
Programming by Optimisation:

A Practical Paradigm

for Computer-Aided Algorithm Design

Holger H. Hoos & Frank Hutter

Department of Computer Science
University of British Columbia

Canada

Department of Computer Science
University of Freiburg
Germany

AAAI 2014

Québec, Canada, 2014/07/27

The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)

Hoos & Hutter: Programming by Optimization 2

Hoos & Hutter: Programming by Optimization 3

The age of computation

“The maths[!] that computers use to
decide stuff [is] infiltrating every aspect
of our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .

Hoos & Hutter: Programming by Optimization 3

Performance matters ...

I computation speed (time is money!)

I energy consumption (battery life, ...)

I quality of results (cost, profit, weight, ...)

... increasingly:

I globalised markets

I just-in-time production & services

I tighter resource constraints

Hoos & Hutter: Programming by Optimization 4

Example: Resource allocation

I resources > demands many solutions, easy to find

economically wasteful
 reduction of resources / increase of demand

I resources < demands no solution, easy to demonstrate

lost market opportunity, strain within organisation
 increase of resources / reduction of demand

I resources ≈ demands
 difficult to find solution / show infeasibilityresources ≈
demands
 difficult to find solution / show infeasibility

Hoos & Hutter: Programming by Optimization 5

This tutorial:

new approach to software development, leveraging . . .

I human creativity

I optimisation & machine learning

I large amounts of computation / data

Hoos & Hutter: Programming by Optimization 6

Key idea:

I program (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)

⇒ Programming by Optimization (PbO)

Hoos & Hutter: Programming by Optimization 7

application context 1

solver

application context 2 application context 3

solversolver

Hoos & Hutter: Programming by Optimization 8

application context 1

solver[p1]

application context 2 application context 3

solver[p3]solver

solver[·]

solversolversolversolver[p2]

Hoos & Hutter: Programming by Optimization 8

Outline

1. Programming by Optimization: Motivation & Introduction

2. Algorithm Configuration (incl. Coffee Break)

3. Portfolio-based Algorithm Selection

4. Software Development Support & Further Directions

Hoos & Hutter: Programming by Optimization 9

Programming by Optimization:

Motivation & Introduction

Example: SAT-based software verification

Hutter, Babić, Hoos, Hu (2007)

I Goal: Solve SAT-encoded software verification problems
Goal: as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babić)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, Hoos, Stützle (2007)

Hoos & Hutter: Programming by Optimization 10

Spear: Performance on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)

Hoos & Hutter: Programming by Optimization 11

Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.

Hoos & Hutter: Programming by Optimization 12

Lo Hi

Hoos & Hutter: Programming by Optimization 13

Lo Hi

Hoos & Hutter: Programming by Optimization 13

Lo Hi

Hoos & Hutter: Programming by Optimization 13

Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, Hoos, Hu (2007)

4.5–500 × 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, Hoos, Saetti (2011)

3–118 × 1

Mixed integer programming (CPLEX), 76
Hutter, Hoos, Leyton-Brown (2010)

2–52 × 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, Hoos (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, Hoos, Leyton-Brown (2012–13)

Hoos & Hutter: Programming by Optimization 14

PbO enables . . .

I performance optimisation for different use contexts
(some details later)

I adaptation to changing use contexts
(see, e.g., life-long learning – Thrun 1996)

I self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

I automated generation of instance-based solver selectors
(e.g., SATzilla – Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra – Xu et al. 2010; ISAC – Kadioglu et al. 2010)

I automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Hoos et al. 2012)

Hoos & Hutter: Programming by Optimization 15

Cost & concerns

But what about ...

I Computational complexity?

I Cost of development?

I Limitations of scope?

Hoos & Hutter: Programming by Optimization 16

Computationally too expensive?

Spear revisited:

I total configuration time on software verification benchmarks:
≈ 30 CPU days

I wall-clock time on 10 CPU cluster:
≈ 3 days

I cost on Amazon Elastic Compute Cloud (EC2):
81.76 CAD (= 75.60 USD)

I 81.76 CAD pays for ...

I 1:58 hours of typical software engineer in Canada
I 7:54 hours at minimum wage in Quèbec

Hoos & Hutter: Programming by Optimization 17

Too expensive in terms of development?

Design and coding:

I tradeoff between performance/flexibility and overhead

I overhead depends on level of PbO

I traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

I design alternatives for individual mechanisms and components
can be tested separately

 effort linear (rather than exponential) in the number of
design choices

Hoos & Hutter: Programming by Optimization 18

Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

I computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

I optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

I compiler optimisation
(Pan & Eigenmann 2006; Cavazos et al. 2007)

I database server configuration
(Diao et al. 2003)

Hoos & Hutter: Programming by Optimization 19

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration
– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

[coffee]

– Demo & Practical Issues

– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

20

The Algorithm Configuration Problem

Definition

– Given:
• Runnable algorithm A with configuration space

• Distribution D over problem instances

• Performance metric

– Find:

Motivation

 Customize versatile algorithms
for different application domains
– Fully automated improvements

– Optimize speed, accuracy,
memory, energy consumption, …

21

Very large space

of configurations

Algorithm Configuration is a Useful Abstraction

• Applicable to different types of algorithms

– Tree search, local search, metaheuristics, machine learning, …

• Large improvements to solvers for
many hard combinatorial problems

– SAT, Max-SAT, MIP, SMT, TSP, ASP, time-tabling, AI planning, …

– Competition winners for all of these rely on configuration tools

22

Algorithm Configuration is a Useful Abstraction

23

• Increasingly popular (citation numbers from Google scholar)

Algorithm Parameters

Parameter types

– Continuous, integer, ordinal

– Categorical: finite domain, unordered, e.g. {a,b,c}

Parameter space has structure

– E.g. parameter C of heuristic A is only active if A is used

– In this case, we say C is a conditional parameter with parent A

Parameters give rise to a structured space of algorithms

– Many configurations (e.g. 1047)

– Configurations often yield qualitatively different behaviour

 Algorithm configuration (as opposed to “parameter tuning”)

24

The Algorithm Configuration Process

25

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

– Demo & Practical Issues

– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

26

Configurators have Two Key Components

• Component 1: which configuration to evaluate next?

– Out of a large combinatorial search space

– E.g., CPLEX: 76 parameters, 1047 configurations

• Component 2: how to evaluate that configuration?

– Evaluating performance of a configuration is expensive

– E.g., CPLEX: budget of 10000s per instance

– Instances vary in hardness
• Some take milliseconds, other days (for the default)

• Improvement on a few instances might not mean much

27

Component 1: Which Configuration to Choose?

• For this component, we can consider a simpler problem:

Blackbox function optimization

– Only mode of interaction: query f() at arbitrary

– Abstracts away the complexity of multiple instances

– is still a structured space
• Mixed continuous/discrete

• Conditional parameters

• Still more general than “standard” continuous BBO [e.g., Hansen et al.]

