
A Data generation
We use a methodology similar to Xu, Hoos, and Leyton-
Brown (2012) to evaluate the performance of our architecture.
First, we used the cnfgen Python library (Lauria et al. 2017)
to generate uniform random 3-SAT instances at the phase tran-
sition. Following Crawford and Auton (1996), we used m =

4.258n+58.26n�2/3 to estimate the location of the phase tran-
sition. We generated 5, 000 SAT instances and 5, 000 UNSAT
instances between 100 and 600 variables in steps of 50 variables.
In total, we obtained 11, 000 instances in 11 sets.

To obtain the prediction targets (satisfiability and satisfy-
ing assignments) for each instance, we ran used the lookahead
solver march hi (Heule and van Maaren 2009). Although our
generation script was limited to a runtime of 24 hours for all
instances in a particular set, we repeatedly executed the script
until all instances were obtained.

For our experiments, we used 61 features from Nudelman
et al. (2004). These include 7 problem size features, 29 graph-
based features, 13 features related to balance of positive and
negative literals, 6 features related to distance to horn formula,
and 6 features related to LP relaxation.

All instances were generated on a shared compute cluster, on
one of 24 nodes equipped with 1 cores, two 2.1 Ghz Intel E5-
2683 v4 Broadwell processors per core, and 16 GB of RAM per
core. A memory budget of 15 GB was set for each execution of
the generation script.

B Baseline model details
B.1 Random forests
We followed Xu, Hoos, and Leyton-Brown (2012) in choosing
hyperparameters for our decision forests. Each forest was com-
posed of 99 trees. Given a training set of n instances, we drew a
bootstrap sample of n instances with replacement for each tree,
and sampled a random subset of blog2(91)c + 1 = 7 features
at each internal node for splitting. We used majority voting,
weighted by probability estimates, across all trees to make pre-
dictions. Xu, Hoos, and Leyton-Brown (2012) did not specify
either the splitting criteria or min-split parameter (i.e, number
of samples required to split a node) that they used. We used the
Gini impurity for evaluating the quality of splits, and required
a minimum of five samples to split a node.

B.2 Multilayer perceptron
Our feed-forward network architecture maps the input to a
width of 64, followed by 8 hidden layers with 128 units each,
and then maps to a 1 ⇥ 1 output. Leaky ReLU activation and
dropout with a ratio of 0.5 are applied to each layer. The same
training procedure and computing nodes used to train the ex-
changeable network were used to train the feed-forward net-
work.

B.3 Convolutional network
Our convolutional network applies three convolutional layers to
the input, each with 18 output channels and kernel size 3. Each
convolutional layer is followed by a 2⇥2 max pooling layer and
RELU activations. We then attach two fully connected layers
of 64 and then 10 nodes. Our convolutional network can only
be used to make predictions for fixed-size instances due to the
fixed size of the input layer.

B.4 Nearest neighbour
Our nearest neighbour method uses a graph-edit distance met-
ric, which is permutation-invariant. To do so, we represent a
CNF SAT instance as a clause-variable graph. In the graph, each
variable and its negation are connected vertices, and a variable
vertex shares an edge with a clause vertex if the variable par-
ticipates in that clause. We use both the greedy and Hausdorff
graph-edit distance metrics from the Python library GMatch4py.
The Hausdorff edit distance matches nodes based on the simi-
larity of local substructure, and computes the number of edits
required for the graphs to be equivalent. The greedy graph edit
distance is a greedy approximation of the Hausdorff edit dis-
tancem, which runs in quadratic time.

C Training details
All training took place on a shared compute cluster, with 114
nodes equipped with 24 cores, two 2.2 Ghz Intel E5-2683 v4
Broadwell processors per core, 5.3 GB of RAM per core, and
four NVIDIA P100 Pascal GPUs with 12 GB of HBM2 memory
per core. Each execution of the training script was allocated one
GPU and had a memory budget of 2 GB for the exchangeable
models and 20 GB for the NeuroSAT models. The same com-
puting nodes used for instance generation were used to evaluate
the random forests.

C.1 Training plots
Similar trends in validation error (e.g. Figure 5) were observed
between different training experiments on each instance size.
Training losses for models that predicted satisfying assignments
were higher due to cross-entropy losses for assignments. The
inclusion of assignment prediction and size information led to
more rapid convergence, but also earlier overfitting in the train-
ing process. As expected, overfitting also occurred earlier for
smaller instances, for which less structural information can be
learnt by the network.

D Additional experiments
D.1 Size information
When pooling across representations, mean pooling ensures
size invariance, meaning that information is lost if absolute
counts of features are important. We tested whether this was
true by appending the size of any pooled representation as
an additional feature, which allows subsequent layers to learn
to “undo” the pooling if necessary. If �(x) is a representa-
tion over which we pool, the pooling operation becomes y =
1
N

PN
i=1[�(xi);N ], where [x;N ] denotes the concatenation of

the vector x and N . We used a base-2 encoding of N to ensure
that, if the input varies significantly in size, the weights associ-
ated with N would only cover a small range.

