
A Framework for Multi-Notation, Model-Oriented

Requirements Analysis

by

Nancy Ann Day

M.Sc., University of British Columbia, 1993

B.Sc.(Hon), University of Western Ontario, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

October 1998

c
 Nancy Ann Day, 1998

Abstract

This dissertation addresses the problem of how to bring the bene�ts of formal analysis to

the changing world of multi-notation requirements speci�cations. We show that direct use

of the formal operational semantics for notations in higher-order logic produces an exten-

sible, systematic and rigorous approach to solving this problem. Our approach achieves

the desired qualities without requiring theorem proving infrastructure. We concentrate on

model-oriented notations that use uninterpreted constants to �lter non-essential details.

A key contribution is the de-coupling of notation from analysis technique.

We use type checking to regulate combinations of notations. Speci�cations are

represented using embeddings that package the meaning of the notation with its syn-

tax. We demonstrate our approach using combinations of the following three notations:

statecharts, decision tables, and higher-order logic.

We introduce a new automatic technique called symbolic functional evaluation

(SFE) to evaluate semantic functions outside of a theorem proving environment. SFE

produces the meaning of a speci�cation. Direct use of the semantics ensures that the same

meaning for a speci�cation is used by all types of analysis. SFE extends the technique of

lazy evaluation to handle uninterpreted constants.

We focus on the binary decision diagram (BDD)-based analysis techniques of com-

pleteness and consistency checking of tables, simulation, and symbolic model checking. To

bridge the gap between higher-order logic and automated analysis techniques, we create

ii

a toolkit of common techniques, such as Boolean abstraction.

We show that information contained in the structure of a speci�cation can be used

to supplement BDD-based analysis approaches by producing a more precise abstraction

of the speci�cation. The partition of a numeric value speci�ed by entries in a row of a

table provides information on how to encode numeric values in a BDD.

Our approach is demonstrated by the speci�cation and analysis of two large real-

world systems: a separation minima for aircraft and the Aeronautical Telecommunications

Network (ATN). In the separation minima example, analysis discovered inconsistencies

previously unknown to domain experts. In the ATN example, several errors in the formal-

isation process were exposed. In both cases, we achieved the bene�ts of multiple notations

for speci�cation without sacri�cing automation in analysis.

iii

Contents

Abstract ii

Contents iv

List of Tables xii

List of Figures xiv

Acknowledgements xvii

Dedication xix

1 Introduction 1

1.1 Thesis statement . 5

1.1.1 Why not use a theorem prover ? . 5

1.1.2 Uninterpreted constants and types 7

1.1.3 Model-oriented notations . 8

1.2 Approach: our framework . 9

1.2.1 Integrating combinations of notations 10

1.2.2 Representation of notations . 11

1.2.3 Regulating combinations of notations 12

1.2.4 Expressing dynamic behaviour . 13

iv

1.2.5 Determining the meaning of a notation 14

1.2.6 Associating meaning with representation 14

1.2.7 Determining the meaning of a speci�cation 15

1.2.8 Abstraction and automated analysis procedures 17

1.2.9 Reporting analysis results . 19

1.2.10 Exploiting structure . 20

1.3 Examples . 21

1.4 Validation . 22

1.5 Contributions . 26

1.6 Overview of the dissertation . 26

2 Related Work 28

2.1 Survey of formal analysis of requirements 28

2.1.1 Manual translation . 29

2.1.2 Automatic translation . 32

2.1.3 Notation-speci�c analysis tools . 33

2.1.4 Theorem provers . 39

2.2 Multi-notation speci�cation and analysis . 42

2.2.1 Translation to �rst-order logic . 42

2.2.2 Ada, regular expressions, and GIL in hybrid automata 43

2.2.3 Combining notations using hypergraphs 44

2.3 Evaluation of logic . 45

2.4 Summary . 47

3 Foundations 48

3.1 Higher-order logic . 49

3.2 Typed lambda calculus . 50

3.3 De�nitions in higher-order logic . 54

v

3.3.1 Recursive de�nitions . 54

3.3.2 Pattern matching de�nitions . 55

3.4 Evaluation of functional programming languages 57

3.5 Summary . 60

4 Integrating Model-Oriented Notations 61

4.1 Model-oriented notations . 64

4.2 Semantic categories . 65

4.3 Notational styles . 67

4.4 Lifted notational styles . 68

4.5 Heating system . 71

4.6 S+ . 72

4.6.1 Types . 73

4.6.2 Constants . 76

4.6.3 Expressions . 81

4.7 Lifted S+ expressions . 82

4.8 TableExpr style of expressions . 83

4.9 CoreEvent style of events . 90

4.10 CoreAction style of actions . 93

4.11 CoreSc style of models . 97

4.12 ScExpr (statechart expressions) . 104

4.13 ScEvent (statechart events) . 104

4.14 CommAction (communication actions for statecharts) 104

4.15 CommEvent (communication events for statecharts) 106

4.16 Environment . 108

4.17 Summary . 109

vi

5 Semantics 111

5.1 Formal operational semantics . 113

5.2 Embeddings . 115

5.3 Semantic categories . 118

5.3.1 Events . 119

5.3.2 Actions . 122

5.4 Common functions . 123

5.5 TableExpr . 124

5.6 CoreEvent . 127

5.7 CoreAction . 135

5.8 CoreSc . 136

5.8.1 Accessor functions for the statechart structure 139

5.8.2 Transition state condition . 141

5.8.3 Name condition . 150

5.8.4 Event condition . 153

5.8.5 Initial condition . 153

5.9 ScExpr . 153

5.10 ScEvent . 154

5.11 CommAction . 156

5.12 CommEvent . 157

5.13 Reasoning about the semantics . 158

5.14 Summary . 160

6 Symbolic Functional Evaluation (SFE) 162

6.1 Purpose within the framework . 164

6.2 Uninterpreted constants . 166

6.3 Levels of evaluation . 167

vii

6.3.1 Not evaluated . 169

6.3.2 Evaluated to the point of distinction 170

6.3.3 Evaluated for rewrite simpli�cation 171

6.3.4 Symbolically evaluated . 171

6.3.5 Fully evaluated . 171

6.3.6 Special cases . 172

6.4 Evaluation algorithm . 173

6.4.1 Substitution . 177

6.4.2 Evaluation of expressions with constants at the tip 179

6.5 Data structures . 180

6.6 Optimisation of the CoreSc semantics . 183

6.7 Built-in constants . 183

6.8 Quanti�cation over �nite types . 184

6.9 Beyond evaluation . 185

6.9.1 Rewriting: if-lifting . 185

6.9.2 Rewriting: equality of constructor expressions 187

6.9.3 Implicit assumptions: NAME . 188

6.9.4 Specialisation (universal instantiation) 189

6.10 Summary . 190

7 Architecture and Link to Automated Analysis Procedures 192

7.1 Architecture . 195

7.2 Implementing an analysis procedure . 197

7.3 Boolean abstraction and BDDs . 199

7.3.1 Boolean abstraction . 199

7.3.2 Reduced ordered binary decision diagrams 204

7.3.3 Boolean simpli�cation . 205

viii

7.3.4 Boolean variable order . 207

7.4 Choosing a mode for SFE . 210

7.5 Completeness, consistency and symmetry checking of tabular expressions . 211

7.5.1 Completeness . 211

7.5.2 Consistency . 214

7.5.3 Symmetry . 216

7.5.4 Presentation of results . 217

7.5.5 Including the environment in completeness, consistency and sym-

metry checking . 219

7.6 Separating previous and next con�guration constraints 219

7.7 Symbolic CTL model checking . 222

7.7.1 Including the environment in model checking 227

7.8 Simulation . 229

7.9 Summary . 232

8 Examples 234

8.1 Separation minima for the North Atlantic Region 236

8.1.1 Formal speci�cation . 237

8.1.2 Analysis and results . 241

8.2 Aeronautical Telecommunications Network 248

8.2.1 Formal speci�cation . 250

8.2.2 Analysis and results . 258

8.3 Summary . 274

9 Conclusions and Future Work 275

9.1 Summary . 275

9.2 Generality . 278

9.2.1 Notations . 279

ix

9.2.2 Analysis . 280

9.3 Limitations . 281

9.4 Contributions . 282

9.5 Suggestions for future research . 284

9.5.1 Data speci�cation . 284

9.5.2 Symbolic simulation . 285

9.5.3 Structure . 285

9.5.4 Methodology . 286

9.6 A �nal word . 287

Bibliography 289

Appendix A Heating System Speci�cation 306

Appendix B Built-in constants of S+ 312

Appendix C Types for Semantic Categories 314

Appendix D Basic de�nitions 316

Appendix E TableExpr 320

Appendix F CoreEvent 323

Appendix G CoreAction 330

Appendix H CoreSc 332

H.1 Accessor functions . 332

H.2 Semantics . 339

Appendix I ScExpr 347

x

Appendix J ScEvent 348

Appendix K Extended Communication for CoreSc 351

K.1 Primitives . 351

K.2 CommEvent . 351

K.3 CommAction . 353

Appendix L Simulation Runs of the Heating System 355

Appendix M Speci�cation of the Separation Minima for the North Atlantic

Region 382

Appendix N Speci�cation of the Association Control Service Element 393

N.1 Common declarations and de�nitions in the ATN 393

N.2 Association Control Service Element . 398

N.2.1 ACSE data declarations . 398

N.2.2 ACSE speci�cation . 399

Appendix O First Example Simulation Run of the ATN 408

Appendix P Second Example Simulation Run of the ATN 418

xi

List of Tables

3.1 Substitution . 52

4.1 Type signatures for semantic entities . 66

4.2 S+ syntactic sugar for expressions . 82

4.3 Desired temperature of a room . 86

4.4 Valve position . 87

6.1 Combining evaluation levels . 176

7.1 Row 1 of table specifying valve adjustment 203

7.2 Valve position . 213

8.1 Function table for longitudinal separation required between same direction

ights . 239

8.2 Function table for longitudinal separation required between same direction

supersonic
ights . 239

8.3 Predicate table for conditions relating to supersonic
ights 240

8.4 Summary of analysis results of the separation minima 242

8.5 Vertical separation . 244

8.6 Longitudinal separation required between same direction
ights of \other"

types . 246

xii

8.7 Part of the ACSE state table . 253

8.8 Size and time of formal speci�cation e�ort 259

8.9 Times and sizes for constructing the ATN next con�guration relation 263

xiii

List of Figures

3.1 Tip of a function application . 53

3.2 Implementation of normal order reduction 59

4.1 Example notations . 69

4.2 Commonly used built-in constants of S+ . 80

4.3 Textual representation of desired temperature table 89

4.4 Textual representation of valve position table 89

4.5 Meaning of table specifying desired temperature 90

4.6 Controller statechart . 96

4.7 Heating system top-level speci�cation . 98

4.8 Textual representation of the controller statechart 102

4.9 Textual representation of the room statechart 103

4.10 Textual representation of heating system top-level speci�cation 103

5.1 Deep and shallow embeddings . 115

5.2 Example of event identi�ers . 122

5.3 Behaviour of Tm (Ev k) 2 . 132

5.4 De�nition of TransStateCondAux . 148

5.5 Example statechart . 149

5.6 TransStateCond evaluated for statechart in Figure 5.5 150

xiv

6.1 Speci�cation within the framework . 164

6.2 Top-level algorithm for symbolic functional evaluation 174

6.3 Rebuilding the application of an unde�ned function 176

6.4 Part of the substitution algorithm . 178

6.5 Evaluating a constant expression . 181

7.1 Architecture of Fusion . 196

7.2 BDD for a ^ b . 205

7.3 Completeness checking results for the table specifying valve adjustment . . 215

7.4 Partial list of previous con�guration constraints in the heating system . . . 221

7.5 CTL operators in S+ . 222

7.6 De�nitions of CTL formula . 224

7.7 Room statechart . 226

7.8 Simulation of the heating system . 231

8.1 Separation minima . 235

8.2 Top-level speci�cation of separation . 238

8.3 Output of completeness analysis of vertical separation table 243

8.4 Completeness checking of supersonic subcondition 245

8.5 Output of consistency analysis of Table 8.6 246

8.6 Symmetry checking of the supersonic opposite direction no longitudinal

separation period . 247

8.7 Aeronautical Telecommunications Network 249

8.8 Structure of the ATN . 251

8.9 Statechart structure of example ATN . 252

8.10 Transition constructor in predicate logic . 257

8.11 Typical section of the ACSE speci�cation 257

8.12 Speci�cation of part of the ACSE component 258

xv

8.13 Simpli�ed structure of the ATN . 264

8.14 D-START message sequence chart . 265

8.15 Simulation constraints for message sequence chart 266

8.16 Simulation output for message sequence chart: Part 1 267

8.17 Simulation output for message sequence chart: Part 2 268

8.18 Model Checking output of EF (Msg (CM Ground 1) Error CannotOccur) . 272

8.19 Possible behaviour of the ATN . 273

xvi

Acknowledgements

The completion of this work brings to a close a long journey. Many have helped along the

way and I could not have succeeded without them.

I begin by acknowledging the support provided through the FormalWare research

project. Raytheon Systems Canada, MacDonald Dettwiler, and the Advanced Systems

Institute all contributed to this project. The opportunity to work on real systems had

considerable impact on my research. I particularly thank Gerry Pelletier of Raytheon who

worked with me on the separation minima example. His interest and patience provided

me with a great deal of encouragement.

My supervisor Je� Joyce has guided and supported me throughout this e�ort. He

has continually challenged me with his ideas of what can be achieved. I thank him for

all his extra e�ort that allowed him to live in the two worlds of academia and industry.

Because of his encouragement to tackle real problems, I am left with a great sense of

satisfaction from this work. Je� has taught me a great deal, not only about computer

science, but also about consideration for others and making courageous decisions. I am

extremely thankful for the kindness of his family (Lorie, Matthew, Nicholas, and Julie)

during my years in Vancouver.

I thank my colleagues in the FormalWare research group and the Integrated Sys-

tems Design Laboratory, together with others at the Department of Computer Science

at the University of British Columbia. I thank my supervisory committee, Paul Gilmore,

xvii

Mark Greenstreet, Alan Hu, Nancy Leveson, and Gail Murphy, for their helpful comments.

I also thank the members of my examining committee, Jo Atlee, Peter Lawrence, Jim Lit-

tle, and Josi Marti for their encouraging words at my defense. Special thanks go to Kendra

Cooper, Brian Edmonds, Karen and Scott Flinn, Andy Martin, Michael McAllister, and

Jennifer Shore.

I am fortunate to have a wonderful family who encourage and support me through-

out all my endeavours. My parents Richard and Dorothy Day, my sisters Kathleen and

Linda, and my brother Bill were my �rst teachers and they continue, with a gentle touch,

to help me work through the ups and downs of life. It is my pleasure to dedicate this work

to my parents partly for the value they place on education but mostly for their love and

their dedication to their children.

My �nal word of thanks goes to my best friend, Mark Aagaard. He has an unlimited

supply of enthusiasm, faith, and patience that he has shared with me. His presence in my

life is a precious blessing.

Nancy Day

The University of British Columbia

October 1998

xviii

For my parents, Richard and Dorothy Day

xix

Chapter 1

Introduction

As the complexity of automated systems grows, the challenges in their development in-

crease. The cost of mistakes can be immeasurable. The �rst step in developing a system

is gaining an understanding of its functionality. Faulk states, \Experience suggests that

requirements are the biggest software engineering problem for developers of large, complex

systems" [Fau95]. Our ability to assure the accuracy of requirements speci�cations may

soon limit the size and complexity of systems attempted. All stakeholders need to agree

that a requirements speci�cation adequately describes a system's intended behaviour. Re-

search on requirements analysis addresses the question of how to present and analyse a

requirements speci�cation to achieve this agreement. This dissertation is a contribution

to this area of study.

Formal methods have tremendous potential for requirements analysis. A formal

notation has a formal syntax and semantics. Each sentence written in the notation has

exactly one meaning. Formal notations eliminate ambiguities and make it possible to

analyse speci�cations automatically. Research has already shown that automated analysis

techniques, such as model checking, can aid in requirements analysis [AG93, ABB+96,

HL96, HJL96, DJJ96].

Many organisations and individuals use di�erent notations for expressing require-

1

CHAPTER 1. INTRODUCTION 2

ments for di�erent aspects of a system. We use the term language to describe a set of nota-

tions used in a speci�cation. The methodology of structured analysis by DeMarco [DeM79]

is an early example of an integrated collection of informal notations. Some formal lan-

guages, such as the Requirements State Machine Language (RSML) [LHHR94] and the

Software Cost Reduction (SCR) language [Hen80], can be viewed as a collection of no-

tations. Both of these examples were developed from experience with specifying real

systems (Tra�c Alert and Collision Avoidance System II for RSML and the U.S. Navy's

A-7 aircraft for SCR). Di�erent notations within the collection are used for specifying

di�erent parts of a system. The Uni�ed Modeling Language (UML) [Rat] is a recent ex-

ample of a collection of notations for speci�cation in response to people's desire to write

multi-notation speci�cations. A key initiative underway at NASA Jet Propulsion Lab-

oratory (JPL) is the adoption of model-driven design [Dur98]. This initiative involves

the integrated use of multiple notations, such as statecharts [Har87], for requirements

speci�cation.

Parnas and Madey [PM95] note, \A trap, into which some `formal methods' groups

have fallen is to attempt to de�ne a universal notation for the de�nition of functions".

Furthermore, they predict that new and improved notations will continue to be developed

in response to new applications.

The problem is how to bring the bene�ts of analysis to the changing world of

notations and multi-notation requirements speci�cations. There are a variety of di�culties

that are encountered in existing approaches to this problem.

Choosing a �xed set of notations and building analysis tools for this set is a com-

mon approach [HLCM92, HBGL95, LBH+95]. With a �xed set of notations the way

that the notations can be used in combination is established once and does not change.

The disadvantage of this approach is that the �xed combination may slant the require-

ments engineering e�ort towards parts of the system most easily expressed in the chosen

combination of notations.

CHAPTER 1. INTRODUCTION 3

Work on requirements speci�cations often results in a new addition to an existing

language (e.g., [HC95, BH97b]) or tailors an existing notation (such as the plethora of

statecharts variants [vdB94]). Extensions and variants usually require e�ort to build new

analysis tools or change existing ones.

Even with a �xed set of notations, a di�erent analysis tool is often used indepen-

dently for each component of the speci�cation. For instance, a statecharts-based tool is

used for analysis of the statecharts parts while a di�erent tool is used for analysis of deci-

sion tables within a speci�cation. A degree of integration can be achieved through a shared

database, as in the approach taken by JPL in their Develop New Products project [Dur98].

But this approach is still a matter of a speci�cation being analysed in parts rather than

as a whole. Because some analysis properties rely on information found in parts of the

system described in multiple notations, there is a need for techniques that allow analysis

to span multiple notations. For example, an invariant may depend on the reachability of

states in a state-transition diagram. The transition guards may be expressed by decision

tables.

Translation into the input notation of an existing analysis tool is a common ap-

proach to analysis of either single language ([AG93, AB96, BH97a]) or multi-notation

([ZJ93, ACD97, PY97]) speci�cations. Translation bridges the gap between notations de-

veloped for their readability and understandability, and notations developed because they

can be analysed. There are three disadvantages to the translation approach. First, there

is no assurance that the translator correctly implements the semantics of the notation.

Second, results are not presented to the speci�er in the terms of the original speci�cation.

Third, the destination notation for the translation is often geared towards a particular

type of analysis. Therefore, a new translator usually has to be written for each new type

of analysis. In particular, translation often must include an abstraction step, because

the destination notation is unable to capture non-�nite values or values of uninterpreted

types. The form of abstraction then matches only a particular type of analysis.

CHAPTER 1. INTRODUCTION 4

The translation approach of Zave and M. Jackson [ZJ93] is notable because their

destination notation is one-sorted �rst-order logic. Abstraction is not required in their

technique and multiple kinds of analysis can be applied to the same notation. However,

their approach still has the �rst two disadvantages of translation. They deal with each

notation individually rather than o�ering guidelines for how notations �t together. Con-

sequently, they are faced with the question of whether the requirements speci�cation has

a well-de�ned meaning before analysis can proceed.

A shortcoming of current approaches is that the use of uninterpreted constants is

usually not supported. Uninterpreted constants allow the speci�cation to maintain a high

level of abstraction for analysis. Section 1.1.2 elaborates on the concept of uninterpreted

constants.

In response to these di�culties and shortcomings, we seek an extensible, systematic,

and rigorous approach to solve these problems.

An extensible approach is one where new notations can be added and used with the

existing set of notations without changing the existing notations. An extensible approach

should also allow new analysis techniques to be added without changing the notations.

Extensibility is a desirable property because new notations are likely to be created and

used in combinations. Also, progress is continually being made in the development of new

kinds of analysis.

A systematic approach is one that has a well-de�ned methodology for the creation

of new combinations of notations in a language. Systematisation makes the process re-

peatable and accessible to the practitioner. As a form of codi�cation, systematisation

is a key step in making software development an engineering discipline [Sha90]. For the

problem of analysing multi-notation speci�cations, systematisation involves creating and

enforcing regulations on what combinations of notations have well-de�ned meanings.

A rigorous approach is one with a high degree of assurance that the process is

correct. In making a distinction between \formal" and \rigorous", Ghezzi et al. re-

CHAPTER 1. INTRODUCTION 5

mark, \Paradoxically, rigor is an intuitive quality that cannot be de�ned in a rigorous

way" [GJM91]. For the analysis process, rigour means having a high degree of assurance

that the analysis has been implemented correctly. It should be possible for an indepen-

dent expert to scrutinise the process and agree that it is correct. The translation approach

often lacks rigour because there is a \leap of faith" in believing a translator adequately

matches the semantics of a notation. Rigour can be accomplished by making the process

more \obviously correct".

1.1 Thesis statement

The main thesis of this work is that direct use of formal operational semantics for no-

tations in higher-order logic produces an extensible, systematic, and rigorous approach

to analysing multi-notation, model-oriented speci�cations. Type checking of higher-order

logic provides a means of regulating combinations of notations through join points. Fur-

thermore, the information contained in the structure of a speci�cation can be used to

supplement binary decision diagram (BDD)-based [Bry86] approaches to analysis by pro-

ducing a better abstraction of the speci�cation. Our approach achieves the desired quali-

ties without requiring theorem proving infrastructure.

Section 1.1.1 discusses our choice to not use a theorem proving environment for

higher-order logic to support our framework. The use of uninterpreted constants is among

the more novel aspects of our approach, especially when using BDD-based analysis tech-

niques. Our choice of higher-order logic as the base formalism allows speci�cations in

the framework to include uninterpreted constants. Section 1.1.2 describes uninterpreted

constants. Model-oriented notations are described in Section 1.1.3.

CHAPTER 1. INTRODUCTION 6

1.1.1 Why not use a theorem prover ?

Owre, Rushby, and Shankar [ORS96] demonstrated that the approach of embedding a

language in a general-purpose base formalism, such as higher-order logic, makes analysis

techniques accessible to a speci�cation. Their work was carried out in the theorem prover

PVS [ORS92] for a �xed set of notations. We take their approach further. First, we create

a systematic and extensible process for analysis of multi-notation speci�cations. Second,

we show that the approach of embedding notations in higher-order logic does not require

theorem proving support. Our approach is novel in linking automated analysis techniques

directly with a general-purpose logic without the infrastructure of a theorem prover.

Three observations from our experience with HOL-Voss [JS93] suggest that combin-

ing theorem provers with automated techniques is not the optimal approach for automated

analysis.

First, the infrastructure of the theorem prover is unnecessary for automated analy-

sis and makes the approach clumsy and intimidating to the novice speci�er. For example,

rewriting by means of tactic application was used for expansion of de�nitions in HOL-

Voss. This step was di�erent for each speci�cation analysed. We demonstrate that a new

automatic technique, called symbolic functional evaluation, is su�cient for this task and

requires little user expertise.

Second, theorem provers are veri�cation-based analysis tools. The output of a the-

orem prover is con�rmation of a conjecture. Often a more useful result of requirements

analysis is evidence that refutes an interpretation of the requirements. Refutation-based

techniques produce a variety of results other than just theorems. For example, when

analysing a table for inconsistency, refutation-based techniques can clearly isolate the

source of the inconsistency. Consequently, it is easier to interpret the result of a suc-

cessful refutation attempt than a failed veri�cation attempt. In HOL-Voss, to access the

refutation-based results of the Voss decision procedure it was necessary to study low-level

CHAPTER 1. INTRODUCTION 7

information that is passed between the theorem prover and the decision procedure. Access

to this information was only possible because the tool existed in two separate parts that

exchanged information through internal �les.

Third, in HOL-Voss the internal �les containing the results of the refutation-based

analysis are not expressed in terms of the original speci�cation and therefore are di�cult

to interpret.

In response to these observations about HOL-Voss, we avoid using a theorem prov-

ing environment to access a greater range of analysis techniques. Our framework allows

the results of analysis to be presented in terms of the original speci�cation.

We believe that our approach contributes to a \second generation" of formal

methods-based analysis. A key characteristic of a second generation approach is the

de-coupling of notations from analysis techniques. We choose higher-order logic as a base

formalism for its generality and expressibility. It allows speci�ers to choose a collection of

notations for speci�cation. A range of analysis procedures can be applied to the speci�ca-

tion. Our goal is to bring the power of automated analysis to speci�ers without sacri�cing

suitability and expressiveness of notation.

1.1.2 Uninterpreted constants and types

Uninterpreted constants help maintain a high level of abstraction in requirements speci�-

cations for analysis1. Uninterpreted constants are terms that are declared but not de�ned,

i.e., they have a type but no de�nition. They represent an unspeci�ed value of the type.

An uninterpreted constant represents the same value in every use in a speci�cation. An

uninterpreted type is a type for which no details are provided about the members of the

type.

Uninterpreted constants can be used to represent elements that have meaning to

1The word \constant" used here does not have the same meaning as constants in a programming
language. Also, a constant of function type, i.e., \typeA ! typeB", will often be referred to as a
\function".

CHAPTER 1. INTRODUCTION 8

domain experts but whose de�nition is irrelevant for analysis of a requirements speci�ca-

tion. For example, many air tra�c control speci�cations depend on the \
ight level" of an

aircraft. The details of how the
ight level is determined for an application may be irrel-

evant for analysis of some aspects of the system. The calculation of the \
ight level" can

be captured by an uninterpreted constant. Analysis results produced for a speci�cation

using uninterpreted constants hold for any interpretation of the uninterpreted constants.

Joyce has called uninterpreted constants, \a modern-day Occam's razor"2 and

points out their value in �ltering non-essential details and in improving the readability

of the speci�cation [Joy89]. They provide a means for speci�ers to guide analysis based

on their knowledge of the system rather than knowledge of, for example, theorem proving

techniques or binary decision diagram behaviour. User guidance is particularly important

when analysis techniques reach capacity limits. A complex part of the speci�cation that is

unnecessary for a particular analysis query can be replaced by an uninterpreted constant.

We use this technique in the Aeronautical Telecommunications Network example presented

in this dissertation (Section 8.2.2).

1.1.3 Model-oriented notations

M. Jackson considers a \model" to be an analogue to the real entity [Jac95]. In this

work, we are interested primarily in abstract models of computer-based systems. Our

abstract models consist of a relationship between elements of a (possibly in�nite) set of

\con�gurations"3. A con�guration is a mapping from a set of names to a set of values.

Mathematically, the relationship between con�gurations may be viewed simply as a set

of pairs (A;B) where A and B are both con�gurations. Although we can regard this

2The idea that the simplest approach should be used; essentially not adding details when they
are unnecessary. (William of Occam, 1280? - 1347?)

3This concept is often called a state. Because the word \state" is overloaded when dealing with
notations we adopt the word \con�guration" for this concept. Similarly, what is commonly called
the \state space" will be referred to as the \con�guration space". A con�guration has also been
called a status [i-L91] and an interpretation [AB96].

CHAPTER 1. INTRODUCTION 9

mathematical relationship in purely static terms as a set of pairs, it is meant to represent

the dynamic behaviour of the system. In particular, this relationship is the \next con�g-

uration" relationship between a con�guration and its immediate successor(s). This next

con�guration relation is the transition relation of an automaton. We use the term \model-

oriented speci�cations" to describe any kind of speci�cation that denotes a relationship

on a collection of con�gurations. We extend the meaning of the term model-oriented

notations to include notations that describe parts of model-oriented speci�cations, such

as decision tables. Many existing languages, such as RSML and SCR, consist of a �xed

collection of model-oriented notations.

We focus on the integration of model-oriented notations making up one model. For

example, for the statecharts notation [Har87], we consider an extensible set of notations

that can be used for the triggers and actions of transitions. Our approach extends to

multiple models in a speci�cation by relying on the standard technique of conjunction

([AL93, ZJ93]). By considering a more limited range of notations than Zave and Jack-

son [ZJ93], we are able to apply automated analysis techniques and to produce guidelines

for how notations �t together.

Our concentration on model-oriented notations is motivated by two factors. First,

there have been successful e�orts to use these notations for specifying real systems [Hen80,

LHHR94, CGR95]. Second, there are automated analysis techniques developed for model-

oriented speci�cations [CES86, HL96, HJL96, DJJ96]. These techniques usually rely on

a model describing a �nite set of reachable con�gurations. System requirements often

do not describe a �nite set of con�gurations. Our work is a contribution to \lifting up"

these techniques to apply them to speci�cations that may contain values of in�nite or

uninterpreted types.

CHAPTER 1. INTRODUCTION 10

1.2 Approach: our framework

This dissertation describes a framework for

� combining multiple notational styles in one speci�cation, possibly including uninter-

preted constants, and

� applying multiple kinds of analysis to speci�cations.

The term \framework" is used because it provides a skeleton on which other (possibly not

yet invented) notations and analysis techniques can be brought together.

This section is an introduction to our framework, which creates an extensible,

systematic, and rigorous approach to analysing multi-notation speci�cations. The devel-

opment of our approach has required careful choices in foundations and combinations of

techniques. Our work draws on the areas of higher-order logic (Chapters 3, 4, and 5),

requirements engineering (Chapters 4, 7, and 8), formal de�nitions of the semantics of no-

tations (Chapters 4 and 5), implementation of functional programming languages (Chap-

ters 3 and 6), and BDD-based analysis methods (Chapter 7). The reader is expected

to have a working knowledge of each of these areas. We introduce our framework in a

progression of ten sub-problems encountered in its development. These problems are tech-

nical issues that arise in trying to solve the previously mentioned problems with current

approaches.

1.2.1 Integrating combinations of notations

The �rst problem is how to systematise the process of �tting together multiple notations

in a speci�cation. Current approaches either 1) use a �xed set of notations or 2) place

no limits on the ways in which notations can be combined. The second approach encoun-

ters the di�culty of determining whether the combination of notations has a well-de�ned

meaning before analysis can proceed. Our solution to this problem is to determine cat-

CHAPTER 1. INTRODUCTION 11

egories of notations and to let individual notations indicate well-de�ned ways that they

interface to notations in other categories.

Many model-oriented languages consist of elements that fall into one of four cate-

gories: models, events, actions, and expressions. For example, a statechart falls into the

model category. A decision table is a form of expression. We call these categories semantic

categories.