 28

min f()

 f()

The Simplest Search Strategy: Random Search

• Select configurations uniformly at random

– Completely uninformed

– Global search, won’t get stuck in a local region

– At least it’s better than grid search:

29

Image source: Bergstra et al, Random Search for Hyperparameter Optimization, JMLR 2012

The Other Extreme: Gradient Descent

 Start with some configuration

 repeat

 Modify a single parameter

 if performance on a benchmark set degrades then

 undo modification

 until no more improvement possible
 (or “good enough")

(aka hill climbing)

30

Stochastic Local Search

• Balance intensification and diversification

– Intensification: gradient descent

– Diversification: restarts, random steps, perturbations, …

• Prominent general methods

– Tabu search [Glover, 1986]

– Simulated annealing [Kirkpatrick, Gelatt, C. D.; Vecchi, 1983]

– Iterated local search [Lourenço, Martin & Stützle, 2003]

31

[e.g., Hoos and Stützle, 2005]

Population-based Methods

• Population of configurations

– Global + local search via population

– Maintain population fitness & diversity

• Examples

– Genetic algorithms [e.g., Barricelli, ’57, Goldberg, ’89]

– Evolutionary strategies [e.g., Beyer & Schwefel, ’02]

32

Sequential Model-Based Optimization

• Fit a (probabilistic) model
of the function

• Use that model
to trade off
exploitation vs exploration

• In the machine learning
literature also known as
Bayesian Optimization

33

Sequential Model-Based Optimization

• Popular approach in statistics

to minimize expensive blackbox functions [e.g., Mockus, '78]

• Recent progress in the machine learning literature:

global convergence rates for continuous optimization
[Srinivas et al, ICML 2010]

[Bull, JMLR 2011]

[Bubeck et al., JMLR 2011]

[de Freitas, Smola, Zoghi, ICML 2012]

34

Estimation of Distribution (EDA)

• Also uses a probabilistic model

• Also uses that model to inform where to evaluate next

• But models promising configurations: P(x is “good”)

– In contrast to modeling the function: P(f|x)

35

Image source: Wikipedia

[e.g., Pelikan, Goldberg and Lobo, 2002]

Exploiting Low Effective Dimensionality

• Often, not all parameters are equally important

• Can search in an embedded lower-dimensional space

• For details, see:

– Bayesian Optimization in High Dimensions via Random
Embeddings [Wang et al, IJCAI 2013]

36

Summary 1: Which Configuration to Evaluate?

• Need to balance diversification and intensification

• The extremes

– Random search

– Hillclimbing

• Stochastic local search (SLS)

• Population-based methods

• Sequential Model-Based Optimization

• Estimation of Distribution (EDA) algorithms

• Exploiting low effective dimensionality

37

Component 2: How to Evaluate a Configuration?

Back to general algorithm configuration

– Given:
• Runnable algorithm A with configuration space

• Distribution D over problem instances

• Performance metric

– Find:

Recall the Spear example

– Instances vary in hardness
• Some take milliseconds, other days (for the default)

• Thus, improvement on a few instances might not mean much

38

Simplest Solution: Use Fixed N Instances

• Effectively treat the problem as a blackbox function
optimization problem

• Issue: how large to choose N?

– Too small: overtuning

– Too large: every function evaluation is slow

• General principle

– Don’t waste time on bad configurations

– Evaluate good configurations more thoroughly

39

Racing Algorithms

• Compare two or more algorithms against each other

– Perform one run for each configuration at a time

– Discard configurations when dominated

40

Image source: Maron & Moore, Hoeffding Races, NIPS 1994

[Maron & Moore, NIPS 1994]

 [Birattari, Stützle, Paquete & Varrentrapp, GECCO 2002]

Saving Time: Aggressive Racing

• Race new configurations against the best known

– Discard poor new configurations quickly

– No requirement for statistical domination

• Search component should allow to return to
configurations discarded because they were “unlucky”

41

[Hutter, Hoos & Stützle, AAAI 2007]

Saving More Time: Adaptive Capping

Can terminate runs for poor configurations ’ early:

– Is ’ better than ?

• Example:

• Can terminate evaluation of ’ once

guaranteed to be worse than

RT()=20 RT(’)>20

20

RT(’) = ?

(only when minimizing algorithm runtime)

42

[Hutter, Hoos, Leyton-Brown & Stützle, JAIR 2009]

Summary 2: How to Evaluate a Configuration?

• Simplest: fixed set of N instances

• General principle

– Don’t waste time on bad configurations

– Evaluate good configurations more thoroughly

• Instantiations of principle

– Racing

– Aggressive racing

– Adaptive capping

43

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

– Demo & Practical Issues

– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

44

Overview: Algorithm Configuration Systems

• Continuous parameters, single instances (blackbox opt)
– Covariance adaptation evolutionary strategy (CMA-ES)

[Hansen et al, since ’06]

– Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al, ’06]

– Random Embedding Bayesian optimization (REMBO)
[Wang et al, ’13]

• General algorithm configuration methods
– ParamILS [Hutter et al, ’07 and ’09]

– Gender-based Genetic Algorithm (GGA) [Ansotegui et al, ’09]

– Iterated F-Race [Birattari et al, ’02 and ‘10]

– Sequential Model-based Algorithm Configuration (SMAC)
[Hutter et al, since ’11]

– Distributed SMAC [Hutter et al, since ’12]

45

The ParamILS Framework

 Iterated Local Search in parameter configuration space:

 Performs biased random walk over local optima

[Hutter, Hoos, Leyton-Brown & Stützle, AAAI 2007 & JAIR 2009]

46

The BasicILS(N) algorithm

• Instantiates the ParamILS framework

• Uses a fixed number of N runs for each evaluation

– Sample N instance from given set (with repetitions)

– Same instances (and seeds) for evaluating all configurations

– Essentially treats the problem as blackbox optimization

• How to choose N?

– Too high: evaluating a configuration is expensive

 Optimization process is slow

– Too low: noisy approximations of true cost

 Poor generalization to test instances / seeds

47

Generalization to Test set, Large N (N=100)

48

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)

Generalization to Test Set, Small N (N=1)

49

SAPS on a single QWH instance
(same instance for training & test; only difference: seeds)

BasicILS: Speed/Generalization Tradeoff

50

Test performance of SAPS on a single QWH instance

The FocusedILS Algorithm

Aggressive racing: more runs for good configurations

– Start with N() = 0 for all configurations

– Increment N() whenever the search visits

– “Bonus” runs for configurations that win many comparisons

Theorem
 As the number of FocusedILS iterations ,
 it converges to the true optimal conguration

– Key ideas in proof:

 1. The underlying ILS eventually reaches any configuration

 2. For N() , the error in cost approximations vanishes

51

FocusedILS: Speed/Generalization Tradeoff

52

Test performance of SAPS on a single QWH instance

Speeding up ParamILS

Standard adaptive capping
– Is ’ better than ?

