Efficient codon optimization with motif engineering

Anne Condon and Chris Thachuk
University of British Columbia

IWOCA 2011
June 20, 2011

Why synthesize proteins?

Image credit: Protein Data Bank

Central dogma

PADMDA DNA
transcription
(DNA -> RNA)
RNA Polymerase

Ribosome
Protein

How to synthesize DNA/RNA

Genetic code is redundant

Alanine

Leucine

Genetic code is redundant

Genetic code is a many-to-one mapping

Genetic code is a many-to-one mapping

Definition

- $\lambda(i)$ denotes the $i^{\text {th }}$ amino acid
- $\lambda_{j}(i)$ denotes its $j^{\text {th }}$ codon
- $|\lambda(i)|$ denotes its codon count

Genetic code is a many-to-one mapping

Definition

- $\lambda(i)$ denotes the $i^{\text {th }}$ amino acid
- $\lambda_{j}(i)$ denotes its $j^{\text {th }}$ codon
- $|\lambda(i)|$ denotes its codon count

Example

$$
\begin{aligned}
\lambda(2) & =\text { Leucine } \\
|\lambda(2)| & =6 \\
\lambda_{1}(2) & =\text { CUA }
\end{aligned}
$$

Codon frequency

```
Tyrosine
```


Codon frequency

Definition

Let $\rho_{j}(i)$ denotes the relative frequency of $j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid.

Codon frequency

Definition

Let $\rho_{j}(i)$ denotes the relative frequency of $j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid.

Example

$$
\begin{aligned}
\lambda(3) & =\text { Tyrosine } & \\
\rho_{1}(3) & =\frac{9}{9+1} & =0.9 \\
\rho_{2}(3) & =\frac{1}{9+1} & =0.1
\end{aligned}
$$

Codon frequency

Definition

Let $\rho_{j}(i)$ denotes the relative frequency of $j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid.

Example

$$
\begin{aligned}
\lambda(3) & =\text { Tyrosine } & \\
\rho_{1}(3) & =\frac{9}{9+1} & =0.9 \\
\rho_{2}(3) & =\frac{1}{9+1} & =0.1
\end{aligned}
$$

$\lambda_{1}(3)$ is a most frequent codon

Codon fitness

Definition

Let $\tau_{j}(i)$ denote the codon fitness of $j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid.

A codon's fitness is its frequency relative to the most frequent codon of the same amino acid.

Codon fitness

Definition

Let $\tau_{j}(i)$ denote the codon fitness of $j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid.

A codon's fitness is its frequency relative to the most frequent codon of the same amino acid.

Example

$\lambda(3)=$ Tyrosine
$\tau_{2}(3)=\frac{\rho_{2}(3)}{\rho_{1}(3)} \quad=\frac{0.1}{0.9} \approx 0.11$

The codon adaption index
Given an amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$, and a corresponding codon design $S=c_{1}, c_{2}, \ldots, c_{|A|}$:

$$
\operatorname{CAI}(S, A)=\left(\prod_{i=1}^{|A|} \tau_{c_{i}}\left(\alpha_{i}\right)\right)^{\frac{1}{|A|}}
$$

Example

> | A | Tyrosine | Tyrosine | Tyrosine | Tyrosine |
| :--- | :--- | :--- | :--- | :--- |
| S | UAC | UAU | UAU | UAC |
| | 1.0 | 0.11 | 0.11 | 1.0 |

Optimizing CAI

The CAI codon optimization problem

Instance: Amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$.
Problem: Find a codon design S^{*} corresponding to A such that:

- $\operatorname{CAI}\left(S^{*}, A\right)=\max \{C A I(S, A) \mid S \in \mathbf{S}(A)\}$
where $\mathbf{S}(A)$ is the set of all codon designs for A.

Optimizing CAI

The CAI codon optimization problem

Instance: Amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$.
Problem: Find a codon design S^{*} corresponding to A such that:

- $\operatorname{CAI}\left(S^{*}, A\right)=\max \{C A I(S, A) \mid S \in \mathbf{S}(A)\}$
where $\mathbf{S}(A)$ is the set of all codon designs for A.
Note: trivially solvable in linear time

The catch
Certain motifs (substrings) should not appear in the codon design.

