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Abstract. This paper presents a process for the refinement of safety-critical
source code into a more tractable representation. For large software-intensive
information systems, the safety engineering view of the system reveals a “long
thin slice” of hazard-related software involving a number of different software
components. The hazard-related software is documented in the system “safety
verification case” which provides a rigorous argument for the safety of the
source code. The refinement process creates a representation of the source code
which isolates the relevant source code details. A hypothetical chemical factory
information system is examined to illustrate aspects of this process and its
significance.

1. Introduction

This paper presents a refinement process for the source code level implementation of
a software-intensive safety-critical system. The output of the process is a model of the
source code which is used in system safety verification. Details of the representation
are documented in the system safety case.

The development process for software-intensive systems typically involves the
refinement of functional requirements into the system design, and the refinement of
the design into source code. The process often includes the creation of abstractions at
each level to hide the implementation details of the lower levels. If the abstractions
are sound, they can then be used with a high degree of confidence to implement the
application functionality.

In the case of software-intensive systems with safety-related functionality, the
development process will include the production of a safety case [16]. The safety case
summarizes all the evidence that the system is safe to deploy. Included in the safety
case is what we call the “safety verification case” [14] which documents the
verification of the implementation with respect to previously identified hazards. The
safety verification case is used to support future safety assessments of the system.
These assessments are typically performed by people other than the original system
developers.



This paper argues for the importance of including a representation of the safety-
related aspects of the system implementation in the safety verification case. The
future safety assessments of the system cannot rely with a "high degree of
confidence” on the soundness of the software abstractions used to construct the
system. The safety assessments will require implementation details in order to have
assurance of the safety of the source code.

This paper focuses on large software-intensive information systems with modern
software architectures. These systems may consist up to a million lines of production
code with the equivalent of millions more in “Commercial-Off-The-Shelf” (COTS)
products. Such systems are characterized by “long thin slices” of hazard-related
source code involving a number of different software components. The safety
verification case for these systems requires a representation of the long thin slice that
isolates the relevant details.

The author has had the opportunity to examine in depth a large real-time
information system with safety-related functionality through the formalWARE
project [15]. The project provided access to the Ada-based implementation of the
system, as well as to the safety engineering process used in system development.
Some of the lessons learned from the formalWARE project are illustrated with a
hypothetical chemical factory information system.

The chemical factory information system is introduced in Section 2, along with a
system hazard. Section 3 discusses the differences between the safety engineering and
software implementation views of the source code. Section 4 presents the need for a
more tractable representation of the source code. Section 5 outlines the source code
refinement process which is demonstrated on the chemical factory information
system. Section 6 discusses the use of the source code representation in building a
safety verification case. Section 7 provides a summary of the paper.

2. Chemical Factory Information System

For illustrative purposes, this paper focuses on a hypothetical information system for
a chemical factory. The chemical factory information system is similar to other real-
time information systems, like Air Traffic Management (ATM) systems, in that
environmental data is received, processed and displayed to operators. The operators
then make safety-critical decisions based on the information received from the
system.

2.1 System Description

The factory consists of a set of reactor vessels equipped with sensors that record data
such as temperature and pressure. The sensors are connected over a LAN to a central
server and a set of workstations. This information system maintains and processes the
vessel information it receives over the LAN and displays it on the workstation
monitors.



2.2 System Hazard

There are a number of potential system hazards for the chemical factory information
system. Hazards are states of the system that may contribute to a mishap [9]. For
example, one system hazard is as follows:

An invalid temperature, D, is displayed for vessel V at time T.

The identification of this hazard resulted from an earlier analysis which showed
that the display of an invalid temperature value for a vessel, in combination with
other conditions, could lead to a mishap such as a fire or explosion.

This hazard is analogous to a typical ATM system hazard, namely, the display of
an invalid altitude value for an aircraft at some particular time.
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Figure 1: The chemical factory information system static architecture.

2.3 Software Architecture

The chemical factory software architecture is based on an industrial Ada-based
architecture for an ATM system [7]. The architecture can be described by a “4+1
View Model” composed of five different perspectives, or views, that include the
logical, process, physical and development views. The fifth view is a set of scenarios
that incorporate elements of the other four views. The software architecture is based
on the use of abstraction, as well as decomposition and composition.

The logical design of the software is decomposed into a set of class abstractions.
The classes capture the key domain information, as well as the common mechanisms
and design elements across the different parts of the system.



The process view describes the concurrency and synchronization aspects of the
design. At the highest level of abstraction, the process view can be seen as set of
communicating processes (Ada programs) distributed across a set of hardware
resources connected by a LAN.

The development view focuses on the organization of the software modules in the
software development environment. The software is partitioned into five layers as
shown in Figure 1. Each layer is decomposed into subsystems and each subsystem is
further decomposed into modules (Ada packages and generics). The software
development teams are then organized around the subsystems and layers.