A notation that belongs to one category can rely on an element in another category

to produce a speci�cation. For example, the transitions of a statechart are labelled with

events and actions. The statechart notation can be described with two \slots" for these

parts of the notation. These slots may be �lled with any event notation for the �rst

slot, and any action notation for the second slot. Drawing from terminology in subject-

oriented programming, we call these slots join points4. A join point is a point at which

one notation can be combined with another notation. Another example of a join point is

the guard on a transition in RSML. In the �xed set of notations used in RSML, the guard

is described by an AND/OR table. In our framework, the guard �eld is a join point to

any notation in the expression category. Join points are labelled by a semantic category.

The label indicates that a notation from that category can be used at this point. The

semantic categories provide a systematic basis to consider new combinations of notations.

Any notation resulting in an expression can be plugged into this join point as a guard.

Instantiating all join points in a set of notations creates a language.

Semantic categories and join points are discussed in Section 4.2.

4Personal communication with G. Murphy, October 1996. Murphy reported that the term \join
point" was �rst used by W. Harrison and H. Ossher at an aspect-oriented programming workshop
in October 1996. They use the term to describe constructs in source code that could be used as
the basis for integrating subjects in subject-oriented programming [HO93].

CHAPTER 1. INTRODUCTION 12

1.2.2 Representation of notations

The second problem is how to represent notations in a common format such that analysis

can be carried out on a speci�cation. The translation approach requires multiple (possibly

integrated) editors or parsers to create each part of the speci�cation in a di�erent notation.

Our solution is to represent the notations textually in higher-order logic. This solution

means that one parser and one type checker support all notations and require no extensions

for new notations. This approach limits us to notations that use the same type checking

rules as higher-order logic. This restriction is not severe as witnessed by the many exam-

ples of notations embedded in higher-order logic (e.g., a subset of the VHDL hardware

description language [Tas93], Z [BG94], the process calculus value-passing CCS [Nes93],

and a subset of the programming language SML [VG93]). While not necessary for the

framework, special-purpose editors or renderers could be used and adapted to produce

or to display the textual representation of the notation. In one example carried out for

this work [DJP97a, DJP97b], we took this approach by creating a tool to produce HTML

tables to display a tabular speci�cation.

This section provides a brief introduction to how notations are represented in

higher-order logic. A notation is a collection of keywords that can be combined using

well-de�ned rules. The keywords of the notation are represented as functions. These

functions take as arguments the arguments to the keyword. For example, a transition

between states is a tuple with �elds for the source state, event, action, and destination

state. In this case, the \comma" operator is a function creating the transition construct.

A second example is the assignment action. In our framework, the keyword is Asn and the

arguments to the keyword function are the left-hand side and the right-hand side of the

assignment action. We call the representation of a notation in higher-order logic a nota-

tional style5. In this dissertation, we demonstrate notational styles based on statecharts,

5This terminology is borrowed from Zave and M. Jackson [ZJ93]. They do not de�ne the term
but rather refer to speci�ers choosing di�erent notational styles for di�erent parts of a speci�cation.

CHAPTER 1. INTRODUCTION 13

decision tables, the event and action notations of statecharts, and others. Higher-order

logic itself can also be used as a notation.

Notational styles are discussed in Chapter 4.

1.2.3 Regulating combinations of notations

The next problem is how to ensure that a combination of notations used in a speci�ca-

tion has a well-de�ned meaning. We cannot ensure that a speci�cation is sensible, but

regulation helps avoid errors resulting from inappropriate combinations of notations, such

as using a model as the trigger of a transition. Pezz�e and Young [PY97] deal with this

problem by requiring special additions to indicate how particular notations can be used

together. Our solution is to use the type system of higher-order logic to regulate com-

binations based on the semantic categories. This regulation can then be enforced by the

type checking algorithm of Milner [Mil78]. By using the notational styles in higher-order

logic, regulation requires no additions for particular combinations.

Each semantic category is associated with a type in higher-order logic. A keyword

in a notational style indicates a join point by having a parameter with the type of a

category. For example, one event notation consists of an EvCond keyword to describe the

event of another event occurring when a condition is true. The type of this keyword is

event -> exp -> event, where the -> indicates a function. The meaning of this type

expression is that EvCond takes an event and an expression and returns an event. Its �rst

argument has the type of the event category and is therefore a join point to any event

notation. Its second argument has the type of the expression category and is therefore a

join point to any expression notation, such as an AND/OR table. This keyword returns

an event and is a member of the event category.

To add a new notation to a semantic category, keywords of the new notation must

return elements with the type of that category. The new notation can then be used at all

relevant join points of existing notations.

CHAPTER 1. INTRODUCTION 14

Type checking and representation of notational styles in higher-order logic creates a

systematic and extensible way to describe speci�cations in combinations of notations. The

regulation provided by the type system of higher-order logic is described in Sections 4.2

and 5.3.

1.2.4 Expressing dynamic behaviour

The next problem is how to capture dynamic behaviour in higher-order logic. Model-

oriented notations describe dynamic behaviour. The values of the names (data-items) can

change between di�erent con�gurations. Representation of names in higher-order logic

requires a means of expressing the value of the name in di�erent con�gurations. We

introduce the concept of a con�guration formally as a type. Names are functions that

take a con�guration and return the value of the name in that con�guration. We call

this technique con�guration lifting. Sections 4.4 and 4.6.1 discusses this issue further.

Section 6.9.3 discusses the implications of this approach for analysis.

1.2.5 Determining the meaning of a notation

The �fth problem is how to state the semantics for each notation. Analysis is based on

the meaning of a speci�cation. There are a variety of ways of writing the semantics of a

notation, such as denotational, operational, and axiomatic semantics. A next con�guration

relation is required by many con�guration space analysis techniques such as model checking

and simulation. Operational semantics de�ne the meaning of a model-oriented notation

as a next con�guration relation. Therefore, we use operational semantics to describe the

meaning of a notation in our framework. Formal operational semantics can be written

in a machine-readable form in higher-order logic just as the speci�cations are written in

notational styles of higher-order logic.

Chapter 5 presents the formal operational semantics for our example notations.

CHAPTER 1. INTRODUCTION 15

1.2.6 Associating meaning with representation

The sixth problem is how to link the speci�cation with the semantics for the notations to

determine the speci�cation's meaning. The notational styles are embedded in higher-order

logic. Boulton et al. [BGG+92] describe a classi�cation of embeddings in higher-order logic

as either shallow or deep. In a deep embedding, the concrete syntax is represented in the

logic as a type. In a shallow embedding the syntax is represented as functions in the logic,

which are de�ned by the meaning of the notation. For our framework to have the property

of extensibility, we want the meaning to be packaged with the notation.

A shallow embedding is often suitable for the packaging required by our frame-

work. In a shallow embedding, the functions representing the keywords are de�ned by the

meaning of the keyword. For example, the Asn keyword, which takes two parameters that

are the left-hand side and right-hand side of an assignment, is de�ned to equate the value

of the left-hand side in the next con�guration with the value of the right-hand side in the

previous con�guration. The use of a notation can be viewed as a \lego-like" building block

for creating a speci�cation. A block is a package of keywords and the de�nition of the

meaning of the keywords. Join points are the interfaces between blocks. Packaging creates

an extensible way to write a multi-notation speci�cation with a well-de�ned meaning.

For notations whose meaning cannot be represented compositionally (notably stat-

echarts) a deep embedding is used. If the meaning of a notation cannot be expressed

compositionally based on its syntax, then a shallow embedding must be an expanded

version of the original notation. The representation in higher-order logic then loses its

resemblance to the original speci�cation. A deep embedding maintains the resemblance to

the original notation. To retain the packaging necessary for our framework using a deep

embedding, we include keywords in the notation that take as arguments the representa-

tion of the syntax of the notation. For example, the structure of a statechart speci�cation

is represented with the type constructors AND_STATE, OR_STATE, and BASIC_STATE. As

CHAPTER 1. INTRODUCTION 16

a notation in our framework, the use of a statechart consists of the keyword Sc applied

to a statechart structure. The join points to other notations are still regulated by type

consistency.

We call our approach packaged embeddings. Chapter 5 describes the packaging of

notational styles with their semantics.

1.2.7 Determining the meaning of a speci�cation

The seventh problem is how to ensure that the analysis procedures correctly interpret the

meaning of the speci�cation. We also want to ensure that all analysis procedures under-

stand the same meaning for the speci�cation. There is a danger that implementations of

analysis procedures will not correctly interpret the meaning of the speci�cation. This dan-

ger is multiplied when working with multiple notations and new notations. Furthermore,

we want to avoid the extra work of modifying the analysis procedure when new notations

are added.

Translation is one approach to this problem. A translator transforms the speci�ca-

tion into a notation understood by the analysis procedure. Translation is notation-speci�c.

It also often has the disadvantage of lack of rigour. A second approach is to use rewriting

in a theorem prover to expand the semantic de�nitions. Rewriting relies on a uni�cation

step, which searches for matches between expressions and theorems of equality. This step

is not necessary to expand the de�nitions of the semantic functions. To avoid the need

for theorem proving infrastructure, we developed a technique speci�cally for de�nitional

expansion.

We introduce a new technique called symbolic functional evaluation (SFE) to use

the semantic de�nitions directly to expand the meaning of the speci�cation. Analysis is

then applied to the meaning of the speci�cation in higher-order logic. Symbolic functional

evaluation removes the need for theorem proving infrastructure without loss of rigour.

The semantics are de�nitions in higher-order logic. Function de�nitions in higher-

CHAPTER 1. INTRODUCTION 17

order logic are represented in the lambda calculus. De�nitional expansion replaces the use

of a de�nition with the body of the de�nition. Evaluation involves de�nitional expansion

and beta-reduction of lambda abstractions. The lambda calculus is the basis for functional

programming languages. Consequently there is a large body of knowledge on how to carry

out evaluation e�ciently and compactly, including techniques such as \lazy evaluation"

and \evaluation in place". We draw on this knowledge and provide extensions to handle

uninterpreted constants in a speci�cation. The name for our technique is chosen because

it carries out functional evaluation in the programming language sense, but the results

contain \symbols" (the uninterpreted constants).

The presence of uninterpreted constants means that a speci�cation might not eval-

uate to a concrete term, as in functional programs. Uninterpreted constants in a speci-

�cation mean that the result of evaluation can contain the application of uninterpreted

constants to expressions. Many automated analysis techniques can only be applied to a

�nite speci�cation. An abstraction of a potentially in�nite speci�cation must be created

to apply these techniques. Consequently, further evaluation of arguments to the uninter-

preted constants exposes details about the speci�cation that will be lost in the abstraction

process. For e�ciency, we de�ne several levels of evaluation that are useful for automated

analysis. These levels are based on how much evaluation is carried out on the arguments

of uninterpreted functions. These levels are implemented as di�erent modes, which can

be chosen by the speci�er.

SFE ensures that the meaning of the speci�cation understood by the analysis tool

is the same as the meaning de�ned by its semantics. Moreover, all analysis techniques

assume the same meaning for the speci�cation. Also, the burden of implementing a new

analysis function is lessened since it need not deal with the extensive range of notational

styles of our framework.

Chapter 6 describes symbolic functional evaluation.

CHAPTER 1. INTRODUCTION 18

1.2.8 Abstraction and automated analysis procedures

The eighth problem is how to attach the analysis procedures to our framework. Most

previous approaches to requirements analysis have either used theorem provers to handle

the non-�nite elements of a speci�cation or else restricted speci�cations to be in notations

describing a �nite set of con�gurations. An expert is required either to use a theorem

prover or determine a �nite abstraction of a speci�cation for analysis.

In our framework, analysis procedures interface with the expanded meaning of

a speci�cation in higher-order logic produced by SFE. Many automated techniques can

only be applied to a speci�cation that describes a �nite number of con�gurations. To

apply these techniques in our framework, we have included a toolkit of methods used by

multiple BDD-based analysis techniques. The toolkit includes an abstraction technique

for creating a speci�cation with a �nite number of con�gurations from one with a possibly

in�nite con�guration space. This abstraction is conservative in that it allows the system to

have more behaviours than the original speci�cation. The use of a conservative abstraction

can produce results that describe behaviours not found in the original speci�cation. An

abstraction that has fewer behaviours than the original speci�cation is called liberal.

The abstraction produced by this method may not be su�cient to prove a par-

ticular property, but it does provide a simple means for practitioners to begin applying

analysis to a speci�cation. Section 1.2.10 describes a way that we have improved upon

existing Boolean abstraction mechanisms. Also, the addition of small amounts of \domain

knowledge", either specialised to the system or common knowledge such as theorems about

numbers, can help analysis produce more accurate results. We call these additions envi-

ronmental constraints.

Our toolkit of techniques common to multiple BDD-based analysis approaches

lessens the burden of adding new techniques. A toolkit of re-usable techniques adds to

the rigour of our approach because it reduces what can go wrong in the implementation

CHAPTER 1. INTRODUCTION 19

of a new technique.

Forms of simulation, model checking, and completeness and consistency checking

have been implemented to demonstrate our framework. Simulation and model checking

can be applied to any speci�cation that is a model in our framework. Completeness and

consistency checking are speci�c to tabular speci�cations.

If a speci�cation is \executable", it can be simulated. In simulation, the speci�er

plays the role of the environment by providing inputs and by stepping through the resulting

behaviour of the system. Simulation is an e�ective means of investigating whether a

speci�cation matches the speci�er's intent.

More exhaustive techniques than simulation for analysing the speci�cation can be

categorised as application-dependent or application-independent. An application-dependent

analysis technique requires the input of some system speci�c information. For exam-

ple, model checking is an automatic, application-dependent technique that tests whether

a speci�cation satis�es a property in temporal logic [CES86]. Application-independent

properties can be formulated without reference to particulars of a speci�cation.

Two examples of application-independent techniques are completeness and con-

sistency checks. Ja�e et al. de�ne completeness of a requirements speci�cation in an

engineering sense as including su�cient detail to \distinguish the behaviour of the desired

software from that of any other, undesired program that might be designed" [JLHM91].

Techniques called domain completeness [HL96] or coverage [HJL96] have been developed

for examining the completeness of outputs speci�ed for possible combinations of inputs

in tabular speci�cations. A consistent speci�cation is one where the requirements do not

con
ict. Parnas points out that these types of checks are very tedious for reviewers to

carry out manually [Par93b].

The C programming language is used to implement our toolkit and analysis pro-

cedures. Analysis procedures used in the framework are described in Chapter 7.

CHAPTER 1. INTRODUCTION 20

1.2.9 Reporting analysis results

Because analysis procedures often require an abstraction of the speci�cation, the results

of analysis are produced in terms of the abstraction. The ninth problem is how to return

results in terms of the original speci�cation. In a translation approach, the tool returning

the results does not have access to the original speci�cation and therefore can only produce

results in terms of the abstraction. For example, many BDD-based analysis tools return

results in terms of Boolean variables. The translation process may have abstracted a

Boolean expression to be represented by a Boolean variable.

We address this problem in two ways in our approach. First, the abstraction carried

out for analysis is reversed before returning results. Second, the symbolic functional

evaluation phase maintains the unexpanded version of expressions. This ability allows

results to be presented at an abstract level that matches the original input. We call this

restructuring of the results. For example, the output of completeness checking of a table

is presented with the entries in the rows in their unevaluated forms as in the original

speci�cation.

Section 7.3.3 discusses reversing the abstraction process. Section 6.5 describes

restructuring. Section 8.1.2 provides an example of its use in returning analysis results.

1.2.10 Exploiting structure

The last problem is how to exploit structure to aid in analysis. Automated analysis

techniques usually ignore structure and only work with the meaning of a speci�cation. We

use the term structure to mean the arrangement of items in the speci�cation chosen by

an individual. Di�erent notations provide di�erent structures. For example, the rows and

columns of a table comprise a structure. We show that this structure can be exploited in

the analysis of tabular speci�cations to produce a more precise abstraction than strictly

BDD-based techniques and to reduce the size of the con�guration space. Because our

CHAPTER 1. INTRODUCTION 21

framework provides access to the parse tree representation of a speci�cation, the loss of

distinction between the syntax and semantics in a shallow embedding does not a�ect our

ability to exploit structure in analysis.

A speci�er's arrangement of items in a row may contain a partition of a set of

numeric values. We show how the arrangement can be checked to determine if it is a non-

overlapping partition for a numeric value. If so, the partition is encoded in a BDD and the

results produced by analysis are less conservative than treating each Boolean constraint

as an independent Boolean variable. If the partition does not include all ranges, the extra

ranges are added to the encoding. Furthermore, the size of the con�guration space is

reduced.

The techniques of our framework, such as symbolic functional evaluation, limit

the use of the framework to analysis of model-oriented notations of �xed structure. For

example, this limitation means that there must be a �xed number of rows in a table, or a

�xed number of states in a statechart. Fixed structure does not imply a �nite con�guration

space.

The use of structure in analysis is discussed in Section 7.3.1.

1.3 Examples

Three examples are used to demonstrate our claims. The �rst example is a speci�cation

of a heating system, loosely based on an example found in Booch [Boo91]. It is used

throughout the dissertation to illustrate aspects of the work. This example uses a combi-

nation of notational styles, namely higher-order logic, tables and statecharts. All types of

analysis currently implemented in our framework except symmetry checking6 are carried

out on the heating system speci�cation.

The second example is a speci�cation of the separation minima for aircraft in the

6Symmetry checking is a new analysis technique that we introduce for determining if a tabular
speci�cation is symmetric in its parameters. It will be described in Section 7.5.3.

CHAPTER 1. INTRODUCTION 22

North Atlantic Region. It uses a combination of the tabular style of speci�cation and

higher-order logic. It makes use of many uninterpreted types and constants. This speci�-

cation is analysed for the application-independent properties of completeness, consistency,

and symmetry. The ability to restructure results of this analysis to present them to the

speci�er in the form of the speci�cation is particularly valuable. The use of structure

found in rows of a table reduces the number of errors in the results due to the choice of

abstraction. Inconsistencies are found in the original informal speci�cation through our

analysis.

The third example is the Aeronautical Telecommunications Network (ATN). The

formal speci�cation uses higher-order logic and statecharts and was created by a team of

speci�ers. The ATN is a global telecommunications network for air tra�c control systems.

It will allow aircraft and ground stations to exchange data. This speci�cation is analysed

in our framework using simulation and model checking. It makes extensive use of the

parameterisation achieved through the combination of higher-order logic and statecharts.

The size of this formal speci�cation (43 pages) demonstrates the scalability of the symbolic

functional evaluation technique. The analysis discovers several errors in the formalisation

process and uncovered behaviour unknown to several of the speci�ers and to the author

of this dissertation.

1.4 Validation

We claim that the direct use of formal operational semantics of notations in higher-

order logic produces an extensible, systematic, and rigorous approach to analysing multi-

notation speci�cations that improves upon existing approaches. Furthermore, we claim

that information contained in the structure of a speci�cation can be used to supplement

BDD-based approaches to analysis by producing a better abstraction of the speci�cation.

In this section we describe how these claims have been validated in this dissertation.

CHAPTER 1. INTRODUCTION 23

Our framework has been implemented and used to analyse the three examples

described in the previous section. The examples each use multiple notational styles in

their speci�cation and multiple kinds of analysis are carried out on the speci�cations. For

example, the heating system speci�cation uses statecharts, decision tables, and higher-

order logic. Model checking, simulation, completeness and consistency checking are all

carried out on the heating system speci�cation in the framework (Chapter 7).

The example notations of statecharts and decision tables are chosen because of

the prevalence of well-developed requirements speci�cation techniques that rely on state-

transition and tabular notations (e.g., Parnas tables [Par92], the Software Cost Reduction

(SCR) method [Hen80], the Requirements State Machine Language (RSML) [LHHR94]

and the Object Modeling Technique (OMT) [R+91]). Higher-order logic was chosen as a

notation for speci�cation because it includes uninterpreted constants.

Our framework is extensible in its ability to create new combinations of notations

without changes to the existing set of notations. Extensibility is accomplished by pack-

aging the notation with its meaning. Extensibility is demonstrated through the use of

combinations of notations not previously seen in speci�cations. Also, new notations are

introduced and used in combinations without requiring changes to the existing set of nota-

tions. For example, a function table is used to describe the action of a statechart transition

in the heating system speci�cation (Section 4.10). Neither notation required any changes

to use them in combination. A second example demonstrated in the separation minima

speci�cation is that tables can be used as entries or results to other tables interchangeably

with other forms of expressions (Section 8.1.1). This integration requires no changes to

the tabular notation. A third example is that the combination of higher-order logic and

statecharts allows the statecharts to be parameterised with no changes to the statecharts

notation. This combination is demonstrated in the ATN example (Section 8.2.1). A fourth

example is that the ATN speci�cation requires directed communication between compo-

nents. The original event and action notations for statecharts include only broadcast

CHAPTER 1. INTRODUCTION 24

communication. We extend the set of notations with event and action notations, called

CommEvent and CommAction respectively, for this directed communication without any

changes to the statecharts notation (Sections 4.15 and 4.14). These new notations are

used in the ATN speci�cation (Section 8.2.1).

Our framework is also extensible in its ability to add new analysis techniques

without changing the notations. Our choice of higher-order logic as the base formalism

ensures that new analysis techniques are not limited by notation. The creation of a re-

usable toolkit of core techniques facilitates extensions in analysis. We demonstrate this

extensibility by creating and implementing two new techniques, which are both based

on BDDs. First, we create a technique for checking for symmetry in the parameters of

tabular speci�cations (Section 7.5.3). Symmetry checking is carried out on the separation

minima example (Section 8.1.2). Second, we create a technique for simulating a speci�ca-

tion with uninterpreted constants (Section 7.8). Simulation is carried out on the heating

system example (Section 7.8) and the ATN (Section 8.2.2). The speci�cations of the ATN

and the separation minima were completed prior to these new analysis procedures being

implemented and are not changed to apply these techniques.

Our framework is systematic in that there is a methodology for the creation of

new combinations of notations in a language. The categories of notational styles and join

points guide and limit the speci�er to ensure that they create a well-de�ned speci�cation.

To extend the framework with a new notation, it is only necessary to write a packaged

embedding of the semantics for the new notation in higher-order logic. Symbolic functional

evaluation is used for all notations and replaces the step of having to write a separate

translator for each notation. Our approach is more accessible to a practitioner than

previous approaches in two ways. First, SFE makes it possible to restructure the results

of analysis. For example, we present the missing cases in a table in the same terms as the

input. Second, we remove the need for any theorem proving knowledge on the part of the

speci�er to carry out analysis.

CHAPTER 1. INTRODUCTION 25

Achieving systematisation in writing the semantics of a notation is extremely di�-

cult. An expert is needed to write the semantics to extend the set of notations. Therefore,

rather than outlining a method, we provide examples for representative notations, namely

statecharts and decision tables. Consequently, considerable portions of the dissertation

are devoted to explaining the packaged embeddings in higher-order logic for the notational

styles used in the examples (Chapters 4 and 5), which serve as guidelines for extending

our framework to similar notations. For example, statecharts is chosen as an example

notation because it is representative of a large collection of model-oriented requirements

notations including RSML and SCR.

Our framework is rigorous in the direct use of the semantic de�nitions to determine

the meaning of a speci�cation. The new technique of symbolic functional evaluation

evaluates the semantic de�nitions. This method removes the gap between a statement

of the semantics of a notation and an implementation of a translator. Furthermore, as

an entity in logic, the semantics themselves can be scrutinised for their correctness and

other properties. For example, we use this ability to determine conditions under which

the concurrent components of a statechart can be partitioned into multiple statecharts

(Section 5.13). This property of statecharts aids in the con�guration space explosion

problem for complex statechart speci�cations.

The framework ensures rigour up to the point of handing the meaning of a speci�ca-

tion to an analysis procedure. The implementations of the analysis procedures themselves

could be made rigorous by writing formal speci�cations of their operations. A further step

towards rigour would be a proof that the implementations satisfy the speci�cations.

Our choice of higher-order logic as the base formalism for the framework allows

uninterpreted constants to be used in speci�cations. Many examples of their use can be

found in the separation minima (Chapter 8.1.1). Also, our use of higher-order logic means

that we do not require an abstraction step in the evaluation phase. The result of evaluating

the semantic de�nitions is semantically equivalent to the original speci�cation. Abstrac-

CHAPTER 1. INTRODUCTION 26

tion may be required for analysis, but it is not required for determining the meaning of a

multi-notation speci�cation in our framework.

We demonstrate the use of structure in the analysis of tabular speci�cations. Anal-

ysis of the heating system example shows the application of this technique in model check-

ing, simulation, and completeness and consistency analysis. Using structure made the re-

sults more accurate than those produced by strictly BDD-based approaches (Section 7.5).

Analysis of the separation minima also bene�ted from use of this technique (Section 8.1.2).

Early results from using our framework on this example were unacceptable to a domain

expert because the strictly BDD-based technique used did not have su�cient understand-

ing of expressions involving numeric inequalities. Using structure addresses this problem

to the satisfaction of our domain expert.

1.5 Contributions

The main contribution of this work is an extensible, systematic, and rigorous framework

for analysis of multi-notation speci�cations, which may include uninterpreted constants.

Our work provides speci�ers with the means to explore new options in the combinations

of notations with immediate access to well-known automated analysis techniques. Fur-

thermore, we achieve this result without using the infrastructure of a theorem prover.

Our framework achieves the desirable qualities through the use of operational se-

mantics in higher-order logic. The choice of this core technology led us to use type checking

as a mechanism for regulating combinations of notations. It also led us to develop symbolic

functional evaluation, which is a rigorous method for determining the meaning of a speci-

�cation in any notation. Thus, the key ingredients for creating our framework are higher-

order logic, operational semantics, type checking and symbolic functional evaluation. The

choice of these general-purpose techniques avoids a multiplicity of special-purpose tools

for notations and analysis.

CHAPTER 1. INTRODUCTION 27

1.6 Overview of the dissertation

Chapter 2 describes related work on both single-notation and multi-notation techniques.

Chapter 3 brie
y presents higher-order logic, the lambda calculus, and functional pro-

gramming language implementation techniques. Chapter 4 presents notational styles.

Chapter 5 describes the formal operational semantics for the example notational styles.

While closely linked, the topics of these two chapters are separated because a speci�er need

only read Chapter 4. Chapter 5 is for an expert wishing to examine the semantics of the

notations or to extend our framework to other notations. Chapter 6 describes symbolic

functional evaluation. Chapter 7 presents the architecture of the tool implemented to

support our framework and describes the automated analysis techniques currently avail-

able in our framework. The heating system example is used in Chapter 7 to illustrate the

analysis procedures currently implemented in the framework. Chapter 8 demonstrates the

use of our framework for the separation minima and the Aeronautical Telecommunications

Network examples. Chapter 9 summarises the dissertation and o�ers thoughts on future

work.

Chapter 2

Related Work

This chapter discusses related work on automated analysis of requirements speci�cations.

The chapter is divided into three sections. The �rst section contains a survey of auto-

mated formal analysis of requirements speci�cations for particular languages. This survey

includes examples of analysis procedures that will be discussed in Chapter 7 as illustra-

tions of analysis in our framework. Our framework allows these analysis procedures to

be applied to an extensible set of notations. Section 2.2 describes work directly related

to our framework on analysis of multi-notation speci�cations. Section 2.3 describes work

related to symbolic functional evaluation.

2.1 Survey of formal analysis of requirements

In this section, we present work on analysing speci�cations stated in requirements no-

tations that were chosen for their suitability and expressibility. We describe work on

analysing speci�cations in requirements notations such as RSML, SCR, modecharts, and

Z. These notations are examples of languages that could be incorporated into our frame-

work. Broadly speaking, this work can be categorised into three groups: manual trans-

lation from one notation (perhaps informal) into the input language of an existing anal-

28

CHAPTER 2. RELATED WORK 29

ysis tool (Section 2.1.1); automatic translation from one formal notation into the input

language of an existing analysis tool (Section 2.1.2), and notation-speci�c analysis tools

(Section 2.1.3). Section 2.1.4 describes two examples of embedding languages in theorem

provers for automated analysis.

2.1.1 Manual translation

This section discusses e�orts that manually translate a speci�cation in a chosen require-

ments notation into the interface notation of an existing tool to carry out analysis.

Model checking of SCR mode tables

The Software Cost Reduction Method (SCR) is a requirements speci�cation methodology

developed by Heninger, Parnas and Shore [Hen80] to specify the requirements for an

existing
ight program in the Navigation/Weapon Delivery System of the U.S. Navy's

A-7 aircraft. The requirements document is about 500 pages. In its creation, the authors

were forced to confront the problems encountered in applying speci�cation techniques to

real systems.

The SCR approach consists of data forms, functions, conditions, events, text

macros, modes, modeclasses, condition tables, and event tables. It does not allow un-

interpreted constants. Conditions are expressions that maintain a value for a non-zero

amount of time. An event happens at an instant of time. Modes are very similar to

states in a statechart. They \represent the history of events that have occurred in the

program" [Hen80]. Functions are grouped by modes. A set of conditions (or invariants)

associated with a mode should be true whenever the system is in that mode. These

conditions can be speci�ed by a mode condition table.

A modeclass is a group of related modes, which create one level of hierarchy. A sys-

tem may consist of several modeclasses. The systemmoves between modes based on events.

Mode transition tables describe this information in a tabular representation [AG93].

CHAPTER 2. RELATED WORK 30

Atlee and Gannon [AG93] established a method for checking safety properties of

SCR mode transition tables. They manually convert an SCR table into a format that

can be input to the model checker MCB [CES86]. Properties, stated in Computational

Tree Logic (CTL), describe invariants that should hold true in a mode. The speci�cation

was also tested for liveness properties of individual transitions. Their analysis uncovered

instances of unexpected combinations of events and race conditions in a cruise control

system and a water-level monitoring system.

Extra relationships between the values of conditions are manually added into the

analysis. For example, conditions that the temperature is too high, too low or okay are

mutually exclusive. They use this information to �ll in \don't care" values in the mode

transition table, rather than directly inputing it to the model checker. Two examples of

relationships that they manually derived are enumeration and range enumeration. These

two relationships are automatically recognised in our framework. Enumeration means

encoding the elements of an enumerated type so conditions referencing these types are

related. Encoding of enumerated types has been done previously by Hu [HDDY93] and

is also used in our framework (Section 7.3.1). Range enumeration means partitioning the

possible values of a numeric name into a �nite set of ranges. This partition can then

be encoded. In Section 7.3.1, we show how a form of these ranges can be automatically

recognised. The other types of relationships added by Atlee and Gannon could be stated

as environmental constraints in our framework to produce more accurate results from

analysis.

Atlee and Gannon's analysis is carried out using a strictly Boolean representation.

Each condition, such as \temp > 100", is treated as one Boolean variable. Results from

the model checker must be manually interpreted with respect to these abstractions. In

our framework, we provide a means for the tool to reverse automatically the abstractions

to present the results to the user in terms of the original speci�cation (Section 7.3.3).

CHAPTER 2. RELATED WORK 31

Model checking of RSML

The Requirements State Machine Language(RSML) [LHHR94] is a formal model-oriented

language. TCAS II (Tra�c Alert and Collision Avoidance System) was speci�ed using

RSML. The notation is very similar to statecharts [Har87] with the addition of AND/OR

tables to represent conditions on the triggers of transitions. The use of tables allows

complex sets of conditions (decision logic) to be described in a structured form.

