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The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise — by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)
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Performance matters ...

» computation speed (time is money!)

> energy consumption (battery life, ...)

» quality of results (cost, profit, weight, ...

. increasingly:

> globalised markets
> just-in-time production & services

> tighter resource constraints
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Example: Resource allocation

> resources > demands ~» many solutions, easy to find

economically wasteful
~~ reduction of resources / increase of demand

> resources < demands ~» no solution, easy to demonstrate

lost market opportunity, strain within organisation
~~ increase of resources / reduction of demand

> resources ~ demands
~ difficult to find solution / show infeasibilityresources ~
demands
~ difficult to find solution / show infeasibility
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This tutorial:

new approach to software development, leveraging ...

> human creativity
> optimisation & machine learning

» large amounts of computation / data
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Key idea:

» program ~~ (large) space of programs

> encourage software developers to
» avoid premature commitment to design choices
» seek & maintain design alternatives

» automatically find performance-optimising designs
for given use context(s)

= Programming by Optimization (PbO)
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Outline
1. Programming by Optimization: Motivation & Introduction
2. Algorithm Configuration (incl. Coffee Break)
3. Portfolio-based Algorithm Selection

4. Software Development Support & Further Directions
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Programming by Optimization:
Motivation & Introduction



Example: SAT-based software verification
Hutter, Babi¢, Hoos, Hu (2007)

» Goal: Solve SAT-encoded software verification problems
as fast as possible

» new DPLL-style SAT solver SPEAR (by Domagoj Babic)

= highly parameterised heuristic algorithm

(26 parameters, ~ 8.3 x 107 configurations)
» manual configuration by algorithm designer

» automated configuration using ParamlILS, a generic
algorithm configuration procedure
Hutter, Hoos, Stiitzle (2007)
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SPEAR: Performance on software verification benchmarks

solver num. solved mean run-time
MiniSAT 2.0 302/302 161.3 CPU sec
SPEAR original 298/302 787.1 CPU sec
SPEAR generic. opt. config. 302/302 35.9 CPU sec
SPEAR specific. opt. config. ~ 302/302 1.5 CPU sec

» =2 500-fold speedup through use automated algorithm
configuration procedure (ParamlILS)

> new state of the art
(winner of 2007 SMT Competition, QF_BV category)
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Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.

Hoos & Hutter: Programming by Optimization
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Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (SPEAR), 41 4.5-500 x 2-3
Hutter, Babi¢, Hoos, Hu (2007)

Al Planning (LPG), 62 3-118 x 1

Vallati, Fawcett, Gerevini, Hoos, Saetti (2011)

Mixed integer programming (CPLEX), 76 2-52 x 0

Hutter, Hoos, Leyton-Brown (2010)

. and solution quality:

University timetabling, 18 design choices, PbO level 2-3

~> new state of the art; UBC exam scheduling
Fawcett, Chiarandini, Hoos (2009)

Machine learning / Classification, 786 design choices, PbO level 0-1
~ outperforms specialised model selection & hyper-parameter optimisation

methods from machine learning
Thornton, Hutter, Hoos, Leyton-Brown (2012-13)
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PbO enables . ..

>

performance optimisation for different use contexts

(some details later)

adaptation to changing use contexts
(see, e.g., life-long learning — Thrun 1996)

self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

automated generation of instance-based solver selectors
(e.g., SATzilla — Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra — Xu et al. 2010; ISAC — Kadioglu et al. 2010)

automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Hoos et al. 2012)

Hoos & Hutter: Programming by Optimization
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Cost & concerns

But what about ...

» Computational complexity?
» Cost of development?

» Limitations of scope?

Hoos & Hutter: Programming by Optimization
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Computationally too expensive?

SPEAR revisited:

» total configuration time on software verification benchmarks:
~ 30 CPU days

» wall-clock time on 10 CPU cluster:
~ 3 days

» cost on Amazon Elastic Compute Cloud (EC2):
81.76 CAD (= 75.60 USD)

» 81.76 CAD pays for ...

» 1:58 hours of typical software engineer in Canada
» 7:54 hours at minimum wage in Québec

Hoos & Hutter: Programming by Optimization 17



Too expensive in terms of development?

Design and coding:
» tradeoff between performance/flexibility and overhead
» overhead depends on level of PbO

» traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

» design alternatives for individual mechanisms and components
can be tested separately

~ effort linear (rather than exponential) in the number of
design choices

Hoos & Hutter: Programming by Optimization 18



Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

» computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

» optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

» compiler optimisation
(Pan & Eigenmann 2006; Cavazos et al. 2007)

> database server configuration
(Diao et al. 2003)

Hoos & Hutter: Programming by Optimization 19



Overview

* Programming by Optimization (PbO):
Motivation and Introduction

* Algorithm Configuration
— Methods (components of algorithm configuration)
— Systems (that instantiate these components)
[coffee]
— Demo & Practical Issues
— Case Studies

* Portfolio-Based Algorithm Selection

e Software Development Support & Further Directions
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The Algorithm Configuration Problem

Definition
— Given:
 Runnable algorithm A with configuration space & = &1 x --- X O,

* Distribution D over problem instances I1
* Performance metric m : ® x II — R

— Find:

0" c arg minQE@ ]ETI'ND [m(ea ﬂ-)]

Motivation @

Customize versatile algorithms
for different application domains
— Fully automated improvements

— Optimize speed, accuracy, Q ﬁ
memory, energy consumption, ... very Iarge R
of configurations
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Algorithm Configuration is a Useful Abstraction

* Applicable to different types of algorithms

— Tree search, local search, metaheuristics, machine learning, ...

e Large improvements to solvers for
many hard combinatorial problems

— SAT, Max-SAT, MIP, SMT, TSP, ASP, time-tabling, Al planning, ...
— Competition winners for all of these rely on configuration tools

22



Algorithm Configuration is a Useful Abstraction

* Increasingly popular (citation numbers from Google scholar)

200 ; ; :

mmm SMAC (Hutter et al. 11)

mmmm [/F-Race (Balaprakash et al. 07)

= GGA (Ansotegui et al. 09)

mmmm ParamlILS (Hutter et al. 09)
150 Lo, ........................ ........................ .................
100 Lo J R S i .

50 Lo ................. e
0
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Algorithm Parameters

Parameter types
— Continuous, integer, ordinal
— (Categorical: finite domain, unordered, e.g. {a,b,c}

Parameter space has structure

— E.g. parameter C of heuristic A is only active if A is used
— In this case, we say C is a conditional parameter with parent A

Parameters give rise to a structured space of algorithms
— Many configurations (e.g. 10%/)
— Configurations often yield qualitatively different behaviour
— Algorithm configuration (as opposed to “parameter tuning”)
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The Algorithm Configuration Process

Parameter domains
& starting values

Configurator

Calls with
different
parameter
settings

Configuration scenario

Target
algorithm

Solves

Problem
mstances

Returns solution cost




Overview

* Programming by Optimization (PbO):
Motivation and Introduction

* Algorithm Configuration

» Methods (components of algorithm configuration)
— Systems (that instantiate these components)
— Demo & Practical Issues
— Case Studies

* Portfolio-Based Algorithm Selection

e Software Development Support & Further Directions
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Configurators have Two Key Components

* Component 1: which configuration to evaluate next?
— Out of a large combinatorial search space
— E.g., CPLEX: 76 parameters, 10’ configurations

* Component 2: how to evaluate that configuration?
— Evaluating performance of a configuration is expensive
— E.g., CPLEX: budget of 10000s per instance

— Instances vary in hardness
» Some take milliseconds, other days (for the default)
* Improvement on a few instances might not mean much



Component 1: Which Configuration to Choose?