• Example:

• Can terminate evaluation of ’ once guaranteed to be worse than

Theorem
Early termination of poor configurations does not change

ParamILS's trajectory

– Often yields substantial speedups

– Especially when best configuration is much faster than worst

RT()=20 RT(’)>20

20

53

[Hutter , Hoos, Leyton-Brown, and Stützle, JAIR 2009]

Gender-based Genetic Algorithm (GGA)

• Genetic algorithm

– Genome = parameter configuration

– Combine genomes of 2 parents to form an offspring

• Two genders in the population

– Selection pressure only on one gender

– Preserves diversity of the population

54

[Ansotegui, Sellmann & Tierney, CP 2009]

Gender-based Genetic Algorithm (GGA)

• Use N instances to evaluate configurations

– Increase N in each generation

– Linear increase from Nstart to Nend

• User specifies #generations ahead of time

• Can exploit parallel resources

– Evaluate population members in parallel

– Adaptive capping: can stop when the first k succeed

55

[Ansotegui, Sellmann & Tierney, CP 2009]

F-Race and Iterated F-Race

• F-Race
– Standard racing framework

– F-test to establish that some
configuration is dominated

– Followed by pairwise t tests
if F-test succeeds

• Iterated F-Race

– Maintain a probability distribution
over which configurations are good

– Sample k configurations from that distribution & race them

– Update distributions with the results of the race

56

[Birattari et al, GECCO 2002 and book chapter 2010]

F-Race and Iterated F-Race

• Can use parallel resources

– Simply do the k runs of each iteration in parallel

– But does not support adaptive capping

• Expected performance

– Strong when the key challenge are reliable comparisons
between configurations

– Less good when the search component is the challenge

57

[Birattari et al, GECCO 2002 and book chapter 2010]

Model-Based Algorithm Configuration

SMAC: Sequential Model-Based Algorithm Configuration

– Sequential Model-Based Optimization
& aggressive racing

 repeat

 - construct a model to predict performance

 - use that model to select promising configurations

 - compare each selected configuration against the best known

 until time budget exhausted

 58

[Hutter, Hoos & Leyton-Brown, LION 2011]

SMAC: Aggressive Racing

• Similar racing component as FocusedILS

– more runs for good configurations

– Increase #runs for incumbent over time

• Theorem for discrete configuration spaces:

 As SMAC's overall time budget ,
 it converges to the optimal configuration

59

Powering SMAC: Empirical Performance Models

Given:

– Configuration space

– For each problem instance i: xi, a vector of feature values

– Observed algorithm runtime data: (1, x1, y1), …, (n , xn , yn)

Find: a mapping m: [, x] ↦ y predicting A’s performance

– Rich literature
on such performance
prediction problems
[see, e.g, Hutter, Xu, Hoos, Leyton-Brown, AIJ 2014, for an overview]

– Here: use a model m based on random forests

 60

≈ m (, x)

Regression Trees: Fitting to Data

– In each internal node: only store split criterion used

– In each leaf: store mean of runtimes

param3 {red} param3 {blue, green}

feature2 > 3.5 feature2 ≤ 3.5

3.7 1.65 …
61

feature2 > 3.5

Regression Trees: Predictions for New Inputs

param3 {red} param3 {blue, green}

feature2 ≤ 3.5

3.7 1.65 …

 E.g. xn+1 = (true, 4.7, red)

– Walk down tree, return mean runtime stored in leaf 1.65

62

Random Forests: Sets of Regression Trees

Training
– Draw T bootstrap samples of the data

– For each bootstrap sample, fit a randomized regression tree

Prediction
– Predict with each of the T trees

– Return empirical mean and variance across these T predictions

Complexity for N data points
– Training: O(TN log2 N)

– Prediction: O(Tlog N)

…

63

Advantages of Random Forests

Automated selection of important input dimensions

– Continuous, integer, and categorical inputs

– Up to 138 features, 76 parameters

– Can identify important feature and parameter subsets
• Sometimes 1 feature and 2 parameters are enough

 [Hutter, Hoos, Leyton-Brown, LION 2013]

Robustness

– No need to optimize hyperparameters

– Already good predictions with few training data points

64

SMAC: Averaging Across Multiple Instances

• Fit a random forest model

• Aggregate over instances by marginalization

– Intuition: predict for each instance and then average

– More efficient implementation in random forests

65

SMAC: Putting it all Together

 Initialize with a single run for the default

 repeat

 - learn a RF model from data so far:

 - Aggregate over instances:

 - use model f to select promising configurations

 - race each selected configuration against the best known

 until time budget exhausted

• Distributed SMAC [Hutter, Hoos & Leyton-Brown, 2012]

– Maintain queue of promising configurations

– Race these against best known on distributed worker cores

66

SMAC: Adaptive Capping

Terminate runs for poor configurations early:

– Lower bound on runtime
 right-censored data point

f()>20 f(*)=20

20

67

[Hutter, Hoos & Leyton-Brown, BayesOpt 2011]

Experimental Evaluation

Compared SMAC vs. ParamILS and GGA
– On 17 SAT and MIP configuration scenarios, same time budget

SMAC performed best
– Improvements in test performance of configurations returned

• vs ParamILS: 0.93 2.25 (11/17 cases significantly better)

• vs. GGA: 1.01 2.76 (13/17 cases significantly better)

Wall-clock speedups in distributed SMAC
– Almost perfect with up to 16 parallel workers

– Up to 50-fold with 64 workers
• Reductions in wall clock time: 5h 6 min -15 min

 2 days 40min - 2h

68

[Hutter, Hoos & Leyton-Brown, LION 2011]

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

– Demo & Practical Issues

– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

69

The Algorithm Configuration Process

preproc {none, simple, expensive} [simple]
alpha [1,5] [2]
beta [0.1,1] [0.5]

Parameter space declaration file

./wrapper –inst X –timeout 30
-preproc none -alpha 3 -beta 0.7
 e.g. “successful after 3.4 seconds”

Wrapper for command line call

What the user has to provide

70

Example: Running SMAC

71

wget http://www.cs.ubc.ca/labs/beta/Projects/SMAC/smac-v2.06.00-master-615.tar.gz

tar xzvf smac-v2.06.00-master-615.tar.gz

cd smac-v2.06.00-master-615

./smac

./smac --seed 0 --scenarioFile example_scenarios/spear/spear-scenario.txt

Scenario file holds:
- Location of parameter file, wrapper & instances
- Objective function (here: minimize avg. runtime)
- Configuration budget (here: 30s)
- Maximal captime per target run (here: 5s)

For a usage screen

Output of a SMAC run

72

[…]

[INFO] *****Runtime Statistics*****

 Incumbent ID: 12 (0x22BB8)

 Number of Runs for Incumbent: 43

 Number of Instances for Incumbent: 5

 Number of Configurations Run: 42

 Performance of the Incumbent: 0.012555555555555556

 Configuration Time Budget used: 30.589647351000067 s (101%)

 Sum of Target Algorithm Execution Times (treating minimum value as 0.1): 24.70000s

 CPU time of Configurator: 5.889042742 s

[INFO] **

[INFO] Total Objective of Final Incumbent 12 (0x22BB8) on training set:

0.012555555555555556; on test set: 0.014499999999999999

[INFO] Sample Call for Final Incumbent 12 (0x22BB8)
cd /ubc/cs/home/h/hutter/tmp/smac-v2.06.00-master-615/example_scenarios/spear; ruby spear_wrapper.rb

instances/qcplin2006.10408.cnf 0 5.0 2147483647 3282095 -sp-update-dec-queue '0' -sp-rand-var-dec-scaling

'0.3528466348383826' -sp-clause-decay '1.713857938112484' -sp-variable-decay '1.461422623379798' -sp-orig-

clause-sort-heur '7' -sp-rand-phase-dec-freq '0.05' -sp-clause-del-heur '0' -sp-learned-clauses-inc

'1.452683835620401' -sp-restart-inc '1.6481745669620091' -sp-resolution '0' -sp-clause-activity-inc

'0.7121640599232154' -sp-learned-clause-sort-heur '12' -sp-var-activity-inc '0.9358501810374242' -sp-rand-var-dec-

freq '0.0001' -sp-use-pure-literal-rule '1' -sp-learned-size-factor '0.27995062371127827' -sp-var-dec-heur '16' -sp-

phase-dec-heur '6' -sp-rand-phase-scaling '1.0424648235977578' -sp-first-restart '31'

Decision #1: Configuration Budget & Captime

• Configuration budget

– Dictated by your resources & needs
• E.g., start configuration before leaving work on Friday

– The longer the better (but diminishing returns)
• Rough rule of thumb: typically at least enough time for 1000 target runs

• But have also achieved good results with 50 target runs in some cases

• Maximal captime per target run

– Dictated by your needs (typical instance hardness, etc)

– Too high: slow progress

– Too low: possible overtuning to easy instances

– For SAT etc, often use 300 CPU seconds

73

Decision #2: Choosing the Training Instances

• Representative instances, moderately hard

– Too hard: won’t solve many instances, no traction

– Too easy: will results generalize to harder instances?