We found that, for an exchangeable network with eight ex-
changeable layers, appending size information caused networks
to overfit more quickly, and consistently resulted in poorer per-
formance at the training set sizes we explored. However, they
still generally achieved improvements of 1 � 8% over random
forests, and 1 � 6% over feed-forward networks. These results
are shown in Table 3. However, when experimenting with dif-
ferent architectures, we found that size information improved
prediction accuracy on models with 3–5 exchangeable layers.



0 50000 100000 150000

Epoch

0.00

0.25

0.50

0.75

1.00

Train loss Test accuracy

0 20000 40000 60000 80000 100000

Epoch

0.00

0.25

0.50

0.75

1.00

Train loss Test accuracy

0 20000 40000 60000 80000 100000

Epoch

0.00

0.25

0.50

0.75

1.00

Train loss Test accuracy

Figure 5: Training loss and SAT prediction accuracy for ex-
changeable networks trained to predict satisfiability (above),
both satisfiability and satisfying assignments (middle), and
both with size information appended to the input (below).

D.2 Predicting satisfying assignments
For the variants of our exchangeable network trained to jointly
predict satisfiability and satisfying assignments, we also eval-
uated their prediction accuracy on satisfying assignments. As
shown in Table 4, both networks acheived prediction accuracies
between 70% and 73%. Note that we were only evaluating as-
signment accuracy based on single satisfying assignment found
by a SAT solver. Each satisfiable instance may have several sat-
isfying assignments. Earlier overfitting by the network with size
information appended to the inputs again decreased prediction
accuracy.

D.3 Cross-training with multiple sizes
We further tested the ability of our network to capture general
structural information by determining whether networks trained
on instances of multiple sizes achieved better prediction accu-
racy. To do so, we considered the 100-variable, 200-variable,
300-variable, 400-variable, 500-variable, and 600-variable in-

Variable +Sizes

100 0.711
150 0.741
200 0.759
250 0.776
300 0.780
350 0.791
400 0.781
450 0.778
500 0.768
550 0.806
600 0.812

Table 3: Comparison of prediction accuracy for satisfiability
achieved during the epoch with the lowest validation error,
using networks trained to predict satisfiability and satisfying
assignments with size information appended to the input.
Refer also to Table 1.

stance sets. Networks were trained on five of the sets, and eval-
uated on the sixth set, and the resulting prediction accuracy was
compared against networks trained on instances of the same
sizes as the test set.

Table 5 shows the satisfiability prediction accuracies for
all three variants. Their performance was comparable to net-
works trained on single problem sizes; on smaller instances
(< 400 variables), they had better prediction accuracy. Unlike
networks trained on single problem sizes, size information gen-
erally improved prediction accuracy, which suggests that size
information is useful for capturing structural information from
instances of multiple sizes.



Variable +Assigns +Sizes

100 0.725 0.721
150 0.722 0.715
200 0.722 0.715
250 0.717 0.712
300 0.719 0.709
350 0.713 0.707
400 0.715 0.708
450 0.714 0.704
500 0.712 0.709
550 0.711 0.706
600 0.712 0.712

Table 4: Comparison of prediction accuracy for satisfying
assignments achieved during the epoch with the lowest vali-
dation error. +Assigns denotes the network trained to predict
satisfiability and satisfying assignments, and +Sizes denotes
the network trained to predict satisfiability and satisfying
assignments with size information appended to the input.

Test Variable SAT +Assigns +Sizes
(vs orig.) (vs orig.) (vs orig.)

100 0.760 0.775 0.749
(0.712) (0.726) (0.711)

200 0.784 0.786 0.787
(0.760) (0.772) (0.759)

300 0.773 0.775 0.791
(0.789) (0.800) (0.780)

400 0.739 0.768 0.770
(0.765) (0.790) (0.781)

500 0.774 0.769 0.770
(0.800) (0.809) (0.768)

600 0.762 0.765 0.766
(0.814) (0.837) (0.812)

Table 5: Comparison of prediction accuracy for satisfiability
using networks evaluated using one of the 100-variable, 200-
variable, 300-variable, 400-variable, 500-variable, or 600-
variable instance sets, and trained on the five other sets. Pre-
diction accuracies for networks trained on the testing variable
sets are replicated from Table 1 in parentheses. SAT denotes
the permutation-equivariant network trained to predict satisfi-
ability; +Assigns, the network trained to predict satisfiability
and satisfying assignments; and +Sizes, the network trained
to predict satisfiability and satisfying assignments with size
information appended to the input. Boldface indicates the
best-performing approach.