* For this component, we can consider a simpler problem:

Blackbox function optimization g“i@)“ f(6)

— Only mode of interaction: query f(0) at arbitrary 6®

0 —>.—>f(6)

— Abstracts away the complexity of multiple instances

— O is still a structured space
* Mixed continuous/discrete
* Conditional parameters
 Still more general than “standard” continuous BBO [e.g., Hansen et al.]
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The Simplest Search Strategy: Random Search

e Select configurations uniformly at random
— Completely uninformed
— Global search, won’t get stuck in a local region
— At least it’s better than grid search:

Grid | ayout Random | avout

: - -
© c | (@)
3 2 ®
5 sl o g
S = (@)
a g_ .
=
= (@) (@) O = ﬁ O
-) > O

Important parameter Important parameter

Image source: Bergstra et al, Random Search for Hyperparameter Optimization, JMLR 2012
29



The Other Extreme: Gradient Descent
(aka hill climbing)

Start with some configuration

repeat

Modify a single parameter

if performance on a benchmark set degrades then

_ undo modification

until no more improvement possible
(or “good enough”)



Stochastic Local Search

[e.g., Hoos and Stltzle, 2005]

e Balance intensification and diversification
— Intensification: gradient descent
— Diversification: restarts, random steps, perturbations, ...

* Prominent general methods
— Tabu search [Glover, 1986]
— Simulated annealing [Kirkpatrick, Gelatt, C. D.; Vecchi, 1983]
— Iterated local search [Lourenco, Martin & Stiitzle, 2003]
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Population-based Methods

* Population of configurations
— Global + local search via population
— Maintain population fitness & diversity

 Examples
— Genetic algorithms [e.g., Barricelli, ’57, Goldberg, "89]
— Evolutionary strategies [e.g., Beyer & Schwefel, '02]
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Sequential Model-Based Optimization

* Fit a (probabilistic) model
of the function

 Use that model
to trade off
exploitation vs exploration

* In the machine learning
literature also known as
Bayesian Optimization

t=2

observation e T -

acquisition max
acquisition (utility) function
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Sequential Model-Based Optimization

e Popular approach in statistics
to minimize expensive blackbox functions [e.g., Mockus, '78]

* Recent progress in the machine learning literature:

global convergence rates for continuous optimization

[Srinivas et al, ICML 2010]

[Bull, IMLR 2011]

[Bubeck et al., IMLR 2011]

[de Freitas, Smola, Zoghi, ICML 2012]
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Estimation of Distribution (EDA)

o [e.g., Pelikan, Goldberg and Lobo, 2002]
* Also uses a probabilistic model

 Also uses that model to inform where to evaluate next
* But models promising configurations: P(x is “good”)

— In contrast to modeling the function: P(f|x)

Image source: Wikipedia
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Exploiting Low Effective Dimensionality

e Often, not all parameters are equally important
e Can search in an embedded lower-dimensional space

X

6"

Important
A

Unimportant X,

* For details, see:

— Bayesian Optimization in High Dimensions via Random
Embeddings [wang et al, IJCAI 2013]
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Summary 1: Which Configuration to Evaluate?

Need to balance diversification and intensification
* The extremes
— Random search
— Hillclimbing
e Stochastic local search (SLS)
* Population-based methods
* Sequential Model-Based Optimization
e Estimation of Distribution (EDA) algorithms

* Exploiting low effective dimensionality



Component 2: How to Evaluate a Configuration?

Back to general algorithm configuration

— Given:
« Runnable algorithm ‘A with configuration space & = @1 X --- X O,
* Distribution D over problem instances I1
* Performance metric m : ® x II — R

— Find:

0" c arg minQE@ ]ETI'ND [m(ea W)]

Recall the Spear example

— Instances vary in hardness
* Some take milliseconds, other days (for the default)
* Thus, improvement on a few instances might not mean much



Simplest Solution: Use Fixed N Instances

e Effectively treat the problem as a blackbox function
optimization problem

* |ssue: how large to choose N?

— Too small: overtuning
— Too large: every function evaluation is slow

* General principle
— Don’t waste time on bad configurations
— Evaluate good configurations more thoroughly
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Racing Algorithms

[Maron & Moore, NIPS 1994]
[Birattari, Stitzle, Paquete & Varrentrapp, GECCO 2002]

e Compare two or more algorithms against each other

— Perform one run for each configuration at a time
— Discard configurations when dominated

Image source: Maron & Moore, Hoeffding Races, NIPS 1994
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Saving Time: Aggressive Racing

[Hutter, Hoos & Stitzle, AAAI 2007]

* Race new configurations against the best known

— Discard poor new configurations quickly
— No requirement for statistical domination

e Search component should allow to return to
configurations discarded because they were “unlucky”
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Saving More Time: Adaptive Capping

[Hutter, Hoos, Leyton-Brown & Stutzle, JAIR 2009]
(only when minimizing algorithm runtime)

Can terminate runs for poor configurations 0’ early:
— Is O’ better than 67

- 20
- Example: [

RT(0)=20 RT(6')=20

« Can terminate evaluation of 6’ once
guaranteed to be worse than 0
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Summary 2: How to Evaluate a Configuration?

e Simplest: fixed set of N instances
* General principle

— Don’t waste time on bad configurations
— Evaluate good configurations more thoroughly

* Instantiations of principle
— Racing
— Aggressive racing
— Adaptive capping



Overview

* Programming by Optimization (PbO):
Motivation and Introduction

* Algorithm Configuration

— Methods (components of algorithm configuration)
» Systems (that instantiate these components)

— Demo & Practical Issues

— Case Studies

* Portfolio-Based Algorithm Selection

e Software Development Support & Further Directions
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Overview: Algorithm Configuration Systems

e Continuous parameters, single instances (blackbox opt)

— Covariance adaptation evolutionary strategy (CMA-ES)
[Hansen et al, since '06]

— Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al, "06]

— Random Embedding Bayesian optimization (REMBO)
[Wang et al, "13]

* General algorithm configuration methods
— ParamlLS [Hutter et al, ’07 and '09]
— Gender-based Genetic Algorithm (GGA) [Ansotegui et al, "09]
— lterated F-Race [Birattari et al, 02 and “10]
— Sequential Model-based Algorithm Configuration (SMAC)

[Hutter et al, since "11]

— Distributed SMAC [Hutter et al, since "12]
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The ParamlILS Framework

[Hutter, Hoos, Leyton-Brown & Stiitzle, AAAI 2007 & JAIR 2009]

Iterated Local Search in parameter configuration space:

perturbation

cost

S*

solution space S

— Performs biased random walk over local optima
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The BasiclLS(N) algorithm

Instantiates the ParamILS framework
Uses a fixed number of N runs for each evaluation

— Sample N instance from given set (with repetitions)
— Same instances (and seeds) for evaluating all configurations
— Essentially treats the problem as blackbox optimization

How to choose N?