– Rule of thumb: mix of hardness ranges
• Roughly 75% instances solvable by default in maximal captime

• Enough instances

– The more training instances the better

– Very homogeneous instance sets: 50 instances might suffice

– Preferably 300 instances, better even 1000 instances

74

Decision #2: Choosing the Training Instances

• Split instance set into training and test sets

– Configure on the training instances configuration *

– Run (only) * on the test instances
• Unbiased estimate of performance

75

Pitfall: configuring on your test instances

 That’s from the dark ages

Fine practice: do multiple configuration runs
and pick the * with best training performance

 Not (!!) the best on the test set

Decision #2: Choosing the Training Instances

• Works much better on homogeneous benchmarks

– Instances that have something in common
• E.g., come from the same problem domain

• E.g., use the same encoding

– One configuration likely to perform well on all instances

76

Pitfall: configuration on too heterogeneous sets

There often is no single great overall configuration
(but see algorithm selection etc, second half of the tutorial)

Decision #3: How Many Parameters to Expose?

• Suggestion: all parameters you don’t know to be useless

– More parameters larger gains possible

– More parameters harder problem

– Max. #parameters tackled so far: 768
[Thornton, Hutter, Hoos & Leyton-Brown, KDD‘13]

• With more time you can search a larger space

77

Pitfall: including parameters that change the problem

E.g., optimality threshold in MIP solving
E.g., how much memory to allow the target algorithm

Decision #4: How to Wrap the Target Algorithm

• Do not trust any target algorithm
– Will it terminate in the time you specify?

– Will it correctly report its time?

– Will it never use more memory than specified?

– Will it be correct with all parameter settings?

78

Pitfall: blindly minimizing target algorithm runtime

Typically, you will minimize the time to crash

Good practice: wrap target runs with tool controlling
time and memory (e.g., runsolver [Roussel et al, ’11])

Good practice: verify correctness of target runs

Detect crashes & penalize them

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

– Demo & Practical Issues

– Case Studies

• Portfolio-Based Algorithm Selection

• Software Development Support & Further Directions

79

Applications of Algorithm Configuration

Scheduling and
Resource Allocation

Exam
Timetabling
since 2010

Mixed integer
programming

Helped win Competitions

SAT: since 2009

ASP: since 2009

IPC: since 2011

Time-tabling: 2007

SMT: 2007

 Other Academic Applications

Protein Folding, Computer GO

TSP & Quadratic Assignment Problem

Game Theory: Kidney Exchange

Linear algebra subroutines

Improving Java Garbage Collection

Evolutionary Algorithms

Machine Learning: Classification …
Spam filters

80

Back to the Spear Example

Spear [Babic, 2007]

– 26 parameters

– 8.34 1017 configurations

Ran ParamILS, 2 to 3 days 10 machines

– On a training set from each of 2 distributions

Compared to default (1 week of manual tuning)

– On a disjoint test set from each distribution

4.5-fold speedup 500-fold speedup won QF_BV
category in 2007 SMT competition

below diagonal:
speedup

Log-log scale!

[Hutter, Babic, Hu & Hoos, FMCAD 2007]

81

Other Examples of PbO for SAT

• SATenstein [KhudaBukhsh, Xu, Hoos & Leyton-Brown, IJCAI 2009]

– Combined ingredients from existing solvers

– 54 parameters, over 1012 configurations

– Speedup factors: 1.6x to 218x

• Captain Jack [Tompkins & Hoos, SAT 2011]

– Explored a completely new design space

– 58 parameters, over 1050 configurations

– After configuration: best known solver for 3sat10k and IL50k

82

Configurable SAT Solver Competition (CSSC)

• Annual SAT competition

– Scores SAT solvers by their performance across instances

– Medals for best average performance with solver defaults
• Misleading results: implicitly highlights solvers with good defaults

• CSSC 2013 & 2014

– Better reflects an application setting:
homogeneous instances
 can automatically optimize parameters

– Medals for best performance after configuration

83

[Hutter, Balint, Bayless, Hoos & Leyton-Brown 2013]

CSSC Result #1

• Solver performance often improved a lot:

84

Lingeling on CircuitFuzz:
Timeouts: 119 107

Clasp on n-queens:
Timeouts: 211 102

probSAT on unif rnd 5-SAT:
Timeouts: 250 0

[Hutter, Lindauer, Balint, Bayless, Hoos & Leyton-Brown 2014]

CSSC Result #2

• Automated configuration changed algorithm rankings

– Example: random SAT+UNSAT category in 2013

85

Solver CSSC ranking Default ranking

Clasp 1 6

Lingeling 2 4

Riss3g 3 5

Solver43 4 2

Simpsat 5 1

Sat4j 6 3

For1-nodrup 7 7

gNovelty+GCwa 8 8

gNovelty+Gca 9 9

gNovelty+PCL 10 10

[Hutter, Lindauer, Balint, Bayless, Hoos & Leyton-Brown 2014]

Configuration of a Commercial MIP solver

Mixed Integer Programming (MIP)

Commercial MIP solver: IBM ILOG CPLEX
– Leading solver for 15 years

– Licensed by over 1 000 universities and 1 300 corporations

– 76 parameters, 1047 configurations

Minimizing runtime to optimal solution
– Speedup factor: 2 to 50

– Later work: speedups up to 10,000

Minimizing optimality gap reached
– Gap reduction factor: 1.3 to 8.6

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]

86

Comparison to CPLEX Tuning Tool

CPLEX tuning tool
– Introduced in version 11 (late 2007, after ParamILS)

– Evaluates predefined good configurations, returns best one

– Required runtime varies (from < 1h to weeks)

ParamILS: anytime algorithm
– At each time step, keeps track of its incumbent

2-fold speedup

(our worst result)
50-fold speedup

 (our best result)

lower is better

[Hutter, Hoos & Leyton-Brown, CPAIOR 2010]

87

Configuration of Machine Learning Algorithms

• Machine Learning has celebrated substantial successes

• But it requires human machine learning experts to

– Preprocess the data

– Perform feature selection

– Select a model family

– Optimize hyperparameters

– …

• AutoML: taking the human expert out of the loop

– AutoML Workshops at ICML & NIPS this year

– Very related to PbO

88

• To gain confidence in a parameter configuration:

– Evaluate performance as average performance across k cross-
validation folds (here: k=3)

Training Validation Training Validation Training

Cross-validation for hyperparameter opt.