Each layer defines a progressively more abstract machine depending only on the
services of the lower layers. In particular, layer 2 is a Distributed Virtual Machine
(DVM) providing services such as object distribution, a thread scheduler and tactical
configuration [12]. COTS products are confined to the lowest layer.

3. Safety Engineering View of the Software

The safety engineering view of the software can be illustrated at the requirements and
source code level. At both levels there are significant differences between the safety
engineering and the software implementation views of the system.

3.1 Safety vs Functional Requirements

Safety engineering is often focused on what the system should not do, in contrast to
software implementation, which is largely focused on implementing correct system
functionality.

This difference is apparent when safety requirements are contrasted with
functional requirements. Typical software functional requirements describe a
“forward” view of system functionality, while safety requirements often involve a
“backwards” look at the system.

For example, a functional requirement involving the temperature display of a
vessel for the chemical plant information system, might look like this:

Upon receipt of a sensor update containing the information that a vessel V is at
temperature D, the system shall update the displayed temperature of vessel V to
D within S1 seconds.

The focus of this requirement is the system functionality involved in the
processing of sensor updates. It is a “forward” look at the system functionality, from a
system input to an output.

In contrast, a safety requirement focuses on system hazards, such as the invalid
temperature display hazard defined in Section 2.2. The corresponding safety
requirement might be stated as:



If temperature D is displayed for Vessel V at time T, then at some time not more
than S2 seconds before T, the actual temperature of Vessel V was within C
degrees of D.

The safety requirement is stated in a “backwards” fashion, focusing on the desired,
safe output and defining the necessary input. Such a requirement is not easily tested.
It would involve determining all possible inputs that may violate this requirement.

The safety requirement is not simply a reformulation of the functional requirement.
In fact, it is possible to satisfy the functional requirement, while failing to satisfy the
safety requirement.
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Figure 2: Temperature dataflow highlighting the key modules and subprograms.

3.2 The “Long Thin Slice” of Source Code

The software architecture uses abstractions which hide details that must be revealed
for safety engineering. For software implementation, these details are relevant only to
the team responsible for the module which implements a given abstraction. Safety
engineering requires details from all the relevant software modules in order to
evaluate the safety of the source code.



In particular, safety engineering must uncover code paths that lead to the hazard. A
code path can be viewed as a sequence of steps where each step corresponds to an
executable line of source code.

The relevant source code will typically be found in a number of different software
components, involving only a small amount of code from each module. The result is a
“long thin slice” of hazard-related software.

For the chemical factory information system, the modules related to the display of
temperature data can be found in all five layers of the architecture. The modules from
the upper layers of the static architecture are depicted in Figure 2.

Examination of a module from the long thin slice reveals a large number of non-
executable code statements. A significant portion of the non-executable code is used
to support the class hierarchies. These include statements that instantiate Ada
generics, that specify module dependencies, and that re-export types from other
modules. To locate a given step in the critical code path involves searching for the
corresponding executable code statement among all the non-executable code
statements.

To understand a given step in the critical code path requires locating the relevant
details in a number of different files and places in the source code. These details
include type, variable and subprogram declarations, as well as module renaming. This
search may involve a large number of files. For example, a type declared in one of the
upper layers of the software architecture could be derived from a base type in a lower
layer which has been re-exported and subtyped many times over.

The presence of a large amount of non-executable code and the dependence of a
given executable line of code on a number of different modules are not necessarily
signs of a poor design. In fact, they are a consequence of an object-oriented, modular
and layered architecture which is designed to manage the complexity of a large
software-intensive system. The result, however, is a long thin slice of source code
which is not easily documented.

4. Documenting the “Long Thin Slice”

The safety engineering view of the source code will be captured in the “safety
verification case” [14], which is part of the overall system safety case [16]. The safety
verification case must provide evidence that the source code does not contribute to
the identified system hazards. Part of the evidence includes documentation of the
hazard-related source code.

Following the long thin slice may involve looking at more than a thousand
different locations in the source code merely to understand a sequence of actions of
less than fifty steps. This may not present a problem to the developer who has been
immersed for many months or years in the development of the software. The
developer may be capable of tracing a sequence of actions across the long thin slice
of code without looking up every relevant line of code from various source files.

Other people, however, must also be able follow the same sequence of actions.
These people include system certifiers, system maintainers and system developers



intending to reuse the software in new systems. These people must also be able to
follow the long thin slice in order to carry out their own safety assessments of the
system.

5. Refinement of the Source Code

A more tractable representation of the long thin slice of hazard-related code can be
created through refinement of the source code. Care must be taken that the
representation accurately reflects the original source code.

5.1 Refinement Properties

The refinement of the source code into a model should be documented with enough
detail so that it should be easy to determine the impact of any future changes to the
source code on the model. The details should also be sufficient to ensure a repeatable
process.