— Too high: evaluating a configuration is expensive
— Optimization process is slow

— Too low: noisy approximations of true cost
— Poor generalization to test instances / seeds
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Generalization to Test set, Large N (N=100)

x 10"

— BasicILS(100) performance on test set
= = =BasiclLS(100) performance on training set

N
8

(|

—
@)

—k
]

Runlength (median, 10% & 90% quantiles)

10 10 10
CPU time [s]

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)



Generalization to Test Set, Small N (N=1)

x 10"

(o))

BasiclLS(1) performance on test set
= = =BasiclLS(1) performance on training set

n

e

Runlength (median, 10% & 90% quantiles)
(%]

o

=3
o

CPU time [s]

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)



BasiclLS: Speed/Generalization Tradeoff

1.8

1.6

1.4

Median runlength of SAPS [steps]

BasicILS(100)

BasicILS(1)

/

' BasicILS(10)

1“' l

i
1
1
1
%
v
1

10° 10

CPU time for ParamlILS [s]

Test performance of SAPS on a single QWH instance



The FocusedILS Algorithm

Aggressive racing: more runs for good configurations
— Start with N(0) = 0 for all configurations
— Increment N(O) whenever the search visits 0
— “Bonus” runs for configurations that win many comparisons

Theorem
As the number of FocusedILS iterations — oo,
it converges to the true optimal conguration
— Key ideas in proof:
1. The underlying ILS eventually reaches any configuration
2. For N(O) — oo, the error in cost approximations vanishes
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FocusedILS: Speed/Generalization Tradeoff

x 10°

2.2

BasiclLS(100)
--=- /

BasicILS(1)

/

1.8

i
1
1
1
]
)
1

1.6

1.4

1.2

Median runlength of SAPS [steps]

10’ 10° 10
CPU time for ParamiILS [s]

Test performance of SAPS on a single QWH instance



Speeding up ParamiLS

[Hutter , Hoos, Leyton-Brown, and Stiitzle, JAIR 2009]

Standard adaptive capping
— Is @’ better than 67

- 20
« Example: -

RT(0)=20 RT(0’)>20

« Can terminate evaluation of 8’ once guaranteed to be worse than 0

Theorem

Early termination of poor configurations does not change
ParamlILS's trajectory

— Often yields substantial speedups
— Especially when best configuration is much faster than worst
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Gender-based Genetic Algorithm (GGA)

[Ansotegui, Sellmann & Tierney, CP 2009]

* Genetic algorithm
— Genome = parameter configuration
— Combine genomes of 2 parents to form an offspring

* Two genders in the population
— Selection pressure only on one gender
— Preserves diversity of the population
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Gender-based Genetic Algorithm (GGA)

[Ansotegui, Sellmann & Tierney, CP 2009]

* Use N instances to evaluate configurations
— Increase N in each generation

— Linear increase from N to N, 4

start

* User specifies #generations ahead of time

* Can exploit parallel resources
— Evaluate population members in parallel
— Adaptive capping: can stop when the first k succeed
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F-Race and Iterated F-Race

[Birattari et al, GECCO 2002 and book chapter 2010]

* F-Race .
— Standard racing framework _ {JE I

— F-test to establish that some |
configuration is dominated - | ﬂ/{

— Followed by pairwise t tests
if F-test succeeds

* |terated F-Race

— Maintain a probability distribution
over which configurations are good

— Sample k configurations from that distribution & race them
— Update distributions with the results of the race
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F-Race and Iterated F-Race

[Birattari et al, GECCO 2002 and book chapter 2010]

* Can use parallel resources
— Simply do the k runs of each iteration in parallel
— But does not support adaptive capping

* Expected performance

— Strong when the key challenge are reliable comparisons
between configurations

— Less good when the search component is the challenge
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Model-Based Algorithm Configuration

[Hutter, Hoos & Leyton-Brown, LION 2011]

SMAC: Sequential Model-Based Algorithm Configuration

— Sequential Model-Based Optimization
& aggressive racing

X3
repeat . /'\

- construct a model to predict performance

- use that model to select promising configurations

- compare each selected configuration against the best known
until time budget exhausted
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SMAC: Aggressive Racing

e Similar racing component as FocusedILS

— more runs for good configurations
— Increase #runs for incumbent over time

 Theorem for discrete configuration spaces:

As SMAC's overall time budget — oo,
it converges to the optimal configuration



Powering SMAC: Empirical Performance Models

Given:

— Configuration space ® = ©; x --- X O,

— For each problem instance i: x;, a vector of feature values @
— Observed algorithm runtime data: (0, x,, yv,), ..., (0., %, v,)

Find: a mapping m: [0, x] — v predicting A’s performance

@ ) =m (0, x)
— Rich literature @'J

on such performance

prediction problems
[see, e.g, Hutter, Xu, Hoos, Leyton-Brown, AlJ 2014, for an overview]

— Here: use a model m based on random forests
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— |In each internal

— In each leaf: sto

Regression Trees: Fitting to Data

featureW

param 1 | feature 2 | param 3 || runtime
false 2 red 3.7
false 2.5 blue 20
true 5.5 red 2.1
false 5.5 blue 25
false 5 red 1.2
true 4.5 green 19
true 4 blue 12
true 3.5 green 17

criterion used

param, e {red} aram, € {blue, green}

param 1 | feature 2 | param 3 || runtime
false 2 red 3.7
true ) red 2.1
false 3 red 1:2

Wﬁz > 3.5

param | |feature 2 | param 3 ||runtime | |param 1 |feature 2| param 3 || runtime
false 2 red 3.7 true 5.5 red 2.1
false 5 red L2

param 1 | feature 2 | param 3 || runtime
false 2.5 blue 20
false 5.5 blue 25
true 4.5 green 19
true 4 blue 12
true 3.5 green 17
o o ©

61



Regression Trees: Predictions for New Inputs

E.Q. X, = (true, 4.7, red)
— Walk down tree, return mean runtime stored in leaf = 1.65

param, e {red} aram, e {blue, green}
featureiaﬁ/wi2 >35 / \

3.7 1.65
e o o



Random Forests: Sets of Regression Trees

Training
— Draw T bootstrap samples of the data
— For each bootstrap sample, fit a randomized regression tree

Prediction

— Predict with each of the T trees
— Return empirical mean and variance across these T predictions

Complexity for N data points
— Training: O(TN log? N)
— Prediction: O(Tlog N)
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Advantages of Random Forests

Automated selection of important input dimensions
— Continuous, integer, and categorical inputs
— Up to 138 features, 76 parameters

— Can identify important feature and parameter subsets

* Sometimes 1 feature and 2 parameters are enough
[Hutter, Hoos, Leyton-Brown, LION 2013]

Robustness
— No need to optimize hyperparameters
— Already good predictions with few training data points
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SMAC: Averaging Across Multiple Instances

 Fitarandom forest model m: ® x II — R

* Aggregate over instances by marginalization
f(0) := Er.p[m(0, )

— Intuition: predict for each instance and then average

— More efficient implementation in random forests
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SMAC: Putting it all Together

Initialize with a single run for the default

repeat =

- learn a RF model from data so far: /_\\/-\
m:0 xII -+ R * ¥

- Aggregate over instances: /'\
F(8) == Erepfm(6, ) N\

- use model f to select promising configurations

- race each selected configuration against the best known

until time budget exhausted

 Distributed SMAC [Hutter, Hoos & Leyton-Brown, 2012]
— Maintain queue of promising configurations
— Race these against best known on distributed worker cores



SMAC: Adaptive Capping

[Hutter, Hoos & Leyton-Brown, BayesOpt 2011]

Terminate runs for poor configurations 0 early:

— Lower bound on runtime -

— right-censored data point f(6*)=20  f(0)>20

----- RF mean prediction
RF mean +/- 2*stddev
" = True function
O Function evaluations
% Right-censored fun. evals.
3t == == Exp. improvement (scaled)H

response y
%]

0 0.1 02 0.3 0.4 0.5 0.6 0.7 08 09 1

parameter x
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Experimental Evaluation

[Hutter, Hoos & Leyton-Brown, LION 2011]