89

Training Validation

Training Validation

Hyperparameter Optimization as AC

• Performance metric: cross-validation accuracy

• Each cross-validation fold corresponds to an instance:

– We do not need to evaluate all folds for every configuration!

– In practice, almost k-fold speedup for k-fold CV

90

Case Study: Auto-WEKA

WEKA [Witten et al, 1999-current]

– most widely used off-the-shelf machine learning package

– over 20,000 citations on Google scholar

Java implementation of a broad range of methods

– 27 base classifiers (with up to 10 parameters each)

– 10 meta-methods

– 2 ensemble methods

– 3 feature search methods & 8 feature evaluators

Different methods work best on different data sets

– Want a true off-the-shelf solution:

91

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]

Learn

WEKA’s configuration space

Base classifiers
– 27 choices, each with subparameters

Hierarchical structure on top of base classifiers
– In total: 768 parameters, 1047 configurations

– Optimize cross-validation performance over this space using SMAC

92

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]

Auto-WEKA: Results

Auto-WEKA performs better than best base classifier
– Even when “best classifier” uses an oracle

– Especially on the 8 largest datasets

– In 6/21 datasets more than 10% reductions in relative error

– Time requirements: 30h on 4 cores

Comparison to full grid search
– Union of grids over parameters of all 27 base classifiers

– Auto-WEKA is 100 times faster

– Auto-WEKA has better generalization performance in 15/21 cases

Auto-WEKA based on SMAC vs. TPE [Bergstra et al, NIPS'11]

– SMAC yielded better CV performance in 19/21 cases

– SMAC yielded better generalization performance in 14/21 cases

– Differences usually small, in 3 cases substantial (SMAC better)

93

[Thornton, Hutter, Hoos & Leyton-Brown, KDD'13]

Auto-WEKA Discussion

• PbO enables effective off-the-shelf machine learning

– Expert understanding of ML techniques
not required to use them

– Users still need to provide good features

• Auto-WEKA is available online: automl.org/autoweka

• Ongoing:

– Wrappers from several programming languages

– Auto-sklearn (python)

94

Learn

automl.org/hpolib
automl.org/hpolib

ML Case Study 2: Deep Learning

• What is deep learning?

– Neural networks with many layers

• Why is there so much excitement about it?

– Dramatically improved the state-of-the-art in many areas, e.g.,
• Speech recognition

• Image recognition

– Automatic learning of representations
 no more manual feature engineering

• What changed?

– Larger datasets

– Better regularization methods, e.g., dropout [Hinton et al, 2012]

– Fast GPU implementations [Krizhevsky et al, 2012]

95

Source: Krizhevsky et al, 2012

Source: Le et al, 2012

ML Case Study 2: Deep Learning

• Deep neural networks have many hyperparameters

– Continuous : learning rate, momentum, regularization, …

– Integer: #layers, #units per layer, batch size in SGD, …

– Categorical: preprocessing, activation function

– Conditional : all hyperparameters in layer K are
 only active if the network has at least K layers

• We parameterized the Caffe framework [Jia, 2013]

– 9 network hyperparameters

– 12 hyperparameters per layer, up to 6 layers

– In total 81 hyperparameters

96

Automatic Structure & Hyperparameter Search

• Optimized Caffe for CIFAR-10 image classification task:
deep neural network on k-means features [Coates & Ng, 2011]

97

[Domhan, Springenberg & Hutter, AutoML'14]

Yielded best results for this architecture

98

[Domhan, Springenberg & Hutter, AutoML'14]

[Coates & Ng, 2011]

[Coates & Ng, 2011]

[Sversky et al, 2011]

Speedups by Prediction of Learning Curves

• Humans can look inside the blackbox

– They can predict the
final performance of a
target algorithm run early

– After a few epochs of
stochastic gradient
descent

– Stop if not promising

• We automated that heuristic

– Fitted linear combination of 22 parametric models

– MCMC to preserve uncertainty over model parameters

– Stopped poor runs early: overall 2.2-fold speedup

99

[Domhan, Springenberg & Hutter, AutoML'14]

Summary of Algorithm Configuration

• Algorithm Configuration

– Methods (components of algorithm configuration)

– Systems (that instantiate these components)

– Demo & Practical Issues

– Case Studies

• Useful abstraction with many (!) applications

• Often better performance than human domain experts

– At the push of a button

“Civilization advances by extending the number of important
operations which we can perform without thinking of them”

(Alfred North Whitehead)

• Coming up: AAAI-15 Workshop on Algorithm Configuration

100

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

• Portfolio-Based Algorithm Selection

– SATzilla: a framework for algorithm selection

– Hydra: automatic portfolio construction

• Software Development Tools and Further Directions

101

Motivation: no single great configuration exists

• Heterogeneous instance distributions

– Even the best overall configuration is not great. E.g.:

• Likewise, there is no single best solver

– For example SAT solving:

different solvers win different categories

– Virtual best solver (VBS) much better than

single best solver (SBS)
102

Configuration Instance type 1 Instance type 2

#1 1s 1000s

#2 1000s 1s

#3 100s 100s

Algorithm portfolios

103

Parallel portfolios [Huberman et al, '97]

Algorithm schedules [Sayag et al, ‘06]

Algorithm selection [Rice, '76]

Algorithms

Feature

extractor

Algorithm

selector
instance

instance

time

instance
time

…

Exploiting complementary strengths of different algorithms

Portfolios have been successful in many areas
*Algorithm Selection †Sequential Execution ‡Parallel Execution

• Satisfiability:

– SATzilla*† [various coauthors, cited in the following slides; 2003—ongoing]

– 3S*† [Sellmann, 2011]

– ppfolio‡ [Roussel, 2011]

– claspfolio* [Gebser, Kaminski, Kaufmann, Schaub, Schneider, Ziller, 2011]

– aspeed†‡ [Kaminski, Hoos, Schaub, Schneider, 2012]

• Constraint Satisfaction:

– CPHydra*† [O’Mahony, Hebrard, Holland, Nugent, O’Sullivan, 2008]

104

Portfolios have been successful in many areas
*Algorithm Selection †Sequential Execution ‡Parallel Execution

• Planning:

– FD Stone Soup† [Helmert, Röger, Karpas, 2011]

• Mixed Integer Programming:

– ISAC* [Kadioglu, Malitsky, Sellmann, Tierney, 2010]

– MIPzilla*† [Xu, Hutter, Hoos, Leyton-Brown, 2011]

• ..and this is just the tip of the iceberg:
– http://dl.acm.org/citation.cfm?id=1456656 [Smith-Miles, 2008]

– http://4c.ucc.ie/~larsko/assurvey [Kotthoff, 2012]

105

Overview

• Programming by Optimization (PbO):
Motivation and Introduction

• Algorithm Configuration

• Portfolio-Based Algorithm Selection

– SATzilla: a framework for algorithm selection

– Hydra: automatic portfolio construction

• Software Development Tools and Further Directions

106

SATzilla: the early core approach

 [Leyton-Brown, Nudelman, Andrew, J. McFadden, Shoham, '03]
 [Nudelman, Leyton-Brown, Devkar, Shoham, Hoos; '04]

• Training (part of algorithm development)

– Build a statistical model to predict
runtime for each component algorithm

• Test (for each new instance)