Actions associated with transitions consist mainly of assignments and event gen-

eration. RSML does not allow uninterpreted constants. RSML speci�cations consist of

state de�nitions, constant de�nitions, event de�nitions, input variable de�nitions, out-

put variable de�nitions, interface de�nitions, macro de�nitions, function de�nitions, and

transition de�nitions. RSML has a textual representation associated with the graphical

representation of the state hierarchy.

Anderson et al. [ABB+96] have applied model checking to one part of the TCAS II

speci�cation. They analysed approximately 30% of the TCAS II speci�cation consisting

of the requirements for a state machine called \Own-Aircraft". They manually translated

the TCAS II speci�cation in RSML into the SMV [BCM+90] input language. The rep-

resentation in SMV used 227 Boolean variables: 10 for events, 55 for states, and 162 for

data. The semantics we present in Chapter 5, developed independently from their work,

codify many of the steps they went through in the manual translation process. They made

some simpli�cations in the translation process, such as abstracting calculated values. As

a point of comparison, our ATN example presented in Chapter 8 requires 395 Boolean

variables.

Anderson et al. checked for nondeterminism (where multiple transitions can be

taken in the same step), mutual exclusion in functions de�ned by cases, and other global

properties of the system. They encountered con�guration space size limitations because

of addition and comparison operations. They found it more e�cient to do some of this

CHAPTER 2. RELATED WORK 32

manipulation outside of the model checking process. Their next con�guration relation was

124,618 BDD nodes in size. Although highly dependent on variable order, size of the next

con�guration relation is a common measure used in the presentation of model checking

e�orts. Chapter 8 reports the next con�guration relation size for the ATN example.

OMT and PVS

Lutz [Lut97] examines the link between formal speci�cations and re-use. A generic formal

speci�cation of a design for software monitors on a spacecraft was developed. The Object

Modelling Technique (OMT) [R+91] was used for understandability. A formal speci�-

cation in the PVS theorem prover [ORS92] was then manually created from the OMT

speci�cation. PVS was used to prove safety and interface properties of the speci�cation.

Both of the OMT and PVS speci�cations were manually checked for conformity with the

actual software design. Tracing was originally carried out between individual software

monitors and the OMT speci�cation but was abandoned in favour of tracing from the

PVS speci�cation. This work is an example where the manual translation approach suf-

fers because the original notation chosen for its readability was abandoned for a notation

that can be analysed. OMT is an example of a notation that could be integrated into our

framework.

2.1.2 Automatic translation

In this section, we present two examples of automated translation approaches used for

model checking analysis. In comparison to our framework, these approaches have the

disadvantages of translation. For example, there may be a loss of rigour in the gap between

the de�nitions of the semantics and the translator. Our framework removes the need to

write a translator increasing the rigour of our approach and saving e�ort. Furthermore,

we are able to return results in terms of the original speci�cation.

Atlee and Buckley [AB96] created an automated means of producing input for

CHAPTER 2. RELATED WORK 33

SMV from SCR mode transition tables using a \logic-model semantics". Sreemani and

Atlee [SA96a, SA96b] evaluated the feasibility of this approach by model checking prop-

erties of the A-7E aircraft requirements in SMV. The speci�cation consists of three con-

current components each with six to eighteen modes and 69 input conditions. Conditions

in the mode transition tables are mapped to Boolean variables in the SMV speci�cation.

Their translator uses environmental assumptions about mutual exclusion in the SCR spec-

i�cation that relate conditions used in the mode transition table to produce automatically

variables of enumerated types. Each row of a mode transition table turns into a case

statement in SMV. The next con�guration relation was represented in SMV in 64,490

BDD nodes and 117 Boolean variables.

Bharadwaj and Heitmeyer [BH97a] have added model checking capability to the

SCR* toolset by creating a translator to turn SCR speci�cations into input for the

SPIN [Hol97] model checker. The input language to SPIN, Promela, is similar to an

imperative programming notation. They improve upon Atlee and Buckley's approach

by allowing variables of enumerated types or integer subranges. They note the di�culty

of interpreting counterexamples produced by SPIN and comment that it may be more

appropriate to have a special purpose model checker for SCR.

Bharadwaj and Heitmeyer describe two techniques for statically reducing the size of

the con�guration space of the speci�cation analysed. One is to eliminate irrelevant entities

by examining the dependencies of the property being analysed. The resulting speci�cation

is equivalent to the original speci�cation for the property in question. The second is to

reduce the size of the speci�cation under consideration conservatively by moving details

into the environment in a more abstract form. Dependencies are determined between the

structural components (i.e., the tables) of the speci�cation. Therefore, these reductions

are based on the structure of the speci�cation.

CHAPTER 2. RELATED WORK 34

2.1.3 Notation-speci�c analysis tools

This section discusses analysis tools developed for particular notations. Many of the

techniques have been grouped into toolsets, which provide an editor and a range of analysis

procedures to apply to a speci�cation in the particular notation [HLCM92, HBGL95,

LBH+95]. Analysis techniques used in these toolsets, as well as techniques applied to

other notations, are discussed in this section. These e�orts have the disadvantage that

a �xed set of notations is chosen and changes or additions to the notations may require

changes to the analysis procedures because these procedures are notation-speci�c. Our

framework overcomes these disadvantages by using the general-purpose base formalism of

higher-order logic. This choice allows us to extend the set of notations without changing

the analysis procedures.

Consistency checking of SCR tables

Heitmeyer, Je�ords and Labaw describe work on checking the consistency of tables in the

SCR notation [HL93, HLK95, HJL96]. This work is part of the SCR* toolset [HBGL95].

They present a semantics for SCR in a predicate logic-like format. These seman-

tics determine a model by associating tables with functions. Therefore, they only de�ne

the meaning of deterministic speci�cations in SCR. They describe a set of \consistency"

checks, where consistency means that the speci�cation is deterministic. Other types of

analysis in the SCR* toolset assume the speci�cation is deterministic and therefore these

consistency checks must precede further analysis.

Two consistency checks are for coverage and disjointness. A table satis�es the prop-

erty of coverage if the disjunction of the conditions in a row is a tautology. The property

of disjointness means the conditions in each row are mutually exclusive. To examine these

properties they use a tableaux-based decision procedure based on an algorithm described

by Smullyan [Smu68]1.

1Not enough detail is provided to determine which tableaux-based algorithm is used although

CHAPTER 2. RELATED WORK 35

Heitmeyer and Labaw [HL93] limited the speci�cation to conditions ranging over

Boolean values or those that have been converted by hand to Boolean variables. Ex-

pressions involving relations are also converted manually into Boolean variables. Their

analysis of the condition tables for the Operational Flight Program of the U.S. Navy's A-7

aircraft found 17 legitimate errors in 36 tables having a total of 98 rows. Two false errors

were found due to their strictly Boolean interpretation of the speci�cation. They found

errors such as not specifying behaviour for all of the values of variables, and ranges that

did not form a partition. They were also able to determine when behaviour was not spec-

i�ed for some submodes. It is unclear whether the results of analysing speci�cations that

involved encodings of enumerated types were automatically or manually mapped back to

the correct level of abstraction for interpretation.

Domain completeness and consistency checking of RSML

In the TCAS II speci�cation, a table can be used to describe the condition for taking a

transition in a state machine. In the completeness and consistency analysis carried out by

Heimdahl and Leveson [HL96], the speci�cation is considered domain complete if a tran-

sition is always enabled from a state. It is consistent if the speci�cation is deterministic,

i.e., if no two transitions can be enabled at the same time.

An AND/OR table is a representation of an expression in disjunctive normal form.

Each disjunct is represented by a column and the conjuncts are represented in rows. The

cells in the rows can contain only true, false, or \don't care". Related conditions such as

\x < 280" and \x > 450" are listed on separate rows.

In the analysis method of Heimdahl and Leveson, a Boolean variable is associated

with each row label. The meaning of each cell in the row is the condition of whether this

Boolean variable is true or false. Domain completeness analysis examines whether the

disjunction of the columns of all the tables used to describe transitions from a state is a

because their tool is automated, we assume they use the one for propositional logic.

CHAPTER 2. RELATED WORK 36

tautology. Consistency analysis checks that there is no overlap in the conditions between

multiple tables describing transitions from the same state, i.e., that the conjunction of

the meaning of two tables is a contradiction. They represent these properties as Binary

Decision Diagrams (BDDs). Checking if the BDD representation of an expression is a

tautology or a contradiction takes constant time.

Related information found on di�erent rows in an AND/OR table is associated with

independent Boolean variables. Therefore, the analysis method of Heimdahl and Leveson

can produce spurious results. For example, it might return a result indicating that no

table covers the case where both the conditions \x < 280" and \x > 450" are true. This

case is impossible and distracting to reviewers of the analysis output. Their tool catches

spurious results with respect to enumerated types, but not those arising from the use of

mathematical functions. Inaccurate results can also be generated because the reachability

of conditions is not examined, i.e., the analysis is only done on an individual state basis.

Another source of spurious results is relationships between mathematical functions that

cannot be captured in a BDD-based approach. Heimdahl provides a discussion of these

issues [Hei96].

We have developed a slight variation of AND/OR tables that allow related condi-

tions to be speci�ed on the same row (Section 4.8). We found this notation appropriate for

the separation minima example (Section 8.1). Furthermore, the structure of these decision

tables can be exploited in analysis to eliminate some of the spurious errors produced by

the analysis.

Tablewise

Tablewise [HC95] is a tool for creating and analysing decision tables. It carries out com-

pleteness and consistency checking similar to that for RSML and SCR. The output pro-

duced is also a table. However individual tables are independent and cannot be nested

as in our framework. The tool automatically translates relational comparisons such as

CHAPTER 2. RELATED WORK 37

\AC Alt � Acc Alt" to an expression in terms of enumerated types:

\compare(AC Alt,Acc Alt) � f EQ, GT g". A form of \structured analysis" is used to

summarise output cases from completeness checking2. They use �nite decision diagrams

(a generalisation of binary decision diagrams with a �nite number of branches) in their

implementation. Environmental constraints cannot yet be included to eliminate infeasible

constraints.

AVAT

Dai and Scott describe a CASE tool supporting software veri�cation and validation called

AVAT [DS95]. It provides support for Program Function (PF) tables, which were devel-

oped by Parnas [Par92, Par94] and used in the veri�cation of software for the shutdown

systems of the Darlington Nuclear Reactor Power Plant [CGR95]. A PF table expresses

the relationship between inputs and outputs of a program. A parser for the tables has

been developed in Prolog. This parser is used to check the completeness and consistency of

the tables as syntax checks. AVAT also compares PF tables that represent the same infor-

mation but were prepared independently. Comparison of tables was performed manually

in the Darlington project.

Nitpick

Damon, D. Jackson and Jha have developed a model checker called Nitpick for relational

speci�cations over �nite sets based on the Z notation [DJJ96]. They use BDDs and an

encoding scheme for scaler types and �nite sets similar to that used by others [HDDY93].

They have developed three ways to reduce the size of the con�guration space based

on the structure of the speci�cation: isomorph elimination, derived variable detection,

and short circuiting (identifying variables that may be unnecessary to the current analysis

2Not enough detail is provided to determine whether this technique relates to the Structured
Analysis of DeMarco [DeM79].

CHAPTER 2. RELATED WORK 38

because of a partial assignment). Isomorph elimination involves reducing the number of

cases based on determining cases of \similar shape". Also, by separating schemas for

transitions and states, they are able to incorporate state invariants into the analysis. The

technique we present based on structure (Section 7.3.1) not only reduces the size of the

con�guration space but also increases the accuracy of analysis results.

Timing analysis of modecharts

Modecharts [JM94] is a state-transition based graphical speci�cation language developed

by Jahanian and Mok. It was developed for expressing and examining timing requirements

of a system. Transitions are labelled with delays and deadlines, which indicate when the

transition can be taken. Actions have start times and stop times.

For timing analysis [JS88], a modechart speci�cation is automatically translated

into a set of formulae in Real Time Logic (RTL). RTL is essentially integer arithmetic

without multiplication. RTL includes an uninterpreted occurrence function, which indi-

cates the absolute time at which the `ith' occurrence of an event occurs. Universal and

existential quanti�cation are possible only over integers. The meaning of a modechart

in RTL is described entirely in terms of the following events: entering a mode, exiting a

mode, starting an action, stopping an action, changing the value of a variable (which can

only be done in an action), taking a transition, and external events (such as pressing a

button).

Jahanian and Stuart [JS88] present an algorithm for building a computation graph

based on a modechart speci�cation. A computation is \an assignment of time values to the

events on a path (perhaps in�nite) from the root of the tree such that it is consistent with

lower/upper bound requirements on the events" [JS88]. Two classes of timing properties

are presented that can be veri�ed using the computation graph. The �rst class concerns

the relative ordering and time separation of events. For example, a property might state

that \two successive entries to the mode M are either ten time units apart or within �ve

CHAPTER 2. RELATED WORK 39

time units of each other". The second class of properties relates one interval to another

and can be used to state that two actions are mutually exclusive. Jahanian and Stuart

limit their variables to the Boolean domain. Because the speci�cation is described entirely

in terms of occurrences of events, rather than constraints on the modes, they cannot prove

invariants such as safety properties as in CTL model checking.

RTL is used both to represent the meaning of a modechart speci�cation and to

express the properties to be checked. Representing both the speci�cation and the prop-

erties in the same notation is advantageous in that it may help to create a compositional

method where large speci�cations can be analysed in parts. A property resulting from one

analysis can be used directly in another because the property is in the same language.

Timing analysis is not currently implemented in our framework. This section is

provided as an example of another types of analysis that could extend the current set of

analysis techniques provided by the framework.

2.1.4 Theorem provers

The technique of embedding notations in higher-order logic for their study was pioneered

by Gordon [Gor88a]. Two examples of work on doing automated analysis of model-oriented

notations using theorem provers are presented in this section.

Model checking of statecharts

In previous work [Day93], we presented a semantics for statecharts [Har87] in higher-

order logic using event and action notations very similar to those used in the CASE

tool STATEMATE [HL+90]. This e�ort used a deep embedding of the notations and

operational semantics. The HOL-Voss [JS93] tool was used to model check the statecharts

speci�cations. The semantics for statecharts presented in Chapter 5 are an extension of

this previous work.

In this dissertation, di�erent decisions about the means of embedding notations

CHAPTER 2. RELATED WORK 40

are made to incorporate an extensible set of notations in speci�cations. The speci�cation

is also allowed to include uninterpreted constants. We further provide an extensible and

systematic framework for analysis of multi-notation speci�cations. Also, in our framework

higher-order logic is directly linked with automated analysis without a theorem prover.

Embeddings in PVS

The Prototype Veri�cation System (PVS) [ORS92] is a theorem prover for higher-order

logic (which includes uninterpreted constants). Type checking is undecidable in PVS

because it allows predicate subtyping.

Rajan, Shankar and Srivas [RSS95] showed how Boolean simpli�cation using BDDs

and model checking can be integrated as a decision procedure in PVS. They create a next

con�guration relation directly in the PVS logic. We di�er from their approach in two

ways. First, we create a framework that does not rely on theorem proving infrastructure.

Our architecture links higher-order logic directly with automated analysis. Section 1.1.1

gave a description of the bene�ts of our approach in this regard. Second, we provide a

distributed mechanism for grouping the elements of the con�guration rather than a record

structure. Our approach is more convenient for the speci�er but requires an extra step in

our process of determining the grouping (Section 7.6).

PVS has been used by Owre, Rushby and Shankar for completeness and consistency

checking and model checking of decision tables and SCR tables [ORS96, ORS97]. They

introduce a new construct into the PVS logic for tables and internally translate this

construct into their existing COND and CASES constructs. This translation de�nes the

semantics for tables in a similar manner to the semantic embedding of tables in Chapter 5.

The original form of the table is remembered for output of the de�nition. Associated

with the COND and CASES constructs are type correctness conditions of disjointness

(consistency) and coverage (completeness). Thus, completeness and consistency checking

is carried out through the proof that the type correctness conditions hold. If a proof

CHAPTER 2. RELATED WORK 41

of one of these conditions does not succeed, the result is an unproven sequent. They

show an example of how a missing case in completeness checking would be a sequent

with no assumptions and several formulae to prove. This method requires tables to be

complete and consistent to pass type checking. It does not enumerate cases that fall into a

\default" column of a table or present the results as a table. In using formal methods for

an independent validation and veri�cation e�ort, Easterbrook and Callahan abandoned

the use of PVS to carry out completeness and consistency checks because of the di�culty

of determining the source of an inconsistency in a failed proof [EC97]. A further di�culty

with the PVS approach is obtaining counterexamples from model checking in terms of the

original speci�cation.

Model checking of a speci�cation stated in SCR mode transition tables in PVS is

carried out by grouping previous and next con�guration inputs into a \state" record. Used

as inputs to the table, the table then becomes a transition relation for their integrated

model checker. The con�guration must include only elements of �nite type or a �nite

abstraction must be created. Mode transition tables represent concurrent components

whose next con�guration relations can be conjoined together. Within each component

there is one level of hierarchy, so each row in the table represents a transition and the

meaning of the rows can be disjoined together. Therefore, their semantic embedding

within PVS is straightforward.

Statecharts allow a more hierarchical state structure and priority of transitions

based on hierarchy, which complicates the semantics of statecharts in comparison to SCR

mode transition tables. We have chosen statecharts as a representative notation for demon-

strating the framework and providing guidelines for extending the framework to other

notations.

Owre et al. [ORS96] acknowledge the superiority of lightweight special-purpose

tools (such as the SCR* toolset) for particular notations and analysis techniques, partly

because of their scalability. The lack of scalability could be in part because there does not

CHAPTER 2. RELATED WORK 42

appear to be any way to control the variable ordering for BDDs within PVS. Because of

the importance of this factor in the scalability of many automated techniques, we address

the issue directly by allowing the input of a variable order (Section 7.3.4). By providing

a lightweight interface between a general purpose notation and automated analysis, this

dissertation o�ers a middle ground between special-purpose tools and general-purpose

theorem provers.

2.2 Multi-notation speci�cation and analysis

This section discusses three e�orts comparable to the one presented in this dissertation

for specifying and analysing multi-notation speci�cation.

2.2.1 Translation to �rst-order logic

Zave and M. Jackson [ZJ93] present algorithmic translations from a variety of notations to

one-sorted �rst-order logic with equality. Their approach is illustrated for Z, deterministic

�nite automata, data
ow diagrams, Petri nets and other notations. The overall system

is speci�ed by the conjunction of the parts written in di�erent notations. Their semantics

for these notations are captured by their algorithmic translations.

Similar to the reasons why we choose higher-order logic as a base formalism (Sec-

tion 3.1), their choice of �rst-order logic is for its generality. Our prospects for generality

for notations by using higher-order logic (Section 9.2.1) is supported by their statement

that they are \fairly" con�dent that all notational styles can be represented in �rst-order

logic. However, with a one-sorted logic they are unable to use type checking for regulation

of combinations as we can in higher-order logic.

Zave and M. Jackson express the meaning of a notation in �rst-order logic. We

capture the translation process in higher-order logic in the de�nitions of the semantics.

Compared to our approach, the work of Zave and M. Jackson has the disadvantage that

CHAPTER 2. RELATED WORK 43

the translator lacks rigour. They do not demonstrate any analysis on their multi-notation

speci�cations. But because they use a translation approach, the results of analysis could

not be presented to the speci�er in terms of the original speci�cation. They describe the

logical formula in �rst-order logic resulting from the translation as \large and incompre-

hensible".

The method of Zave and M. Jackson does not rely on the parts of the speci�cation in

di�erent notations being independent. They deal very generally with any type of notation

rather than just model-oriented notations. Thus, the �rst problem they face is whether

the speci�cation is consistent, where they use the word \consistent" to mean that the

speci�cation is satis�able. They suggest that consistency properties can be considered with

respect to possible overlap between notations rather than just for particular speci�cations.

By limiting our scope to model-oriented notations, we are able to produce guidelines for

how notations can be combined such that a speci�cation has a well-de�ned meaning that

is not inconsistent.

2.2.2 Ada, regular expressions, and GIL in hybrid automata

Avrunin, Corbett and Dillon [ACD97] describe an approach for analysing systems par-

tially implemented in Ada. The motivation for their approach is that development and

maintenance of systems do not proceed at a uniform rate. Therefore, it is useful to be

able to take advantage of implementation details when available, especially for the sake

of timing analysis, combined with speci�cation information about non-implemented com-

ponents. Another rational for their approach is that it is useful to specify the behaviour

of the environment for the analysis tools and one would not necessarily want to construct

software for this purpose. Finally they describe the value of compositional analysis where

some parts are abstracted to make computations feasible.

Their approach uses the common formalism of constant slope linear hybrid au-

tomata, which are supported by the HyTech veri�er [AHH96]. The speci�cations are

CHAPTER 2. RELATED WORK 44

stated in regular expressions (for ordering of events) and a temporal logic called the

Graphical Interval Logic (GIL) for timing constraints. These speci�cations are translated

by hand to automata. Hybrid automata are automatically constructed from the Ada pro-

grams conservatively. Speci�cations of environmental behaviour can be written in GIL or

in regular expressions. The system is speci�ed by means of an intersection operation on

hybrid automata. Properties are also stated in hybrid automata.

For the sake of timing analysis, which is particularly important for real-time sys-

tems, they choose hybrid automata as their common representation. They point out that

real-time performance may depend on details found in the implementation, thus requiring

the integration of at least parts of the implementation (in this case in Ada) in the analysis.

This work falls into the category of translations from one notation to another and

therefore has the previously discussed disadvantages of translation. There is a potential

to express hybrid automata in higher-order logic (e.g., the formalisation of timed tran-

sition systems by Cardell-Oliver et al. [COHH92]). Analysis techniques aimed at timing

veri�cation of systems with continuous variables could be used within our framework.

2.2.3 Combining notations using hypergraphs

Pezz�e and Young describe an approach to combining state transition notations using an

\inframodel" of a hypergraph for con�guration space exploration [PY97]. In form, a

hypergraph is very similar to a labelled Petri net. A speci�cation in a particular notation

is translated to the inframodel and rules associate the semantics of the original notation

with the part of the inframodel in that notation. The rules govern enabling, �ring and

matching of arcs in the hypergraph. Matching indicates sets of arcs that can �re together.

Pezz�e and Young demonstrate how Petri nets, Ada tasking, statecharts with history, and

state diagrams of RSML can be translated to the inframodel. For multiple parts of the

inframodel stated in di�erent notations to operate concurrently, rules for matching arcs

that belong to models in di�erent notations are required. Their approach can be described

CHAPTER 2. RELATED WORK 45

as instantiating the hypergraph for a particular
avour of state-transition diagrams or

particular combination of notations.

We di�er from their approach in three ways. First, we use a base formalism of

higher-order logic, which is more convenient for expressing non-state-transition based no-

tations such as decision tables. This choice allows us to include uninterpreted constants

and does not restrict us to a particular type of analysis. For example, we are able to use

the semantics to reason about the notation (Section 5.13). Second, we directly use the se-

mantics of the notation in analysis. Their approach involves translation to a hypergraph.

It is unclear as to how well the results are returned to the user in terms of the origi-

nal speci�cation. Third, we de�ne the behaviour of multiple models through conjunction

and do not require additional information for particular combinations of notations. We

concentrate more on the combination of notations used to build one model.

The goal of the work of Pezz�e and Young is to have a general approach to building

tools for reachability analysis and model checking for multiple state-transition notations,

such that compact representations for particular notations are not lost. Their rule-based

approach to mapping a particular notation into a common base notation could be used

to help systematise the process of writing the operational semantics for notations in the

semantic category of models.

2.3 Evaluation of logic

Symbolic functional evaluation involves evaluating expressions in higher-order logic. Eval-

uation is relevant both as a means of evaluating the semantic de�nitions that de�ne the

meaning of a notation and as a method for carrying out simulation or symbolic simulation

of functional speci�cations.

To carry out simulation, a speci�cation of a next con�guration function can be

iteratively applied to itself a �nite number of times representing the results of that number

CHAPTER 2. RELATED WORK 46

of steps of simulation. If the speci�cation includes uninterpreted constants or symbolic

inputs, the simulation must be symbolic.

Evaluation, i.e., de�nitional expansion and beta-reduction, is usually carried out in

theorem provers using rewriting and beta-reduction. Joyce [Joy89] and Windley [Win90]

use rewriting and beta-reduction in HOL to carry out symbolic simulation of speci�cations

of hardware circuits in higher order logic. Goosens [Goo93] and van Tassel [Tas93] carried

out symbolic simulation of speci�cations in deep embeddings of hardware description lan-

guages using the same techniques. The semantic functions were expanded using rewriting

and beta-reduction. Donat [Don98] applies rewriting to higher-order logic requirements

speci�cations outside of a theorem prover for test case generation.

The Boyer-Moore logic used in the Nqthm theorem prover is a �rst-order logic

without quanti�ers [BM88]. Their syntax is very close to LISP. Every function in the

logic has an \executable counterpart" in a Lisp procedure. A command called R-LOOP

provides an execution environment. When invoked on expressions that apply a function

symbol to concrete values (i.e., expression without variables), R-LOOP calls the executable

counterpart of the function to return a concrete value for the expression. In a more recent

version, called ACL2, the syntax is actually a subset of LISP so no separate execution

environment is needed [KM97]. This choice was made for e�ciency.

Camilleri [Cam88] developed a method for translating executable hardware spec-

i�cations into ML [Pau91] where they could be simulated. This technique is applicable

to a subset of higher-order logic and involves an initial step of translating relational spec-

i�cations of hardware into functional ones. Rajan [Raj93] took a similar approach in

translating a subset of higher-order logic into ML. In both of these approaches, speci�ca-

tions cannot include uninterpreted constants.

By using BDDs to represent Boolean variables in a functional programming lan-

guage, Seger developed amethod of symbolic simulation for hardware speci�cations [SB95].

These speci�cations cannot include uninterpreted constants.

CHAPTER 2. RELATED WORK 47

Eisenbiegler and Kumar [EK94] provide a discussion of many of the issues concern-

ing the symbolic simulation of speci�cations through evaluation of HOL terms.

Andrews [And97] translates speci�cations in S [JDD94] (a syntactic variant of

higher-order logic) into the Lambda Prolog programming language. Uninterpreted con-

stants can be used in the speci�cation. Expressions with quanti�ers can be executed using

the uni�cation and backtracking of the programming language. A drawback of this ap-

proach is that functions that do not return Boolean values cannot be represented directly

in Lambda Prolog.

Our approach di�ers from all of these e�orts in that symbolic evaluation is car-

ried out directly on the speci�cation using e�cient techniques from implementations of

functional programming languages.

2.4 Summary

This chapter has described work related to this dissertation. A variety of examples of

analysis of requirements speci�cations were presented. We di�er from other multi-notation

approaches in our use of higher-order logic as a base formalism. We limit our scope to

model-oriented notations to achieve systematisation, but we include notations such as de-

cision tables. Compared to existing translation approaches, we directly use the semantics

of notations in analysis to achieve rigour. As entities in logic, our semantics de�nitions

can be analysed for properties of the notation itself. Our packaged embeddings require no

changes to the existing set of notations for extensions of the framework. Symbolic func-

tional evaluation allows us to include uninterpreted constants and maintain rigour while

avoiding a theorem proving environment or translation to an executable programming

language.

Chapter 3

Foundations

This chapter provides a brief introduction to the foundations of our framework, namely,

higher-order logic, the lambda calculus, and techniques for the evaluation of functional

programming languages. Higher-order logic is the base formalism used in the framework.

Constant de�nitions do not require any extensions to higher-order logic.

The lambda calculus is used to represent functions and function applications in

higher-order logic. It evolved out of higher-order logic as an area of study in itself and is

the foundation for functional programming languages. The lambda calculus (and there-

fore higher-order logic) includes rules for evaluating expressions. Section 3.4 discusses an

implementation for evaluation of expressions in the lambda calculus without free variables.

The reader is assumed to have some familiarity with these three foundational con-

cepts. Higher-order logic is used in the next two chapters for representing notations and

their semantics. Chapter 6 draws upon the evaluation technique to create a technique

for evaluating expressions in higher-order logic including uninterpreted constants (free

variables).

48

CHAPTER 3. FOUNDATIONS 49

3.1 Higher-order logic

The base notation used in this dissertation is essentially the higher-order logic of the HOL

theorem proving system [Gor87, GM93]. HOL uses a slight variant of Church's simple

theory of types developed in 1940 [Chu40]. The reader need only be familiar with the

notation of higher-order logic and not the HOL system. A presentation of the notation

can be found in Chapters 2 and 15 of Gordon and Melham's book [GM93]. Expressions in

higher-order logic are variables, constants, abstractions, or applications (although there is

greater variety than this in the concrete syntax described in Chapter 4). Abstractions are

functions in the lambda calculus, such as �x:x+ 1 and will be discussed in more detail in

the next section.

The reasons for choosing higher-order logic as the base notation for our framework

are:

� generality: The notation does not impose any particular style of speci�cation. It

has been shown to be a useful notation for studying other notations by embedding

them in the logic [Gor88a]. The introduction of a constant de�nition as a new

axiom in higher-order logic is a conservative extension of the logic, which means it

does not change the set of derivable formulae of the logic. De�nitions contribute to

the generality of the notation because notational styles can be created through the

introduction of keywords as de�ned constants.

� convenience of expression: The ability to have functions take other functions as

arguments, and to describe unnamed functions using the lambda calculus are features

that increase the convenience of the notation and are exploited in the semantic

functions.

� type checking: Using a typed notation has great bene�ts for early detection of errors

in a speci�cation as in typed programming languages [LP97].

CHAPTER 3. FOUNDATIONS 50

� decidable type checking: Type checking is decidable for the variant of higher-order

logic chosen [Mil78]1. Polymorphism allows a function to represent a set of functions

of various di�erent types. The most general type can be determined for any expres-

sion in higher-order logic2. This choice is in keeping with our intention to create a

fully automatic system.

The logic of the HOL system serves as a well-documented foundation for our ap-

proach of using higher-order logic. In this work, we have not directly used the HOL system

or any other theorem prover. As opposed to an approach based on theorem proving, we

do not provide support for deriving well-formed formula through interactive proof.

Because higher-order logic is undecidable, it is not possible to check automatically

all properties stated in the logic. There are useful classes of expressions in the logic

for which reasoning can be automated. Our framework uses techniques applicable to

these expressions. The reasoning performed by the automated analysis techniques can be

replicated using only the axioms and inference rules of the logic.

Section 3.4 describes one analysis technique for evaluating expressions in higher-

order logic which is based on the lambda calculus. This technique provides the foundation

for symbolic functional evaluation. Examples of other analysis techniques, which are less

fundamental to the framework, are found in Chapter 7.

3.2 Typed lambda calculus

The typed lambda calculus is used as a notation for functions in higher-order logic. In

1941, Church began to investigate the use of the lambda calculus separately from higher-

order logic. Functional programming languages have evolved from this foundation. In this

1Our implementation is based on the algorithm for type checking found in Hancock [Han87]
which is based on Milner's work.

2Predicate subtyping, where type membership depends on the value of a predicate application, is
not allowed because it is not decidable. Rushby [Rus97] discusses the value of predicate subtyping.