Compared SMAC vs. ParamlILS and GGA
— On 17 SAT and MIP conflguratlon scenarlos‘ same time budget

SMAC performed best

— Improvements in test performance of configurations returned
« vs ParamlILS: 0.93x — 2.25x (11/17 cases significantly better)
« vs. GGA: 1.01x — 2.76x (13/17 cases significantly better)

Wall-clock speedups in distributed SMAC

— Almost perfect with up to 16 parallel workers
— Up to 50-fold with 64 workers

e Reductions in wall clock time: 5h = 6 min -15 min
2 days = 40min - 2h
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Overview

* Programming by Optimization (PbO):
Motivation and Introduction

* Algorithm Configuration
— Methods (components of algorithm configuration)
— Systems (that instantiate these components)
Demo & Practical Issues
— Case Studies

* Portfolio-Based Algorithm Selection

e Software Development Support & Further Directions
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The Algorithm Configuration Process

Parameter domains
& starting values

. Configuration scenario
Calls with 8 Problem
different instances
Configurator Target
5 parameter & Solves
- algorithm
settings

Returns solution cost

What the user has to provide

Parameter space declaration file Wrapper for command line call
preproc {none, simple, expensive} [simple] ./wrapper —inst X —timeout 30
alpha [1,5] [2] -preproc none -alpha 3 -beta 0.7
beta [0.1,1] [0.5] — e.g. “successful after 3.4 seconds”




Example: Running SMAC

wget http://www.cs.ubc.ca/labs/beta/Projects/SMAC/smac-v2.06.00-master-615.tar.gz
tar xzvf smac-v2.06.00-master-615.tar.gz

cd smac-v2.06.00-master-615

/smac For a usage screen

/smac --seed 0 --scenarioFile example scenarios/spear/spear-scenario.txt

Scenario file holds:
Location of parameter file, wrapper & instances
Objective function (here: minimize avg. runtime)
Configuration budget (here: 30s)
Maximal captime per target run (here: 5s)
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Output of a SMAC run

[INFO ] ****Runtime Statistics*****

Incumbent ID: 12 (0x22BB8)

Number of Runs for Incumbent: 43

Number of Instances for Incumbent: 5

Number of Configurations Run: 42

Performance of the Incumbent: 0.012555555555555556

Configuration Time Budget used: 30.589647351000067 s (101%)

Sum of Target Algorithm Execution Times (treating minimum value as 0.1): 24.70000s
CPU time of Configurator: 5.889042742 s

[I N FO ] *kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

[INFO ] Total Objective of Final Incumbent 12 (0x22BB8) on training set:
0.012555555555555556; on test set: 0.014499999999999999

[INFO ] Sample Call for Final Incumbent 12 (0x22BB8)

cd /ubc/cs/home/h/hutter/tmp/smac-v2.06.00-master-615/example_scenarios/spear; ruby spear_wrapper.rb
instances/qcplin2006.10408.cnf 0 5.0 2147483647 3282095 -sp-update-dec-queue '0' -sp-rand-var-dec-scaling
'0.3528466348383826' -sp-clause-decay '1.713857938112484' -sp-variable-decay '1.461422623379798' -sp-orig-
clause-sort-heur '7' -sp-rand-phase-dec-freq '0.05' -sp-clause-del-heur '0' -sp-learned-clauses-inc
'1.452683835620401' -sp-restart-inc '1.6481745669620091" -sp-resolution '0' -sp-clause-activity-inc
'0.7121640599232154" -sp-learned-clause-sort-heur '12" -sp-var-activity-inc '0.9358501810374242' -sp-rand-var-dec-
freq '0.0001' -sp-use-pure-literal-rule '1' -sp-learned-size-factor '0.27995062371127827' -sp-var-dec-heur '16' -sp-
phase-dec-heur '6' -sp-rand-phase-scaling '1.0424648235977578' -sp-first-restart '31"'




Decision #1: Configuration Budget & Captime

* Configuration budget

— Dictated by your resources & needs
* E.g., start configuration before leaving work on Friday

— The longer the better (but diminishing returns)
* Rough rule of thumb: typically at least enough time for 1000 target runs
* But have also achieved good results with 50 target runs in some cases

 Maximal captime per target run
— Dictated by your needs (typical instance hardness, etc)
— Too high: slow progress
— Too low: possible overtuning to easy instances
— For SAT etc, often use 300 CPU seconds

73



Decision #2: Choosing the Training Instances

* Representative instances, moderately hard
— Too hard: won’t solve many instances, no traction
— Too easy: will results generalize to harder instances?

— Rule of thumb: mix of hardness ranges
* Roughly 75% instances solvable by default in maximal captime

* Enough instances
— The more training instances the better
— Very homogeneous instance sets: 50 instances might suffice
— Preferably > 300 instances, better even > 1000 instances
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Decision #2: Choosing the Training Instances

* Split instance set into training and test sets
— Configure on the training instances — configuration 0*

— Run (only) 0* on the test instances
* Unbiased estimate of performance

Pitfall: configuring on your test instances

That’s from the dark ages

Fine practice: do multiple configuration runs
and pick the 0* with best training performance

Not (!!) the best on the test set




Decision #2: Choosing the Training Instances

 Works much better on homogeneous benchmarks

— Instances that have something in common
* E.g., come from the same problem domain
* E.g., use the same encoding

— One configuration likely to perform well on all instances

Pitfall: configuration on too heterogeneous sets

There often is no single great overall configuration
(but see algorithm selection etc, second half of the tutorial)




Decision #3: How Many Parameters to Expose?

e Suggestion: all parameters you don’t know to be useless
— More parameters — larger gains possible
— More parameters — harder problem
— Max. #parameters tackled so far: 768

* With more time you can search a larger space

Pitfall: including parameters that change the problem

E.g., optimality threshold in MIP solving
E.g., how much memory to allow the target algorithm




Decision #4: How to Wrap the Target Algorithm

* Do not trust any target algorithm
— Will it terminate in the time you specify?
— Will it correctly report its time?
— Will it never use more memory than specified?
— Will it be correct with all parameter settings?

Good practice: wrap target runs with tool controlling
time and memory (e.g., runsolver )

Good practice: verify correctness of target runs

Detect crashes & penalize them

Pitfall: blindly minimizing target algorithm runtime

Typically, you will minimize the time to crash




Overview

* Programming by Optimization (PbO):
Motivation and Introduction

* Algorithm Configuration
— Methods (components of algorithm configuration)
— Systems (that instantiate these components)
— Demo & Practical Issues

» Case Studies

* Portfolio-Based Algorithm Selection

e Software Development Support & Further Directions
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Applications of Algorithm Configuration

Helped win Competitions

% Mixed integer SAT: since 2009

5@ programming ASP: since 2009

IPC: since 2011
D T Time-tabling: 2007
o'.‘n
Scheduling and SMT: 2007
Resource Allocation Other Academic Applications
Protein Folding, Computer GO
Exam TSP & Quadratic Assi t Probl
Timetabling uadra |c‘ ssignment Problem
since 2010 Game Theory: Kidney Exchange
Linear algebra subroutines
Google Improving Java Garbage Collection
Spam filters Evolutionary Algorithms
Machine Learning: Classification ...