– Predict performance for each algorithm

– Pick the algorithm predicted to be best

• Good performance in SAT competitions

– 2003: 2 silver, 1 bronze medals

– 2004: 2 bronze medals

107

• Given:

– training set of instances

– performance metric

– candidate solvers

– portfolio builder
(incl. instance features)

• Training:

– collect performance data

– learn a model for selecting
among solvers

• At Runtime:

– evaluate model

– run selected solver

Metric

Portfolio Builder

Training Set

Novel
Instance Portfolio-Based

Algorithm Selector

Candidate Solvers

Selected
Solver

SATzilla (stylized version)

108

SAT Instance Features (2003—2014)

Over 100 features. Some illustrative examples:

• Instance size (clauses, variables, clauses/variables, …)

• Syntactic properties (e.g., positive/negative clause ratio)

• Statistics of various constraint graphs

– factor graph

– clause–clause graph

– variable–variable graph

• Knuth’s search space size estimate

• Tree search probing

• Local search probing

• Linear programming relaxation

109

SATzilla 2007

• Substantially extended features

• Early algorithm schedule: identify a set of “presolvers”
and a schedule for running them
– For every choice of two presolvers + captimes, run the entire

SATzilla pipeline and evaluate overall performance

– Keep the choice that yields best performance

– For later steps: Discard instances solved by this presolving
schedule

• Identify a “backup solver”: SBS on the remaining data
– Needed in case feature computation crashes

• 2007 SAT competition: 3 gold, 1 silver, 1 bronze medals

110

[Xu, Hutter, Hoos & Leyton-Brown, CP 2007; JAIR 2008]

SATzilla 2009

• Robustness: selection of best subset of component
solvers

– Consider every subset of the given solver set
• omitting a weak solver prevents models from accidentally choosing it

• conditioned on choice of presolvers

• computationally cheap: models decompose across solvers

– Keep the subset that achieves the best performance

• Fully automated procedure

– optimizes loss on a validation set

• 2009 SAT competition: 3 gold, 2 silver medals

111

[Xu, Hutter, Hoos & Leyton-Brown, CP 2007; JAIR 2008]

SATzilla 2011 and later: cost-sensitive DFs

• How it works:

– Build classifier to determine which algorithm to prefer between
each pair of algorithms in the portfolio

– Loss function: cost of misclassification

• Both decision forests and support vector machines
have cost-sensitive variants

• Classifiers vote for different algorithms;
select algorithm with most votes

– Advantage: selection is a classification problem

– Advantage: big and small errors treated differently

• 2011 SAT competition: entered Evaluation Track (more later)

112

[Xu, Hutter, Hoos & Leyton-Brown, SAT 2012]

2012 SAT Challenge: Application

113
* Interacting multi-engine solvers: like portfolios, but richer interaction between solvers

2012 SAT Challenge: Hard Combinatorial

114

SAT Challenge 2012: Random

115

2012 SAT Challenge: Sequential Portfolio

• 3S deserves mentioning, but didn’t rank officially
[Kadioglu, Malitsky, Sabharwal, Samulowitz, Sellmann, 2011]
– Disqualified on a technicality

• chose a buggy solver that returned an incorrect result

• an occupational hazard for portfolios!

– Overall performance nearly as strong as SATzilla

116

SAT competitions 2013 onwards

• 2013: “The emphasis of SAT Competition 2013 is on
evaluation of core solvers:”

– Single-core portfolios of >2 solvers not eligible

– One “open track” allowing parallel solvers, portfolios, etc

– That open track was dominated by portfolios

• 2014

– “SAT Competition 2014 only allows submission of core solvers”

117

Try it yourself!

• SATzilla is freely available online

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

• You can try it for your problem
– we have features for SAT, MIP and TSP

– you need to provide features for other domains
• in many cases, the general ideas behind our features apply

• can also make features by reducing your problem to e.g. SAT and
computing the SAT features

118

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

Automatically Configuring Algorithms
for Portfolio-Based Selection
Xu, Hoos, Leyton-Brown (2010); Kadioglu et al. (2010)

Note:

I SATzilla builds algorithm selector based on given set
of SAT solvers
but: success entirely depends on quality of given solvers

I Automated configuration produces solvers that work well
on average on a given set of SAT instances
(e.g., SATenstein – KhudaBukhsh, Xu, Hoos, Leyton-Brown 2009)

but: may have to settle for compromises
for broad, heterogenous instance sets

Idea: Combine the two approaches portfolio-based selection
from set of automatically constructed solvers

Hoos & Hutter: Programming by Optimization 119

Combined Configuration + Selection

parametric algorithm
(multiple configurations)

selectorfeature extractor

Hoos & Hutter: Programming by Optimization 120

Approach #1:

1. build solvers for various types of instances using automated
algorithm configuration

2. construct portfolio-based selector from these

Problem: requires suitably defined sets of instances

Solution: automatically partition heterogenous instance set

Hoos & Hutter: Programming by Optimization 121

Instance-specific algorithm configuration (ISAC)

Kadioglu, Malitsky, Sellmann, Tierney (2010); Malitky, Sellman (2012)

1. cluster training instances based on features
(using G-means)

2. configure given parameterised algorithm independently
for each cluster (using GGA)

3. construct portfolio-based selector from resulting configurations
(using distance to cluster centroids)

Drawback: Instance features may not correlate well
with impact of algorithm parameters on performance
(e.g., uninformative features)

Hoos & Hutter: Programming by Optimization 122

Approach #2:

Key idea: Augment existing selector AS by targetting instances
on which AS performs poorly
(cf. Leyton-Brown et al. 2003; Leyton-Brown et al. 2009)

I interleave configuration and selector construction

I in each iteration, determine configuration that complements
current selector best

Advantages:

I any-time behaviour: iteratively adds configurations

I desirable theoretical guarantees (under idealising assumptions)

Hoos & Hutter: Programming by Optimization 123

Hydra

Xu, Hoos, Leyton-Brown (2010); Xu, Hutter, Hoos, Leyton-Brown (2011)

1. configure given target algorithm A on complete instance set I
 configuration A1 = selector AS1 (always selects A1)

2. configure a new copy of A on I such that performance of
selector AS := AS1 + Anew is optimised
 configuration A2

 selector AS2 := AS1 + A2 (selects from {A1,A2})

3. configure a new copy of A on I such that performance of
selector AS := AS2 + Anew is optimised
 configuration A3

 selector AS3 := AS2 + A3 (selects from {A1,A2,A3})

...