CHAPTER 3. FOUNDATIONS 51

section, we present the typed lambda calculus used in higher-order logic. Our presentation

of this material is drawn from Peyton Jones [Jon87] and Gordon [Gor88b].

The lambda calculus consists of expressions involving variables, function applica-

tion (f x) and lambda abstractions (�x:x + 1). Higher-order logic makes a distinction

between variables and constants which is not present in the lambda calculus. Constants

in higher-order logic are free variables in the lambda calculus. A free variable is one

that is not bound by a lambda abstraction or quanti�er. Lambda abstractions represent

functions.

There are three rules that can be used to \calculate" with the notation. These

rules involve symbol manipulation and produce equivalent expressions. They are:

� alpha-conversion

The names of lambda variables can be changed provided the same substitution is

made within the body of the lambda abstraction and this substitution does not cause

any variables that were previously free in a sub-expression to become bound.

�V:E = �V 0:E[V 0=V]

E[V 0=V] is the expression resulting from substituting the variable V 0 for the variable

V in the expression E. Table 3.1 de�nes substitution as found in Gordon [Gor88b].

Name capture (also called variable capture) occurs when a variable that is free in the

argument becomes bound in the resulting expression. The de�nition of substitution

in Table 3.1 ensures name capture does not happen.

� beta-conversion

An expression that consists of a lambda abstraction applied to an argument can be

reduced by substituting the argument as the lambda variable in the expression that

is the body of the lambda abstraction.

(�V:E1)E2 = E1[E2=V]

CHAPTER 3. FOUNDATIONS 52

Table 3.1: Substitution

E E[E0=V]

V E0

V 0 (where V 6= V 0) V 0

E1E2 E1[E
0=V]E2[E

0=V]

�V:E1 �V:E1

�V 0:E1 (where V 6= V 0 and V 0 �V 0:E1[E
0=V]

is not free in E 0)

�V 0:E1 (where V 6= V 0 and �V 00:E1[V
00=V 0][E 0=V]

V 0 is free in E0) where V 00 is a variable
not free in E0 or E1

For example, (�x:x+1)2 becomes 2 + 1. This substitution must ensure no variables

that are free in the argument become bound in the resulting expression. Beta-

reduction involves turning an expression in the form of the left-hand side of this rule

into the right-hand side. Because the argument to the abstraction is not evaluated

in beta-reduction, it is called lazy evaluation. Beta-abstraction is the reverse [Jon87].

Beta-reduction is one of the primitive inference rules of higher-order logic.

� eta-conversion

If the only place the variable of a lambda abstraction appears is as the last argu-

ment of an expression forming the body of the abstraction, an equivalent form of

the expression is to drop the abstraction variable and its usage at the end of the

expression.

�V:(E V) = E

Evaluation of an expression in the lambda calculus is the process of reducing or

simplifying an expression using these rules. There are two common goals of evaluation:

CHAPTER 3. FOUNDATIONS 53

f a

b

c

tip

(((f a) b) c) =

Figure 3.1: Tip of a function application

� Normal Form

A redex (reducible expression) is an application consisting of a lambda abstraction

applied to an argument. A redex can be reduced using beta-reduction. An expression

is in normal form when no redexes remain in the expression.

� Weak Head Normal Form

The leftmost branch of a series of function applications is called the tip as illustrated

in Figure 3.1. An expression is in weak head normal form if 1) it is an application

whose tip is a variable or 2) it is an irreducible expression (i.e., it is not a redex).

Inner redexes can exist.

The �rst and second Church-Rosser Theorems, which are applicable to the untyped

lambda calculus, are discussed in Gordon [Gor88b]. The �rst Church-Rosser Theorem

states that there is a unique normal form for an expression if a normal form exists. The

second Church-Rosser Theorem guarantees that if a terminating reduction sequence exists

to simplify an expression to normal form, it can be found using normal order reduction.

This form of reduction is where the leftmost, outermost redex is simpli�ed �rst. These

theorems also apply to the typed lambda calculus.

CHAPTER 3. FOUNDATIONS 54

3.3 De�nitions in higher-order logic

A speci�cation or program usually contains de�nitions of constants. Constant de�nitions

in higher-order logic are a conservative extension of the logic. This is of critical importance

in our work because it allows notational styles to be created through the introduction of

keywords without any change to the proof theory of the logic. This section discusses how

de�ned constants are evaluated in the lambda calculus.

A constant de�ned using a non-recursive or non-pattern matching de�nition can

be considered the name of a lambda expression. For example, the following is a de�nition:

n := 1

This de�nition means that in subsequent description the name \n" can be used for the

number \1". An example of a de�nition with parameters is:

add a b := a+ b

The parameters of the de�nition can be viewed as variables bound by lambda abstractions

in the expression on the right-hand side of the de�nition. This de�nition is equivalent to:

add := �a:�b: a+ b

When a function is used in an expression, the appropriate de�nition body is substi-

tuted for the function name during evaluation. The following two sections discuss recursive

de�nitions and pattern matching de�nitions.

3.3.1 Recursive de�nitions

In a recursive de�nition the constant being de�ned also appears on the right-hand side of

the de�nition. For example, the following de�nition is for a constant \sum" that sums the

natural numbers from 1 to n, where n is the parameter of the de�nition:

sum := �n:if (n > 0) then n+ sum(n� 1) else 0

CHAPTER 3. FOUNDATIONS 55

A de�nition is treated as an axiom in higher-order logic. As shown in Peyton

Jones [Jon87], applications of recursively de�ned functions can be evaluated the same way

as applications of non-recursively de�ned functions.

The general form of a recursive de�nition is:

recfcn := �x: : : : recfcn : : : x : : :

The variable \x" is the argument to the function. (There can be multiple arguments.)

Evaluating an application of this function in the same way as a non-recursive function

means \recfcn n" can be reduced to \: : :recfcn : : :n : : :". Using beta-abstraction, \recfcn"

is equivalent to:

recfcn = (�r:(�x: : : : r : : : x : : :))recfcn

Equality is used here, rather than the de�nition sign (\:="), because this statement can be

considered an equation to solve for the value of \recfcn". The function \recfcn" is the least

�xed point (by the de�nition of recursive functions) for the function

\(�r:(�x: : : : r : : : x : : :))".

3.3.2 Pattern matching de�nitions

A special group of constants in logic, called type constructors, usually have special status

in the lambda calculus. Pattern matching function de�nitions over constructors for a

type can be very useful in writing speci�cations and are included in higher-order logic.

An example of a pattern matching de�nition over the type \list", which has two type

constructors, \NIL", and \CONS", is:

length(NIL) := 0 j

length(CONS e l) := 1 + (length l);

Uncurried function de�nitions3 can be seen as pattern matching de�nitions over the pair

type.

3An uncurried function de�nition takes parameters as a tuple.

CHAPTER 3. FOUNDATIONS 56

De�nitions in higher-order logic based on pattern matching can have varying de-

grees of complexity. Our notation includes only those where

� the multiple cases do not overlap (i.e., each must have a unique type constructor as

part of the pattern to match)

� only the �rst argument to a function can be de�ned using patterns

� patterns are not nested

� variables cannot be repeated in the pattern

The de�nition need not cover all possible constructors. These choices were made to limit

the complexity of the evaluation algorithm discussed in Chapter 6. The algorithm could

be extended to handle extra degrees of complexity in pattern matching de�nitions. In

our experience, these restrictions were not limiting in writing the semantic de�nitions or

speci�cations.

As shown in Peyton Jones [Jon87], evaluation of a function de�ned by pattern

matching can be achieved by stating its meaning as a lambda abstraction. The appropriate

lambda abstraction can be stated using a function called \unpack sum". This function

is so named because types de�ned by constructors are the union of values that can be

formed from the constructors. For a de�nition of the form:

c(s1 v0 : : : vn) := E1 j

c(s2 v0 : : : vm) := E2 j

: : :

The constant \c" is the function being de�ned, \s1" and \s2" are type constructors, and

\vi"'s are variable, \c" is semantically equivalent to:

unpack sum[s1 v0 : : :vn; s2 v0 : : :vm; : : :]

CHAPTER 3. FOUNDATIONS 57

The de�nition of \unpack sum [s1 v0 : : : vn; s2 v0 : : : vm; : : :]" is:

�x:case x of

s1 x0 : : : xn) (�v0 : : :vn:E1) x0 : : :xn

s2 x0 : : : xm) (�v0 : : :vm:E2) x0 : : : xm

: : :

else) FAIL

The \case" operator means the function returns the right-hand side of the \)" if the

variable \x" matches the left-hand side of the arrow. The check for matches proceeds in

the order of the list of options.

Even if the pattern matched argument (the �rst argument) is never used in the

body of the function, it must be possible to match it to some case or else evaluation does

not proceed. As a result, the �rst argument cannot be evaluated lazily4 . The arguments

to the constructor are not evaluated when carrying out the pattern match; rather they

are treated as arguments to the function once a match has been determined.

In practise, \unpack sum" is not used directly but its behaviour for functions such

as \c" is implemented in rewriting or evaluation.

3.4 Evaluation of functional programming languages

Functional programming languages are based on the lambda calculus and methods for

the e�cient evaluation of expressions in the lambda calculus have been developed. This

section discusses a technique for evaluation of a functional program. Our presentation of

this material is drawn from Peyton Jones [Jon87].

Figure 3.2 presents an algorithm found in Peyton Jones [Jon87]5 which implements

4Here we do not make a distinction between pattern matching de�nitions with only one case
(called product constructor patterns) and those with multiple cases (called sum constructor pat-
terns). There are situations where lazy evaluation is applicable for product constructor patterns.

5There appears to be an error in this algorithm found on page 213 of Peyton Jones [Jon87]. In
the case of a constructor, the algorithm says an error should be returned if the argument list is

CHAPTER 3. FOUNDATIONS 58

normal order reduction to achieve weak head normal form for an expression. This algo-

rithm is presented in C-like pseudo code. This algorithm is intended to work in conjunction

with a function that prints the output. Since the output could be an in�nite list, results

are printed as soon as they are available. Therefore, this algorithm returns an expression

in weak head normal form so the outermost identi�er (usually a type constructor) can

be printed, then the printing function calls the evaluation algorithm for the arguments to

attain normal form output.

An implementation of this algorithm represents the expression as a graph, with

expressions sharing pointers to common subexpressions. The principle of referential trans-

parency (�rst used by Whitehead and Russell [WR27]) is that any subexpression without

free variables will evaluate to the same normal form. Therefore, the algorithm carries

out evaluation in place, i.e., replace the expression being evaluated with the result, so the

expression is evaluated at most once.

This algorithm uses a technique called spine unwinding. A list of the arguments

of a function application is kept while proceeding with the left branch of the function

application. This operation is found in the APPLICATION case of the algorithm.

If the expression is an abstraction, beta-reduction is carried out. The arguments are

substituted for the variables in the body of the lambda abstraction. Substitution proceeds

by pointer substitution rather than copying the argument so that the same subexpression

is not evaluated more than once. In this case, the result also takes the place of the original

redex.

If a constructor is encountered at the head of the function application, the expres-

sion is in weak head normal form and evaluation stops.

For e�ciency, built-in functions such as addition can be evaluated by an algorithm

rather than by using their de�nition in the lambda calculus. The algorithm associated

not null. It is often the case that constructors such as \CONS" have arguments, so this error has
been corrected in our presentation.

CHAPTER 3. FOUNDATIONS 59

expression EvalNode(expression *exp, expressionlist arglist)

switch (formof(exp))

case APPLICATION:

new_arglist = add argument of the application to the head of arglist

return EvalNode(function of the application, new_arglist)

case ABSTRACTION:

if (arglist == NULL) then

return exp

else

newexp = substitute arglist for args in exp using pointers

result = EvalNode(newexp, leftovers in arglist)

overwrite root of redex with result

return result

case CONSTRUCTOR:

return exp applied to the arglist

case BUILT-IN FUNCTION:

if too few args in arglist for this function then

return exp applied to the arglist

else

evaluate the arguments

result = evaluate the built-in function

overwrite root of redex with result

return result

Figure 3.2: Implementation of normal order reduction

with a built-in function is called a delta-conversion. It must preserve the properties of the

lambda calculus such as the Church-Rosser Theorems. In Figure 3.2, if the expression is

a built-in function with the appropriate number of arguments, evaluation proceeds using

a delta-conversion. The redex is then replaced with the result.

This algorithm implements lazy evaluation, where the arguments to a function are

only evaluated when they are used, and expressions are evaluated in place.

Extending this algorithm to work with function de�nitions involves replacing the

name of the function with its de�nition.

CHAPTER 3. FOUNDATIONS 60

Free variables

The above algorithm had no case for variables appearing in the expression. In a functional

program, variables are expected to be substituted with arguments and therefore never en-

countered at the tip. The lambda expression representing a functional program never has

any free variables [Jon87]. Consequently, in using normal order reduction, arguments be-

ing substituted for parameters never contain any free variables and therefore substitution

does not need to deal with the problem of name capture. The absence of free variables

makes combinator theory applicable for implementations of functional programs [Jon87].

Uninterpreted constants are free variables in a lambda expression. With free vari-

ables, the substitution function used in the previous algorithm must have the behaviour

speci�ed by Table 3.1 on page 52. Searching for free variables that could become bound

can be computationally expensive. Chapter 6 discusses the value in distinguishing un-

interpreted constants from other variables for e�ciency and presents an algorithm for

evaluation that uses this optimisation.

3.5 Summary

This chapter has presented the foundations of our framework. Higher-order logic will be

used in the next two chapters both as a notation for speci�cation and as the means of

de�ning the semantic functions.

Chapter 6 revisits the concepts of the evaluation of functional programs to carry

out evaluation of the semantic functions for di�erent notations de�ned in higher-order

logic. Lazy evaluation is used, but allowances are made for uninterpreted constants (free

variables). The result is an evaluation technique more e�cient than rewriting because

general uni�cation of terms is not needed. We further de�ne levels of evaluation as gradi-

ents between weak head normal form and normal form that are useful for di�erent analysis

techniques.

Chapter 4

Integrating Model-Oriented

Notations

This chapter elaborates on our solutions to the �rst four sub-problems presented in Chap-

ter 1, namely, integrating combinations of notations (Section 1.2.1), representation of

notations (Section 1.2.2), regulating combinations of notations (Section 1.2.3), and ex-

pressing dynamic behaviour (Section 1.2.4).

A formal notation is a set of keywords, user-created identi�ers, and rules for com-

bining these to produce well-formed sentences. The keywords and sentences may be textual

or graphical. The keywords and rules together form the concrete syntax of the notation.

Associated with each well-formed sentence is a meaning.

Formal requirements languages, such as SCR and RSML, have identi�ed di�erent

notations that work well for di�erent parts of speci�cations. For example, AND/OR

tables are used to specify triggers of transitions in RSML. This chapter addresses the

question of how the integration of notations can be systematised. Our approach makes new

combinations of notations possible and the set of notations extensible. New combinations

are demonstrated in this chapter in the heating system example. For example, a decision

table is used in the action of a statechart. An expression in higher-order logic including a

61

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 62

quanti�er is the trigger of a statechart transition. We also demonstrate two new notations

for events and actions for directed communication in statecharts.

The term \notation" is used to represent a collection of keywords. A notation can

be as small as a single keyword. The chapter begins with a de�nition of model-oriented

notations in Section 4.1.

To systematise the way in which notations can be combined, we begin by identifying

four categories of notations common in model-oriented speci�cations. These categories are

expressions, events, actions, and models. A type signature is associated with each of these

categories indicating the type of element denoted by a notation in this category. Type

checking regulates the combinations of notations. The categories of notations are discussed

in Section 4.2.

Section 4.3 discusses notational styles, which are representations of notations in

higher-order logic. These representations capture the structure of the original notation

using keywords. The keywords take arguments of particular types that can be matched

to the type signatures of the categories of notations. These matches, which we call join

points, indicate how notations can be linked together to create a speci�cation. Part of a

speci�cation written in one notational style can be viewed as a \lego-like" building block,

which �ts together with other parts of the speci�cations based on the interfaces provided

by the join points. These categories provide a framework to try new combinations of

notations.

The categories of notations are lifted in that they map con�gurations to meanings.

Con�guration lifting is used to express dynamic behaviour. Lifting frees the user from

having to indicate explicitly whether a reference to a name is the value of the name in the

previous con�guration or in the next con�guration. Lifting is discussed in Section 4.4.

A brief introduction to the heating system example is found in Section 4.5.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 63

Next we present examples of notational styles of speci�cations currently de�ned in

the framework. These notational styles are

� S+: higher-order logic which serves as both the base formalism for the framework

and a notation that can be used for speci�cation (Section 4.6)

� Lifted S+: a subset of S+ for expressions (Section 4.7)

� TableExpr: a tabular style of specifying expressions (Section 4.8)

� CoreEvent: a core set of event keywords (Section 4.9)

� CoreAction: a core set of action keywords (Section 4.10)

� CoreSc: states and transitions as found in statecharts (Section 4.11)

The statecharts notation has some associated notations that can only be used if a

statecharts model is used. These are

� ScExpr: expressions particular to statecharts (Section 4.12)

� ScEvent: events particular to statecharts (Section 4.13)

� CommAction: actions that extend the communication primitives of statecharts (Sec-

tion 4.14)

� CommEvent: events that extend the communication primitives of statecharts (Sec-

tion 4.15)

The CoreAction and CoreEvent notations are strongly based on actions and events found

in the STATEMATE tool [HL+90]. The reader is assumed to have some familiarity with

many of these notations.

Keywords and their type signatures indicating how notational styles �t together

are presented. An informal understanding of the meaning of the keywords is provided.

The next chapter will formally present their semantics.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 64

All notations are subject to the well-formedness constraints of type checking. The

type signatures are stated in S+. Use of the S+ notation is indicated by verbatim font.

Use of the textual representations of notations required no extensions to the parser and

type checker for S+.

Section 4.16 brie
y discusses how to specify assumptions about the environment.

4.1 Model-oriented notations

Model-oriented speci�cations denote a next con�guration relation, i.e., they constrain the

relationship between a con�guration and its immediate successor(s). A con�guration maps

a set of named locations to values at a time1. It can be thought of as a \snapshot" of the

dynamic behaviour of the system [i-L91]. Model-oriented notations can form a part of a

model-oriented speci�cation. The operational semantics for a model notation result in a

relation between two con�gurations. If the relation is a function, then the speci�cation is

deterministic.

The framework declares config as an uninterpreted type representing con�gu-

rations in higher-order logic. The sequence of two con�gurations is called a step and

formalised by a pair of con�gurations. The �rst element of the pair is called the previous

con�guration of a step and the second element is the next con�guration.

Model-oriented notations often provide special structures such as \states". The

meaning of the notation de�nes the changes in these structures. In contrast, the spec-

i�cation must explicitly describe changes to the declared parts of the system. We call

these user-declared parts assignable names to distinguish them from other names of the

speci�cation. Others have called them controlled quantities [PM95].

1For our purposes, it is convenient to interpret a con�guration as a mapping from time to names
to values. There is nothing inherent in this work that restricts a con�guration to be a mapping
from time. The study of modal logics examines the concept of interpretations of names in di�erent
worlds [Che80].

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 65

4.2 Semantic categories

Di�erent notations are better at describing di�erent parts of the speci�cation. Component

notations of many model-oriented notations can be categorised using the following:

an expression: a value in a con�guration.

an event: an instantaneous occurrence, such as a change in the value of a Boolean ex-

pression between two con�gurations.

a model: a relation between two con�gurations that indicates moving from the �rst con-

�guration to the second is a legal step in the system. It includes constraints on the

notation-speci�c structures of the system, such as the states, as well as the assignable

names.

an action: a constraint on the changes in the values of assignable names. An action

describes not only the changes, but also what assignable names are being modi�ed

and what happens if the action is not taken. As an element of a model, this infor-

mation allows the semantics to resolve race conditions where multiple actions a�ect

the same name. It also allows the semantics to constrain assignable names to keep

the value they had in the previous con�guration if they are not explicitly changed

by an action.

We refer to these categories as \semantic" categories drawing from terminology used for

denotational semantics.

Requirements notations, such as SCR and RSML, provide notations to describe

elements in these categories. For example, mode transition tables in SCR are models.

Notational styles in the same category, such as mode transition tables and statecharts,

both in the model category, can be thought of as notations describing the same kind of

behaviour.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 66

Table 4.1: Type signatures for semantic entities

Category Type Signature

expression (ty)exp

event (ty)event

model step -> BOOL

action action

A notation that belongs to one category can rely on an element in another category

to produce a speci�cation. For example, the transitions of a statechart are labelled with

events and actions.

Having identi�ed this categorisation, the framework provides a
exible way to

integrate elements of these di�erent categories. Each category has a type signature as-

sociated with it as found in Table 4.1. A step is a pair of con�gurations and has the

type config # config. A model is a function that takes an argument of type step and

returns a truth value indicating if the argument is a legal step for the system. The types

exp, event and action will be de�ned in Section 5.3. The category of expressions can

be subcategorised by the type of the expression, such as Boolean or numeric. Events can

also be specialised to a model and therefore are parameterised by a type.

In this dissertation, we mainly concentrate on composition of notations for a spec-

i�cation that uses one notational style in the semantic category of models. Speci�cations

stated in multiple notational styles found in the model category can be combined using

conjunction as in Zave and Jackson [ZJ93]. Abadi and Lamport [AL93] also advocate that

composition of parallel components should be de�ned by logical conjunction for the sake

of proving properties. Other work on combining di�erent model-oriented notations, such

as that of Pezz�e and Young [PY97], concentrates on combining models.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 67

4.3 Notational styles

Elements of the semantic categories are notational styles in the framework. A notational

style is a packaged embedding of a notation. It includes one or more keywords. A keyword

denotes a function that takes arguments of the type of one or more of the categories. It

returns an element of the type of the category of the notational style it belongs to, or

it returns an element that is used in building up a speci�cation in the notational style.

The types of the arguments to keywords indicate join points to notational styles found in

other categories or the same category. In essence, the type signatures provide interface

descriptions. By picking particular instantiations of the interfaces, a speci�cation in a

collection of notational styles is created. We restrict ourselves to speci�cations of �nite

structure, e.g., a �xed number of rows in a table.

A notational style in higher-order logic may not exactly match the syntax of the

original notation (except in the case of higher-order logic as a notation itself). However,

the style captures the structure of the original notation. To integrate notations, a com-

mon representation must be found. We have chosen text to represent the notations. An

interface to a parser or graphical editor can be provided to output these textual representa-

tions. In previous work, we created an interface to the STATEMATE tool. In our current

textual representation for statecharts, we have chosen to leave out information such as

graphical position because this information is not necessary for determining the meaning

of a statechart speci�cation. A textual representation that includes this information could

have been used to ensure the reversibility of the representation mapping.

Figure 4.1 describes the notational styles presented in this chapter. The names of

notational styles label the boxes. Within the box, examples of keywords with the join

points are illustrated. For example, the EvCond keyword of the CoreEvent notational

style has join points to an event notation (ev) and an expression notation (ex). Triangular

links indicate join points that are restricted to another particular notational style rather

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 68

than a semantic category. For example, the En keyword of the ScEvent notational style

for entering a state requires a statechart structure (sc), which is created in the CoreSc

notational style.

These styles were chosen based on elements of existing requirements speci�cation

notations. Parnas [Par93a] has advocated predicate logic as a good notation for speci�-

cations. The use of the notations SCR, RSML, and Parnas tables on large size industrial

projects has demonstrated that tables and state transition notations are intuitive for

speci�ers. Our experience in writing and working with these notational styles on the two

major examples presented in Chapter 8 corroborates the experience of others indicating

the usefulness of these notations.

4.4 Lifted notational styles

Many model-oriented notations hide the details of the multiple con�gurations from the

user. The position of the reference to a name within the use of a keyword of the notation

implicitly indicates whether it is a reference to the previous value of the name or the

next value. For example, in x := x + 1, the x on the left-hand side of the assignment

operator (:=) refers to the value of x in the next con�guration and the reference to x on

the right-hand side refers to its value in the previous con�guration.

In some model-oriented notations, syntactical conventions are used to describe the

values of names in di�erent con�gurations. For example, in Z [Spi88] speci�cations the

value of the name in the next con�guration is the primed version of its name in the previous

con�guration. In Z, x0 = x + 1 means the value of x in the next con�guration equals the

value of x in the previous con�guration plus one. Schema operators produce a model from

a set of Z schemas.

Our framework concentrates on notations (actions, events and expressions) that

are lifted. A lifted notation depends on the concept of a con�guration that maps names to

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 69

Asn

ex

Both

aa

ev a
...

ex

EvCond OrE NotE AndE

ev ev

MODELS

EXPRESSIONS (ex)

EVENTS (ev)

ACTIONS (a)

Lifted S+

...

ScExpr

ex

CoreAction

Gen

S+

(predicate logic)

CoreSc

sc

scInState

Send sc

...

CommAction

Ev
ev ev ev ev

Ch

exex

CoreEvent

ScEvent

En Exsc sc

CommEvent

scReceive

TableExpr

Figure 4.1: Example notations

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 70

values. Unlike Z, the same name is used multiple places in a speci�cation but can refer to

its value in di�erent con�gurations depending on its position. For example, in the action

Asn x (x+1), the �rst instance of x refers to its value in the next con�guration. The

second instance of x refers to its value in the previous con�guration.

Predicate logic does not have any built-in notions of changes over time. The concept

of con�gurations must be formalised to de�ne the semantics for the changes in the values of

names. There are multiple ways that a con�guration can be represented in an embedding

of notations in logic. These ways are

� The names are functions of time [Gor85, PM95].

� The names are �elds of a record. Accessing the �eld of di�erent records constitutes

accessing the value of the name at di�erent times [Raj95].

� The con�guration takes a name and returns a value for the name in that con�gu-

ration as in denotational semantics where the con�guration represents the \mem-

ory" [Gor79].

We chose a fourth approach2 of making each name a mapping from a con�guration to a

value, which is conveniently done in higher-order logic where functions can have arguments

that are functions. The user is freed from having to group explicitly all the names of

the speci�cation. In our approach, con�gurations are not necessarily associated with

particular times, rather a speci�cation denotes a relationship between previous and next

con�gurations that may occur at any two sequential instants of time. In our approach

to operational semantics, it is only necessary to refer to the previous value and the next

value of a name.

We introduce the type config, and consistently use cf and cf' as the names of

the parameters referring to the previous con�guration and the next con�guration in the

2While we do not claim this approach is novel, we are unaware of other work using exactly the
same approach. A related approach is found in Staunstrup [Sta94].

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 71

de�nition of predicates constraining the relation between con�gurations. These identi�ers

are used in Chapter 7 to determine automatically references to previous and next values

for analysis.

Notational styles in the model category may be lifted or not. S+ by itself is not

a lifted notation and is included in the model category. Existing non-lifted notations,

such as Z [Spi88], often do not consist of multiple notations, so consequently no categories

like non-lifted events have been created. However, it would be possible to extend the

framework with new categories should this situation arise. Models stated in lifted and

non-lifted categories can be used together in one speci�cation.

4.5 Heating system

A heating system loosely based on an example found in Booch [Boo91] is used to illus-

trate speci�cation and analysis in the framework. This section provides a brief informal

explanation of this system.

The heating system consists of a controller, a furnace and multiple rooms, which

operate concurrently. We specify a system that has three rooms. Each room has a tem-

perature gauge which determines the actual temperature, a sensor indicating if the room

is occupied or not and a valve. The valve can be in one of three positions: closed, half

open, and open. Another input is the set temperature for the room. The desired temper-

ature is a function of the set temperature, the sensor indicating if the room is occupied or

not and the living pattern. The living pattern indicates for any time whether a room is

expected to be occupied, expected to be occupied within thirty minutes, or not expected

to be occupied either now or in the next thirty minutes. Based on the desired temperature

the room controls its valve position, waits to see if that has the desired e�ect, and if not,

communicates a request for heat to the controller.

The controller ensures the furnace is on if any rooms are requesting heat and o� if

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 72

no room needs heat. The controller turns the furnace on and o�. It also responds to the

main heat switch turning the heating system on and o�.

The furnace turns on and o� based on instructions from the controller. It has a

certain power-up time. Faults can occur in the furnace, which are communicated to the

controller. After a fault the furnace cannot be restarted until a reset is received by the

controller.

The speci�cation of the heating system is used throughout this chapter for illus-

tration. The complete speci�cation can be found in Appendix A. It is written using the

notational styles: CoreSc, TableExpr, CoreAction, CoreEvent, ScEvent, and higher-order

logic (S+).

4.6 S+

The S+ notation is used both as a predicate logic notation in the model category and

as the base formalism for embedding notational styles of speci�cation. A subset of S+

is used as a notation for expressions. S+ is also used to declare the types and names of

speci�cations.

S+ is a slight variant of the S notation [JDD94]. The motivation for developing

S was the need for an \industrial strength", machine-readable formal notation that did

not rely on special symbols (and therefore formatting tools for presentation). S+ uses

common English words, such as \FORALL", as keywords. S+ is based on higher-order

logic and has much in common with the \object language" of the HOL theorem proving

system. S+ has the same semantics as the HOL object language so only its syntax will be

presented in this dissertation. Like Z, and unlike the HOL object language, S+ includes

constructs for the declaration and de�nition of types and constants. These constructs do

not require extensions to the semantics of higher-order logic.

This section presents an overview of the S+ syntax. S+ is case-sensitive and the

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 73

identi�er spaces for types and constants are separate.

4.6.1 Types

This section describes type expressions, type declarations, type de�nitions, type abbrevi-

ations, and the built-in types of S+.

Type expressions

Type expressions are used in the de�nition of types and in the declaration and de�nition

of constants. There are three kinds of type expressions. A reference to a type identi�er is

a type expression. A type expression of the form ty1 -> ty2 describes expressions that

are functions from elements of type ty1 to elements of type ty2. The Cartesian product

of types is stated using the syntax ty1 # ty2. These type operators are right associative.

Expressions in the S+ notation can be polymorphic, meaning they are \indi�erent

to the types of their arguments" [Han87]. A type checker infers the type of an expression

and ensures that it is legal. For a polymorphic function, some elements of the type are

unconstrained. The usual practise in tools supporting polymorphic notations is to accept

expressions with some elements of the type unconstrained and record the expression's type

using a form such as \:* -> **", to indicate that the domain and range of the function

are unconstrained.

In S+, speci�ers must use type parameters to declare explicitly parts of a type

expression that are polymorphic3. Type parameters precede a declared or de�ned type or

constant. For example the following constant de�nition states that the identity function

takes one polymorphic argument:

(:ty)

identity (x:ty) := x;

3Type parameters are not an original idea in their distinctness from inferring the polymor-
phism. Gries and Gehani describe early work on explicit type parameters in programming lan-
guages [GG77].

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 74

The type parameter representing this polymorphism is ty. Type inference proceeds with

the use of these type parameters as well-de�ned types within the context of this de�nition.

Any unconstrained types remaining after type checking render the S+ de�nition invalid.

The type of a constant can only contain declared and de�ned types and explicitly declared

type parameters.

Our choice to force the user to declare explicitly the polymorphic elements of a

de�nition may be seen as cumbersome. However, this choice is motivated by our belief that

explicit recognition of polymorphism can uncover some errors in a speci�cation through

type checking.