Back to the Spear Example

[Hutter, Babic, Hu & Hoos, FMCAD 2007]

Spear [Babic, 2007]

— 26 parameters
— 8.34 x 10' configurations
Ran ParamiLS, 2 to 3 days x 10 machines

— On a training set from each of 2 distributions

Compared to default (1 week of manual tuning)
— On a disjoint test set from each distribution

— & .
s 10 | 1
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4.5-fold speedup
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Other Examples of PbO for SAT

* SATenstein [KhudaBukhsh, Xu, Hoos & Leyton-Brown, 1JCAI 2009]

— Combined ingredients from existing solvers
— 54 parameters, over 10%? configurations
— Speedup factors: 1.6x to 218x

e Captain Jack [Tompkins & Hoos, SAT 2011]
— Explored a completely new design space
— 58 parameters, over 10°° configurations
— After configuration: best known solver for 3sat10k and IL50k
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Configurable SAT Solver Competition (CSSC)

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]

* Annual SAT competition
— Scores SAT solvers by their performance across instances

— Medals for best average performance with solver defaults
* Misleading results: implicitly highlights solvers with good defaults

 CSSC 2013 & 2014

— Better reflects an application setting:
homogeneous instances
— can automatically optimize parameters

— Medals for best performance after configuration



CSSC Result #1

[Hutter, Lindauer, Balint, Bayless, Hoos & Leyton-Brown 2014]

* Solver performance often improved a lot:
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CSSC Result #2

[Hutter, Lindauer, Balint, Bayless, Hoos & Leyton-Brown 2014]

 Automated configuration changed algorithm rankings
— Example: random SAT+UNSAT category in 2013

m CSSC ranking Default ranking
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Configuration of a Commercial MIP solver

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]

Mixed Integer Programming (MIP)

1min CT.CU

s.t. Ax<b
x; € Ztor1el

Commercial MIP solver: IBM ILOG CPLEX
— Leading solver for 15 years
— Licensed by over 1 000 universities and 1 300 corporations
— 76 parameters, 10%/ configurations

—
o

| x Train
10% (L Test

Minimizing runtime to optimal solution
— Speedup factor: 2x to 50x
— Later work: speedups up to 10,000x

— " b
o (=) o
| (=] —_ 1] (5} EN o
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X

Minimizing optimality gap reached

— Gap reduction factor: 1.3x to 8.6x% e
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Comparison to CPLEX Tuning Tool

) [Hutter, Hoos & Leyton-Brown, CPAIOR 2010]
CPLEX tuning tool

— Introduced in version 11 (late 2007, after ParamILS)
— Evaluates predefined good configurations, returns best one
— Required runtime varies (from < 1h to weeks)

ParamlLS: anytime algorithm
— At each time step, keeps track of its incumbent

@ _|[— Default 2 10°%
D 6/ % CPLEX tuning tool 2 o
Q. == ParamlILS . - %
0.5 2
o) @ "
B QO %
2 ¢ < 10° ',
£ 3 L. X I_ower is better l = s,
S ‘e S — Default ..
b 2 e s X CPLEX tuning tool| " “*~.,
o 4| | | | N Q gl ParamILS |
10° 10" 100  10° 10" 10° 10°

Configuration budget [CPU s] Configuration budget [CPU s]

2-fold speedup
(our worst result)




Configuration of Machine Learning Algorithms

* Machine Learning has celebrated substantial successes

e But it requires human machine learning experts to
— Preprocess the data
— Perform feature selection
— Select a model family
— Optimize hyperparameters

 AutolML: taking the human expert out of the loop
— AutoML Workshops at ICML & NIPS this year
— Very related to PbO
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Cross-validation for hyperparameter opt.

* To gain confidence in a parameter configuration:

— Evaluate performance as average performance across k cross-
validation folds (here: k=3)

Training Validation

Training  Validation  Training

Validation Training

k
x 1 (1) (2
A" € argmin z E 1 L(Ax,D D

train? Valid)
AEA




Hyperparameter Optimization as AC

* Performance metric: cross-validation accuracy

* Each cross-validation fold corresponds to an instance:

0" c arg miﬂgee ]E'T{'ND [m(97 ﬂ-)]

train?® = valid )
AEA

k
SR (i) )
A" € argmin z Z;ﬁ(A}”D D

— We do not need to evaluate all folds for every configuration!
— In practice, almost k-fold speedup for k-fold CV



Case Study: Auto-WEKA

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]

WEKA [Witten et al, 1999-current]
— most widely used off-the-shelf machine learning package
— over 20,000 citations on Google scholar

Java implementation of a broad range of methods
— 27 base classifiers (with up to 10 parameters each)
— 10 meta-methods
— 2 ensemble methods
— 3 feature search methods & 8 feature evaluators

Different methods work best on different data sets

— Want a true off-the-shelf solution:
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WEKA’s configuration space

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]
Base classifiers

— 27 choices, each with subparameters

Hierarchical structure on top of base classifiers

— In total: 768 parameters, 10%’ configurations

— Optimize cross-validation performance over this space using SMAC

AdaBoostM1

Bagging

I

I
. . . . |
iterations iterations ,
percentage - - « |percentage |
use resampling out of bag err '

|
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Auto-WEKA: Results

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]

Auto-WEKA performs better than best base classifier
— Even when “best classifier” uses an oracle
— Especially on the 8 largest datasets
— In 6/21 datasets more than 10% reductions in relative error
— Time requirements: 30h on 4 cores

Comparison to full grid search

— Union of grids over parameters of all 27 base classifiers
— Auto-WEKA is 100 times faster
— Auto-WEKA has better generalization performance in 15/21 cases

Auto-WEKA based on SMAC vs. TPE [Bergstra et al, NIPS'11]

— SMAC yielded better CV performance in 19/21 cases
— SMAC yielded better generalization performance in 14/21 cases
— Differences usually small, in 3 cases substantial (SMAC better)
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Auto-WEKA Discussion

* PbO enables effective off-the-shelf machine learning
— Expert understanding of ML techniques -
not required to use them @
— Users still need to provide good features

 Auto-WEKA is available online: automl.org/autoweka

* Ongoing:
— Wrappers from several programming languages
— Auto-sklearn (python)


automl.org/hpolib
automl.org/hpolib

ML Case Study 2: Deep Learning

* What is deep learning?

— Neural networks with many layers

 Why is there so much excitement about it?

— Dramatically improved the state-of-the-art in many areas, e.g.,
* Speech recognition
* Image recognition

— Automatic learning of representations

Source: Krizhevsky et al, 2012
— no more manual feature engineering ;

* What changed?

— Larger datasets Source: Le et al, 2012

— Better regularization methods, e.g., dropout [Hinton et al, 2012]
— Fast GPU implementations [Krizhevsky et al, 2012]
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ML Case Study 2: Deep Learning

* Deep neural networks have many hyperparameters

— Continuous : learning rate, momentum, regularization, ...
— Integer: #layers, #units per layer, batch size in SGD, ...
— Categorical: preprocessing, activation function

— Conditional : all hyperparameters in layer K are
only active if the network has at least K layers

 We parameterized the Caffe framework [Jia, 2013]
— 9 network hyperparameters
— 12 hyperparameters per layer, up to 6 layers
— In total 81 hyperparameters



Automatic Structure & Hyperparameter Search
[Domhan, Springenberg & Hutter, AutoML'14]

* Optimized Caffe for CIFAR-10 image classification task:
deep neural network on k-means features [Coates & Ng, 2011]

0.28 . . | T
l o—e SMAC
._ m—a TPE
0.26F “— random search ||

0.24}

error

0.22}

0.20}

0.18
0

20 40 60 80 100
number of networks evaluated
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Yielded best results for this architecture

[Domhan, Springenberg & Hutter, AutoML'14]