Hoos & Hutter: Programming by Optimization 124

Note:

I effectively adds A with maximal marginal contribution
in each iteration

I estimate marginal contribution using perfect selector (oracle)
 avoids costly construction of selectors during configuration

I works well using FocusedILS for configuration,
*zilla for selection (but can use other configurators, selectors)

I can be further improved by adding multiple configurations
per iteration; using performance estimates from configurator

Hoos & Hutter: Programming by Optimization 125

Results on SAT:

I target algorithm: SATenstein-LS (KhudaBukhsh et al. 2009)

I 6 well-known benchmark sets of SAT instances
(application, crafted, random)

I 7 iterations of Hydra

I 10 configurator runs per iteration, 1 CPU day each

Hoos & Hutter: Programming by Optimization 126

Results on mixture of 6 benchmark sets

10
-2

10
0

10
2

10
-2

10
-1

10
0

10
1

10
2

10
3

Hydra[BM, 1] PAR Score

H
y
d
ra

[B
M

,
7
]
P

A
R

 S
c
o
re

Hoos & Hutter: Programming by Optimization 127

Results on mixture of 6 benchmark sets

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Number of Hydra Steps

P
A

R
 S

c
o
re

Hydra[BM] training
Hydra[BM] test
SATenFACT on training
SATenFACT on test

Hoos & Hutter: Programming by Optimization 128

Note:

I good results also for MIP (CPLEX)
(Xu, Hutter, Hoos, Leyton-Brown 2011)

I idea underlying Hydra can also be applied to
automatically construct parallel algorithm portfolios
from single parameterised target algorithm
(Hoos, Leyton-Brown, Schaub, Schneider 2012–14)

Hoos & Hutter: Programming by Optimization 129

Software Development Support

and Further Directions

Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
inputs

Hoos & Hutter: Programming by Optimization 130

Design space specification

Option 1: use language-specific mechanisms

I command-line parameters

I conditional execution

I conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for . . .

I exposing parameters

I specifying alternative blocks of code

Hoos & Hutter: Programming by Optimization 131

Advantages of generic language extension:

I reduced overhead for programmer

I clean separation of design choices from other code

I dedicated PbO support in software development environments

Key idea:

I augmented sources: PbO-Java = Java + PbO constructs, . . .

I tool to compile down into target language: weaver

Hoos & Hutter: Programming by Optimization 132

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

 PbO-<L>
 weaver

PbO
design

optimiser

benchmark
input

Hoos & Hutter: Programming by Optimization 133

Exposing parameters

...

numerator -= (int) (numerator / (adjfactor+1) * 1.4);

... ...

##PARAM(float multiplier=1.4)

numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

...

I parameter declarations can appear at arbitrary places
(before or after first use of parameter)

I access to parameters is read-only (values can only be
set/changed via command-line or config file)

Hoos & Hutter: Programming by Optimization 134

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

Hoos & Hutter: Programming by Optimization 135

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard

<block S>

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced

<block E>

##END CHOICE preProcessing

Hoos & Hutter: Programming by Optimization 135

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

...

##BEGIN CHOICE preProcessing

<block 2>

##END CHOICE preProcessing

Hoos & Hutter: Programming by Optimization 135

Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1a>

##BEGIN CHOICE extraPreProcessing

<block 2>

##END CHOICE extraPreProcessing

<block 1b>

##END CHOICE preProcessing

Hoos & Hutter: Programming by Optimization 135

�������	�
	

������
���������

������	���
���

����������

���	��	��	��
���

����������

��������
�
���	����

������
�����

�������	���

���������
���������

���
������

��	������

��������
����	

Hoos & Hutter: Programming by Optimization 136

The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, . . .)

I parametric mode:

I expose parameters

I make choices accessible via (conditional, categorical)
parameters

I (partial) instantiation mode:

I hardwire (some) parameters into code
(expose others)

I hardwire (some) choices into code
(make others accessible via parameters)

Hoos & Hutter: Programming by Optimization 137

The road ahead

I Support for PbO-based software development

I Weavers for PbO-C, PbO-C++, PbO-Java

I PbO-aware development platforms

I Improved / integrated PbO design optimiser

I Debugging and performance analysis tools

I Best practices

I Many further applications

I Scientific insights

Hoos & Hutter: Programming by Optimization 138

Which choices matter?

Observation: Some design choices matter more than others

depending on . . .

I algorithm under consideration

I given use context

Knowledge which choices / parameters matter may . . .

I guide algorithm development

I facilitate configuration

Hoos & Hutter: Programming by Optimization 139

3 recent approaches:

I Forward selection based on empirical performance models
Hutter, Hoos, Leyton-Brown (2013)

I Functional ANOVA based on empirical performance models
Hutter, Hoos, Leyton-Brown (2014)

I Ablation analysis
Fawcett, Hoos (2013–14)

Hoos & Hutter: Programming by Optimization 140

Functional ANOVA based on empirical performance models

Hutter, Hoos, Leyton-Brown (2014)

Key idea:

I build regression model of algorithm performance as a function
of all input parameters (= design choices)

 empirical performance models (EPMs)

I analyse variance in model output (= predicted performance)
due to each parameter, parameter interactions

I importance of parameter: fraction of performance variation
over configuration space explained by it (main effect)

I analogous for sets of parameters (interaction effects)

Hoos & Hutter: Programming by Optimization 141

Decomposition of variance in a nutshell

For parameters p1, . . . , pn and a function (performance model) y :

y(p1, . . . , pn) = µ

+ f1(p1) + f2(p2) + · · ·+ fn(pn)

+ f1,2(p1, p2) + f1,3(p1, p3) + · · ·+ fn−1,n(pn−1, pn)

+ f1,2,3(p1, p2, p3) + · · ·
+ · · ·

Hoos & Hutter: Programming by Optimization 142

Note:

I Straightforward computation of main and interaction effects
is intractable.
(integration over combinatorial spaces of configurations)

I For random forest models, marginal performance predictions
and variance decomposition (up to constant-sized interactions)
can be computed exactly and efficiently.

Hoos & Hutter: Programming by Optimization 143

Empirical study:

I 8 high-performance solvers for SAT, ASP, MIP, TSP
(4–85 parameters)

I 12 well-known sets of benchmark data
(random + real-world structure)

I random forest models for performance prediction,
trained on 10 000 randomly sampled configurations per solver
+ data from 25+ runs of SMAC configuration procedure

Hoos & Hutter: Programming by Optimization 144

Fraction of variance explained by main effects:

CPLEX on RCW (comp sust) 70.3%
CPLEX on CORLAT (comp sust) 35.0%

Clasp on software verificatition 78.9%
Clasp on DB query optimisation 62.5%

CryptoMiniSAT on bounded model checking 35.5%
CryptoMiniSAT on software verification 31.9%

Hoos & Hutter: Programming by Optimization 145

Fraction of variance explained by main + 2-interaction effects:

CPLEX on RCW (comp sust) 70.3% + 12.7%
CPLEX on CORLAT (comp sust) 35.0% + 8.3%

Clasp on software verificatition 78.9% + 14.3%
Clasp on DB query optimisation 62.5% + 11.7%

CryptoMiniSAT on bounded model checking 35.5% + 20.8%
CryptoMiniSAT on software verification 31.9% + 28.5%

Hoos & Hutter: Programming by Optimization 146

Note:
may pick up variation caused by poorly performing configurations

Simple solution:

cap at default performance or quantile from distribution of
randomly sampled configurations; build model from capped data.

Hoos & Hutter: Programming by Optimization 147

Ablation analysis

Fawcett, Hoos (2013–14)

Key idea:

I given two configurations, A and B, change one parameter
at a time to get from A to B

 ablation path

I in each step, change parameter to achieve maximal gain
(or minimal loss) in performance

I for computational efficiency, use racing (F-race)
for evaluating parameters considered in each step

Hoos & Hutter: Programming by Optimization 148

Empirical study:

I high-performance solvers for SAT, MIP, AI Planning
(26–76 parameters),
well-known sets of benchmark data (real-world structure)

I optimised configurations obtained from ParamILS
(minimisation of penalised average running time;
(10 runs per scenario, 48 CPU hours each)

Hoos & Hutter: Programming by Optimization 149

Ablation between default and optimised configurations:

 0.1

 1

 10

 100

 0 5 10 15 20 25

P
er

fo
rm

an
ce

 (P
A

R
10

, s
)

#Parameters modified from default

Default to configured
Configured to default

LPG on Depots planning domain

Hoos & Hutter: Programming by Optimization 150

Which parameters are important?