Type declarations

A type declaration introduces one or more new uninterpreted types. An example of a type

declaration is:

: Books, Names;

Nothing is said about the elements that are members of these types except that some

elements exist (i.e., the type is not empty). A type declaration may be used in an S+

speci�cation the same way that the declaration of one or more \basic types" may be used

in a Z speci�cation to achieve a desired level of abstraction [Spi88].

Type de�nitions

A type de�nition introduces a new type and de�nes its elements using constructors. A

constructor is a function that maps zero or more objects to a unique object of the new

type. For example, the possible valve positions in the heating system are speci�ed using

the type de�nition:

: Valve_Pos := OPEN | HALF | CLOSED ;

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 75

The type name is ValvePos and its constructors are OPEN, HALF and CLOSED. The construc-

tors must be unique. The other type de�nitions found in the heating system speci�cation

are:

: Room := KITCHEN | LIVING_ROOM | BEDROOM;

: Behaviour := NOT_OCCUPIED | EXPECT_SOON | EXPECT_NOW ;

A type de�nition may be recursive { that is, the new type may appear on the

right-hand side of the type de�nition provided that at least one of the branches does not

contain a reference to the new type.

Type de�nitions can have type parameters. For example, the de�nition for the

type list is:

: (ty)list := CONS :ty :(ty)list | NIL ;

Type abbreviations

Type abbreviations are short forms or aliases for type expressions. In the framework,

they are commonly used to create lifted types for names in a speci�cation. For example,

the name valve_Pos is used as an abbreviation for the type expression that lifts the

Valve_Pos type:

: valve_Pos == config -> Valve_Pos;

The other example of a type abbreviation found in the heating system is:

: behaviour == config -> Behaviour;

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 76

Built-in types

S+ includes three built-in type declarations, two type de�nitions, and three built-in type

abbreviations. The built-in types are:

:config;

:BOOL := T | F;

:bool == config -> BOOL;

:NUM;

:num == config -> NUM;

:STRING;

:string == config -> STRING;

:(ty)list := CONS :ty :(ty)list | NIL;

The NUM type represents the set of rational numbers4. The type BOOL is the set of truth

values. The types num and bool are abbreviations for the lifted Boolean and numeric

types.

4.6.2 Constants

Constants are identi�ers with types and possibly de�nitions. The type of a constant can

be polymorphic but the constant cannot be overloaded (i.e., have more than one de�nition

for the same identi�er depending on the type of its arguments).

The name of a constant can be a string of characters without blanks, or any string

of characters including blanks enclosed in double quotes. Quoted strings can be used

to include characters that have special signi�cance for naming conventions, making it

possible to maintain a close correspondence between references to a constant in informal

documentation and its formalisation.
4As S+ is just a notation without logical reasoning support, \num" can be chosen to be any

kind of numbers. The parser accepts decimal numbers. Our current implementation of symbolic
functional evaluation truncates numbers to treat them as C integers. Errors such as dividing by
zero would cause arithmetic exceptions in our current implementation.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 77

This section describes constant declarations, constant de�nitions and the built-in

constants of S+.

Constant declarations

Constant declarations introduce new constants of particular types. Since no meaning is

de�ned for the constant it is called uninterpreted.

For example each room has a valve position and an actual temperature:

valvePos : Room -> valve_Pos;

actualTemp : Room -> num;

Because a type abbreviation is used to create the lifted type valve_Pos as shown on

page 75, an expression such as valvePos LIVING_ROOM is a lifted expression.

Constant declarations are used to introduce the names of a speci�cation. Other

names in the heating system are:

requestHeat : Room -> bool;

livingPattern : Room -> behaviour;

occupied : Room -> bool;

setTemp : Room -> num;

warmUpTime, coolDownTime : num;

furnaceStartupTime: num;

The names warmUpTime and coolDownTime represent how long a room waits before check-

ing to see if a change in the valve position has the desired e�ect on the temperature of

the room.

A name that is an array can be speci�ed using a function from a type for the indices

to a type for the values of the array.

A current de�ciency in the S+ notation is the lack of an explicit record type

construct. However, a useful abstraction for records is provided by using an uninterpreted

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 78

type for the record together with a special syntax for function application called the \dot

notation", which is similar to accessing �elds in a record (Section 4.6.3). This approach

has the bene�t of being only a partial speci�cation of the �elds of a record and a more

abstract representation of a record.

Constant declarations can also be used to introduce operations in a speci�cation

without providing any details about the behaviour of that operation. For example, +

(addition), is a built-in declared constant. For the types of automated analysis currently

implemented in the framework + is considered an uninterpreted constant.

Constant de�nitions

A constant de�nition is equivalent to the declaration of a new constant and the introduc-

tion of a de�nitional axiom for the new constant. The right-hand side of the de�nition

must be an expression (Section 4.6.3). Constants can be recursively de�ned. Examples of

constant de�nitions in the heating system are:

sT := setTemp;

aT := actualTemp;

dT := desiredTemp;

tooCold (i:Room) := ((dT i) - aT i) > C 2;

tooHot (i:Room) := ((aT i) - dT i) > C 2;

vOpen (i:Room) := valvePos i = C OPEN;

vClosed (i:Room) := valvePos i = C CLOSED;

roomNeedsHeat := exists (i:Room). requestHeat i;

noRoomsNeedHeat := NOT(roomNeedsHeat);

The de�nitions of sT and aT provide short-hands for the names setTemp and actualTemp.

The de�nition of dT provides a short-hand for the function desiredTemp, which is de�ned

using a decision table in Section 4.8. The de�nitions, tooCold, tooHot, vOpen, and

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 79

vClosed, specify conditions for each room. For example, the condition tooCold is true

when the di�erence between the desired temperature (dT) and the actual temperature

(aT) is greater than 2. C is a built-in constant that acts as an \lift" operator. The

expression C 2 has the value 2 in all con�gurations. The de�nitions roomNeedsHeat and

noRoomsNeedHeat describe conditions that depend on the status of all rooms in the heating

system.

Constants can be in�x by using the syntax \(_" and _)" on either side of the

constant when it is declared or de�ned. A function can be curried or uncurried in the way

it takes its arguments. Curried functions take their arguments one at a time, as in f a b.

Uncurried take their arguments in tuples as in, f (a,b).

Constants can be de�ned using pattern matching de�nitions. For example, the

following de�nes the length operation on lists:

(:ty)

length (NIL) := 0 |

length (CONS (a:ty) b) := 1 PLUS (length b);

The �rst argument must be an element of a type de�ned by a type de�nition. Constructors

of this type split the de�nition into di�erent cases. The operator PLUS is a non-lifted built-

in constant.

Pattern-matching de�nitions do not have to include cases for all constructors of

the type. If some constructors are missing, the de�nition partially speci�es a function.

For analysis, the unspeci�ed value is treated similarly to an uninterpreted constant (Sec-

tion 6.4.2).

Built-in constants

The built-in constants of S+ are found in Appendix B. Some of the commonly used ones

are presented in Figure 4.2.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 80

(:ty) LET (x:ty) := x;

(:ty) FORALL : (ty -> BOOL) -> BOOL;

(:ty) EXISTS : (ty -> BOOL) -> BOOL;

(_ /\ _) : BOOL -> BOOL -> BOOL;

(_ \/ _) : BOOL -> BOOL -> BOOL;

~ : BOOL -> BOOL;

a (_ AND _) b (cf:config) := (a cf) /\ (b cf);

a (_ OR _) b (cf:config) := (a cf) \/ (b cf);

NOT a (cf:config) := ~(a cf);

(:ty)

COND (T) (a:ty) b := a |

COND (F) a b := b;

a (_ ==> _) b := (NOT a) OR b;

(:ty) C (x:ty) (cf:config) := x;

(:ty1,:ty2) FST : (ty1#ty2)->ty1;

(:ty1,:ty2) SND : (ty1#ty2)->ty2;

(_ PLUS _) : NUM->NUM->NUM;

a (_ + _) b (cf:config) := (a cf) PLUS (b cf);

(:ty) (_ EQ _) : ty->ty->BOOL;

(:ty) (a:config->ty) (_ = _) b cf := (a cf) EQ (b cf);

(_ GREATER_THAN _) : NUM -> NUM -> BOOL;

a (_ > _) b (cf:config) := (a cf) GREATER_THAN (b cf);

Figure 4.2: Commonly used built-in constants of S+

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 81

By convention, built-in constants are identi�ers consisting of all capital letters or

symbols. There are lifted and unlifted versions of most of the operators, with the common

name, such as +, used for the lifted operator.

Join points exist between operators such as + and other notations. These lifted

arithmetic operators can take expressions of the appropriate type in any notational style

of expression.

4.6.3 Expressions

Expressions appear on the right-hand side of a constant de�nition in a speci�cation. There

are four types of S+ expressions: constants, variables, applications, and lambda abstrac-

tions. The set of constants can be further re�ned to di�erentiate between constructors,

de�ned constants, and uninterpreted constants.

Any constants used in an expression must have been previously declared or be

the constant being de�ned (in recursive de�nitions). All variables must be bound as

parameters in a de�nition or as the variable of a lambda abstraction. Variables cannot

have the same name and a di�erent type within the same scope.

Function application is stated as f a for the function f applied to the argument a.

Lambda abstractions are stated as \x.E (where E is an expression) or as function x. E.

Examples of expressions used in the heating system speci�cation are:

(\x. x = C EXPECT_NOW)

(\x. C -5 <= x AND x < C -2);

Expressions can also be written using post-�x function application, called the dot

notation, such as:

KITCHEN.actualTemp

This expression is semantically equivalent to the pre�x application of the function

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 82

Table 4.2: S+ syntactic sugar for expressions

Syntactic Sugar Expression

[exp1 ; exp2 ; ...] CONS exp1 (CONS exp2 ... NIL)

let par := exp1 in exp2 LET ((\par. exp2) exp1)

forall par1 ... parn . exp \cf. FORALL (\par1

(FORALL (\parn . exp cf)) ...)

exists par1 ... parn . exp \cf. EXISTS (\par1

(EXISTS(\parn . exp cf)) ...)

if exp1 then exp2 else exp3 \cf. COND (exp1 cf) (exp2 cf) (exp3 cf)

if exp1 then exp2 exp1 ==> exp2

actualTemp to the expression KITCHEN, i.e., actualTemp KITCHEN. Post-�x function ap-

plication is useful for speci�ers accustomed to the idea of accessing a �eld of a record.

S+ includes syntactic sugar for particular expressions. Table 4.2 describes the

meaning of this special syntax.

4.7 Lifted S+ expressions

Lifted S+ expressions are those that have type config->ty where ty is a type parameter.

The expression category has the type signature (ty)exp which is an abbreviation for

config->ty, i.e.,

: (ty)exp == config -> ty;

Thus the type num is (NUM)exp and bool is (BOOL)exp.

The presence of the type (ty)exp in type signatures for any keywords of a no-

tational style indicates a join point to any notation producing lifted expressions of the

correct type.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 83

4.8 TableExpr style of expressions

The popularity of table-based notations, such as those of Parnas, RSML and SCR, in-

dicates that the use of tables has many advantages as a speci�cation technique. Their

conciseness, modularity, and similarity to other notations used by engineers makes them a

good choice as a notation for non-experts. Previous successful e�orts of using tables pro-

vide a good precedent for the readability of a tabular style of speci�cation. These e�orts

include the AND/OR tables of the TCAS II project [LHHR94] and the SCR notation used

in the A-7 aircraft Operational Flight Program [Hen80]. Our own interaction with domain

experts at Hughes International Airspace Management Systems independently con�rms

their readability [DJP97a].

Tables work well for specifying combinations of conditions that produce di�erent

outcomes. The notational style of tables used as an example in the framework is a slight

variant of AND/OR tables.

An AND/OR table consists of a series of rows labelled by Boolean expressions

(conditions). The columns to the right of the label contain \T" for true, \F" for false,

or \." for \don't care". A row entry is meant to represent the case where the condition

found in the label is true or false. A \don't care" value means that the entry could contain

either true or false. An AND/OR table speci�es a predicate that is true if the conjunction

of the entries in any column results in true.

Our notational style of tables is an extension of AND/OR tables. TableExpr in-

cludes keywords for specifying functions and predicates. An example of a table in Table-

Expr is found in Table 4.3. AND/OR tables can only specify predicates. In our function

tables, a �nal row is added that speci�es a return value for the function if the set of

conditions represented by the column is satis�ed. A �nal column labelled the \Default"

column can be speci�ed. It contains only an entry in the �nal row representing the value

of the function if none of the sets of conditions of the columns are satis�ed. If no de-

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 84

fault column is speci�ed and the disjunction of the column conditions is not a tautology,

the table denotes a function where the value for combinations of conditions not covered

in a column is unspeci�ed. In the semantics, the unspeci�ed value is the uninterpreted

constant UNKNOWN (Section 5.5).

We also extend the possible entries in a row of a table to put related entries in

one row. This is not possible in AND/OR tables. It is advantageous both for readability

and for analysis. Section 7.3.1 describes how the related entries in a row provides useful

information to analysis.

Row entries are predicates that take the label of the row as an argument and return

true or false. Inspired by Parnas tables, which allow related conditions to be placed in

the same row, we extend the possible row entries such that related predicates that apply

to the same row label can be used in the same row. For example, the predicates in a

row may partition the range of values for a number into separate cases. This mix of

AND/OR tables and Parnas tables proved useful in the examples used to illustrate the

dissertation. A complete introduction to our tabular notation can be found in Day, Joyce

and Pelletier [DJP97b].

Tables 4.3 and 4.4 are graphical representations of the two function tables used

in specifying the heating system. Table 4.3 is a function table resulting in an expression

for the desired temperature in a room. There are three possible values for the desired

temperature, as speci�ed in the last row of the table, namely sT i (the set temperature

of the room), sT i - C 5 (�ve degrees below the set temperature), and sT i - C 10 (10

degrees below the set temperature). The choice of one of these values depends on the

value of the sensor indicating whether the room is occupied or not (occupied i, which

has Boolean value) and the living pattern of the room. The living pattern indicates that

if the room is not expected to be occupied, is expected to be occupied now, or is expected

to be occupied soon (i.e., within thirty minutes). Columns specify combinations of values

for the living pattern and occupied sensors, that result in certain values for the desired

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 85

temperature.

Row entries are predicates on the value of the row label. These predicates have the

type signature:

: (ty) rowentry == :(ty)exp->bool;

In a table, an underscore in a row entry indicates where to substitute the row label into

the expression.

TableExpr includes three keywords for describing row entries. The keyword True

means the value of the row label is true, and False means the value of the row label is

false. The keyword Dc means \don't care", which is represented graphically by a \.".

These keywords have the following type signatures:

True : bool -> bool;

False : bool -> bool;

(:ty)Dc : (ty)exp -> bool;

These keywords all match the type signature for row entries. True and False match the

more speci�c (BOOL)rowentry type.

The expression of the row label can be any lifted expression:

: (ty) rowlabel == (ty)exp;

The type represented by the parameter ty must be the same in the row label and all row

entries.

Our tabular style includes two keywords that are useful for specifying conditions

over lists of expressions. These keywords can be used in row labels and are �nite lifted

versions of the quanti�ers \forall" and \exists":

(:ty) AllOf : ((ty)exp)list -> ((ty)exp -> bool) -> bool;

(:ty) AtLeastOneOf : ((ty)exp)list -> ((ty)exp -> bool) -> bool;

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 86

T
ab
le
4.
3:
D
es
ir
ed
te
m
p
er
at
u
re
of
a
ro
om

D
ef
a
u
lt

o
c
c
u
p
i
e
d
i

T
r
u
e

F
a
l
s
e

F
a
l
s
e

l
i
v
i
n
g
P
a
t
t
e
r
n
i

.

_
=
C
E
X
P
E
C
T
_
N
O
W

_
=
C
E
X
P
E
C
T
_
S
O
O
N

d
e
s
i
r
e
d
T
e
m
p
i

s
T
i

s
T
i

s
T
i
-
C
5

s
T
i
-
C
1
0

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 87

T
ab
le
4.
4:
V
al
ve
p
os
it
io
n

d
T
i
-
a
T
i

_
<
C
-
5

C
-
5
<
=
_

C
-
5
<
=
_

C
-
2
<
=
_

C
2
<
_

C
2
<
_

C
5
<
_

A
N
D

A
N
D

A
N
D

A
N
D

A
N
D

_
<
C
-
2

_
<
C
-
2

_
<
=
C
2

_
<
=
C
5

_
<
=
C
5

v
a
l
v
e
P
o
s
i

.

_
=
C
O
P
E
N

_
=
C
H
A
L
F

.

_
=
C
C
L
O
S
E
D

_
=
C
H
A
L
F

.

n
e
x
t
V
p
i

C
C
L
O
S
E
D

C
H
A
L
F

C
C
L
O
S
E
D

v
a
l
v
e
P
o
s
i

C
H
A
L
F

C
O
P
E
N

C
O
P
E
N

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 88

The �rst argument to these row labels is a list of expressions. The second argument is a

lifted predicate that takes items in the list and returns a Boolean value. The expression

denoted by the row label is the conjunction or disjunction respectively of the predicate

applied to the items in the list.

The type row is a list of expressions of type Boolean that can be combined with

other rows to form conditions for the columns of the table:

: row == (bool)list;

The keyword Row describes the arrangement of an expression giving the row label followed

by a list of row entries. It has the type:

(:ty) Row :(ty)rowlabel -> ((ty)rowentry)list -> row;

The keywords Table and PredicateTable capture the structure of the rows and

columns of tables. Both kinds of tables contain a list of rows. In a function table (Table),

this list is followed by a list of return values for the function. These keywords have the

following types:

PredicateTable : (row)list -> bool;

(:ty) Table :(row)list -> ((ty)exp)list -> (ty)exp;

Function tables are expressions of type (ty)exp whereas predicate tables are expressions

of type bool. A well-formed predicate table is one that has rows of equal length. A

well-formed function table has rows of equal length and the list of return values must be

equal to the length of each row, or greater than the length of each row by one (the default

column).

Figures 4.3 and 4.4 present the textual representations of the tables specifying

the desired temperature of a room and the next valve position. The placeholders rep-

resented graphically as \ " appear as lambda abstractions. We developed a simple tool

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 89

desiredTemp (i:Room) :=

Table

[Row (occupied i) [True; False ; False];

Row (livingPattern i)

[Dc; (\x.x = C EXPECT_NOW) ; (\x.x = C EXPECT_SOON)]

]

[sT i; sT i; sT i - C 5; sT i - C 10];

Figure 4.3: Textual representation of desired temperature table

nextVp i :=

Table

[Row (dT i - aT i)

[(\x.x < C -5);

(\x. C -5 <= x AND x < C -2);

(\x. C -5 <= x AND x < C -2);

(\x. C -2 <= x AND x <= C 2);

(\x. C 2 < x AND x <= C 5);

(\x. C 2 < x AND x <= C 5) ;

(\x. C 5 < x)];

Row (valvePos i)

[Dc ;

(\x. x = C OPEN) ;

(\x. x = C HALF) ;

Dc ;

(\x. x = C CLOSED) ;

(\x. x = C HALF) ;

Dc]]

[C CLOSED; C HALF; C CLOSED; valvePos i; C HALF; C OPEN; C OPEN];

Figure 4.4: Textual representation of valve position table

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 90

if (True(occupied i)) then

sT i

else if (False(occupied i) AND

(livingPattern i = C EXPECT_NOW)) then

stT i

else if (False(occupied i) AND

(livingPattern i = C EXPECT_SOON)) then

sT i - C 5

else

sT i - C 10;

Figure 4.5: Meaning of table specifying desired temperature

to convert our textual representation into a tabular, cross-referenced representation in

HTML [DJP97a].

A semantically equivalent representation in S+ of the function speci�ed in Fig-

ure 4.3 is found in Figure 4.5. There is an order of precedence to the columns in a

function table. A function can have only one return value for each set of arguments. In

the cases where two columns both have the value true, this order of precedence determines

the result of the function.

A predicate table is similar to an AND/OR table in that the return expression for

every column is true and the default value is false. Therefore, the last row is not needed.

The order of precedence of columns does not matter in a predicate table.

In summary, this tabular style includes keywords for creating function and predicate

tables. It also includes a keyword for creating a row, two keywords for creating row labels,

and three keywords for creating row entries. Row labels, row entries, and return values

for a function table are join points to any notational style in the expression category.

4.9 CoreEvent style of events

An event is an instantaneous occurrence, such as a change in the value of a Boolean

expression between two con�gurations. An example of an event is a button being pushed.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 91

In this section, we present the keywords of the CoreEvent notation, which each return

an element of the type event. The keywords are: Ev (primitive event), Ch (change in

a condition), EvCond (event in combination with a condition), Tm (timeout event), TmB

(�nite delay timeout), AndE, OrE, NotE, and NonEvent. As shown below, these keywords

are all parameterised by a type that becomes speci�c when the CoreEvent notation is used

with a particular notational style of model. Some events take other events as arguments.

Events that are arguments of another event are called nested events.

The CoreEvent notation will be used in combination with the CoreSc model nota-

tion in examples presented in Section 4.11. However, in our framework CoreEvent could

also be used in new combinations of notations. For example, if the SCR language is added

to the framework, CoreEvents could be used to specify events in a mode transition table.

A primitive event is a name that the speci�er associates with an occurrence in the

environment. The phenomenon being observed can be speci�ed as a Boolean constant.

The following type, speci�ed by a type abbreviation, is used for these Boolean constants:

: simpleEvent == bool;

The primitive event associated with the constant occurs whenever the value of the name of

the constant is true in the next con�guration. The keyword Ev is used to specify primitive

events:

(:ty) Ev :simpleEvent -> (ty)event;

A well-formedness constraint is that the �rst argument to this keyword evaluates to a

constant. External primitive events that can occur in the heating system are:

heatSwitchOn, heatSwitchOff, userReset: simpleEvent;

The event of one of these primitives occurring is:

Ev heatSwitchOn

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 92

A change in a condition is an event. The value of the condition can change from

true to false or false to true. The keyword Ch is used to specify the event of a change in

a condition:

(:ty) Ch :bool -> (ty)event;

The argument to this keyword is a join point to any expression notation. The argument

must be of Boolean type.

An event can also be the occurrence of an event when a particular condition is

true. The condition is an expression of type bool, so the keyword EvCond has the type

signature:

(:ty) EvCond : (ty)event -> bool -> (ty)event;

The �rst argument, which has the type event, is a join point to any notational style of

event. The second argument, a condition, is a join point to any expression notation. For

example, in the heating system, the event of a room being too cold is used. This event is

speci�ed as:

EvCond NonEvent (tooCold i)

The nested event NonEvent is described later in this section.

An event occurs in a particular step. It can be useful to have an event that occurs

when a certain number of steps have passed since another event occurred. This event is

called a timeout event and is speci�ed using the keyword Tm which takes an event and an

expression that returns a number as parameters:

(:ty) Tm : (ty)event -> num -> (ty)event;

The delay for a Tm event could be arbitrarily large since it is of type num. To

prove particular properties of a system, we need to know that this delay is �nite. The

speci�cation can include this detail explicitly by representing the value of the timer as a

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 93

vector of Boolean values (i.e., a bit vector) using the keyword TmB. TmB is very similar to

the Tm construct but its second argument (the timeout delay) is a bit vector:

(:ty) TmB : (ty)event -> (bool)list -> (ty)event;

A well-formedness constraint is that the bit vector is of �nite length. This event has a more

liberal meaning than the Tm event, i.e., it admits fewer behaviours to the speci�cation.

Users can selectively choose to provide a more detailed speci�cation to particular timeout

events as they attempt to prove di�erent properties. This choice is a simple way of giving

the user control over the size of the con�guration space that needs to be explored in

analysis.

An event can depend on the combination of other events using the keywords AndE

and OrE:

(:ty) AndE : (ty)event -> (ty)event -> (ty)event;

(:ty) OrE : (ty)event -> (ty)event -> (ty)event;

At times it is useful to specify the event of another event not occurring. This event

is speci�ed by the keyword:

(:ty) NotE : (ty)event -> (ty)event;

It occurs in the steps that the event passed as the argument to the keyword does not

occur.

Transitions that do not depend on any event must have some form of label. For

these transitions, the keyword NonEvent is used:

(:ty) NonEvent: (ty)event;

This event always occurs in a step.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 94

4.10 CoreAction style of actions

Action notations describe how the values of names in a speci�cation change as a result of

a step. Actions are intended to be components of a model and can be used with a variety

of transition-based notations so it is worthwhile to consider action notations separately

from model notations. CoreAction has the keywords Asn, Both, Gen, and NoAction.

The intent of an action is to modify the value of a name. The simplest form of

action is the assignment statement. The type signature for this keyword is:

(:ty) Asn : (ty)exp -> (ty)exp -> action

The second argument can be any expression and is therefore a join point to other expression

notations. In the heating system, there are the following uses of the assignment action:

Asn (requestHeat i) (C T)

Asn (requestHeat i) (C F)

Asn (valvePos i) (nextVp i)

The assignments Asn (requestHeat i) (C T) and Asn (requestHeat i) (C F) change

the value of the request heat
ag for a room. This
ag is set by a room and read by the

controller. The assignment Asn (valvePos i) (nextVp i) sets the valve position for a

room to the value speci�ed by the expression nextVp i, which is speci�ed using a function

table. The short-hand adjValve i is assigned to this action:

adjValve i := Asn (valvePos i) (nextVp i);

This action will be used as the action on a statechart transition for the heating system

example demonstrating the ease with which a new combination of notations can be created

in our framework.

Using predicate logic, we provide shortened aliases for these actions that can be

used in the heating system speci�cation, such as:

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 95

rH i := Asn (requestHeat i) (C T);

The �rst argument to Asn is the name to be assigned a value. Not all expressions

are valid for this �rst argument. A well-formedness constraint restricts the �rst argument

to expressions that evaluate to an uninterpreted constant applied to zero or more con-

structors. This constraint ensures the �rst argument to Asn refers to a distinct name.

Uninterpreted functions describing �elds in a record cannot appear as the �rst argument

of an assignment statement. Record �elds described by uninterpreted functions cannot

be updated using the Asn action. An entire record could be updated by assigning a value

to an uninterpreted constant. The new value would have to be represented by another

uninterpreted contant because the values of an uninterpreted type are unknown. (This

limitation provides motivation for adding a proper record construct to a future version of

S+.)

The keyword Both is a list of actions. The choice of whether there is an order to

the evaluation of these actions is determined by the notational style that uses the actions.

Section 5.8.3 describes how statecharts handle an action containing a list.

Both: action -> action -> action;

The two arguments to this keyword are join points to any notational style of action.

Besides representing observations of the environment, primitive events can be used

to describe internal events. For example, if after some external event a sequence of op-

erations is to be carried out, the next operation in the sequence could be triggered by

an internal event once the previous one has been completed. CoreAction includes the

keyword Gen, which assigns a name of Boolean type the value true. The type signature

for Gen is:

Gen : simpleEvent -> action;

In the heating system there are four internal events that coordinate activity between the

controller and the furnace:

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 96

furnaceRunning, furnaceReset, activate, deactivate: simpleEvent;

An example of an action that causes one of these events to occur is:

Gen activate

The keyword NoAction speci�es no changes in the system and has the type:

NoAction : action;

CoreAction is a very simple action notation. For some speci�cations, it could be

worthwhile to extend the framework to include action notations that have more of a pro-

gramming language
avour, such as process speci�cations in structured analysis [DeM79].

4.11 CoreSc style of models

A statechart [HPSS87] is a hierarchical and concurrent state machine with transitions

to move the system between states. This graphical notation is often used for specifying

reactive systems. For simplicity we will continue to refer to our notational style based on

this notation as statecharts, although it should be interpreted as a textual representation

of a slight variant of the notation originally described by Harel. For more detailed pre-

sentations of statecharts and its variants, the reader is referred to works by Harel et al.,

Pnueli and Shalev, and von der Beeck. [HPSS87, Har87, Har88, PS91, vdB94].

Figure 4.6 is a statechart speci�cation of the controller component of the heating

system. There are three types of states in a statechart. An OR-state consists of substates.

It is usually graphically depicted as a rounded box with boxes inside of it representing its

substates. If the system is in an OR-state, then it is also in exactly one of the substates of

an OR-state. In Figure 4.6, CONTROLLER_ON is an OR-state. The substate of an OR-state

indicated using an arrow with no source state is called the default state. When a state

is not decomposed into substates, it is called a basic state. OFF is a basic state in the

controller statechart.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 97

OFF ERROR

IDLE

ACTIVATING
HEATER RUNNING

HEATER

T21: furnaceRunning

HEATER_ACTIVE

T19: furnaceFault
T18: heatSwitchOff /

deactivate

T16: userReset /
furnaceReset

CONTROLLER

T17: heatSwitchOn

T20: [roomNeedsHeat] /
activate

T22: [noRoomsNeedHeat] /
deactivate

CONTROLLER_ON

Figure 4.6: Controller statechart

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 98

HEATING_SYSTEM

furnaceSc

controllerSc

roomSc BEDROOM

roomSc KITCHEN

roomSc LIVING_ROOM

Figure 4.7: Heating system top-level speci�cation

Figure 4.7 is the top-level speci�cation of the heating system showing its �ve concur-

rent components (three rooms, the furnace, and the controller). The state HEATING_SYSTEM

is an AND-state, which represents concurrent operation. It is represented as a rounded

box divided by dashed lines. Each area of the AND-state is labelled with the name of

its component statechart (therefore the controller component is labelled controllerSc

rather than by its state name of CONTROLLER). If the system is in an AND-state, then it

is also in every component state of the AND-state.

Every state must have a unique name. The state names for a statechart are de�ned

by the speci�er as type constructors. State names can be parameterised by other types.

For example, the rooms of the heating system all have the same behaviour. The names of

their states are parameterised by the name of the room, as in:

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 99

: stateName :=

...

ROOM :Room |

NO_HEAT_REQUESTED :Room |

IDLE_NO_HEAT :Room |

WAIT_FOR_HEAT :Room |

HEAT_REQUESTED :Room |

IDLE_HEATING :Room |

WAIT_FOR_COOL :Room |

...

States are connected by transitions. A transition consists of a unique identi�er, a source

state, an event, an action, and a destination state. Just as with states, the unique iden-

ti�ers labelling transitions are speci�ed by type constructors that can be parameterised.

The keywords for statecharts are parameterised by the types of state names and transition

names.

Intuitively a step in a statechart is the choice of a set of non-con
icting transitions

whose source states are part of the previous con�guration and whose events have just

occurred. Two transitions con
ict if they both originate from any level of hierarchy within

the same OR-state. The next con�guration after the step consists of: 1) the destination

states of the chosen transitions (if a transition's destination state is an OR-state, the

destination state is the OR-state's default state); 2) the e�ects of the actions of those

transitions; and 3) an updated version of the status of the events of concern to the system.

The next chapter will describe in detail the choice of transitions to take and the meaning of

actions in the presence of race conditions (multiple transitions modifying the same name).

Broadcast communication is used in a statechart model where all parts of the system are

aware of all events that occur and the value of all expressions.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 100

Rather than describing a particular notation for the events and actions of a stat-

echart, we instead consider these elements of a transition join points to other categories.