The refinement process may make use of simplifying assumptions. These
assumptions must be stated explicitly. It must also be clear where each simplifying
assumption is used in the refinement.

The model should be conservative in the sense that every property of the model is
also a property of the actual system, as long as the simplifying assumptions are true.

The model should be complete in the sense that the model contains enough every
information to unambiguously interpret every executable statement in the model.

To the extent that the model is represented by fragments of source code, the model
should be tractable in the sense that the ratio of executable lines of code to non-
executable lines should be “reasonable”. Furthermore, the number of different places
in the source code required to understand a single line of executable code should also
be reasonable. This is especially important if the verification depends on human
comprehension of the model. If human understanding is required, “reasonable” might
mean that there is no more than “7±2” lines of non-executable code, and no more
than “7±2” places to look, for each executable line of code.

5.2 Refinement Process

The refinement process may be viewed conceptually as a sequence of transformations
applied to a copy of the source code implementation together with a representation of
the COTS products. The result of each refinement step is intended to be a
conservative model of the implementation of the system.

The transformations may be carried out in an ad hoc manner relying on sound
engineering judgment to ensure that each refinement step results in a conservative
model of the implementation. To support repeatability of the safety verification case,
the engineering judgment underlying each transformation must be carefully



documented. The amount of documentation required to justify each step could be
reduced by the use of a "standardized" set of syntax-oriented refinement rules whose
soundness has been established.

Each transformation step could result in an executable model of the system in the
sense that it can be compiled and executed. The refinement of the implementation
into an executable model would be necessary if dynamic methods (i.e., testing) are to
be used in the safety verification. But if the verification approach only uses static
methods, then the refinement process can reduce size and complexity by allowing
transformation steps that substitute executable aspects of the model with non-
executable representations of system functionality.

These transformations might actually be applied directly to a copy of the
implementation using basic editing tools. If the refinement process is based on a
standardized set of transformation rules, then the entire refinement process could be
documented by an executable script. It would then be possible to implement a
software tool that executed the script and that checked that each transformation rule
was used in a valid manner. Alternatively, these transformations may be simply be
carried out "on paper" by describing the result of each transformation step.

The transformations are carried out until a tractable representation is created. This
might mean that some qualitative criteria of “reasonable” has been satisfied.
Alternatively, engineering judgment may be used to decide when the output of a
given transformation is sufficiently tractable.

5.3 Refinement Steps

Four basic refinement steps have been identified for creating a tractable
representation of the source code:

1. Flatten - collapse the class hierarchy.
2. Fillet  - identify the hazard-related code.
3. Partition  - decompose the hazard-related code into blocks.
4. Translate - represent the hazard-related code in a simpler notation.

Though the steps are to be carried out sequentially, they may also overlap.

5.3.1 Flatten
The class hierarchies are “flattened” to bring together the relevant lines of code and to
reduce the amount of “non-executable” code. In Ada, class hierarchies are
implemented with generics.

The class hierarchies are flattened by “expanding” each generic instance. A
representation of each generic instance is created by substituting in the actual
parameter values. It may be possible to build tools to produce this representation
either directly or by extracting a compiler-intermediate form.

For the chemical factory information system, expanding the code results in, for
example, a new module SensorServer , which is the Server  generic with the
parameter values substituted in for the parameters.



5.3.2 Fillet
Filleting involves identifying the source code which may contribute to the hazard. For
the chemical factory information system, the modules and subprograms shown in
Figure 2 provide a convenient starting point for the search. Further examination of the
software architecture and the source code reveals that an invalid temperature has a
number of potential causes, such as the corruption of the vessel temperature value, a
stale sensor reading or a miscorrelation of sensors to vessels. The modules and
subprograms that implement these features are identified and the relevant code is
extracted.

There are a number of hazard analysis techniques [5] available which are designed
to uncover system faults. These techniques include Hazard and Operability Studies
(HAZOP), Failure Modes And Effects Analysis (FMEA) and Fault Tree Analysis
(FTA), among others. These techniques were originally designed for mechanical
systems, though there have been some attempts to adapt FTA [10, 17], HAZOP
[17,19] and FMEA [17,18] to software. These techniques are useful for identifying
software faults at the requirements or design level. These methods, however, are not
well suited for determining which lines of code may contribute to a given hazard.

At the source code level, the search for hazard-related source code is a manual
effort. The results of the hazard analysis at the requirements and design level can be
used to guide the search. The search can be conducted in either a forward or
backward fashion [9]. A forward search is particularly appropriate for tracing known
hazard scenarios. A backward search is appropriate for identifying new scenarios.