Method Number of centroids  Test set accuracy
SVM [Coates & Ng, 2011] 4000 79.6%
SVM [Coates & Ng, 2011] 1600 77.9%
Deep neural network [Sversky et al, 2011] 400 78.9%
Deep neural network (SMAC) 400 80.9%
Deep neural network (TPE) 400 80.2%
Deep neural network (random search) 400 80.1%
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Speedups by Prediction of Learning Curves
[Domhan, Springenberg & Hutter, AutoML'14]

e Humans can look inside the blackbox

— They can predict the
final performance of a
target algorithm run early

0.8+

o
[2)]
T

— After a few epochs of
stochastic gradient
descent

accuracy

o
>

o
N

— Stop if not promising

0.0

 We automated that heuristic
— Fitted linear combination of 22 parametric models
— MCMC to preserve uncertainty over model parameters

— Stopped poor runs early: overall 2.2-fold speedup
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Summary of Algorithm Configuration

Algorithm Configuration

— Methods (components of algorithm configuration)
— Systems (that instantiate these components)

— Demo & Practical Issues

— Case Studies

Useful abstraction with many (!) applications

Often better performance than human domain experts
— At the push of a button

“Civilization advances by extending the number of important
operations which we can perform without thinking of them”
(Alfred North Whitehead)

Coming up: AAAI-15 Workshop on Algorithm Configuration
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Overview

* Programming by Optimization (PbO):
Motivation and Introduction

e Algorithm Configuration

» Portfolio-Based Algorithm Selection
— SATzilla: a framework for algorithm selection
— Hydra: automatic portfolio construction

e Software Development Tools and Further Directions
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Motivation: no single great configuration exists

* Heterogeneous instance distributions

— Even the best overall configuration is not great. E.g.:

Configuration |Instance type 1 Instance type 2

#H1 1s 1000s
H2 1000s 1s
H#3 100s 100s

* Likewise, there is no single best solver

— For example SAT solving:
different solvers win different categories

— Virtual best solver (VBS) much better than
single best solver (SBS)
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Algorithm portfolios

Exploiting complementary strengths of different algorithms

Parallel portfolios [Huberman et al, '97]

E » %/Q/ @/ e 0o 0 @\/
instance > @
time

Algorithm schedules [Sayag et al, ‘06]

\» Q& @@a

instance

time

Algorithm selection [Rice, '76]

AEd EX W

instance
Algorithms
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Portfolios have been successful in many areas

"Algorithm Selection *Sequential Execution *Parallel Execution

 Satisfiability:
— SATzilla™ [various coauthors, cited in the following slides; 2003—ongoing]
— 3S™" [Sellmann, 2011]
— ppfolio* [Roussel, 2011]
— C|aSpfO|iO* [Gebser, Kaminski, Kaufmann, Schaub, Schneider, Ziller, 2011]
— aspeed” [Kaminski, Hoos, Schaub, Schneider, 2012]

* Constraint Satisfaction:
— CPHydra** [O’Mahony, Hebrard, Holland, Nugent, O’Sullivan, 2008]
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Portfolios have been successful in many areas

"Algorithm Selection *Sequential Execution *Parallel Execution

* Planning:
— FD Stone Soup™ [Helmert, Réger, Karpas, 2011]
* Mixed Integer Programming:

— ISAC” [Kadioglu, Malitsky, Sellmann, Tierney, 2010]
— MIPzilla™ [xu, Hutter, Hoos, Leyton-Brown, 2011]

e ..and this is just the tip of the iceberg:

— http://dl.acm.org/citation.cfm?id=1456656 [Smith-Miles, 2008]
— http://4c.ucc.ie/~larsko/assurvey [Kotthoff, 2012]
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Overview

* Programming by Optimization (PbO):
Motivation and Introduction

e Algorithm Configuration

* Portfolio-Based Algorithm Selection
- SATzilla: a framework for algorithm selection
— Hydra: automatic portfolio construction

e Software Development Tools and Further Directions

106



SATzilla: the early core approach

[Leyton-Brown, Nudelman, Andrew, J. McFadden, Shoham, '03]
[Nudelman, Leyton-Brown, Devkar, Shoham, Hoos; '04]

* Training (part of algorithm development)

— Build a statistical model to predict
runtime for each component algorithm

* Test (for each new instance)
— Predict performance for each algorithm
— Pick the algorithm predicted to be best

* Good performance in SAT competitions

— 2003: 2 silver, 1 bronze medals
— 2004: 2 bronze medals
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SATzilla (stylized version)

¢ / Given:
‘ @ /®\ — training set of instances
U 7

Metric — performance metric
Training Set Candidate Solvers S candid ol dts

— portfolio builder
(incl. instance features)

* Training:

Portfolio Builder — collect performance data

ﬂ“‘“’

— learn a model for selecting
among solvers

S

e e At Runtime:
Novel Selected — evaluate model

Algorithm Selector



SAT Instance Features (2003—2014)

Over 100 features. Some illustrative examples:

Instance size (clauses, variables, clauses/variables, ...)

Syntactic properties (e.g., positive/negative clause ratio)

Statistics of various constraint graphs

— factor graph :\@ = @f;\,‘m
— clause—clause graph o2 &/ No || £ Vs

— variable—variable graph

Knuth’s search space size estimate

Tree search probing
Local search probing

Linear programming relaxation |™ E(Z + F,0o)

subject to: Z v + Z (1 vj))>1 VkeC

JEk,
{0 1} Vi
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SATzilla 2007

[Xu, Hutter, Hoos & Leyton-Brown, CP 2007; JAIR 2008]

Substantially extended features

Early algorithm schedule: identify a set of “presolvers”
and a schedule for running them

— For every choice of two presolvers + captimes, run the entire
SATzilla pipeline and evaluate overall performance

— Keep the choice that yields best performance

— For later steps: Discard instances solved by this presolving
schedule

ldentify a “backup solver”: SBS on the remaining data
— Needed in case feature computation crashes

2007 SAT competition: 3 gold, 1 silver, 1 bronze medals



SATzilla 2009

[Xu, Hutter, Hoos & Leyton-Brown, CP 2007; JAIR 2008]

* Robustness: selection of best subset of component
solvers

— Consider every subset of the given solver set
e omitting a weak solver prevents models from accidentally choosing it
* conditioned on choice of presolvers
e computationally cheap: models decompose across solvers

— Keep the subset that achieves the best performance

* Fully automated procedure

— optimizes loss on a validation set

e 2009 SAT competition: 3 gold, 2 silver medals



SATzilla 2011 and later: cost-sensitive DFs

[Xu, Hutter, Hoos & Leyton-Brown, SAT 2012]
* How it works:

— Build classifier to determine which algorithm to prefer between
each pair of algorithms in the portfolio

— Loss function: cost of misclassification

e Both decision forests and support vector machines
have cost-sensitive variants

* Classifiers vote for different algorithms;
select algorithm with most votes

— Advantage: selection is a classification problem
— Advantage: big and small errors treated differently

e 2011 SAT competition: entered Evaluation Track (more later)
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2012 SAT Challenge: Application

m

No

00 N o0 U AW

SATzilla2012 APP
SATzilla2012 ALL

glucose
SINN
ZENN

Lingeling

94.7
88.5
85.8
83.2
80.0
79.2
78.7
78.0
77.8

531
515
499
480
475
472
468
467
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2012 SAT Challenge: Hard Combinatorial

m-m_

88.2

No

0o N oo o A w

SATzilla2012 COMB
SATzilla2012 ALL
ppfolio2012

pfolioUZK
aspeed-crafted
clasp-crafted

claspfolio-crafted

79.3
78.8
70.3
79.5
66.8
61.7

58.7

476
473
422
417
401
370
367
352
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SAT Challenge 2012: Random

m-ﬁ_

93.0
| CCASat 70.5 423
2 SATzilla2012 RAND 53.5 321
3 SATzilla2012 ALL 51.0 306
4 sattime2012 44.8 269
5 ppfolio2012 42.2 253
6 pfolioUZK 38.3 230
7 ssa 25.0 150
8 gNovelty+PCL 20.5 123
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2012 SAT Challenge: Sequential Portfolio

m“

80.7
I SATzilla2012 ALL 72.2 433
2 ppfolio2012 61.7 370
3 pfolioUZK 60.3 362

e 3S deserves mentioning, but didn’t rank officially
[Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann, 2011]
— Disqualified on a technicality

* chose a buggy solver that returned an incorrect result
e an occupational hazard for portfolios!