Anything that has the return type event or action can be used where appropriate in a

statechart. Therefore, this notational style is called \core statecharts". An example of

a hardware description language that integrates essentially core statecharts with another

notation is SpecCharts [NVG92], which augment statecharts with VHDL.

The type abbreviation trans describes the type of transitions:

: (stateName, transName) trans ==

transName #

stateName #

(transName)event #

action #

stateName ;

The elements of the tuple are the unique transition identi�er, the source state, the trigger-

ing event (customised for statecharts), the resulting action, and the destination state. The

event and action elements are join points to event and action notational styles respectively.

For example, the transition connecting states IDLE and HEATER_ACTIVE in Figure 4.6 is

speci�ed as:

(T20, IDLE, EvCond NonEvent roomNeedsHeat, Gen activate, HEATER_ACTIVE)

In the diagram, the customary notation of ev [cond] / act was used to describe events and

actions labelling transitions.

The keywords OrState, AndState, and BasicState are used to describe the hi-

erarchy of states. An element of type (stateName,transName)sc speci�es the statechart

structure. This type will be de�ned in the next chapter. The type signatures for the

keyword OrState is:

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 101

(:stateName,:transName) OrState

:stateName -> /* state name */

stateName -> /* default state */

((stateName,transName)sc)list -> /* substatecharts */

((stateName,transName)trans)list -> /* transition list */

(stateName,transName)sc;

The type signatures for the keyword AndState is:

(:stateName, :transName) AndState

:stateName -> /* state name */

((stateName,transName)sc)list -> /* substatecharts */

(stateName,transName)sc;

The type signatures for the keyword BasicState is:

(:stateName, :transName) BasicState

:stateName -> /* state name */

(stateName,transName)sc;

The keyword OrState takes arguments that are the name of the state, the name of its de-

fault substate, a list of a statecharts describing its substates, and a list of transitions. The

default state of an OR-state must be in the list of substates of the OR-state. The keyword

AndState takes the name of the state and a list of statecharts describing its substates.

An immediate substate of an AND-state cannot be a source or destination state for any

transition. A basic state has only a state name. Figure 4.8 is the textual representation in

our statecharts style of the controller speci�ed in Figure 4.6. This example demonstrates

how expressions in higher-order logic are used in events, which are used to trigger transi-

tions of a statecharts. Thus, statecharts are used in combination with higher-order logic

expressions that include a quanti�er (e.g., roomNeedsHeat de�ned on page 78). The room

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 102

controllerSc :=

OrState CONTROLLER OFF

[BasicState OFF;

BasicState ERROR;

OrState CONTROLLER_ON IDLE

[BasicState IDLE;

OrState HEATER_ACTIVE ACTIVATING_HEATER

[BasicState ACTIVATING_HEATER;

BasicState HEATER_RUNNING]

[(T21, ACTIVATING_HEATER, Ev furnaceRunning,

NoAction, HEATER_RUNNING)]]

[(T20, IDLE, EvCond NonEvent (roomNeedsHeat),

Gen activate, HEATER_ACTIVE);

(T22, HEATER_ACTIVE, EvCond NonEvent (noRoomsNeedHeat),

Gen deactivate, IDLE)]]

[(T16, ERROR, Ev userReset, Gen furnaceReset, OFF);

(T17, OFF, Ev heatSwitchOn, NoAction, CONTROLLER_ON);

(T18, CONTROLLER_ON, Ev heatSwitchOff, Gen deactivate, OFF);

(T19, CONTROLLER_ON, Ev furnaceFault, NoAction, ERROR)];

Figure 4.8: Textual representation of the controller statechart

statechart is found in Figure 4.9. This statechart is parameterised by the room name.

It uses the next valve position table to specify an action of a statechart transition. The

short-hand adjValve was de�ned on page 94 in terms of the next valve position table.

The keyword Sc takes a statechart structure and returns a model:

(:stateName, :transName)

Sc :(stateName,transName)sc -> model;

When a speci�cation is stated in the statechart notation, the con�guration of the system

includes the set of basic states that the system is currently in as notation-speci�c names.

Figure 4.10 presents the top-level description of both the statechart structure and the

heating system speci�cation.

Our variant of statecharts does not cover all aspects of the original statechart

notation. For example, we do not describe history states.

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 103

roomSc (i:Room) :=

let waitedForWarm :=

\i.Tm (En (WAIT_FOR_HEAT i) (roomSc i)) warmUpTime in

let waitedForCool :=

\i. Tm (En (WAIT_FOR_COOL i) (roomSc i)) coolDownTime in

OrState (ROOM i) (NO_HEAT_REQUESTED i)

[OrState (NO_HEAT_REQUESTED i) (IDLE_NO_HEAT i)

[BasicState (IDLE_NO_HEAT i);

BasicState (WAIT_FOR_HEAT i)]

[(T8 i,IDLE_NO_HEAT i,EvCond NonEvent (tooCold i),

adjValve i,WAIT_FOR_HEAT i);

(T9 i,WAIT_FOR_HEAT i,EvCond NonEvent (NOT (tooCold i)),

NoAction, IDLE_NO_HEAT i);

(T10 i, WAIT_FOR_HEAT i, waitedForWarm i,

adjValve i, WAIT_FOR_HEAT i)] ;

OrState (HEAT_REQUESTED i) (IDLE_HEATING i)

[BasicState (IDLE_HEATING i);

BasicState (WAIT_FOR_COOL i)]

[(T15 i,IDLE_HEATING i,EvCond NonEvent (tooHot i),

adjValve i,WAIT_FOR_COOL i);

(T14 i,WAIT_FOR_COOL i,EvCond NonEvent (NOT(tooHot i)),

NoAction, IDLE_HEATING i);

(T13 i, WAIT_FOR_COOL i, waitedForCool i,

adjValve i, WAIT_FOR_COOL i)]]

[(T11 i, WAIT_FOR_COOL i, EvCond (waitedForCool i) (vClosed i),

cancelrH i, NO_HEAT_REQUESTED i);

(T12 i, WAIT_FOR_HEAT i, EvCond (waitedForWarm i) (vOpen i),

rH i, HEAT_REQUESTED i)];

Figure 4.9: Textual representation of the room statechart

heatingSystemScStruct :=

AndState HEATING_SYSTEM

[roomSc (KITCHEN);

roomSc (BEDROOM);

roomSc (LIVING_ROOM);

furnaceSc;

controllerSc];

HeatingSystem := Sc heatingSystemScStruct;

Figure 4.10: Textual representation of heating system top-level speci�cation

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 104

4.12 ScExpr (statechart expressions)

For coordination between components of the system, it can be useful to know if the system

is in a particular state of a statechart speci�cation. The keyword for this expression is

InState and it takes as arguments a state name and the state structure that the state is

a part of:

(:stateName,:transName)

InState : stateName -> (stateName,transName)sc -> bool;

4.13 ScEvent (statechart events)

Events that are of particular interest for coordination among components of a statechart

are entering and exiting states. The keywords En and Ex describe these events:

(:stateName, :transName)

En :stateName -> (stateName,transName)sc -> (transName)event

(:stateName, :transName)

Ex :stateName -> (stateName,transName)sc -> (transName)event

These keywords return events customised for statechart models.

In the heating system, the furnace takes a certain amount of time to start up

(furnaceStartupTime). Once it has been activated, it waits this amount of time before

indicating to the controller that the furnace is running. The end of this delay is signalled

by the event:

Tm (En FURNACE_ACTIVATING furnaceSc) furnaceStartupTime

4.14 CommAction (communication actions for statecharts)

The statecharts notation uses broadcast communication. At times, a more directed form

of communication can be useful between components of a speci�cation stated in the stat-

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 105

echarts notation as found in the TCAS II speci�cation in RSML. We found the same to

be true in writing a formal speci�cation of the ATN system.

Directed communication is accomplished using the action SendData. This com-

munication is still broadcast but contains \addresses" in the form of state names (the

destination and source states of the message). SendData can be thought of as the pre-

viously described Gen action with addresses. It works together with the ReceiveData

keyword of the CommEvent notation discussed in the next section.

The action SendData takes a statechart structure as its �rst argument and a state

name as its second argument. Its third argument is a message, which is a user-de�ned

tag labelling the kind of communication. The elements of the type msg are de�ned in a

type de�nition by the speci�er. Therefore, the type msg is a type parameter to the type

signature of this keyword. The fourth argument is an expression specifying the data being

sent. The type of the SendData primitive is:

(:stateName,:transName,:msg,:ty) SendData

:((stateName,transName)sc ->

stateName ->

msg ->

(ty)exp ->

action;

The source of the message is the state name at the root of the statechart provided as its

�rst argument. Its destination is the state name provided as its second argument.

At times, it only matters that the message is sent and no restrictions are made on

the data. The primitive Send has this meaning. Its type signature is:

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 106

(:stateName,:transName,:msg) Send

:((stateName,transName)sc ->

stateName ->

msg ->

action;

Send can be used as a conservative abstraction of SendData to prove properties that do

not rely on the data being correctly transferred. This abstraction was necessary in the

ATN example because of the size of the con�guration space (Section 8.2.2).

4.15 CommEvent (communication events for statecharts)

Receiving data of a directed communication is an event. The event ReceiveData takes

the statechart structure it belongs to as its �rst argument, the state name of the sender

of the message is its second argument, a message, and data. The receiver of the message

is the state name of the root of its �rst argument. The type signature of ReceiveData is:

(:stateName,:transName,:msg,:ty) ReceiveData

:((stateName,transName)sc ->

stateName ->

msg ->

(ty)exp ->

(transName)event;

The message must be a type constructor. The value of the data argument of this event

only has a legitimate value at the time a message is received, i.e., the communication has

no bu�er. Thus, this primitive is usually used in conjunction with an assignment action

when transferring data.

Di�erent types of data may be communicated by means of a SendData/ReceiveData

interaction. The type variable ty is used in the declarations of both SendData and

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 107

ReceiveData to specify that these constants are polymorphic in the type of data being

sent or received. For meaningful communication, the instantiation of this type parame-

ter at the receiving event should be identical to its instantiation at the sending action.

This constraint cannot be directly enforced by means of type checking. For instance, the

sending action may specify that a value of type bool is being sent, but the correspond-

ing receiving event (i.e., the one receiving messages addressed to the pair of states and

labelled by the same message) may specify that a num value is expected. If this kind of

error occurs in a speci�cation, the value of the received data is not limited to being equiv-

alent to the sent data. Hence, the speci�cation of the SendData/ReceiveData interaction

will be more conservative than the speci�er intended. A practical strategy to mitigate

this kind of error in a speci�cation is to de�ne type-speci�c messages and versions of the

communication keywords limited to particular types of messages and particular types of

data for an application.

The keyword Receive is similar to ReceiveData except that only the message

matters and no data is received. It has the type signature:

(:stateName,:transName,:msg)

ReceiveData

:((stateName,transName)sc ->

stateName ->

msg ->

(transName)event;

Because these events are particular for statecharts, they return events of type

(transName)event.

For example, in the ATN, the ACSE 1 component uses the SendData primitive to

send the message A_ASSOCIATE_cnf_pos to the CF 1 component as in:

SendData (ACSE 1) (CF 1) A_ASSOCIATE_cnf_pos (ACSEData 1)

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 108

The data associated with this message is the value of the name ACSEData 1. The CF 1

component receives this message using a ReceiveData event as in:

ReceiveData (CF 1) (ACSE 1) A_ASSOCIATE_cnf_pos (dataACSE 1)

At the time this event triggers a transition, the name dataACSE 1 contains the data that

was in the ACSEData 1 name in the previous con�guration.

4.16 Environment

The correct functionality of a system may depend on the environment satisfying certain

constraints. For instance, there could be physical constraints on the relationships between

inputs, or restrictions on the values of related uninterpreted constants. These assumptions

form part of the speci�cation and are often needed to eliminate impossible scenarios in

analysis output.

The assumptions about the environment can be speci�ed in any notational style.

In the heating system higher-order logic is used to state some simple assumptions. These

assumptions document \common knowledge" about properties of numbers that our current

implementations of automated analysis cannot infer. For example, the following relates

the conditions tooCold and tooHot with the possible entries in the table specifying the

next valve position (nextVp):

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 109

env :=

(forall i.

let delta := dT i - aT i in

(tooCold i =

(((C 2 < delta) AND (delta <= C 5)) OR

(C 5 < delta))) AND

(tooHot i =

((delta < C -5) OR

((C -5 <= delta) AND (delta < C -2))))) cf;

The value of some inputs to the system may not change over time. These values

can be declared as non-lifted constants in S+ and then used in the speci�cation by pre-

ceding them with the C keyword, which returns the same value for its argument in any

con�guration.

4.17 Summary

This chapter has presented semantic categories, which systematise combinations of nota-

tions in writing a speci�cation. Type checking regulates the combinations of notations.

The notations are represented textually as notational styles in the common format of

higher-order logic. The categories of events, actions, and expressions are lifted in that

they have value relative to particular con�gurations. Lifting is used to express dynamic

behaviour.

Examples of notational styles that belong to each category were presented. The

keywords of a style have type signatures that indicate join points to notations in the same

category or in other categories. Well-formedness constraints for these notations are all

decidable.

This chapter has presented new combinations of notations, such as using an ex-

CHAPTER 4. INTEGRATING MODEL-ORIENTED NOTATIONS 110

pression in higher-order logic to specify the trigger of a statechart transition.

The next chapter presents how a meaning is associated with notational styles to

make it possible to carry out con�guration space exploration analysis on speci�cations in

the framework.

Chapter 5

Semantics

This chapter presents the semantic functions for notational styles. We describe our so-

lutions to sub-problems �ve and six of Chapter 1, namely, determining the meaning of a

notation (Section 1.2.5) and associating meaning with representation (Section 1.2.6).

Semantic functions (or just \semantics") associate a meaning with every well-

formed sentence of a notation. The semantics are written in a form that can be used

directly in the framework to bring together multiple notations for analysis. Once written,

the semantics can be re-used for multiple kinds of analysis and need only be consulted by

speci�ers when there are disputes about the meaning of a notation.

A notational style is a packaged embedding in our variant of higher-order logic

(S+). The keywords presented in the previous chapter are semantic functions that are

de�ned here. Each notation is packaged with its semantics as a \lego-like" building block

to associate meaning with representation. The technique of packaged embeddings makes

our framework extensible.

Section 5.1 introduces formal operational semantics. Section 5.2 discusses the tech-

niques of shallow and deep embeddings. Section 5.3 revisits the type signatures for the

categories of notations providing more details on the regulation of combinations of no-

tations (Section 1.2.3). This section presents some accessor functions for working with

111

CHAPTER 5. SEMANTICS 112

notations in di�erent categories.

In our framework, the semantics for a model de�ne a next con�guration relation.

These semantics are an operational semantics and consist of a set of constraints on the re-

lation. A next con�guration relation is used in con�guration space exploration techniques.

Semantic descriptions for some notations only apply to deterministic speci�cations

and rely on \conformance" analysis to ensure the semantics are applicable to a spec-

i�cation. This conformance analysis is often undecidable. Examples of semantics for

deterministic speci�cations include Heitmeyer et al.'s description of SCR [HJL96] and

Heimdahl's semantics for RSML [Hei94]. In these notations, the semantics assume that

only one transition can be taken at any time so conformance analysis must be done prior

to any other types of analysis.

In general, we take the view that sources of nondeterminism should be known in a

speci�cation but not necessarily disallowed. Nondeterminism may exist as a speci�cation

is being developed even if it is desirable to ensure nondeterminism is eliminated in the �nal

version of a speci�cation. Nondeterminism is also often necessary to state environmental

constraints. Analysis should be applicable throughout the speci�cation's development.

Therefore, we de�ne the semantics of models as relations rather than functions.

As mentioned in Chapter 4, the semantics are written in S+ as de�nitional exten-

sions of the formalism. A few notation-speci�c uninterpreted functions are introduced to

capture fundamental concepts of a notation, such as being in a state of a statechart. The

semantic functions are \executable" in that, when evaluated for a particular speci�cation,

they result in an expression that includes only built-in constants, constants introduced by

the user, and the notation-speci�c uninterpreted constants.

The semantics of S+ are the same as those of higher-order logic and therefore are

not presented here. The remainder of this chapter mirrors the structure of the previ-

ous chapter in presenting the semantics for each notational style. We demonstrate how

semantics can be de�ned to associate meaning with the notational styles. This chapter

CHAPTER 5. SEMANTICS 113

is detailed to provide guidance for experts who wish to extend the framework with new

notations.

While the main bene�t for our framework of an embedding of notations in higher-

order logic is to bring multiple notations together for analysis, the semantics can also

be used to prove properties of the semantics themselves. Section 5.13 presents a prop-

erty about the compositionality of AND-states in a statechart that makes it possible to

partition the speci�cation to help in analysis.

The de�nitions of semantic functions presented in this chapter are used directly

as input to the analysis procedures1. The full version of the semantics for all example

notational styles can be found in Appendices C through K.

5.1 Formal operational semantics

Operational semantics de�ne the meaning of a notation by describing its behaviour on an

abstract machine [Win93]. Automata are often used to de�ne the operational semantics

of a notation [Gor79]. In our framework, the semantics of model-oriented notations are

de�ned as next con�guration relations in logic, i.e., the transition relation of an automa-

ton where the possible states of the automaton are the reachable con�gurations of the

system. These semantics are formal because they are written in logic. They provide an

interpretation of the notation in a formal theory. The next con�guration relation maps

pairs of con�gurations to a Boolean value indicating if it is a legal step to go from the �rst

con�guration of the pair to the second. Common forms of automated analysis explore the

con�guration space using a next con�guration relation. As an introduction to this topic

for the reader, in this section we brie
y introduce other types of semantics and indicate

why they were not chosen for use in our framework.

Structured operational semantics developed by Plotkin [Plo81] are a type of oper-

1A minimal amount of type information necessary for these de�nitions to pass type checking
has been omitted for presentation. This type information is found in the appendices.

CHAPTER 5. SEMANTICS 114

ational semantics in which the behaviour of the abstract machine is described by rules

based on the constructs of the notation. Derivations can use these rules to prove the

equivalence of constructs. These rules are based on a decomposition of the structure of

the constructs. Because compositionality in the meaning of some notations, such as state-

charts, is not based on the structure of the speci�cation, structured operational semantics

alone are not suitable for our framework. Brie
y, transitions that cross state boundaries

in a statechart result in a compositionality based on scope of transitions rather than state

hierarchy (Section 5.8).

Denotational semantics (invented by Stratchey and Scott) de�ne the meaning of

a notation as a series of functions from con�gurations to con�gurations. Each function

describes the meaning of one construct in the notation. Using denotational semantics, it is

possible to compare the meaning of constructs without including a con�guration argument

to the function. The ability to de�ne the meaning of a notation compositionally based on

its constructs is inherent to the denotational semantics approach. Denotational semantics

are often used to reason about notations within theorem proving environments. Examples

of denotational semantics for programming languages can be found in Gordon [Gor79] and

Winskel [Win93].

Axiomatic semantics are used to reason about speci�c programs by rewriting the

program into more basic statements in the same notation. Reasoning about the programs

is usually accomplished by means of rewriting in a theorem prover.

Operational semantics are the most suitable choice for our purposes for three rea-

sons. First, models denote automata. Second, the meaning of some speci�cation notations

cannot be de�ned compositionally. Third, we provide a common interface to analysis tech-

niques by means of logic and therefore wish to de�ne the meaning of the notation in logic

(rather than in terms of itself). This work uses de�nitions in higher-order logic to de�ne

the formal operational semantics for model-oriented notations.

CHAPTER 5. SEMANTICS 115

concrete
syntax

Specification representation

HIGHER-ORDER LOGIC

defined using
using

defined

input to

defined using

built-in
constants

semantic
functions

Specification

defined using SHALLOWDEEP

Figure 5.1: Deep and shallow embeddings

5.2 Embeddings

An embedding of a notation is a description of its semantics in logic. This technique is

often used with theorem provers to study a notation. There are two common methods for

writing embeddings: shallow and deep. We use the description of these terms found in

Boulton et al. [BGG+92]. An illustration of these two techniques in found in Figure 5.1.

The framework uses a combination of these two techniques to achieve the packaging of

notations with their meanings.

In a deep embedding, the concrete syntax is represented in the logic as a type. This

representation is called an abstract syntax and mirrors the original notation in structure.

The approach of deep embeddings is depicted in the path on the left-hand side of Figure 5.1

CHAPTER 5. SEMANTICS 116

that goes through the concrete syntax. Functions are de�ned that map the abstract syntax

to its meaning in the logic. For example, the following introduces an abstract syntax for

an expression notation that consists of two operators ADD and SUB:

: expr := NUM :num

| ADD :expr :expr

| SUB :expr :expr ;

The above type de�nition introduces three type constructors: NUM, ADD, and SUB. The

constructor NUM is necessary to turn a number into an element of the abstract syntax.

A pattern-matching de�nition can be used to map elements of the type expr into their

logical meanings:

SemExpr (NUM a) := a |

SemExpr (ADD a b) := SemAdd (SemExpr a) (SemExpr b) |

SemExpr (SUB a b) := SemSub (SemExpr a) (SemExpr b) ;

The functions SemAdd and SemSub are de�ned in the logic as the addition and subtraction

functions:

SemAdd := + ;

SemSub := - ;

The meaning of the expression ADD (SUB (NUM 5) (NUM 4)) (NUM 6) is the result of

applying the function SemExpr to this expression in the abstract syntax.

In a shallow embedding, there is no distinction in the logic between the syntax and

the semantics. The syntax is represented as de�ned constants. The approach of shallow

embeddings is depicted in the path on the right-hand side of Figure 5.1. The steps of

representing an abstract syntax and then writing functions that map the abstract syntax

into its logic meaning are not part of a shallow embedding. The meaning is captured

directly in the syntax itself. The step of applying a function to return the meaning of a

CHAPTER 5. SEMANTICS 117

piece of syntax is unnecessary. Using the same example, a shallow embedding of the tiny

expression notation is:

ADD a b := a + b;

SUB a b := a - b;

The extra construct NUM is not needed. The function ADD is equivalent to the function

SemAdd in the deep embedding. The meaning of the expression ADD (SUB 5 4) 6 is

determined by evaluating this expression in the logic.

A shallow embedding has the desired property of extensibility for our framework.

Without a shallow embedding, adding a new notation that can be used at the join points

of existing notations would require additions to existing notation's abstract syntax and

the functions mapping the abstract syntax into the logic. Another advantage of a shallow

embedding is that the type checker of the logic can be used as the type checker for all

notations. This approach would not work for notations that have di�erent type checking

rules than the logic.

A shallow embedding has two disadvantages. The �rst is that the distinction

between the notation and the logic is lost, which means reasoning based on the form of

the speci�cation cannot be carried out. For example, Section 1.2.10 described how the

arrangement of entries in a row may form a partition of a numeric value that can be

used to create a more precise abstraction for analysis. Recognition of this structure and a

de�nition of the abstraction cannot be de�ned in the same logic as the shallow embedding

of the notation. For our framework, this disadvantage is not a serious concern. The

analysis functions are implemented in C and can walk over the parse tree representation

of the speci�cation.

A second disadvantage to a shallow embedding is that in order for it to mirror the

structure of the original speci�cation the way a deep embedding does, the meaning of the

notation must be compositional based on the structure of the notation. Statecharts do not

CHAPTER 5. SEMANTICS 118

have the property of compositionality in meaning. This disadvantage can cause shallow

embeddings to be a largely expanded (and potentially unrecognisable) representation of

the speci�cation. This expansion would compromise the rigour that is achieved through

direct use of the semantic functions.

This second disadvantage of shallow embeddings means they are not suitable for

all notations to achieve the desired qualities of the framework. For notations such as

statecharts, we use a deep embedding where the structure is represented using type con-

structors. To create the lego-like block needed for extensibility, we include the keyword

Sc in the statecharts notational style. Sc takes a statechart structure created by type

constructors as a parameter. Sc is only needed at the top of the statechart, i.e., every

substatechart does not need this pre�x. Sc packages the meaning of a statechart with the

notation allowing our approach to be extensible. The join points to other notations are

still regulated by type consistency.

In summary, we use both deep and shallow embeddings. We call our approach

packaged embeddings. Shallow embeddings are used when the meaning of the notations

is compositional. Deep embeddings are used when the notation is not compositional but

we maintain the property of extensibility by pre�xing the structure with its semantic

function. In our experience this pre�x has not proved cumbersome. Our approach is

extensible to new notations. Another advantage of packaged embedding in higher-order

logic is that parameterisation of speci�cation parts does not require any extension to either

the notation or its semantics.

5.3 Semantic categories

The previous chapter presented the categories of notations used in model-oriented speci-

�cations. There are expressions, events, actions and models. Expressions have the type

signature:

CHAPTER 5. SEMANTICS 119

: (ty) exp == config -> ty;

As explained earlier in Chapter 4, the types bool and num are equivalent to (BOOL)exp,

and (NUM)exp respectively.

We use the following type abbreviation to describe a step:

:step == config # config;

Models have the type signature:

: model == step -> BOOL;

The �rst element of the pair of con�gurations constituting a step is called the previous

con�guration. The second element of the pair is called the next con�guration. These

elements are referred to using the functions:

Prev (x:step) := FST x;

Next (x:step) := SND x;

The type signatures for the event and action categories are type abbreviations and will be

explained in Sections 5.3.1 and 5.3.2. The complete set of type signatures and associated

accessor functions for these categories are found in Appendix C.

We use tuples in S+ as a form of data structure for capturing the multiple elements

necessary to describe the meaning of the event and action categories. Functions are used

to access elements of these data structures.

5.3.1 Events

Events are instantaneous occurrences, such as changes in conditions. The meaning of an

event is an indication of whether the event occurred in the previous step. The assignment

of meaning to events such as timeouts, also requires keeping track of the history of an event.

Capturing the history of events when only two con�gurations (the previous and next) can

CHAPTER 5. SEMANTICS 120

be referenced may involve creating auxiliary names that have values in a con�guration.

The values of these auxiliary history names require updating in each step. Giving meaning

to nested events requires knowing if other events are occurring in this step. Finally, an

event may include some initialisation constraints, which, in turn, depend on whether other

events are occurring at initialisation. Therefore, an event contains �ve components. These

components are captured in a type abbreviation describing a �ve-tuple:

:(label)eventinfo ==

bool # /* Occurred */

(BOOL->(label)ext_step -> BOOL) # /* Update */

((label)ext_step -> BOOL) # /* Occurs */

(BOOL-> bool) # /* Init */

bool); /* OccursAtInit */

The components of an event are accessed using the functions, Occurred, Update, Occurs,

Init, and OccursAtInit.

The \occurred" �eld references only one con�guration { the previous con�guration

of a step. It indicates if the event occurred in the previous step and therefore takes an

argument that is a con�guration. The \occurs" and \update" �elds may depend on both

the previous and next con�gurations of a step.

The \update" and \init" �elds ensure that the history of the event is updated

and initialised, respectively. The semantics for event notations introduce uninterpreted

constants to capture this history. In a nested event, the history of an event at one level

may be su�cient to deduce the history of events at lower levels. To reduce the number of

constraints (i.e., the size of the con�guration space), a Boolean
ag is the �rst argument

of these functions indicating if history constraints have already been set.

The \init" and \occurs at init" �elds depend on only one con�guration { the initial

con�guration.

CHAPTER 5. SEMANTICS 121

Some events require more information than just the previous and next con�gura-

tions in a step. This information can be customised for the model using the event and is

captured in the type parameter label. For example, the events of entering or exiting a

state of a statechart depend on the set of transitions followed in a step because looping

transitions are possible where the meaning of the event cannot be determined from the sta-

tus of the states in the previous and next con�gurations. The de�nition of ext_step (for

\extra information in a step") and the associated functions for determining the previous

and next con�gurations are:

:(label)ext_step == (config # config) # (label->BOOL);

(:label)ExtPrev (x:(label)ext_step) := FST (FST x);

(:label)ExtNext (x:(label)ext_step) := SND (FST x);

These functions are used in the semantic functions for particular event notations.

Keeping track of an event's history for timeouts requires a means of identifying

which event the history is associated with. We chose a simple identi�er scheme to match

histories with events based on the nesting of events. Each top-level event must have a

unique label associated with it. A top-level event is one that is used by a model rather than

by another event. The label is often the transition name. To isolate a nested event within

the top-level event, a path is constructed that follows the branching of the nested events

as direct subevents (S), or left (L) or right (R) branches. Figure 5.2 presents an example

of the assignment of identi�ers to an event and its component events using the label \T2".

Starting from the label of the event, the path part of the identi�er is determined from the

nesting of events. The initial path is an empty list.

CHAPTER 5. SEMANTICS 122

Tm (OrE (Tm (Ev a) 2) (Tm (Ev b) 3)) 4

OrE (Tm (Ev a) 2) (Tm (Ev b) 3)

Tm (Ev a) 2

Ev a Ev b

Tm (Ev b) 3

S

L R

S S

T2 [S;L]

T2 [S;L;S]

T2 [S;R]

T2 [S;R;S]

T2 []

T2 [S]

top-level
event

Figure 5.2: Example of event identi�ers

An event is a function that takes a label and a path and returns the event infor-

mation:

: eventLabelPath := S | L | R;

: path == (eventLabelPath)list;

: (label) event ==

label -> path -> (label)eventinfo;

Within the semantic de�nitions for events, the functions Sub, Left, and Right are used

to construct the path for nested events. To give the meaning of some events, it is not

necessary to use the event's identi�er.

5.3.2 Actions

An action is the speci�cation of zero or more modi�cations to the values associated with

particular assignable names from one con�guration to the next. If there are multiple

actions in a speci�cation, there is the potential that multiple actions will constrain the

value of the same name in the next con�guration creating a race condition. The semantics

of the notational style of model determine how race conditions are handled. An action

CHAPTER 5. SEMANTICS 123

returns the meaning of the modi�cations in a step. For the model to maintain the values

of assignable names that do not change, it needs to know the assignable names a�ected

and a relation over a step that ensures that the value of the name does not change. Thus

a modi�cation has three parts:

� an identi�er for the name being modi�ed

� the change it e�ects (a model)

� a condition ensuring the name does not change (a model)

Names are uninterpreted constants. Comparing two names to ensure that their

identi�ers are di�erent is a meta-level operation. S+ includes a built-in uninterpreted

function called NAME, which takes as an argument an assignable name and returns a string.

Informally, we interpret the return value of NAME to be an identi�er that can be used to

distinguish names from each other. Section 6.9.3 shows how implicit assumptions about

the equality and inequality of the return values of this uninterpreted function applied to

names are used in evaluation.

Since an action can contain multiple modi�cations, its type signature is a list of

modi�cations. A modi�cation is a three-tuple capturing the necessary information for

describing an action:

: mod == STRING # model # model;

: action == (mod)list;

The order of the elements in the list is not signi�cant with respect to its semantics.

5.4 Common functions

Standard list manipulation functions, such as hd (head), tl (tail), map, and append are

used in the de�nitions of the semantic functions. The functions every and any take a

CHAPTER 5. SEMANTICS 124

predicate and produce the conjunction or disjunction, respectively, of the predicate applied

to every element of the list. The functions Every and Any take a lifted predicate and

carry out the same operation resulting in a lifted expression. The polymorphic constant

UNKNOWN is used to represent an unknown value if the function is partially speci�ed. The

declarations and de�nitions of these constants can be found in Appendix D.

