speedups, but for the actual speedups over simulated experiments).

As can be seen from these results, TE-PRI is the most effective configura-
tion protocol, followed by TE-FRI and TE-SI. These three protocols tend to
produce very similar [10%, 90%] confidence intervals, but the two racing ap-
proaches achieve better median speedups, especially for larger time budgets.

To further investigate the performance differences between the protocols, we
compared them against a hypothetical protocol with an oracle selection mech-
anism. This mechanism uses the same configurator runs as the other protocols,



but always selects the configuration from this set that has the best testing per-
formance, without incurring any additional computational burden. This provides
a upper bound of the performance that could be achieved by any method for
selecting from a set of configurations obtained for a given training set, configura-
tor and time budget. These results, shown in Table 1, demonstrate that for some
scenarios (e.g., CPLEX 12.1 for CORLAT) the various procedures, particularly
TE-PRI, provide nearly the same performance as the oracle, while for others
(e.g., CPLEX 12.3 for RCW), there is a sizable gap.

5 Conclusion

In this work, we have addressed the problem of using automated algorithm con-
figuration in situations where instances in the intended use case of an algorithm
are too difficult to be used directly during the configuration process. Building
on the idea of selecting from a set of configurations optimised on easy training
instances by validating on instances of intermediate difficulty recently, we have
introduced two novel protocols for using automatic configurators by leveraging
racing techniques to improve the efficiency of validation. The first of these proto-
cols, TE-FRI, uses a variant of F-Race [1] and the second, TE-PRI, uses a novel
racing method based on permutation tests. Through a large empirical study we
have shown that these protocols are very effective and reliably outperform the
TE-SI protocol we previously introduced across every scenario we have tested.
This is the case for SMAC [4] and ParamILS [5], two fundamentall different con-
figuration procedures (SMAC is based on predictive performance models while
ParamILS performs model-free stochastic local search), which suggests that our
new racing protocols are effective independently of the configurator used.

References

[1] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In GECCO ’02: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 11–18, 2002.

[2] C. P. Gomes, W. Jan van Hoeve, and A. Sabharwal. Connections in networks: A
hybrid approach. In CPAIOR, volume 5015 of LNCS, pages 303–307. Springer,
2008.

[3] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. In EJOR, volume 126, pages 106–130, 2000.

[4] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Proc. 5th Intl. Conference on Learning and
Intelligent Optimization, volume 6683 of LNCS, pages 507–523. Springer, 2011.

[5] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An Automatic
Algorithm Configuration Framework. In Journal of Artificial Intelligence Research,
volume 36, pages 267–306, October 2009.

[6] G. Reinelt. TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/ soft-
ware/TSPLIB95. Version visited in October 2011.

[7] J. Styles, H. H. Hoos, and M. Müller. Automatically configuring algorithms for
scaling performance. In Proc. 6th Intl. Conference on Learning and Intelligent
Optimization, volume 7219 of LNCS, pages 205–219. Springer, 2012.