Forbidden motifs and desirable motifs

The catch
Certain motifs (substrings) should not appear in the codon design.

- restriction enzyme motifs
(e.g., Mlyl restriction enzyme motif: GAGTC)

Forbidden motifs and desirable motifs

The catch
Certain motifs (substrings) should not appear in the codon design.

- restriction enzyme motifs
(e.g., Mlyl restriction enzyme motif: GAGTC)
- polyhomomeric regions
(e.g., CCCCCC)

Forbidden motifs and desirable motifs

The catch

Certain motifs (substrings) should not appear in the codon design.

- restriction enzyme motifs

```
(e.g., Mlyl restriction enzyme motif: GAGTC)
```

- polyhomomeric regions (e.g., CCCCCC)

Certain motifs (substrings) are desirable in the codon design.

- Immuno stimulatory motifs

Example			
Tyrosine	Leucine	Alanine	Tyrosine
UAC	CUA	GCA	UAC
UAU	CUC	GCC	UAC
	CUG	GCG	
	U	GCU	
	UUA		
	UUG		
$\mathcal{F}=\{\mathrm{CCUU}, \mathrm{AGC}, \mathrm{UGGC}\}$			

Tyrosine	Leucine	Alanine	Tyrosine
	CUA	GCA	UAC
	CUC	GCC	UAC
	CUG	GCG	
	cuv	GCU	
	UUA		
	UUG		
$\mathcal{F}=\{\mathrm{CCUU}, \mathrm{AGC}, \mathrm{UGGC}\}$			

Example			
Tyrosine	Leucine	Alanine	Tyrosine
UAC	CUA	GCA	UAC
UAU	CUC	GCC	UAC
	CUG	GCG	
	CUU	GCU	
	UUA		
	UUG		
$\mathcal{F}=\{\mathrm{CCUU}, \mathrm{AGC}, \mathrm{UGGC}\}$			

Forbidden motifs and desirable motifs

Detecting motifs

Equivalent to the dictionary matching problem.

- Classic dictionary (Aho \& Corasick 1975)
- Succinct dictionary (Belazzougui 2010, Thachuk 2011)

Text of length h scanned for patterns in $O(h)$ time.

Motifs are of constant length

Observation

If the largest forbidden or desired motif is of length g, then any forbidden or desired motif can span at most $k+1$ consecutive codons, where $k=\lceil g / 3\rceil$.

Optimizing CAI and considering motifs

The CAI codon optimization problem with motif engineering
Instance: Amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$, a set of forbidden motifs \mathcal{F}, and a set of desired motifs \mathcal{D}.

Optimizing CAI and considering motifs

The CAI codon optimization problem with motif engineering
Instance: Amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$, a set of forbidden motifs \mathcal{F}, and a set of desired motifs \mathcal{D}.

Problem: Find a codon design S^{*} corresponding to A such that:

- S^{*} is valid, with respect to \mathcal{F} and \mathcal{D},
- $\operatorname{CAI}\left(S^{*}, A\right)=\max \{\operatorname{CAI}(S, A) \mid S \in \mathbf{S}(A)\}$

Optimizing CAI and considering motifs

The CAI codon optimization problem with motif engineering
Instance: Amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{|A|}$, a set of forbidden motifs \mathcal{F}, and a set of desired motifs \mathcal{D}.

Problem: Find a codon design S^{*} corresponding to A such that:

- S^{*} is valid, with respect to \mathcal{F} and \mathcal{D},
- $\operatorname{CAI}\left(S^{*}, A\right)=\max \{\operatorname{CAI}(S, A) \mid S \in \mathbf{S}(A)\}$
where $\mathbf{S}(A)$ is the set of all valid codon designs for A.

We will develop a dynamic programming algorithm.
(We ignore desirable motifs.)

Notation

- $\lambda_{j}(i)$
$j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid
- $\tau_{j}(i)$
$j^{\text {th }}$ codon's fitness w.r.t $i^{\text {th }}$ amino acid

We will develop a dynamic programming algorithm.
(We ignore desirable motifs.)