— Overall performance nearly as strong as SATzilla
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SAT competitions 2013 onwards

e 2013: “The emphasis of SAT Competition 2013 is on
evaluation of core solvers:”

— Single-core portfolios of >2 solvers not eligible
— One “open track” allowing parallel solvers, portfolios, etc
— That open track was dominated by portfolios

2014

— “SAT Competition 2014 only allows submission of core solvers”



Try it yourself!

e SATzilla is freely available online

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

* You can try it for your problem

— we have features for SAT, MIP and TSP
— you need to provide features for other domains

* in many cases, the general ideas behind our features apply

* can also make features by reducing your problem to e.g. SAT and
computing the SAT features
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Automatically Configuring Algorithms
for Portfolio-Based Selection
Xu, Hoos, Leyton-Brown (2010); Kadioglu et al. (2010)

Note:

» SATzilla builds algorithm selector based on given set
of SAT solvers
but: success entirely depends on quality of given solvers

» Automated configuration produces solvers that work well
on average on a given set of SAT instances
(e.g., SATenstein — KhudaBukhsh, Xu, Hoos, Leyton-Brown 2009)
but: may have to settle for compromises
for broad, heterogenous instance sets

Idea: Combine the two approaches ~ portfolio-based selection
from set of automatically constructed solvers

Hoos & Hutter: Programming by Optimization 119



feature extractor selector

parametric algorithm
(multiple configurations)

Hoos & Hutter: Programming by Optimization
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Approach #1:

1. build solvers for various types of instances using automated
algorithm configuration

2. construct portfolio-based selector from these

Problem: requires suitably defined sets of instances

Solution: automatically partition heterogenous instance set

Hoos & Hutter: Programming by Optimization 121



Instance-specific algorithm configuration (ISAC)

Kadioglu, Malitsky, Sellmann, Tierney (2010); Malitky, Sellman (2012)

1. cluster training instances based on features
(using G-means)

2. configure given parameterised algorithm independently
for each cluster (using GGA)

3. construct portfolio-based selector from resulting configurations
(using distance to cluster centroids)

Drawback: Instance features may not correlate well
with impact of algorithm parameters on performance
(e.g., uninformative features)

Hoos & Hutter: Programming by Optimization 12
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Approach #2:

Key idea: Augment existing selector AS by targetting instances
on which AS performs poorly
(cf. Leyton-Brown et al. 2003; Leyton-Brown et al. 2009)

> interleave configuration and selector construction

> in each iteration, determine configuration that complements
current selector best

Advantages:
> any-time behaviour: iteratively adds configurations

» desirable theoretical guarantees (under idealising assumptions)
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Hydra

Xu, Hoos, Leyton-Brown (2010); Xu, Hutter, Hoos, Leyton-Brown (2011)

1. configure given target algorithm A on complete instance set /
~ configuration A; = selector AS; (always selects Aj)

2. configure a new copy of A on / such that performance of
selector AS := AS; + A ew is optimised
~ configuration Aj
~~ selector ASy := AS1 + Ay (selects from {A1, A2})

3. configure a new copy of A on [ such that performance of
selector AS := AS, + A,ew is optimised
~> configuration As
~+ selector AS3 := AS; + As (selects from {A;, Az, As})
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Note:

> effectively adds A with maximal marginal contribution
in each iteration

» estimate marginal contribution using perfect selector (oracle)
~> avoids costly construction of selectors during configuration

» works well using FocusedILS for configuration,
*zilla for selection (but can use other configurators, selectors)

» can be further improved by adding multiple configurations
per iteration; using performance estimates from configurator

a
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Results on SAT:

» target algorithm: SATenstein-LS (KhudaBukhsh et al. 2009)

» 6 well-known benchmark sets of SAT instances
(application, crafted, random)

» 7 iterations of Hydra

» 10 configurator runs per iteration, 1 CPU day each
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Results on mixture of 6 benchmark sets

Hydra[BM, 7] PAR Score

10° 10° 10°
Hydra[BM, 1] PAR Score
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Results on mixture of 6 benchmark sets

300

250k i\

2001

PAR Score
o
=

\\
‘\
100+ ‘\‘ i
\“
—6—Hydra[BM] training
S0 -4~ Hydra[BM] test 1
—— SATenFACT on training ¢
----SATenFACT ontest |- 33 .
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Number of Hydra Steps
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Note:

» good results also for MIP (CPLEX)
(Xu, Hutter, Hoos, Leyton-Brown 2011)

> idea underlying Hydra can also be applied to
automatically construct parallel algorithm portfolios
from single parameterised target algorithm
(Hoos, Leyton-Brown, Schaub, Schneider 2012-14)
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Software Development Support

and Further Directions



Software development in the PbO paradigm

design
space
description

* L ¥

parametric

> PbO-<L> » <L>

weaver source(s)

PbO-<L>
source(s)

L7

Y
A A

benchmark
\ inputs

N~
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Design space specification

Option 1: use language-specific mechanisms

» command-line parameters
» conditional execution

» conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for ...
> exposing parameters

» specifying alternative blocks of code
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Advantages of generic language extension:

» reduced overhead for programmer
> clean separation of design choices from other code

» dedicated PbO support in software development environments

Key idea:
» augmented sources: PbO-Java = Java 4+ PbO constructs, ...

> tool to compile down into target language: weaver
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PbO-<L>
source(s) | > > =
L
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Exposing parameters

numerator -= (int) (numerator / (adjfactor+1l) * 1.4);

##PARAM(float multiplier=1.4)
numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

» parameter declarations can appear at arbitrary places
(before or after first use of parameter)

> access to parameters is read-only (values can only be
set/changed via command-line or config file)
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Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>
##END CHOICE preProcessing
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Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard
<block S>
##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced
<block E>
##END CHOICE preProcessing
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Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing
<block 1>
##END CHOICE preProcessing

##BEGIN CHOICE preProcessing
<block 2>
##END CHOICE preProcessing

Hoos & Hutter: Programming by Optimization
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Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing
<block 1la>
##BEGIN CHOICE extraPreProcessing
<block 2>
##END CHOICE extraPreProcessing
<block 1b>
##END CHOICE preProcessing
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PbO-<L>
source(s)

PbO-<L>
weaver
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The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, ...)

> parametric mode:
> expose parameters

» make choices accessible via (conditional, categorical)
parameters

» (partial) instantiation mode:

» hardwire (some) parameters into code
(expose others)

» hardwire (some) choices into code
(make others accessible via parameters)
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The road ahead

» Support for PbO-based software development

» Weavers for PbO-C, PbO-C++, PbO-Java
» PbO-aware development platforms
» Improved / integrated PbO design optimiser

» Debugging and performance analysis tools

» Best practices
» Many further applications

» Scientific insights
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Which choices matter?