5.5 TableExpr

The tabular style of expression speci�es functions. We begin by describing the meaning of

a row. A row in a table is a list of predicates to be applied to the row label. The keyword

Row has the type signature:

(:ty) Row :(ty)rowlabel -> ((ty)rowentry)list -> row;

The type parameter ty is the type of the value of the row label in a con�guration.

A meaning is associated with the keyword Row by de�ning it as a semantic function.

The meaning of a row is a list of conditions produced by applying the predicate in each

row entry to the row label. Row is de�ned as:

(:ty)

Row (rl:(ty)rowlabel) (res:((ty)rowentry)list) :=

RowAux res rl;

The auxiliary function RowAux recursively applies the row label to each row entry:

(:ty)

RowAux NIL (rl:(ty)rowlabel) := NIL |

RowAux (CONS (re:(ty)rowentry) res) rl :=

CONS (re rl) (RowAux res rl);

The next step in giving meaning to a tabular speci�cation is to combine the predi-

cates in the rows to produce an expression that represents a column. The Columns function

CHAPTER 5. SEMANTICS 125

produces a list that consists of the expression formed by conjoining the elements at the

same position in each row:

Columns (rs:(row)list) :=

/* last column is a list of empty lists */

COND ((hd rs) EQ NIL) NIL

(CONS (Every (hd) rs) (Columns (map rs tl)));

A predicate table, speci�ed using the keyword PredicateTable, is a function that

returns true if any of its columns are true. It has the type signature:

PredicateTable :(row)list -> bool;

It is de�ned as:

PredicateTable rowMatrix :=

Any (\x.x) (Columns rowMatrix);

The order of the columns does not matter in a predicate table.

In a function table, the columns have precedence determined by their left to right

order. When the condition represented by the column is satis�ed, the value at the bottom

of the column is returned. The keyword Table has the type signature:

(:ty)

Table :(row)list -> ((ty)exp)list -> (ty)exp;

CHAPTER 5. SEMANTICS 126

The meaning of Table is de�ned by nested conditional expressions. It is de�ned

using the auxiliary function TableAux, as in:

(:ty)

Table rowMatrix resultRow :=

TableAux (Columns rowMatrix) resultRow;

The auxiliary function TableAux walks over the columns and matches them to values in

the result row. When the list of columns has been exhausted, either the default value

(the last value in the list of return values), or the value UNKNOWN for a partially speci�ed

function is returned:

(:ty)

TableAux (NIL) (resultRow:(ty)list) :=

COND (resultRow EQ NIL)

UNKNOWN

(hd resultRow) |

TableAux (CONS col cols) resultRow:=

if col

then (hd resultRow)

else TableAux cols (tl resultRow);

By de�nition a function table cannot be inconsistent since there is a priority order

that the columns are matched in determining the value of the function. However, as will

be seen in Chapter 7, consistency checking can be carried out to ensure that the order of

the columns makes no di�erence to the meaning of the table.

CHAPTER 5. SEMANTICS 127

Next, we can de�ne the keywords of the style that are possible row entries in a

table:

(:ty)Dc := \(x:(ty)exp). C T;

True := \x. x = C T;

False := \x. x = C F;

The keywords used in row labels, AllOf and AtLeastOneOf have the following

de�nitions:

(:ty) AllOf (rl:((ty)exp)list) (p:(ty)exp->bool) := Every p rl;

(:ty) AtLeastOneOf (rl:((ty)exp)list) (p:(ty)exp->bool) := Any p rl;

These semantic functions result in the speci�cation of the desired temperature of

the heating system presented in Figure 4.3 having the meaning found in Figure 4.5 on

page 90.

5.6 CoreEvent

This section presents the meanings of the keywords Ev, Ch, EvCond and Tm of the CoreEvent

notational style of events. The complete set of semantic de�nitions for CoreEvent can be

found in Appendix F.

An event speci�ed using the Ev keyword is a primitive event depending only on its

argument, which is an uninterpreted Boolean constant. If its argument is true in the next

con�guration then the event is occurring in this step:

(:label)

EvOccurs (ev:simpleEvent) (step:(label)ext_step) :=

ev (ExtNext step);

CHAPTER 5. SEMANTICS 128

The event occurred in the previous step if its argument is true in the previous

con�guration (cf):

EvOccurred (ev:simpleEvent) (cf:config) := ev cf;

A primitive event occurs at initialisation if its argument is true at initialisation:

EvOccursAtInit (ev:simpleEvent) (cf:config) := ev cf;

Using these elements, the meaning of the Ev keyword is de�ned as a function that maps

a label and a path into a �ve-tuple of the type eventinfo:

(:label)

Ev (ev:simpleEvent) (lab:label) (p:path) :=

(EvOccurred ev,

\flag. \step. T, /* no history to update */

EvOccurs ev,

\flag. C T, /* no initialisation of history needed */

EvOccursAtInit ev);

Each line in the right-hand side of this de�nition is one element of the event's information.

The Ch event is similar to a primitive event except that it notes the change in

a condition rather than simply that the condition is true. To record the occurrence of

a change, we introduce a history function as an uninterpreted constant. This history

function, called Changed, is declared as:

(:label) Changed : label -> path -> bool;

This function returns true if the event associated with the label and path identi�er occurred

in the previous step. Therefore, it can be used directly as the \occurred" component of

an event:

CHAPTER 5. SEMANTICS 129

(:label)

ChOccurred (lab:label) (p:path) (cf:config) :=

Changed lab p cf;

The Ch event occurs in a step if the value of the condition is not the same in the previous

and next con�gurations:

(:label)

ChOccurs (cond:bool) (step:(label)ext_step) :=

~(cond (ExtPrev step) EQ cond (ExtNext step));

The update component of the event ensures that the value of the history function in the

next con�guration captures the result of the ChOccurs component:

(:label)

ChUpdate (cond:bool) (lab:label) (p:path)

(flag:BOOL) (step:(label)ext_step) :=

(~flag) \/

(Changed lab p (ExtNext step) EQ ChOccurs cond step);

The constraint on the Changed function is only necessary if it has not previously been

captured (i.e., flag is true). For example, if this event is the component of a timeout

event, a later section shows that the timeout event captures su�cient history and that

this extra constraint is not needed2. These elements can be grouped together to give a

de�nition for the Ch event:

2The meaning would not change if the constraint is included.

CHAPTER 5. SEMANTICS 130

(:label)

Ch (cond:bool) (lab:label) (p:path) :=

(ChOccurred lab p,

ChUpdate cond lab p,

(:label)ChOccurs cond,

\(flag:BOOL).\(cf:config). Changed lab p cf EQ F,

\(cf:config). F);

A Ch event does not occur at initialisation (the �fth component) and the history function

has the value false for the event at initialisation (the fourth component).

Other event notations include more specialised events for changes in conditions,

such as the condition becoming true. Discussions of the semantics of these notations can

be found in Heitmeyer et al. [HJL96] and Atlee and Buckley [AB96].

The meaning of the EvCond keyword relies on the meaning of its two arguments,

which are an event and a condition (Boolean expression). An EvCond event occurred in

the previous step if its component event occurred and its condition is true in the previous

con�guration:

(:label)

EvCondOccurred (ev:(label)event) (b:bool) (lab:label)

(p:path) (cf:config) :=

Occurred ev lab (Sub p) F cf /\ b cf;

An EvCond event occurs if its component event is occurring in this step and its condition

is true in the next con�guration:

CHAPTER 5. SEMANTICS 131

(:label)

EvCondOccurs (ev:(label)event) (b:bool) (lab:label) (p:path)

(step:(label)ext_step) :=

EventOccurs ev lab (Sub p) step /\ b (ExtNext step);

The event occurs at initialisation if its component event occurs at initialisation and its

component condition is true:

(:label)

EvCondOccursAtInit (ev:(label)event) (b:bool) (lab:label) (p:path) :=

EventOccursAtInit ev lab (Sub p) AND b;

The EvCond keyword is de�ned as:

(:label)

EvCond (ev:(label)event) (b:bool) (lab:label) (p:path) :=

(EvCondOccurred ev b lab p,

Update ev lab (Sub p),

EvCondOccurs ev b lab p,

Init ev lab (Sub p),

EvCondOccursAtInit ev b lab p);

Updating this event involves updating any history that must be kept for its component

event (second element of the tuple). Initialising this event involves initialising its compo-

nent event. Initialisation of the condition is done by the user.

The meaning of a Tm (timeout) event depends on the history of occurrences of its

component event. To capture this history, the uninterpreted constant

TimeEventLastOccurred is introduced with the following constant declaration:

(:label) TimeEventLastOccurred : label -> path -> num;

CHAPTER 5. SEMANTICS 132

cf
i+4

cf
i+3

cf
i+2

cf
i+1

cf
i

occurs
Tm (Ev k) 2

occurs
Ev k

Ev k
occurs

k = F

k = T
TimeEventLastOccurred T1 [] = 0

k = F
TimeEventLastOccurred T1 [] = 1

k = F
TimeEventLastOccurred T1 [] = 2

k = T
TimeEventLastOccurred T1 [] = 0

Figure 5.3: Behaviour of Tm (Ev k) 2

This function returns the number of steps that have passed since the event determined

by the label and path identi�er occurred. Maintaining the status of this uninterpreted

constant is only necessary for timeout events because the meaning of other events can

be derived from their component events. Figure 5.3 shows the behaviour of the event

Tm (Ev k) 2, with label T1 through a series of con�gurations.

A timeout event occurred in the previous step if the time since the event last

occurred, as recorded by the function TimeEventLastOccurred applied to the timeout

identi�er, equals the delay of the timeout:

(:label)

TmOccurred (n:num) (lab:label) (p:path) (cf:config) :=

(TimeEventLastOccurred lab p = n) cf ;

The delay of the timeout is always evaluated in the previous con�guration. The event

CHAPTER 5. SEMANTICS 133

component of a timeout is not needed in this de�nition.

Similarly, a timeout event occurs in this step if the value of the history function in

the next con�guration is the same as the value of the delay in the next con�guration:

(:label)

TmOccurs (n:num) (lab:label) (p:path) (step:(label)ext_step) :=

(TimeEventLastOccurred lab p = n) (ExtNext step);

The update component of a timeout event constrains the possible value of the

function TimeEventLastOccurred for this event in the next con�guration. Its next value

is either its previous value incremented by one, if the component event does not occur

in this step, or the value zero, if the component event does occur. The history func-

tion TimeEventLastOccurred records only the most recent occurrence of the event. The

update component is3:

(:label)

TmUpdate (ev:(label)event) (lab:label) (p:path) (flag:BOOL)

(step:(label)ext_step) :=

(COND (EventOccurs ev lab (Sub p) step)

((TimeEventLastOccurred lab p = (C 0)) (ExtNext step))

(TimeEventLastOccurred lab p (ExtNext step) EQ

((TimeEventLastOccurred lab p + (C 1)) (ExtPrev step))))

/\

Update ev lab (Sub p) F step;

The component event of the timeout may also require updating constraints as found in the

last line of the above de�nition where Update is used. The argument F (false) to Update

indicates that this history has been captured for the component event.

3In the appendix, this function is not de�ned using the COND operator but rather the expanded
expression of this operator. This expansion avoids the need for rewriting in evaluation as described
in the next chapter.

CHAPTER 5. SEMANTICS 134

A timeout can only occur at initialisation if its delay is zero (making it equivalent

to the component event by itself) and its component event occurs at initialisation:

(:label)

TmOccursAtInit (ev:(label)event) (n:num)

(lab:label) (p:path) (cf:config) :=

(n cf EQ 0) /\ EventOccursAtInit ev lab (Sub p) cf;

The initial value of the TimeEventLastOccurred function is constrained at initial-

isation to be zero if the component event is occurring at initialisation. Otherwise its value

is unconstrained. Initialisation of the nested event is also required. The initialisation

component of a timeout event is de�ned as:

(:label)

TmInit (ev:(label)event) (n:num) (lab:label) (p:path)

(flag:BOOL) (cf:config) :=

(TmOccursAtInit ev n lab (Sub p) cf EQ

((TimeEventLastOccurred lab p = (C 0)) cf))

/\ Init ev lab (Sub p) F cf;

The complete meaning of a timeout event is:

(:label)

Tm (ev:event) (n:num) (lab:label) (p:path) :=

(TmOccurred n lab p,

TmUpdate ev lab p,

TmOccurs n lab p,

TmInit ev n lab p,

TmOccursAtInit ev n lab p);

The same event used in multiple places in a system may result in duplicate con-

straints. These constraints will never be in con
ict. The same timeout used multiple

CHAPTER 5. SEMANTICS 135

places will have di�erent identi�ers and therefore maintain the value of the function

TimeEventLastOccurred for di�erent identi�ers even though those values will always be

equivalent.

5.7 CoreAction

The Asn action is an assignment of a value to a name in the next con�guration. Its

meaning is de�ned as a three-tuple:

Asn (v:(ty)exp) (exp:(ty)exp)

:= [(NAME v,

\step. v (Next step) EQ exp (Prev step),

\step. v (Next step) EQ v (Prev step),

)];

Each element of this tuple is one of the �elds of an action. These �elds are: an identi�er

for the assignable name being changed, the meaning of the change, and the constraint that

the name does not change in value. The second argument to the assignment statement is

evaluated in the previous con�guration. For example, the action in the heating system,

Asn (requestHeat KITCHEN) (C T) has the meaning:

[(NAME (requestHeat KITCHEN),

\step. (requestHeat KITCHEN) (Next step) EQ (C T) (Prev step),

\step. (requestHeat KITCHEN) (Next step) EQ

(requestHeat KITCHEN) (Prev step))]

The Both action concatenates the lists of modi�cations from each of its component

actions:

Both (a1:action) (a2:action) := append a1 a2;

CHAPTER 5. SEMANTICS 136

The action Gen assigns the value true to its argument in the next step. If this

action is not taken then the argument has the value false (i.e., the internal event did not

occur). It is de�ned as:

Gen (ev:simpleEvent)

:= [(NAME ev,

\step. ev (Next step) EQ T,

\step. ev (Next step) EQ F)];

The No_action keyword returns an empty list of modi�cations:

NoAction := NIL;

5.8 CoreSc

The semantics for statecharts describe the behaviour of the transitions and states of the

speci�cation. The enabling of individual transitions is determined by the current set

of states and by the status of events on their triggers in the previous con�guration. In

turn, the enabling of individual transitions determines possible combinations of transitions

that can be taken together in a step. Multiple possible combinations may exist because

a statechart can be nondeterministic. Transitions that are taken result in actions that

constrain the step.

The semantics of the statecharts style cannot be de�ned compositionally over the

state hierarchy because transitions can cross state boundaries and have priority based on

their scope. The semantics could be considered compositional over the scope of transitions,

but this approach does not deal appropriately with race conditions if multiple transitions

modify the same variable. Therefore, we use an alternate approach than structured oper-

ational semantics to give the semantics of statecharts.

The semantics for our statecharts variant are decomposed into three parts. The �rst

part, called the transition state condition (TransStateCond), deals with the fundamental

CHAPTER 5. SEMANTICS 137

elements of the notation: transitions and states. It constrains the set of transitions that

can be taken in a step and the result of taking those transitions on the set of states. The

second part of the statechart semantics is the name condition (NameCond), which describes

the changes in values of assignable names based on the set of transitions taken. This part

of the semantics interfaces with an action notation. The third part is the event condition

(EventCond), which constrains the history of events to be maintained as de�ned by the

event notation. Both the transition state condition and the event condition interface with

an event notation. The meaning of a statechart, de�ned in terms of these parts, is:

(:stateName,:transName)

ScAux (s:(stateName,transName)sc_struct)

(trs:((stateName,transName)trans)list)

(step:(transName)ext_step) :=

TransStateCond s trs step /\

NameCond s trs step /\

EventCond s trs step ;

(:stateName,:transName)

Sc (s:(stateName,transName)sc_struct) (stp:step) :=

let trs := transInState s in

existsn (length trs)

(\flags.

let ext_step := (stp,match (map trs transLabel) flags) in

ScAux s trs ext_step;

For a statechart s and pair of con�gurations cf and cf' in the parameter stp, Sc evaluates

to true if and only if cf' is a possible successor of the current con�guration cf.

For coordination between the transition state condition, name condition and event

CHAPTER 5. SEMANTICS 138

condition, each transition is associated with a Boolean variable that indicates whether

or not the transition is taken in this step. These Boolean variables are created and ex-

istentially quanti�ed using the function existsn. Within the semantic de�nitions for

statecharts, a step (a pair of con�gurations) is extended to include not only the con�gura-

tions but also a third element that matches transition labels with an ordered list of these

Boolean variables. This extension captures information used in multiple places in the

semantics. It is captured in the step argument because this information may be needed

by the events of transitions. This step, with extra information, is an instantiation of the

type de�nition for ext_step presented in Section 5.3.1 where label is a transition name,

as in:

:ext_step == (config # config) # (transName->BOOL);

Therefore, ExtPrev and ExtNext will be used to access the two con�gurations of the step.

The function TransTaken takes two arguments: a step with this extra information, and

a transition name. It returns the Boolean variable associated with that transition name.

This function has the de�nition:

(:stateName,:transName)

TransTaken (tr:(stateName,transName)trans)

(step:(transName)ext_step) :=

(SND step) (transLabel tr);

The label of the transition is returned by the accessor function transLabel. The next

section describes accessor functions for the statechart structure, such as transInState.

These functions provide useful abstractions in presenting the semantics and isolate the

semantics from the form of the textual representation chosen. Subsequent sections de�ne

the semantic functions TransStateCond, NameCond, and EventCond. The de�nitions of the

accessor functions, as well as the complete semantic functions, are found in Appendix H.

CHAPTER 5. SEMANTICS 139

One optimisation for evaluation appears in the appendix but not in this description. This

optimisation is described in the next chapter in Section 6.6.

All the semantic functions for statecharts are parameterised by the type of state

names and transition names. These types are de�ned in the speci�cation.

5.8.1 Accessor functions for the statechart structure

A preliminary step in the de�nition of the semantics is the presentation of accessor func-

tions for the statechart structure that allow us to �lter out syntax concerns and concentrate

on semantic issues. The type de�nition for the statechart structure is:

: (stateName,transName) sc_struct :=

OR_STATE

:stateName /* state name */

:stateName /* default state */

:((stateName,transName)sc_struct)list /* substatecharts */

:((stateName,transName)trans)list /* transition list */

| AND_STATE

:stateName /* state name */

:((stateName,transName)sc_struct)list /* substatecharts */

| BASIC_STATE

:stateName /* state name */

The keywords OrState, AndState, and BasicState are de�ned to return the appropriate

element of this type:

(:stateName,:transName)OrState := (:stateName,:transName)OR_STATE;

(:stateName,:transName)AndState := (:stateName,:transName)AND_STATE;

(:stateName,:transName)BasicState := (:stateName,:transName)BASIC_STATE;

CHAPTER 5. SEMANTICS 140

These keywords are synonyms for the type constructors. In the naming convention we

adopted, type constructors are written in upper case letters and keywords have the �rst

letter upper case and the remainder of the identi�er lower case.

The following accessor functions to this structure are used in our presentation:

� stateName s: returns the name of the root state in the statechart s.

� state s stn: returns the substatechart that has the statename stn at its root in the

statechart s.

� isBasicState s: returns true if the root state in the statechart s is a basic state.

� isAndState s: returns true if the root state in the statechart s is an AND-state. If

both of the functions isBasicState and isAndState return false for a statechart,

then it must be an OR-state.

� stateSubstates s: returns a list of the substatecharts of the statechart s.

� basicStatesEntered s: returns a list of the names of the basic states entered when

the statechart s is entered. This calculation follows the default arrows.

� basicStatesExited s: returns a list of the names of all the basic states within the

statechart s.

� transScope tr s: returns the scope of the transition tr, which is the state name of

the least common ancestor OR-state of the source and destination of the transition

tr in statechart s. For example, the scope of transition T22 in Figure 4.6 on page 96

is CONTROLLER_ON.

� transInState s: returns a list of the transitions within the statechart s.

� transSrc tr: returns the name of the source state of the transition tr.

� transDest tr: returns the name of the destination state of the transition tr.

CHAPTER 5. SEMANTICS 141

� transEvent tr: returns the event of the transition tr.

� transLabel tr: returns the name of the transition tr.

The name of a state is distinguished from the statechart structure whose root state

has that name.

5.8.2 Transition state condition

A step in a statechart speci�cation involves following a (possibly empty) set of transitions

to move from one set of states to another set of states. The fundamental elements of a

statechart are its states and transitions. It is only necessary to know the set of basic states

that the system is currently in because the status of all other states in the hierarchy can

be determined from the basic states. Our de�nition of the core semantics for statecharts

relies on one uninterpreted function that describes the status of the basic states in a

con�guration:

InBasicState : stateName -> bool;

The core semantic functions constrain the values of this function in the previous

and next con�gurations for all the basic states of the statechart. They also constrain the

set of Boolean
ags representing which transitions are taken. This section presents the

de�nition of the predicate TransStateCond which gives these constraints.

Only transitions that are enabled can be taken in a step. A transition is enabled

if the system is currently in its source state and the event triggering the transitions has

just occurred.

A system is in a state at any level in the hierarchy if it is in any of the basic states

that are descendants of this state within the hierarchy. This constraint is4:

4The COND operator is used here because the condition can be determined to be true or false at
the time of evaluating the function for a particular statechart structure and therefore the expression
can be reduced without rewriting.

CHAPTER 5. SEMANTICS 142

(:stateName,:transName)

inAnyBasicState cf (s:(stateName,transName)sc_struct) :=

COND (isBasicState s) (InBasicState (stateName s) cf)

(COND (isAndState s)

(every (inAnyBasicState cf) (stateSubstates s))

(any (inAnyBasicState cf) (stateSubstates s)));

(:stateName,:transName)

Instate stName (s:(stateName,transName)sc_struct) (cf:config) :=

inAnyBasicState cf (state s stName) ;

The �rst predicate applies to a statechart structure. The second predicate has a state

name as an argument. The statechart associated with this state name is determined by

means of the accessor function state.

The predicate that determines whether or not a transition is enabled depends on

the value of the Instate predicate applied to its source state and the EventOccurred

predicate applied to its event:

(:stateName,:transName)

Enabled (s:(stateName,transName)sc_struct)

(tr:(stateName,transName)trans) :=

Instate (transSrc tr) s AND

EventOccurred (transEvent tr) (transLabel tr) [];

The function EventOccurred is de�ned as the accessor function for the \occurred" com-

ponent of the event applied to the value true indicating the event is a top-level event.

Accessor functions for event components (in this case the \occurred" component) require

an identi�er. The transition name is used as the �rst part of this identi�er in this case.

Since this event is a top-level event, the second part of the identi�er is an empty list.

CHAPTER 5. SEMANTICS 143

Events are evaluated relative to the previous con�guration5.

The choice of transitions is prioritised by the scope of the transitions. An enabled

transition that has a higher scope in the state hierarchy than another enabled transition

will be taken and the one at the lower level will not be taken. The core semantic func-

tions for statecharts can therefore be recursively de�ned relative to the hierarchy of the

statechart and the scopes of the transitions:

(:stateName,:transName)

TransStateCond (s:(stateName,transName)sc_struct) trs step :=

TransStateCondAux s (map trs (\t.(transScope t s,t))) step;

The second argument to TransStateCondAux is a list of pairs that match the scope of a

transition (a state name) with its description.

The de�nition of TransStateCondAux will be presented by examining each type of

state (AND, OR, basic) that could be at the root of the statechart structure found in its

�rst argument. These parts are not presented as de�nitions because S+ does not allow

mutually recursive de�nitions; for the moment, we present fragments of S+. The complete

de�nition is found in Figure 5.4.

The e�ect of a transition on the basic states is to exit the source state of the

transition and enter its destination state. The statechart hierarchy constrains the possible

set of states that the system can be in for a con�guration. The system can be in only one

substate of an OR-state. If the system is in an AND-state, it must be in every substate

of the AND-state. The de�nition of TransStateCondAux captures these constraints.

OR-states

If the root state is an OR-state then the transitions with this scope must be considered.

Their e�ects cannot be con�ned to any smaller part of the statechart than this level. An

5Unlike the presentations of the semantics of statecharts presented in Harel et al. [HPSS87] and
Pnueli and Shalev [PS91], we do not introduce the notion of microsteps.

CHAPTER 5. SEMANTICS 144

auxiliary function, called thisScope, is used to partition the set of transitions into those

with scope at this level and those with a scope at a lower level in the hierarchy. For the

transitions with scope at this level, there are two possible scenarios. One is that there is

an enabled transition from this set that is taken in this step. The second is that there are

no enabled transitions with this scope in the hierarchy. These two scenarios are formalised

as:

(let (trsThisLevel, rest) := thisScope trs in

(oneEnabledTransIsTaken s trsThisLevel step /\

noTransAreTaken rest step)

\/

(noEnabledTrans s trsThisLevel step /\

(every

(\sub.TransCondAux sub (scopeWithin rest (stateName sub)) step)

(stateSubstates s)))));

The �rst scenario is described by the predicate oneEnabledTransIsTaken. If this

scenario holds then no transitions with lower scope in the hierarchy can be taken. The

predicate noTransAreTaken contrains all the Boolean variables associated with transitions

lower in the hierarchy to be false.

In the second scenario, there are no enabled transitions with this scope. Then the

transition condition must hold in each of the substatecharts of this state for the transitions

that fall within the scopes of the respective substatecharts. The function scopeWithin

determines the transitions that fall within each of the relevent substatecharts. Every

transition falls within the scope of one substatechart. Only one substatechart will contain

any transitions that can be taken because the system can only be in one substate of an

OR-state.

CHAPTER 5. SEMANTICS 145

The predicate oneEnabledTransIsTaken takes as arguments the statechart struc-

ture at this level in the hierarchy and the transitions with this scope. It has the de�nition:

(:stateName,:transName)

oneEnabledTransIsTaken s (trlist:(trans)list) step :=

oneTransTaken trlist step /\

every

(\tr. ~(TransTakenInt tr step) \/

(Enabled s tr (ExtPrev step) /\

(stateChange s tr step)))

trlist;

This predicate �rst ensures that only one transition of the set is taken since only one

transition can be taken within an OR-state using a function oneTransTaken, which places

no priority on which transition (with this scope) is chosen if multiple ones are enabled.

Second, oneEnabledtransIsTaken ensures that if a transition is taken, it must be en-

abled and it constrains the set of states in the next con�gurations using the predicate

stateChange.

The e�ect of taking a transition on the status of the states is to exit its source

state and enter its destination state. However, we must also ensure that the status of any

other states within the scope of this transition remain the same. The status of all states is

determined by the basic states. The predicate stateChange has the following de�nition:

CHAPTER 5. SEMANTICS 146

(:stateName,:transName)

stateChange s (tr:(stateName,transName)trans) step :=

let allBasicStatesInScope :=

basicStatesExited s (stateName s) in

let basicStatesEnt :=

basicStatesEntered s (transDest tr) in

every

(\stn. COND (stn member basicStatesEnt)

(InBasicState stn (ExtNext step))

(~(InBasicState stn (ExtNext step))))

allBasicStatesInScope;

A list of all the states within this scope is produced by applying the function basicStatesExited

to the state name of the root of the statechart structure. If a basic state is not entered then

the function InBasicState returns false for that state name in the next con�guration.

Returning to the second scenario for an OR-state where there are no enabled tran-

sitions with this scope, the predicate noEnabledTrans is de�ned using Enabled. It is

satis�ed if there are no enabled transitions and no transitions are taken at this level.

(:stateName,:transName)

noEnabledTrans s (trlist:(trans)list) step :=

(every (\tr. ~(Enabled s tr (ExtPrev step))) trlist) /\

(every (\tr. ~(TransTaken tr step)) trlist);

AND-states

If the root state is an AND-state, there are no transitions with this scope because transi-

tions cannot go between components of an AND-state. Transitions can be followed within

each substate of an AND-state. Therefore, the set of transitions is partitioned by their

CHAPTER 5. SEMANTICS 147

scopes into the substates of the AND-state. TransStateCondAux must then hold for each

of these substates:

(every

(\sub. TransStateCondAux sub (scopeWithin trs (stateName sub)) step)

(stateSubstates s))

Basic states

The �nal and simplest case is if the root state is a basic state. The transition set must

be empty since the scope of a transition must always be an ancestor of its source and

destination states and a basic state is not an ancestor of any state. In this case the status

of the basic state does not change.

InBasicState (stateName s) (ExtNext step) EQ

InBasicState (stateName s) (ExtPrev step)

De�nition of TransStateCondAux

Putting together the three cases for the di�erent types of states that can be at the root of

a statechart results in the TransStateCondAux de�nition found in Figure 5.4. If no tran-

sitions are enabled in a step, then the function TransTaken will be false for all transitions

and there will be no change in the status of the basic states. However, time is advanced

and the status of events could change.

Many variants of statecharts have more complicated semantics with microsteps and

history states. We favour the simplicity of these semantics for understanding. However,

our semantics could be extended with the method of Anderson et al. [ABB+96] where a

�xed point of microsteps is reached before considering new inputs, to create other state-

chart variants for use in the framework. The meaning of history states could be captured

through auxiliary history names as is done for events.

CHAPTER 5. SEMANTICS 148

TransStateCondAux s (trs:(trans # scope)list) step :=

COND (IsBasicState s)

/* Basic State */

(inBasicState (stateName s) (Next step) EQ

InBasicState (stateName s) (Prev step))

(COND (isAndState s)

/* AND-State */

(every

(\sub. TransStateCondAux

sub (scopeWithin trs (stateName sub)) step)

(stateSubstates s))

/* OR-State */

(let (trsThisLevel,rest) := thisScope trs in

(oneEnabledTransIsTaken s trsThisLevel step /\

(every (\tr.~(TransTaken tr (Prev step))) rest))

\/

(noEnabledTrans s trsThisLevel (Prev step) /\

(every

(\sub.TransStateCondAux

sub (scopeWithin rest (stateName sub)) step)

(stateSubstates s)))));

Figure 5.4: De�nition of TransStateCondAux

CHAPTER 5. SEMANTICS 149

T2: ev2 / act2

M D

T1: ev1 / act1
E

K

Figure 5.5: Example statechart

Example of evaluating the transition state condition

The simple example statechart of Figure 5.5 is used to illustrate the meaning of the

transition state condition. The result of evaluating the predicate TransStateCond for this

statechart is presented in Figure 5.6 for the step (cf, cf'). This tiny statechart has two

transitions with the same source state (M) but di�erent scopes. Transition T2 has priority

over T1. There are three cases that could occur. In the �rst case, transition T2 is taken.

Lines 2 through 5 of Figure 5.6 say that in this case transition T2 must be enabled and

the appropriate state change must occur. Line 3 is the result of the function Enabled and

line 5 is the result of stateChange. Line 6 says that T1 is not taken in this case.

The second case, where T1 is taken, begins at line 7. Lines 7 and 8 say that T2

is not enabled and is not taken. Lines 9 through 12 check whether T1 can be taken and

constrain what happens if it is taken. Because T1 is within the scope of state E, line 12

only has to constrain the value of InBasicState M for the next con�guration. Line 16

ensures the status of state D does not change.