Notation

- $\lambda_{j}(i)$
$j^{\text {th }}$ codon of $i^{\text {th }}$ amino acid
- $\tau_{j}(i)$
$j^{\text {th }}$ codon's fitness w.r.t $i^{\text {th }}$ amino acid
- $\mathcal{M}_{\mathcal{F}}\left(\lambda_{c_{i}}\left(\alpha_{j}\right) \ldots \lambda_{c_{i+q}}\left(\alpha_{j+q}\right)\right)$
count of forbidden motifs
- $\mathcal{M}_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i}}\left(\alpha_{j}\right) \ldots \lambda_{c_{i+q}}\left(\alpha_{j+q}\right)\right)$
count of forbidden motifs ending in last codon

We make use of two k-dimensional DP matrices.

The Forbidden motif DP matrix

$F_{\mathrm{c}_{\mathrm{i}-\mathrm{k}+1}, \ldots, \mathrm{c}_{\mathrm{i}-1}, \mathrm{c}_{\mathrm{i}}}^{\mathbf{i}}$
Denotes the minimum possible number of forbidden motifs in a DNA sequence which codes for an amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$, given that the last k codons (of i total codons) have indices denoted as $c_{i-k+1}, \ldots, c_{i-1}, c_{i}$.

We make use of two k-dimensional DP matrices.

The Forbidden motif DP matrix

$\boldsymbol{F}_{\mathrm{c}_{\mathrm{i}-\mathrm{k}+1}, \ldots, \mathrm{c}_{\mathrm{i}-1}, \mathrm{c}_{\mathrm{i}}}^{\mathrm{i}}$
Denotes the minimum possible number of forbidden motifs in a DNA sequence which codes for an amino acid sequence $A=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}$, given that the last k codons (of i total codons) have indices denoted as $c_{i-k+1}, \ldots, c_{i-1}, c_{i}$.

```
The CAI value DP matrix
\(\mathbf{P}_{\mathrm{c}_{\mathrm{i}-\mathrm{k}+1}, \ldots, \mathrm{c}_{\mathrm{i}-1}, \mathrm{c}_{\mathrm{i}}}^{\mathbf{i}}\)
```

Denotes the maximum possible CAI score among all valid sequences.

Simply evaluate all assignments to first k codons.

$$
\begin{aligned}
& F_{c_{1}, c_{2}, \ldots, c_{k-1}, c_{k}}^{k}=M_{\mathcal{F}}\left(\lambda_{c_{1}}\left(\alpha_{1}\right) \lambda_{c_{2}}\left(\alpha_{2}\right) \ldots \lambda_{c_{k-1}}\left(\alpha_{k-1}\right) \lambda_{c_{k}}\left(\alpha_{k}\right)\right) \\
& P_{c_{1}, c_{2}, \ldots, c_{k-1}, c_{k}}^{k}=\prod_{i=1}^{k}\left(\tau_{c_{i}}\left(\alpha_{i}\right)\right)
\end{aligned}
$$

The algorithm

The base case

Simply evaluate all assignments to first k codons.

$$
\begin{aligned}
& F_{c_{1}, c_{2}, \ldots, c_{k-1}, c_{k}}^{k}=M_{\mathcal{F}}\left(\lambda_{c_{1}}\left(\alpha_{1}\right) \lambda_{c_{2}}\left(\alpha_{2}\right) \ldots \lambda_{c_{k-1}}\left(\alpha_{k-1}\right) \lambda_{c_{k}}\left(\alpha_{k}\right)\right) \\
& P_{c_{1}, c_{2}, \ldots, c_{k-1}, c_{k}}^{k}=\prod_{i=1}^{k}\left(\tau_{c_{i}}\left(\alpha_{i}\right)\right)
\end{aligned}
$$

Complexity analysis

- at most 6 codons for each of the k positions $O\left(6^{k}\right)$ assignments
- evaluating one assignment for motifs
$O(k)$ time
- $O\left(6^{k} k\right)$ time and $O\left(6^{k}\right)$ words of space

