Formal Analysis of System
Specifications
Nancy A. Day
Supervisor: Dr. Jeff Joyce

_”N\/‘ { Department of Computer Science
| |L The University of British Columbia

WA

day@cs.ubc.ca
http://www.cs.ubc.ca/spider/day

Are we building
the right system ?

Requirements
Specification

Analysis of Formal Req Specs

= parsing; typechecking

= simulation; symbolic simulation;
prototyping

s completeness and consistency

= model checking

Context

Specifier

Requirements Spec
| FM expert

Anderson, et al. (UW)
Sreemani, Atlee and Gannon simplifications
Damon, Jackson and Jha

‘ F to make finite
Wing and Vaziri-Farahani il

Automated State Space Exploration Analysis
(Finite State Machines; BDDs)

Legend: algorithm/ inputs/
<::::> tool outputs

Observations

n different notations are used to
describe different parts of the
behaviour of the system
- appropriate for application
- life cycle (data encoding, code gen)

s simplifications used to make spec
finite are often present in various
parts of spec

Thesis Statement

Having an explicit machine-readable
operational semantics for a notation
within a common framework provides
a systematic way to exploit inherent
abstractions to carry out state-space
exploration analysis.

Output

Simplifying

Requirements Spec |-

Assumptions

Simplification)

Sy

I “/’// Semantics
. mbolic Func’rlonalw

Evaluation

~,

State Relation
N

\

(Convert to Finite/ Reduce]

Finite State Relation
|

——

)

utomated State Space Exploration Analysis |
(Finite State Machines; BDDs)

Example: Tabular Spec of
Aircraft Separation Rules

Decision table:What is the vertical
separation required between aircraft

A and aircraft B ?

Default
FlightLevel(A) < 280 >450
TypeOfAircraft(B) =Turbojet =Supersonic
IsLevel(A) =T :
InCruiseClimb(A) : _=F
Vertical _Separation (A,B) 1000 4000 2000

structure captures related elements in a row

Output

Environment

Simplifying

Assumptions

Requirements Spec [

Simplification)

Sy

I “/’// Semantics
. mbolic Func‘rlonalw

Evaluation

~,

State Relation
N

\

(Convert to Finite/Reduce)

Finite State Relation
|

—

)

utomated State Space Exploration Analysis |
(Finite State Machines; BDDs)

Example: Tabular Spec of
Aircraft Separation Rules

Assumption: The following conditions are mutually exclusive
and form a tautology:

(FlightLevel(A) < 280)
(FlightLevel(A) > 450)

However there Is at least one entry which is a “don’t care” entry
and this covers all other cases.

Environment

. typeOfAircraft := Turbojet | Supersonic | Other;

forall A:flight. IsLevel(A) ==>
Not (InCruiseClimb(A));

forall A:flight. InCruiseClimb(A) ==>
Not (IsLevel(A));

Analysis Results

= results produced at level of uninterpreted
functions

= completeness analysis found:

- missing assumptions "everyone knew about”
(domain knowledge)

- incorrect partitions
s consistency analysis found:

- two places where the requirements were
ambiguous

Simplifying :

Requirements Spec |-

Output :
ahlite Assumptions -

__________________ ‘/ymbOhC Func’rlonalj

N Evaluation \
State Relation
. . /

(Convert to Finite/Reduce]

Finite State Relation —

Automated State Space Exploration Analysis |
(Finite State Machines; BDDs)

Advantages / Contributions

s use the explicit defn of semantics directly
in analysis; also simulation, prototyping;
analysis of semantics

m general framework for:
- multiple notations; multiple analysis techniques

- non-formal methods person; formal methods
expert

s return results at correct level of
abstraction

s exploit inherent abstractions

Current Status

= mainly concentrating on how much can
do for simplification engine for
statecharts, tables, ASN.1 +

functionality given in predicate logic
= working on more examples

Remaining Questions /
Evaluation

s to what extend to the notations have
to be operational to be used in this
framework ?

s how much can structure reduce the
size of the state space ?

» how to evaluate a general framework ?

More examples

m aerohautical telecommunications
network (ATN)

- statecharts; parameterization; ASN.1;
uninterpreted functions, etc.

- error states are particularly important