LPG on depots:

I cri intermediate levels (43% of overall gain!)

I triomemory

I donot try suspected actions

I walkplan

I weight mutex in relaxed plan

Note: Importance of parameters varies between planning domains

Hoos & Hutter: Programming by Optimization 151

Algorithm configuration: parameter importance

 Algorithm selection: component contribution

Xu, Hutter, Hoos, Leyton-Brown (2012)

Consider:
portfolio-based algorithm selector AS
with candidate algorithms A1,A2, . . .Ak

Question:
How much does each Ai contribute
to overall performance of AS?

Hoos & Hutter: Programming by Optimization 152

Marginal contribution of Ai to portfolio-based selector AS

= difference in performance of AS with and without Ai

(trained separately)

6= frequency of selecting Ai

6= fraction of instances solved by Ai

6= contribution of Ai to virtual best solver (VBS)

Hoos & Hutter: Programming by Optimization 153

Application to SATzilla:

I all instances from 2011 SAT Competition:
300 Application; 300 Crafted; 300 Random

I candidate solvers from 2011 SAT Competition:

I for determining virtual best solver (VBS)
and single best solver (SBS):
all solvers from Phase 2 of competition:
31 Application; 25 Crafted; 17 Random

I for building SATzilla:
all sequential, non-portfolio solvers from Phase 2:
18 Application; 15 Crafted; 9 Random

I SATzilla assessed by 10-fold cross validation

Hoos & Hutter: Programming by Optimization 154

SATzilla 2011 Performance (Inst. Solved)

Solver Application Crafted Random

VBS 84.7% 76.3% 82.2%

SATzilla 2011 75.3% 66.0% 80.8%
SATzilla 2009 70.3% 63.0% 80.3%

Gold medalist (SBS) 71.7% 54.3% 68.0%

Hoos & Hutter: Programming by Optimization 155

Performance of Individual Solvers
Application

0 20 40 60 80 100

QuteRSat
CryptoMinisat

EBGlucose
Glucose2
Glucose1

Rcl
Minisat_psm

Contrasat
MPhaseSAT64

Lingeling
Precosat

LR GL SHR
Glueminisat
Minisatagile

EBMinisat
Minisat

Cirminisat
RestartSAT

Percentage Solved

5000 CPU sec cutoff

Hoos & Hutter: Programming by Optimization 156

Correlation of Solver Performance
Application

RestartS
AT

Cirm
inisat

Minisat

EBMinisat

Minisatagile

Glueminisat

LR GL SHR

Precosat

Lingeling

MPhaseSAT64

Contra
sat

Minisat_psm
Rcl

Glucose1

Glucose2

EBGlucose

CryptoMinisat

QuteRSat

RestartSAT

Cirminisat

Minisat

EBMinisat

Minisatagile

Glueminisat

LR GL SHR

Precosat

Lingeling

MPhaseSAT64

Contrasat

Minisat_psm

Rcl

Glucose1

Glucose2

EBGlucose

CryptoMinisat

QuteRSat

darker = higher Spearman correlation coefficient

Hoos & Hutter: Programming by Optimization 157

Correlation of Solver Performance
Random

Sparro
w

EagleUP

Gnovelty+2
TNM

Sattim
e11

Adaptg2wsat11

MPhaseSAT_M

March_rw

March_hi

Sparrow

EagleUP

Gnovelty+2

TNM

Sattime11

Adaptg2wsat11

MPhaseSAT_M

March_rw

March_hi

darker = higher Spearman correlation coefficient

Hoos & Hutter: Programming by Optimization 158

Solver Selection Frequency in SATzilla 2011
Application

Glucose2 (Backup)

Glucose2

Glueminisat

QuteRSat

Precosat

Other Solvers

Solved by Presolvers

Hoos & Hutter: Programming by Optimization 159

Instances Solved by SATzilla 2011 Components
Application

Glucose2 (Backup)

Glucose2 (Pre1)

Glucose2

Glueminisat (Pre1)

Glueminisat
QuteRSat

Precosat

EBGlucose (Pre1)
EBGlucose

Minisat psm (Pre1)
Minisat psm

Other Solvers

Unsolved

Hoos & Hutter: Programming by Optimization 160

Marginal Contribution of Components
Application

0 2 4 6 8 10

QuteRSat
CryptoMinisat

EBGlucose
Glucose2
Glucose1

Rcl
Minisat_psm

Contrasat
MPhaseSAT64

Lingeling
Precosat

LR GL SHR
Glueminisat
Minisatagile

EBMinisat
Minisat

Cirminisat
RestartSAT

Marginal Contribution (%)

Hoos & Hutter: Programming by Optimization 161

Instances Solved vs Marginal Contribution of Components
Application

0 10 20 30 40 50 60
0

2

4

6

8

10

% Solved by Component Solver

M
ar

gi
na

l C
on

tr
ib

ut
io

n

MPhaseSAT64

Glueminisat

Hoos & Hutter: Programming by Optimization 162

Instances Solved vs Marginal Contribution of Components
Crafted

0 10 20 30 40 50 60
0

2

4

6

8

10

% Solved by Component Solver

M
ar

gi
na

l C
on

tr
ib

ut
io

n

Sol

Clasp2Sattime

MPhaseSAT

Joint contributions:

- 2 Clasp variants = 6.3%

- 2 Sattime variants = 5.4%

Hoos & Hutter: Programming by Optimization 163

Instances Solved vs Marginal Contribution of Components
Random

0 10 20 30 40 50 60
0

2

4

6

8

10

% Solved by Component Solver

M
ar

gi
na

l C
on

tr
ib

ut
io

n

EagleUP

Sparrow

March_rw

Joint contributions:

- 2 March variants = 4%

- 6 LS solvers = 22.5%

Hoos & Hutter: Programming by Optimization 164

Leveraging parallelism

I design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

I deriving parallel programs from sequential sources
 concurrent execution of optimised designs
 (parallel portfolios)
(Hoos, Leyton-Brown, Schaub, Schneider 2012)

I parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)

I use of cloud resources (parallel runs of design optimisers, ...)
(Geschwender, Hutter, Kotthoff, Malitsky, Hoos, Leyton-Brown 2014)

Hoos & Hutter: Programming by Optimization 165

Take-home Message

Programming by Optimisation ...

I leverages computational power to construct
better software

I enables creative thinking about design alternatives

I produces better performing, more flexible software

I facilitates scientific insights into

I efficacy of algorithms and their components

I empirical complexity of computational problems

... changes how we build and use high-performance software

Hoos & Hutter: Programming by Optimization 166

More Information:

I www.cs.ubc.ca/labs/beta/Projects/PbO-AAAI-14

I www.prog-by-opt.net

I PbO article in Communications of the ACM (Hoos 2012)

I Senior member’s talk (HH): Wed, 8:30–9:15, Rm 303B

I Forthcoming book (Morgan & Claypool)

If PbO works for you:

I Make our day – let us know!

I Share the joy – tell everyone else!

Hoos & Hutter: Programming by Optimization 167