The algorithm
The recursive case case ($i>k$)
For a fixed assignment to last k codons:

$$
\begin{aligned}
& F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\min _{1 \leq c_{i-k} \leq\left|\lambda\left(\alpha_{i-k}\right)\right|} \\
& \qquad\left\{F_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}+M_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i-k}}\left(\alpha_{i-k}\right) \ldots \lambda_{c_{i-1}}\left(\alpha_{i-1}\right) \lambda_{c_{i}}\left(\alpha_{i}\right)\right)\right\}
\end{aligned}
$$

Example

Tyrosine

The algorithm
The recursive case case ($i>k$)
For a fixed assignment to last k codons:

$$
\begin{aligned}
& F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\min _{1 \leq c_{i-k} \leq\left|\lambda\left(\alpha_{i-k}\right)\right|} \\
& \qquad\left\{F_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}+M_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i-k}}\left(\alpha_{i-k}\right) \ldots \lambda_{c_{i-1}}\left(\alpha_{i-1}\right) \lambda_{c_{i}}\left(\alpha_{i}\right)\right)\right\}
\end{aligned}
$$

Example

The algorithm
The recursive case case ($i>k$)
For a fixed assignment to last k codons:

$$
\begin{aligned}
& F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\min _{1 \leq c_{i-k} \leq\left|\lambda\left(\alpha_{i-k}\right)\right|} \\
& \qquad\left\{F_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}+M_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i-k}}\left(\alpha_{i-k}\right) \ldots \lambda_{c_{i-1}}\left(\alpha_{i-1}\right) \lambda_{c_{i}}\left(\alpha_{i}\right)\right)\right\}
\end{aligned}
$$

Example

UARosine

The algorithm
The recursive case case ($i>k$)
For a fixed assignment to last k codons:

$$
\begin{aligned}
& F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\min _{1 \leq c_{i-k} \leq\left|\lambda\left(\alpha_{i-k}\right)\right|} \\
& \qquad\left\{F_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}+M_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i-k}}\left(\alpha_{i-k}\right) \ldots \lambda_{c_{i-1}}\left(\alpha_{i-1}\right) \lambda_{c_{i}}\left(\alpha_{i}\right)\right)\right\}
\end{aligned}
$$

Example

Tyrosine

The algorithm

The recursive case case ($i>k$)
For a fixed assignment to last k codons:

$$
\begin{aligned}
& P_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\max _{1 \leq c_{i-k} \leq\left|\lambda\left(\alpha_{i-k}\right)\right|} \\
& \left\{\begin{array}{ll}
-\infty & , \text { if } \begin{array}{l}
F_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}+ \\
M_{\mathcal{F}}^{\prime}\left(\lambda_{c_{i-k}}\left(\alpha_{i-k}\right) \ldots \lambda_{c_{i}}\left(\alpha_{i}\right)\right) \neq F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i} \\
\tau_{c_{i}}\left(\alpha_{i}\right) \times P_{c_{i-k}, \ldots, c_{i-2}, c_{i-1}}^{i-1}
\end{array}
\end{array} \begin{array}{l}
\text {, otherwise }
\end{array}\right.
\end{aligned}
$$

Example

$$
k=3
$$

The algorithm
The recursive case case ($i>k$)

$$
\begin{gathered}
\widetilde{F_{k}^{i}}=\min _{\substack{1 \leq c_{i} \leq\left|\lambda\left(\alpha_{i}\right)\right| \\
1 \leq c_{i-1} \leq\left|\lambda\left(\alpha_{i-1}\right)\right|}}\left\{F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}\right\} \\
\left.\widetilde{P_{k}^{i}}=\underset{\substack{1 \leq c_{i-k+1} \leq\left|\lambda\left(\alpha_{i-k+1}\right)\right| \\
1 \leq c_{i} \leq\left|\lambda\left(\alpha_{i}\right)\right| \\
1 \leq\left|\lambda\left(\alpha_{i-1}\right)\right|}}{\vdots} \begin{array}{ll}
P_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i} & , \text { if } F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\widetilde{F_{k}^{i}} \\
-\infty
\end{array}\right\} \\
1 \leq c_{i-k+1} \leq\left|\lambda\left(\alpha_{i-k+1}\right)\right|
\end{gathered}
$$

