
Executing Formal Speci�cations by Translation

to Higher Order Logic Programming

|

James H. Andrews
|

Dept. of Computer Science, University of BC

Vancouver, BC, Canada
+

Dept. of Computer Science, University of Western Ontario

London, Ont., Canada

� Motivations

� Basic System Structure

� Translation Scheme

� Working With the System

� Design Decisions

1

Motivations

Why do formal speci�cation?

� High quality specs) lower development costs

� Formal notations) high quality specs

� Higher order typed logic) safer, more expressive formal
notations

Why execute formal specs?

� Incorrect/ambiguous specs) lower quality

� Theorem proving very labour-intensive

� (Partial) execution) greater con�dence in correctness

How to execute higher order formal specs?

� Build customized engine: reinvents wheels

� Translate into functional language: misses some key fea-
tures

� Translate into logic programming language: handle quan-
ti�ers, obtain added uni�cation, backtracking features

� Need higher order logic programming language like Lambda

Prolog

2

'

&

$

%

'

&

$

%

?

?

.

?

6

?

�

S

Speci�cation

s2lp

Lambda Prolog

Program

Lambda

Prolog

User

Interaction

s2lp common.lp

3

S and Lambda Prolog: Declarations

� S: developed 1994 by Joyce, Day, Donat (UBC)

� Lambda Prolog: developed 1986 by Nadathur, Miller

(UPenn)

� Constant declaration
S: version_number: num;

LP: type version_number num.

� Type declaration
S: : process;

LP: kind process type.

� \Type de�nition"
S: : num_tree := leaf :num

| branch :num_tree :num_tree;

LP: kind num_tree type.

type leaf num -> num_tree.

type branch

num_tree -> num_tree -> num_tree.

4

Simpli�ed CCS in S: Declarations

: label;

: process := andthen :label :process

| plus :process :process

| par :process :process

| nullprocess;

tau: label;

prime: label -> label;

% Example labels

a, b, c: label;

5

Simpli�ed CCS in S: Function De�nitions

Functions without parameters:

process1 :=

(andthen a (andthen b nullprocess));

process2 :=

(andthen a (plus (andthen b nullprocess)

(andthen c nullprocess)));

Function with a parameter:

trace Process :=

if (Process == nullprocess) then []

else (

select Trace . (

exists Label Newprocess . (

(can_do Process Label Newprocess) /\

(Trace = (CONS Label (trace Newprocess)))

)));

6

Translating Function De�nitions

� Lambda Prolog has Prolog-style clauses for predicates

� Key concept: eval predicate

� Lambda Prolog query (eval expr Result) binds variable
Result to \value" of expr

� type eval A -> A -> o.

� s2lp's main task: produce eval clauses from S spec

� Function de�nition

S: merge P Q :=

if (P=nullprocess) then Q

else (par P Q);

LP: type merge process -> process -> process.

eval (merge P Q) R :-

eval ('COND' (P=nullprocess)

Q

(par P Q))

R.

7

Translating Constants

Recursion of eval bottoms out on declared constants

� Declared constant
S: a: label;

LP: type a label.

eval a a.

Constructors evaluate their arguments

� Constructor
S: plus: process -> process -> process;

LP: type plus process -> process -> process.

eval (plus X$1 X$2) (plus Y$1 Y$2) :-

eval X$1 Y$1,

eval X$2 Y$2.

eval aided by builtin declarations in s2lp_common.lp:

eval ('COND' Cond Then Else) Result :-

eval Cond 'T',

!,

eval Then Result.

eval ('COND' Cond Then Else) Result :-

eval Else Result.

8

Working with Translated Program

� Issue queries of form eval expr Result

� If expr fully instantiated and functional, returns value

{ e.g. eval (merge process1 process2) Result

� If quanti�cation involved, does backtracking search

{ e.g. eval (trace process2) Result

� User must be aware of usual Prolog strategy

� Handles everything functional translations could handle

� Can do more if spec is constructed carefully

E�ciency:

� \Terzo" interpreter fairly slow on translated program

� Lambda Prolog compilers (e.g. Prolog/Mali) would improve

9

Design Decisions

Many decisions impinge on active research areas:

� How to integrate FP and LP?

� What is the boundary between LP and ATP?

Uninstantiated variables:

� Translated function cannot know whether var instantiated

� If eval given uninstantiated var to evaluate, diverges

� We want to give uninstantiated vars to equality operators

� Tip:

{ \A == B" evaluates A and B, uni�es

{ \A = B" evaluates only B, uni�es

{ Use \A = B" rather than \A == B" if you expect A
might be uninstantiated

10

Design Decisions

Evaluation responsibility:

� \Caller evaluation":

{ Calling function pre-evaluates arguments

{ Called function assumes arguments evaluated

{ Bypasses problems of uninstantiated vars

{ Does not integrate well with lambda expressions: e.g.

apply X Y := (X Y);

foo A B :=

apply (function A. bar (baz A)) B;

� \Callee evaluation":

{ Called function evaluates its own arguments

{ Actual scheme adopted by s2lp

Other decisions:

� Negation as failure

� No constraint processing

11

Epilogue

Conclusions:

� s2lp extends range of executability of specs

� Adding features to Lambda Prolog would extend further

� Similar scheme possible for other spec languages

Availability:

� s2lp adapted from fuss typechecker

� Source should be available within next year

Vision:

� Integrated functional/logic/spec language

12