Though the search for hazard-related code is primarily manual, the complexity of
the code means that tool support is important. Software development environments,
for example, provide support for module cross-referencing which is useful when
tracing hazardous code paths across module boundaries. There are also other static
code analysis tools, such as data flow analyzers, which would be useful in identifying
critical data flows [2]. In particular, there are program-slicing tools that can be used to
extract all code connected to a critical variable. Though most of these are research
tools [4], there are some commercial tools that do a limited form of program slicing
[11]. Program slicing for object-oriented programs is particularly difficult due to the
run-time binding of methods and complex object-interaction graphs, though there is a
tool that performs a limited form of object slicing [8].

5.3.3 Partition
Partitioning involves decomposing the filleted code into blocks which execute in
different processes or threads (light-weight processes). Each “functional block” of
code can be viewed as a procedure with input and output parameters. Partitioning the
code along dynamic lines allows for the examination of certain code properties, such
as the effect of block execution order on safety.

The hazard-related code is partitioned by tracing subprogram calls until a
subprogram invocation results in a new process or thread. For the chemical factory
information system, there are three hazard-related functional blocks: the reading and
processing of a LAN message, the monitoring of stale sensor data, and updates to the
temperature display.



In addition, the functional blocks can be further decomposed into existing static
abstractions, such as subsystems or modules. Since system development makes use of
these abstractions it would ease the fit of the safety analysis with the rest of the
software development program. Unit testing and code reviews, for example, could be
leveraged for the safety analysis of the functional blocks.

5.3.4 Translate
The final step of the process is to translate the hazard-related code into a simpler
form. For the chemical factory information system, the hazard-related code is
translated into the SPARK Ada subset [1]. SPARK is supported by program analysis
and verification tools that could be used in the safety verification.

SPARK does not support generics, which are removed during the flattening stage.
Though SPARK does support Ada packages, these are removed during the
translation, resulting in a set of global data structures and subprograms. Many of the
hazard-related modules contain only a small amount of relevant code, so the module
structure is not needed for the safety analysis. In general, removal of the module
structure may involve re-labeling the module subprograms and types to avoid name
conflicts.

Two other approaches to representing the hazard-related code include informal
English and formal mathematical notations.

The simplest approach involves extracting the hazard-related code, and annotating
the code fragments in English. The annotations indicate the code’s relevance to the
hazard and can be supplemented by figures such as object-scenario and module
diagrams to indicate the important modules and data flows [3]. The limitations of
such an approach is that that the model is imprecise and not easily analyzed. The
greatest virtue of a informal language notation is that it is easily understood and
communicated to others.

A more precise approach would be to use a formal mathematical notation [13],
which is usually more expressive than a programming language. For example,
SPARK includes an annotation notation that uses the SPARK Ada subset, but is
limited by not supporting quantification (i.e., “for all ...” and “there exists ...”). There
are alternative machine-readable specification notations that are more expressive and
which also have tool support that can aid analysis. The limitation of mathematical
notations are their lack of familiarity to most developers, and their syntactic distance
from the source code.

6. Safety Verification Case

The output of the refinement process is a model of the source code which is
documented in the safety verification case. The safety verification case provides a
detailed rigorous argument for the safety of the source code with respect to identified
system hazards. Safety verification of the model can be achieved through dynamic
techniques, such as testing, or static techniques, such as code inspection.



Static techniques also include the use of program verification tools such as SPARK
Examiner [1]. These tools, typically, are used to verify program correctness with
respect to a set of code assertions (i.e., pre- and post-conditions). Doubts have been
raised about the feasibility of using these tools in safety verification [9]. The
refinement of the hazard into a set of verifiable code assertions [14] is one step
toward increasing the feasibility of using these tools. The refinement of the source
code into a more tractable representation is another important step toward the
practical use of correctness verification tools like SPARK Examiner in safety
verification.

7. Summary

The safety engineering view of the software differs from the standard architectural
views. This is true for the large software-intensive safety-critical information systems
investigated in the formalWARE project. These systems consist up to a million lines
of source code, with the equivalent to millions more in COTS products. The safety
engineering view of the software reveals “long thin slices” of hazard-related software.
The long thin slice consists of small amount of code in a number of different software
components, spread out throughout a software architecture that may consist of
hundreds of components.

The long thin slice of hazard-related code must be documented in a concise
fashion in the system safety case. Though the developers may be able to locate and
understand the slice, others (i.e., system certifiers, maintainers and developers
intending to reuse the software) must also be able to identify and analyze the slice.
The fact that a simpler representation of the source code is needed is not necessarily
an indication of a poor design. It is simply the documentation that others require to
conduct an independent safety assessment given the size and complexity of the
system.

This paper outlines the steps necessary to create a simpler representation of the
critical code for the safety verification case. The representation is created by a
refinement of the source code that isolates the relevant code details. Additional work,
however, is required to develop more effective techniques and tools for carrying out
these steps. In particular, it would be useful to have tools for automating the code
expansion and translation. As well, there is a need for more effective tool support for
backward searches of the code.
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