The algorithm

The recursive case case $(i>k)$

$$
\begin{gathered}
\widetilde{F_{k}^{i}}=\min _{\substack{1 \leq c_{i} \leq\left|\lambda\left(\alpha_{i}\right)\right| \\
1 \leq c_{i-1} \leq\left|\lambda\left(\alpha_{i-1}\right)\right|}}\left\{F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}\right\} \\
\vdots \\
\widetilde{P_{k}^{i}}=\underset{\substack{1 \leq c_{i-k+1} \leq\left|\lambda\left(\alpha_{i-k+1}\right)\right| \\
1 \leq c_{i} \leq\left|\lambda\left(\alpha_{i}\right)\right| \\
1 \leq c_{i-1} \leq\left|\lambda\left(\alpha_{i-1}\right)\right|}}{\vdots} \begin{array}{l}
P_{\substack{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}}^{i} \quad, \text { if } F_{c_{i-k+1}, \ldots, c_{i-1}, c_{i}}^{i}=\widetilde{F_{k}^{i}} \\
-\infty \\
1 \leq c_{i-k+1} \leq\left|\lambda\left(\alpha_{i-k+1}\right)\right|
\end{array}
\end{gathered}
$$

Complexity analysis

- $O\left(6^{k}\right)$ codon assignments evaluated at n positions
- $O(k)$ time to evaluate assignment
- $O\left(6^{k} k n\right)=O(n)$ time and space overall previous state-of-the-art $\theta\left(n^{2}\right)$ time/space (Satya et al., 2003)

Experimental setup

Data set

- 3,157 sequences from GENCODE subset of ENCODE dataset
- comprises 1% of human genome
- representative of genome in various characteristics
- range in length from 75 to 8186 bases
- mean length of 173 bases (267 bases standard deviation)

Experimental setup

Data set

- 3,157 sequences from GENCODE subset of ENCODE dataset
- comprises 1% of human genome
- representative of genome in various characteristics
- range in length from 75 to 8186 bases
- mean length of 173 bases (267 bases standard deviation)
- using codon frequencies of Escherichia coli

Experimental setup

Data set

- 3,157 sequences from GENCODE subset of ENCODE dataset
- comprises 1% of human genome
- representative of genome in various characteristics
- range in length from 75 to 8186 bases
- mean length of 173 bases (267 bases standard deviation)
- using codon frequencies of Escherichia coli
- $|\mathcal{F}|=10|\mathcal{D}|=33$
$k=3$ (motifs of length 9 or less)

Experimental setup

Data set

- 3,157 sequences from GENCODE subset of ENCODE dataset
- comprises 1% of human genome
- representative of genome in various characteristics
- range in length from 75 to 8186 bases
- mean length of 173 bases (267 bases standard deviation)
- using codon frequencies of Escherichia coli
- $|\mathcal{F}|=10|\mathcal{D}|=33$
$k=3$ (motifs of length 9 or less)

Implementation \& Hardware

- Implemented in C++
- Pentium IV 2.4 GhZ
- 1 GB RAM

motif sets	CAI value	\# forbidden	\# desired
none (wild-types)	$0.65(0.06)$	$9.24(16.24)$	$0.49(1.06)$

motif sets	CAI value	\# forbidden	\# desired
none (wild-types)	$0.65(0.06)$	$9.24(16.24)$	$0.49(1.06)$
forbidden	$0.92(0.04)$	$0.14(0.45)$	$0(0.00)$

motif sets	CAI value	\# forbidden	\# desired
none (wild-types)	$0.65(0.06)$	$9.24(16.24)$	$0.49(1.06)$
forbidden	$0.92(0.04)$	$0.14(0.45)$	$0(0.00)$
forbidden \& desired	$0.83(0.05)$	$0.14(0.45)$	$10.13(14.84)$

Conclusions \& Future Work

Conclusions

- CAI of gene can be optimized effectively
- motifs can be removed/added effectively
- $O(n)$ time/space algorithm for constant length motifs
- algorithm is fast in practice

Conclusions \& Future Work

Conclusions

- CAI of gene can be optimized effectively
- motifs can be removed/added effectively
- $O(n)$ time/space algorithm for constant length motifs
- algorithm is fast in practice

Open Problem

Design codon sequence free of secondary structure