Observation: Some design choices matter more than others

depending on ...
» algorithm under consideration

> given use context

Knowledge which choices / parameters matter may ...
» guide algorithm development

» facilitate configuration
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3 recent approaches:

» Forward selection based on empirical performance models
Hutter, Hoos, Leyton-Brown (2013)

» Functional ANOVA based on empirical performance models
Hutter, Hoos, Leyton-Brown (2014)

» Ablation analysis
Fawcett, Hoos (2013-14)

Hoos & Hutter: Programming by Optimization
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Functional ANOVA based on empirical performance models

Hutter, Hoos, Leyton-Brown (2014)

Key idea:
> build regression model of algorithm performance as a function
of all input parameters (= design choices)

~~ empirical performance models (EPMs)

» analyse variance in model output (= predicted performance)
due to each parameter, parameter interactions

» importance of parameter: fraction of performance variation
over configuration space explained by it (main effect)

» analogous for sets of parameters (interaction effects)
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Decomposition of variance in a nutshell

For parameters p1, ..., p, and a function (performance model) y:

y(pis--ospn) = n
+fi(pr) + fap2) + -+ + fa(pn)
+ fia(p1, p2) + fi,3(p1, p3) + -+ + fa—1,n(Pn—1, Pn)
+fi23(p1, P2, p3) + -
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Note:

» Straightforward computation of main and interaction effects
is intractable.
(integration over combinatorial spaces of configurations)

» For random forest models, marginal performance predictions
and variance decomposition (up to constant-sized interactions)
can be computed exactly and efficiently.
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Empirical study:

» 8 high-performance solvers for SAT, ASP, MIP, TSP
(4-85 parameters)

» 12 well-known sets of benchmark data
(random + real-world structure)

» random forest models for performance prediction,
trained on 10000 randomly sampled configurations per solver
+ data from 25+ runs of SMAC configuration procedure
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Fraction of variance explained by main effects:

CPLEX on RCW (comp sust)
CPLEX on CORLAT (comp sust)

Clasp on software verificatition
Clasp on DB query optimisation

CryptoMiniSAT on bounded model checking
CryptoMiniSAT on software verification
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70.3%
35.0%

78.9%
62.5%

35.5%
31.9%
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Fraction of variance explained by main + 2-interaction effects:

CPLEX on RCW (comp sust)
CPLEX on CORLAT (comp sust)

Clasp on software verificatition
Clasp on DB query optimisation

CryptoMiniSAT on bounded model checking
CryptoMiniSAT on software verification

Hoos & Hutter: Programming by Optimization

70.3% + 12.7%
35.0% + 8.3%

78.9% + 14.3%
62.5% + 11.7%

35.5% + 20.8%
31.9% + 28.5%
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Note:
may pick up variation caused by poorly performing configurations

Simple solution:

cap at default performance or quantile from distribution of
randomly sampled configurations; build model from capped data.
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Ablation analysis
Fawcett, Hoos (2013-14)

Key idea:
» given two configurations, A and B, change one parameter
at a time to get from A to B

~> ablation path

> in each step, change parameter to achieve maximal gain
(or minimal loss) in performance

» for computational efficiency, use racing (F-race)
for evaluating parameters considered in each step

Hoos & Hutter: Programming by Optimization 148



Empirical study:

> high-performance solvers for SAT, MIP, Al Planning
(26-76 parameters),
well-known sets of benchmark data (real-world structure)

» optimised configurations obtained from ParamILS
(minimisation of penalised average running time;
10 runs per scenario, 48 CPU hours each)
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Ablation between default and optimised configurations:

100

0.1 ¢

Performance (PAR10, s)

Default to configured ——
Configured to default -----

0 5

10 15 20 25

#Parameters modified from default

LPG on Depots planning domain
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Which parameters are important?

LPG on depots:
» cri_intermediate_levels (43% of overall gain!)
> triomemory
» donot_try_suspected_actions
» walkplan

> weight mutex_in relaxed plan

Note: Importance of parameters varies between planning domains
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Algorithm configuration: parameter importance

~+ Algorithm selection: component contribution

Xu, Hutter, Hoos, Leyton-Brown (2012)

Consider:
portfolio-based algorithm selector AS
with candidate algorithms A;, A, ... Ak

Question:
How much does each A; contribute
to overall performance of AS?
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Marginal contribution of A; to portfolio-based selector AS

= difference in performance of AS with and without A;
(trained separately)

# frequency of selecting A;
= fraction of instances solved by A;
# contribution of A; to virtual best solver (VBS)
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Application to SATzilla:

» all instances from 2011 SAT Competition:
300 Application; 300 Crafted; 300 Random

» candidate solvers from 2011 SAT Competition:

» for determining virtual best solver (VBS)
and single best solver (SBS):
all solvers from Phase 2 of competition:
31 Application; 25 Crafted; 17 Random

» for building SATzilla:

all sequential, non-portfolio solvers from Phase 2:

18 Application; 15 Crafted; 9 Random

» SATzilla assessed by 10-fold cross validation
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SATzilla 2011 Performance (Inst. Solved)

Solver Application Crafted Random
VBS 84.7% 76.3%  82.2%
SATzilla 2011 75.3% 66.0%  80.8%
SATzilla 2009 70.3% 63.0%  80.3%

Gold medalist (SBS) 71.7% 54.3%

68.0%
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Performance of Individual Solvers
Application
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Correlation of Solver Performance
Application
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Correlation of Solver Performance
Random
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Solver Selection Frequency in SATzilla 2011
Application

Glucose2 (Backup olved by Presolvers

Glucose2

Other Solvers

Precosat
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Instances Solved by SATzilla 2011 Components
Application

Glucose2 (Backup) Unsolved

Glucose2 (Pre1

Other Solvers

Glucose2

Minisat psm
Minisat psm (Pre1)
EBGlucose
EBGlucose (Pre1)

Precosat
Glueminisat

QuteRSat
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RestartSAT
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Instances Solved vs Marginal Contribution of Components
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Instances Solved vs Marginal Contribution of Components

Crafted
10 T T T T T
Sol

c 8 © 1
kel
=
>
2
£ 6 ]
c
o}
O
© 4t Sattime Clasp2 1
£ ®» © ®
2 MPhaseSAT
=

2fe Joint contributions: 1

.' - - 2 Clasp variants = 6.3%
. . - 2 Sattime variants = 5.4%
G 1 1

0 10 20 30 40 50 60
% Solved by Component Solver

Hoos & Hutter: Programming by Optimization



Instances Solved vs Marginal Contribution of Components
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Leveraging parallelism

> design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

» deriving parallel programs from sequential sources
~> concurrent execution of optimised designs
(parallel portfolios)
(Hoos, Leyton-Brown, Schaub, Schneider 2012)

> parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)

» use of cloud resources (parallel runs of design optimisers, ...

(Geschwender, Hutter, Kotthoff, Malitsky, Hoos, Leyton-Brown 2014)
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Take-home Message



Programming by Optimisation ...

» leverages computational power to construct
better software

v

enables creative thinking about design alternatives

v

produces better performing, more flexible software

v

facilitates scientific insights into

» efficacy of algorithms and their components

» empirical complexity of computational problems

. changes how we build and use high-performance software
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More Information:

v

www.cs.ubc.ca/labs/beta/Projects/PbO-AAAI-14

v

www.prog-by-opt.net

v

PbO article in Communications of the ACM (Hoos 2012)

v

Senior member's talk (HH): Wed, 8:30-9:15, Rm 303B

v

Forthcoming book (Morgan & Claypool)

If PbO works for you:
» Make our day — let us know!
» Share the joy — tell everyone else!
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