In the third case, neither transition is enabled and therefore no transitions are

taken. This case is a subcase of the previous one where T2 was not taken. Lines 13 and

14 say that T1 is not enabled and therefore not taken. Line 15 states that the status of

state M does not change.

CHAPTER 5. SEMANTICS 150

1 (TransTaken T2 cf /\

2 (~ (TransTaken T2 cf) \/

3 (InBasicState M cf /\ EventOccurred (ev2 T2 []) cf))

4 /\

5 ~ InBasicState M cf' /\ InBasicState D cf'

6 /\ ~ TransTaken T1 cf) \/

7 ((~ (InBasicState M cf /\ EventOccurred (ev2 T2 []) cf))

8 /\ ~ (TransTaken T2 cf) /\

9 TransTaken T1 cf /\

10 (~ (TransTaken T1 cf) \/

11 (InBasicState M cf /\ EventOccurred (ev1 T1 []) cf))

12 /\ InBasicState M cf') \/

13 ((~ (InBasicState M cf /\ EventOccurred (ev1 T1 []) cf))

14 /\ ~ (TransTaken T1 cf) /\

15 (InBasicState M cf' EQ InBasicState M cf) /\

16 (InBasicState D cf' EQ InBasicState D cf))

Figure 5.6: TransStateCond evaluated for statechart in Figure 5.5

5.8.3 Name condition

An action is a list of three-tuples that each consist of an identi�er for a name to be

changed, the constraint that the value of the name changes as speci�ed by the action, and

a constraint that the value of the name does not change for when the transition is not

taken.

The possibility of race conditions, where multiple transitions modify the value of

the same name, means that the actions of transitions cannot be considered independently.

The constraints on the results of actions are

� if a transition is taken, then the next con�guration will includes the results of the

transition's actions except where con
icts occur among the actions of the set of

transitions taken

� if more than one modi�cation is made to the same name (i.e., a con
ict occurs) then

exactly one of these modi�cations will be true in the next con�guration

� if the value of a name is not modi�ed by any transition chosen in a step, then the

CHAPTER 5. SEMANTICS 151

name retains its previous value, provided that there is a transition that can modify

its value (i.e., it is a controlled quantity [PM95])

These constraints are de�ned by the \name" condition because they concern the names

of the system.

Only names under the system's control must keep their previous value if they are

not modi�ed (assignable names). Constants representing external names and events might

not retain their values between steps.

The �rst step in de�ning the name condition is to partition modi�cations from

all the transitions by the name that they modify. The function GroupModifications

carries out this task for a transition list. For each name, it returns a tuple structure that

consists of a predicate that states that the name does not change, and a list of transition

and modi�cation pairs, where all of the modi�cations apply to the same name. This list

describes possible race conditions. The following accessor functions operate on this record

structure:

� nameNoChange : returns the predicate stating that the name does not change when

applied to a step

� nameModList : returns the list of transition and modi�cation pairs

� nameTransList : returns the list of transitions that e�ect the name

Using this structure, the name condition has two cases. The �rst case is that no

transitions that a�ect the name are taken and therefore its value does not change. The

second case is that there is some transition that is taken and its action a�ects the value

of the name. The de�nition of the name condition is:

CHAPTER 5. SEMANTICS 152

(:stateName,:transName)

NameCond s (trs:((stateName,transName)trans)list) step :=

every (\namerec.

/* Case 1 */

(every

(\tr. ~(TransTaken tr step)) (nameTransList namerec)

/\

nameNoChange namerec (ExtPrev step, ExtNext step))

\/

/* Case 2 */

(any

(\(tr,md) . TransTaken tr step /\

md (ExtPrev step, ExtNext step))

(nameModList namerec)))

(groupedModifications trs);

No sequence is assumed among multiple actions on a transition so con
icts could

occur within the actions of one transition as well as between multiple transitions.

This section has presented how the CoreSc notation resolves race conditions. Other

notations might have other schemes for how race conditions are resolved. If the sets of

names modi�ed by the parts of the speci�cation written in di�erent notations are disjoint,

multiple race condition resolution schemes can be used and the meaning of the speci�cation

is still well-de�ned. If the sets of names overlap, then an inconsistent speci�cation (i.e., a

speci�cation that is not satis�able) may result.

CHAPTER 5. SEMANTICS 153

5.8.4 Event condition

The event notation used for a statechart speci�cation may have its own constraints on

the behaviour of the system. These constraints are de�ned in the \update" �eld of the

events. The event condition presented here ensures that these constraints are maintained

for every transition in the statechart. The function EventUpdate is de�ned as the event

accessor function Update with the true
ag to indicate the event is a top-level event. The

event conditions has the following de�nition:

(:stateName,:transName)

EventCond s (trs:((stateName,transName)trans)list) step :=

every

(\tr.EventUpdate (transEvent tr) (transLabel tr) [] step)

trs;

5.8.5 Initial condition

In the initial con�guration of a system speci�ed using a statechart, the set of basic states

that the system is currently is the default basic states. The following predicate gives this

constraint:

(:stateName,:transName)

InitStates :(stateName,transName)sc_struct -> bool;

The events of the transitions of the statechart may also require initialisation.

5.9 ScExpr

The keyword InState is an expression that can be used in a speci�cation in CoreSc.

Its meaning is de�ned in terms of de�nitions presented earlier for the transition state

condition:

CHAPTER 5. SEMANTICS 154

(:stateName,:transName)

InState stName (s:(stateName,transName)sc_struct) := Instate stName s ;

It has the type bool.

5.10 ScEvent

The events En and Ex for entering and exiting states are events that can be used in a speci�-

cation in CoreSc. Two uninterpreted functions, EnJustOccurred and

EvJustOccurred, are used to capture the history of these events. These functions have

the following type signatures:

(:stateName) EnJustOccurred :stateName -> bool;

(:stateName) ExJustOccurred :stateName -> bool;

The components of the meaning of these events are de�ned using these functions.

An En event occurred in the previous step if the function EnJustOccurred applied to the

state name returns the value true:

(:stateName)

EnOccurred (stn:stateName) cf := EnJustOccurred stn cf;

An En event occurs in a step if a transition is taken that enters the state that is

its argument:

(:stateName,:transName)

EnOccurs stn (s:(stateName,transName)sc_struct)

(step:(transName)ext_step) :=

let alltrans := transInState s in

any

(\t. TransTaken t step /\ (stn member (statesEntered s t)))

alltrans ;

CHAPTER 5. SEMANTICS 155

Because this function depends on both the previous and next con�gurations of a step,

the uninterpreted constant EnJustOccurred is necessary to record this history in the next

con�guration. The set of transitions that are taken must be used to determine the status

of this event rather than just the status of the states because of looping transitions

To update the status of the En event, the value of the EnJustOccurred function in

the next con�guration captures the value of EnOccurs for this step:

(:stateName,:transName)

EnUpdate stn (s:(stateName,transName)sc_struct) (flag:BOOL)

(step:(transName)ext_step) :=

~flag \/

(EnJustOccurred stn (ExtNext step) EQ EnOccurs stn s step);

The constraint on the EnJustOccurred constant need only be enforced if it has not previ-

ously been captured (i.e., flag is true). Otherwise, its history will be captured elsewhere.

An En event occurs at initialisation if the system starts in the state in the initial

con�guration.

All of the components of the En event are captured in the �ve-tuple in the following

de�nition:

(:stateName,:transName)

En stn (s:(stateName,transName)sc_struct) (lab:transName) (p:path) :=

(EnOccurred stn,

EnUpdate stn s,

EnOccurs stn s,

EnInit stn s,

EnOccursAtInit stn s);

The de�nitions for EnInit and EnOccursAtInit along with the semantic de�nitions for

the event Ex can be found in Appendix J.

CHAPTER 5. SEMANTICS 156

5.11 CommAction

Section 4.14 introduced the keywords SendData and Send, which allow a state to send

directed communication to another state.

This action notation require the introduction of two uninterpreted functions to

provide names to pass information between a sender and a receiver. The uninterpreted

function Msg has the type signature:

(:stateName,:msg) Msg : stateName -> stateName -> msg -> bool;

It has the value true when the statechart of the �rst state name is sending a particular

message to the statechart of the second state name. The data of the transaction is captured

in the value of the function Data:

(:stateName,:msg,:ty)

Data: stateName -> stateName -> msg ->(ty)exp;

As an action, SendData modi�es two names: the Msg function for the appropriate

argument and the Data function for the same argument. Therefore, it returns a list of

two modi�cations each consisting of an identi�er for the name (in this case the name is

the application of a function to arguments), the condition that states what happens if the

value of the name changes and the condition describing the scenario where it does not

change.

A SendData action sets the value of the Msg function for appropriate arguments

to true in the next con�guration. If it does not occur (and no other transitions modify

the value), the value is set to false. It also sets the value of Data to the value of the data

argument. If the action does not occur, there are no restrictions on the value of Data for

these arguments. The complete de�nition of SendData is:

CHAPTER 5. SEMANTICS 157

(:stateName,:transName,:msg,:ty)

SendData (s:(stateName,transName)sc_struct)

(dest:stateName) (ms:msg) (data:(ty)exp) :=

[(NAME (Msg (stateName s) dest ms),

\step.(Msg (stateName s) dest ms (Next step)) EQ T,

\step.(Msg (StateName s) dest ms (Next step)) EQ F);

(NAME (Data (stateName s) dest ms),

\step.

(Data (StateName s) dest ms (Next step)) EQ (data (Prev step)),

\step.T)];

The Send keyword is de�ned as only the �rst of the two modi�cations above. The

complete set of semantic de�nitions for CommAction can be found in Appendix K.

5.12 CommEvent

Section 4.15 introduced the keywords Receive and ReceiveData as events for simple

directed communication between states in a statechart speci�cation. This section gives

their meaning in terms of the �ve components of an event.

The ReceiveData event occurred in the previous step if the value of the Msg func-

tion is true for the appropriate addresses (state names) and messages:

(:stateName,:transName,:msg)

ReceiveDataOccurred

(src:stateName) (dest:stateName) (ms:msg) (cf:config) :=

Msg src dest ms cf;

Updating the status of the Receive event involves setting the value of the data

argument to equal the value of the Data function. This update is done whether the event

CHAPTER 5. SEMANTICS 158

occurs or not. Therefore, the value of the data is only valid in the con�guration following

the step where the event occurs.

(:stateName,:transName,:msg,:ty)

ReceiveDataUpdate (src:stateName) (dest:stateName) (ms:msg)

(data:(ty)exp) (flag:BOOL) (step:(transName)ext_step) :=

data (ExtNext step) EQ Data src dest ms (ExtNext step);

The ReceiveData event occurs in a step if the value of the Msg function is true in

the next con�guration. At initialisation, no messages have been sent.

The Receive keyword has the same meaning as the ReceiveData keyword except

there are no constraints in updating the status of the event since Receive does not include

a data value. Appendix K contains the complete de�nitions.

5.13 Reasoning about the semantics

The semantic de�nitions presented in this chapter are packaged embeddings of the nota-

tions. The main bene�t of this approach for the framework is the ease with which multiple

notations can be used in one speci�cation. The semantic de�nitions can be thought of as

a translator to predicate logic, written in a functional programming language.

Another advantage of writing the meaning of a notation in higher-order logic is

that it is possible to reason about the semantics themselves. Reasoning is often done

using a deep embedding, which makes it possible to prove properties that hold over all

uses of a notation. With a shallow embedding, proofs of a property of the semantics

can only be phrased over all possible notations for a join point. For example, a property

proven about statecharts must be over all possible event notations that have currently

been described and could be added in the future because notations are combined based on

type consistency. Thus goals must be phrased over all possible elements of the appropriate

type.

CHAPTER 5. SEMANTICS 159

For example, we hypothesise the following property of statecharts: if the root state

is an AND-state and each component state of the state has the properties

� no transition within a component is triggered in whole or in part by the event of

entering or exiting a state that is not within the component

� the sets of names modi�ed by actions for each component are disjoint

then:

Sc (AndState stname [st1;st2; : : : stn]) step �

Sc st1 step /\ Sc st2 step /\ : : : /\ Sc stn step

Italic font is used to represent variables in the above expression. This property should be

true for all possible values of the variables. In a statechart, no transitions can have scope

outside the root state. Also, a well-formedness constraint ensures that transitions do not

cross AND-state boundaries so the sets of transitions for each component are disjoint. We

sketch a proof of this property in two parts.

The �rst part shows that:

ScAux (AndState stname [st1 ;st2; : : : stn]) transList extStep �

ScAux st1 transList1 extStep1 /\

ScAux st2 transList2 extStep2 /\

: : : ScAux stn transListn extStepn

The set of transitions within stx is transListx, and extStepx is the step that includes the

mapping from transition labels within the component x to Boolean variables.

The second part of the proof shows that the existential quanti�cation of the Boolean

ags associated with the transitions can be moved in to apply just to the component

containing that transition. The following logical rule is applicable:

x 62 FreeV arsB =) 9x:A ^B � (9x:A)^ B

The �rst part of the proof has to examine each part of the de�nition of ScAux. The

transition state condition is decomposed into a conjunction because the root state is an

CHAPTER 5. SEMANTICS 160

AND-state and the transitions are allocated to the substates of the AND-state based on

their scope. Therefore, the property is valid for the transition state condition.

The name condition resolves race conditions. Thus the property is dependent

on no race conditions existing between components. The name condition can then be

partitioned based on the names. If the modi�ed names of each component are disjoint,

then the property is valid for the name condition.

The event condition is partitioned based on the transitions. If multiple transitions

(even in di�erent components) are triggered in whole or part by the same event, the same

update of the event (i.e., incrementing or reseting of the counter) will be required as long as

the update is based on information that can be seen by all components. Because entering

and exiting events are dependent on the status of transitions, when the state of interest

to an En or Ev event is outside the AND-state component the property will not hold. The

part of the proof for the event condition would proceed by structural induction on the

event of a transition.

The heating system satis�es the assumptions of this property of the CoreSc seman-

tics, therefore it can be broken apart into its component statecharts. Breaking apart a

statechart helps to deal with a large con�guration space (because existential quanti�cation

is carried out earlier) and will be used in Chapter 7.

5.14 Summary

This chapter has presented our approach to determining the meaning of a notation and

associating meaning with representation. The meaning of a notation is provided by op-

erational semantics. The meaning is associated with the notational style using packaged

embeddings. The semantics for the example notational styles of the previous chapter were

de�ned.

The type signatures for the four categories of notations were presented. A model

CHAPTER 5. SEMANTICS 161

results in a next con�guration relation, which is used in con�guration space exploration

analysis.

By using a packaged embedding of the notational styles, our approach is extensible.

As described in the previous chapter, type checking regulates the possible combinations.

Speci�cations can use higher-order logic as a notation, which means that uninterpreted

constants are allowed and parameterisation of components in particular notations can be

achieved without any extensions to the notation or its semantics.

Evaluation of the semantic de�nitions results in the meaning of the speci�cation in

\raw higher-order logic". The next chapter describes a technique, called symbolic func-

tional evaluation, that can be used to evaluate the semantics. Direct use of the semantics

ensures that all forms of analysis understand the same meaning for the speci�cation.

The semantics are de�ned operationally for the sake of the desired type of analysis.

Another potential use for them is to compare them to other versions of the semantics

that are useful for other types of analysis. The semantics can also be used to establish

properties of particular notations that can help in analysis. We demonstrated a derivation

of a property of statecharts that will be used for analysis of the ATN example.

Once the semantics for a particular notational style have been written (likely by

a formal methods expert), speci�ers need not examine them except in cases where they

question their intuitive understanding of the meaning of the notation. While initial in-

vestment is required in their preparation, the semantics are repeatedly used in analysis of

multiple speci�cations.

Chapter 6

Symbolic Functional Evaluation

(SFE)

The categories of notations systematise the way that notational styles can �t together in

a speci�cation (Chapter 4). The packaging of semantic de�nitions with the keywords of

notational styles makes the framework extensible (Chapter 5). In this chapter we describe

our solution to the seventh sub-problem introduced in Chapter 1, namely determining

the meaning of a speci�cation (Section 1.2.7). Our solution to this problem is the key to

achieving rigour for our framework outside of a theorem proving environment.

Rigour is achieved by the direct use of the semantic de�nitions to determine the

meaning of the speci�cation. Expanding the de�nitions of the speci�cation, the de�nitions

of the keywords of the notational style, and the internal semantic de�nitions, results in

an expression in \raw higher-order logic" (RHOL), i.e., an expression in terms of only

the built-in constants and any uninterpreted constants that have been introduced. The

expression in RHOL is semantically equivalent to the original speci�cation. This chapter

presents our technique for carrying out de�nitional expansion and normal order reduction

called symbolic functional evaluation (SFE).

162

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 163

The key contributions found in this chapter are

� adaptation of algorithms from functional programming language theory to carry out

de�nitional expansion and beta-reduction in higher-order logic

� identi�cation of distinct levels of evaluation

� a method that preserves the \unevaluated" version of expressions

� integration of a selection of inference rules for higher-order logic that can be applied

automatically

Section 6.1 describes how symbolic functional evaluation �ts within the context of

the framework and contrasts it to translation approaches. Section 6.2 motivates making

a distinction between uninterpreted constants and other lambda calculus variables, and

having evaluation levels for expressions in higher-order logic. Because the evaluation pro-

cess need not always go as far as producing RHOL to be of use in automated techniques,

modes of SFE produce expressions at di�erent levels of evaluation. Section 6.3 describes

the evaluation levels. Section 6.4 presents our algorithm for symbolic functional evaluation.

Section 6.5 describes the data structures used to represent expressions in this algorithm

and how the \unevaluated" form of the expression can be remembered for analysis output.

Section 6.6 describes the small optimisation made in the semantics of CoreSc for evalua-

tion. Section 6.7 discusses evaluation of the built-in constants. Finally, in Section 6.9, we

consider how selected inference rules can be applied during symbolic functional evaluation

to expose more information about the speci�cation to analysis techniques.

Symbolic functional evaluation is applicable to any expression in higher-order logic.

Therefore, it could have uses outside of the framework presented in this dissertation.

For example, de�nitional expansion and beta-reduction are commonly used in theorem

proving. SFE can be used to support the symbolic simulation style of proof that has been

used in theorem proving approaches to the formal veri�cation of digital circuits.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 164

uninterpreted
constants

semantic
definitions

built-in
constants

uninterpreted
constants

defined using

defined using

defined using

defined using

raw higher-order logic

specification

constructs
of notational

styles

Figure 6.1: Speci�cation within the framework

6.1 Purpose within the framework

Previous approaches to linking automated analysis to requirements speci�cation notations

have often involved translation from the original notation to the input notation of the

analysis tool. The code of the translator can be considered an operational semantics.

However, unless the original speci�cation uses only elements of �nite types, and does not

use uninterpreted constants, this translation process often includes abstraction to produce

a form of the speci�cation in the input notation of the analysis tool. To the extent

that the translator departs from the semantics of the notation, translation can introduce

inconsistencies between the original speci�cation and the output of the translator.

Figure 6.1 describes the relationship between the speci�cation and the various ele-

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 165

ments of the framework. Our approach is to make direct use of de�nitions in logic to carry

out the \translation" step. This approach can be thought of as writing a functional pro-

gram to carry out the translation. The output of completely evaluating the speci�cation

is raw higher-order logic in that it includes only the built-in uninterpreted constants and

any introduced uninterpreted constants. We di�er from previous approaches in two im-

portant ways. First, the result of the evaluation is semantically equivalent to the original

speci�cation. No information is lost in this process. Second, the de�nitions are written in

logic and therefore serve as a formal description of the semantics of the notational style.

The semantic functions are a speci�cation for a translator to RHOL. SFE evaluates these

de�nitions. Evaluating the semantic de�nitions in logic ensures that the \translator" ex-

actly matches its speci�cation. They are the same. Rather than writing code for a tool

that meets the speci�cation of the translator, we just use the speci�cation directly.

De�nitional expansion is traditionally accomplished in theorem provers using rewrit-

ing techniques. These techniques use theorems of equality to replace an instance of an

expression with its equal. General rewriting involves several steps that are unnecessary

for de�nition expansion. First, theorems of equality must be proven truths in the logic.

Second, and most important, general rewriting includes a step called uni�cation, which

searches for matches between expressions and theorems of equality. The use of a de�ned

constant is easily matched to its de�nition by its name and does not require general uni-

�cation. Third, rewriting often provides and requires more precise control of the speci�c

de�nitions that are expanded. Symbolic functional evaluation requires none of these steps

and therefore can avoid the complexities associated with more general rewriting. However

SFE is not as general as rewriting.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 166

6.2 Uninterpreted constants

Functional programming language theory provides algorithms and data structures to eval-

uate e�ciently functional programs. Functional programs are essentially the lambda cal-

culus without free variables. Uninterpreted constants used in both the speci�cation and in

the semantic de�nitions (such as InBasicState) do not have de�nitions. These constants

are free variables in the lambda calculus. We extend Peyton Jones' algorithm found on

Figure 3.2 on page 59 to include a case for variables. If the tip of the expression is a

variable, it is recombined with its arguments as a function application. Substitution must

also check for name capture. These extensions by themselves make no distinction between

uninterpreted constants and bound variables. Functional programming languages already

distinguish constructors from other variables. From this point on, we will use only the

terminology for expressions from higher-order logic, which distinguishes constants and

variables, both called variables in the lambda calculus. In this terminology, an expression

is a constant, variable, abstraction, or application. Constants include uninterpreted con-

stants and constructors. Quanti�cation is the application of the higher-order functions

FORALL or EXISTS to a lambda abstraction.

When evaluating expressions that include uninterpreted constants, there are two

special considerations.

First, many automated analysis techniques work on �nite speci�cations. Therefore,

a �nite abstraction of a speci�cation in the framework may have to be created for analysis.

One simple method for creating an abstraction of the speci�cation is to consider any

fragment of an expression without a logical connector at its tip as one Boolean variable.

This method abstracts away any details about the speci�cation within these fragments.

Consequently when using this approach, it is su�cient to reach the weak head normal

form of expressions that do not have logical connectors at their tips. We can tell when

an expression will never evaluate to an expression with a logical connector at its tip when

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 167

evaluation encounters an uninterpreted constant at the tip of an application. At this

point, further evaluation exposes details about the speci�cation that will be lost in the

abstraction for analysis. Therefore, we do not always need to reduce all redexes and there

is value in stopping early for e�ciency.

The second special consideration is that unlike variables bound within some scope

(and therefore free within another scope), uninterpreted constants will never change in the

expression. The most time consuming part of the evaluation algorithm is the substitution

of arguments for parameters. A subexpression that has uninterpreted constants but no

variables will never change in a substitution, so the algorithm can save the e�ort of walking

over this subexpression in substitution.

The �rst point motivates the desire to have modes of SFE whose goals are to

evaluate an expression to the point where it is known to be in certain forms similar to

weak head normal form and normal form (Section 3.2), and another level in between these

two forms. The second point results in an optimisation in the substitution algorithm.

6.3 Levels of evaluation

Section 3.2 on page 52 presented de�nitions of normal form and weak head normal form

of an expression. These forms are not exclusive categories, i.e., an expression in normal

form is also in weak head normal form.

SFE is an evaluation process for substituting de�nition bodies for de�ned constants

and reducing the redexes in an expression in higher-order logic. As described in the

previous section, it is not always necessary to reduce all the redexes in an expression.

Therefore, we want to have early stopping points in the process for e�ciency. Two useful

early stopping points are reaching the point at which two expressions can be compared

(called the point of distinction), and reaching the point of being able to apply certain

rewrite rules (discussed in Section 6.9).

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 168

To de�ne precisely these stopping points, a tag is associated with each expression

indicating how much evaluation has been carried out on that expression. This section

de�nes the possible levels of evaluation for expressions. They are, in order: NOT EVAL

(not evaluated), PD EVAL (evaluated to the point of distinction), RW EVAL (evaluated

for rewrite simpli�cation), SYM EVAL (evaluated with symbols), and FULL EVAL (fully

evaluated). At any time, each expression has exactly one tag. Initially every expression

has the tag NOT EVAL meaning it has not yet had any evaluation carried out on it.

Evaluation of an expression can have two e�ects:

� It can produce a new equivalent expression with a di�erent tag to indicate the new

expression is evaluated to some extent.

� It can change the tag of the expression indicating it has been \examined" and can

be categorised as some level of evaluation without changing the expression.

If a new expression is produced it is inserted in place of the old expression. Therefore,

when we de�ne levels of evaluation using the phrase \an argument in a function application

has been evaluated to a certain level of evaluation", it should be understood to describe

either of the two e�ects of evaluating an expression.

Expressions in higher-order logic are: 1) applications, 2) abstractions, 3) variables,

and 4) constants. We subdivide the category of constants into: 4a) uninterpreted con-

stants, 4b) de�ned constants, 4c) constructors, and 4d) built-in constants.

The levels of evaluation are distinguished mainly with respect to the extent to which

the arguments of applications of uninterpreted constants, variables and constructors are

evaluated. De�ned constants and abstractions in redexes are eliminated in evaluation.

The levels apply to expressions that do not have built-in logical constants, such as AND,

at their tip, which will be discussed subsequently.

We de�ne �ve levels of evaluation (and tags) in order. A BNF-like notation is

used to de�ne the set of tagged expressions that belong in each level. This BNF does not

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 169

describe a notation for parsing. Rather, it is used as a compact way to describe the results

of evaluation. A BNF is used because the tag (or level) of an expression is determined

by the tags of its subexpressions. The terminals of this BNF are not described. They are

the constants and variables of a particular speci�cation. Section 6.4 shows how turning

the BNF \upside-down" (i.e., starting from an expression rather than starting from the

components of an expression) results in an algorithm that evaluates an expression to the

level of a desired tag.

As will be seen in the de�nitions of expressions with the tags SYM EVAL and

FULL EVAL, uninterpreted constants, and variables by themselves have the tag SYM EVAL,

and constructors have the tag FULL EVAL once examined. Because these expressions have

particular signi�cance at the tip of a function application, the BNF uses their names as

non-terminals.

The name of the tag is used as a non-terminal in the BNF to represent expressions

that have that tag. Juxtaposition represents applications. The phrase \n variable . exp"

represents an abstraction. Items in brackets separated by \j" mean that one of these items

must be chosen. A *" after an item means zero or more of these items. A \+" after an

item means one of more of these items. A series of BNF non-terminals called \levelxup"

is used to describe all the levels including level x and above.

6.3.1 Not evaluated

An expression with the tag NOT EVAL has not had any evaluation carried out on it.

Uninterpreted constants, variables, and constructors that have not been examined have

the tag NOT EVAL. The application of an expression with the tag NOT EVAL to any

other expression is considered NOT EVAL.

NOT EVAL ::= NOT EVAL level1up+

j n NOT EVAL . level1up

level1up ::= (NOT EVAL j level2up)

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 170

6.3.2 Evaluated to the point of distinction

Expressions at the second level of evaluation have the tag PD EVAL. By de�nition, ex-

pressions at this level are either applications or abstractions. The point of distinction

means the expression can be compared (for example, using equality) to other expressions.

If it is an application with a constructor at its tip, it can be determined to be not equal

to another expression with a di�erent constructor (of the same type) at its tip. If the

application has an uninterpreted constant or variable at its tip, then it can never be dis-

tinguished from another expression1. If the expression is an abstraction, the abstraction

can never be reduced.

For a function application to have the tag PD EVAL, its tip must be an uninter-

preted constant, a constructor or a variable, and at least one of its arguments has not had

any evaluation carried out on it. If the expression is an abstraction, it cannot be reduced

further and has the tag PD EVAL if its body is not evaluated as much as possible (i.e., its

body has a tag other than SYM EVAL or FULL EVAL).

tip ::= (uninterpreted constant j constructor j variable)

PD EVAL := tip level1up* NOT EVAL level1up*

j n NOT EVAL . (PD EVAL j RW EVAL j NOT EVAL)

level2up ::= (PD EVAL j level3up)

This level is roughly equivalent to weak head normal form except that irreducible appli-

cations of built-in constants such as AND are not stopping points when found at the tip of

the application.

For example, the expression (f1 ((\x.x) 1)) AND (f2 k) is at the level of PD EVAL

if f1 and f2 have been determined to be uninterpreted constants and at least one of

((\x.x) 1) and k is NOT EVAL.

1An uninterpreted constant is a distinct but unknown value, therefore it can never be determined
to be not equal to another value using evaluation.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 171

6.3.3 Evaluated for rewrite simpli�cation

To apply the rewrite rules described in Section 6.9, the expression must be evaluated

to the point of being able to determine their applicability. We have found determining

this applicability requires carrying out the evaluation one step further than the PD EVAL

level in that all arguments to the function must be evaluated at least to the point of

distinction. Expressions with the tag RW EVAL include function applications in the range

between PD EVAL and SYM EVAL. Therefore, at least one argument does not have the

tag SYM EVAL or FULL EVAL, and no arguments have the tag NOT EVAL.

RW EVAL ::= tip level2up* (PD EVAL j RW EVAL) level2up*

level3up ::= (RW EVAL j level4up)

6.3.4 Symbolically evaluated

An expression with the tag SYM EVAL is in normal form where no redexes remain, and

the expression contains uninterpreted constants or variables.

SYM EVAL ::= (uninterpreted constant j variable) level4up*

j constructor level4up* SYM EVAL level4up*

j n variable . (SYM EVAL j FULL EVAL)

level4up ::= (SYM EVAL j FULL EVAL)

All expressions with terminating reduction sequences (i.e., ones that have a normal form)

that are de�ned in terms of uninterpreted constants can reach this level of evaluation. An

expression at this level cannot be evaluated any further.

6.3.5 Fully evaluated

In a functional program, all expression with a normal form can be reduced to the point

of containing only constructors. Expressions in higher-order logic that contain only con-

structors have the tag FULL EVAL assigned. Intuitively, an expression that can be reduced

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 172

to this level is fully executable. All expressions with a terminating normal order reduction

sequence will reach one of the levels SYM EVAL or FULL EVAL.

FULL EVAL ::= constructor FULL EVAL*

For example, the expression NIL, once it has been examined to be a constructor is consid-

ered fully evaluated. The expression CONS 1 NIL is also considered to be fully evaluated

once all of the subexpressions CONS, 1, and NIL have been examined to be constructors.

6.3.6 Special cases

There are three special cases to consider in symbolic functional evaluation. Constants

de�ned by non-pattern matching de�nitions can only appear at the tip of applications (or

subexpressions) that have not been evaluated, or within arguments to expressions with

the tags PD EVAL or RW EVAL. A constant de�ned by a pattern matching de�nition is

a special case. An expression that is the application of a constant de�ned by a pattern

matching de�nition must always have the �rst argument evaluated to the point of dis-

tinction to determine if the argument matches a case of the de�nition. If the argument

does match a case, evaluation proceeds by substituting the arguments into the body of

the pattern's de�nition as with simpler de�nitions. If a match cannot be found or if the

argument does not have a constructor at the tip, then evaluation proceeds as if the tip is

an uninterpreted constant.

Some built-in constants have special signi�cance. Non-lifted conjunction, disjunc-

tion and negation are never stopping points for evaluation when they are at the tip of

an expression. The level of evaluation of such an expression is de�ned as the lowest level

of its arguments if they cannot be fully evaluated. The same is true for quanti�ers over

Boolean variables. Over non-Boolean variables, quanti�ers are considered as uninterpreted

constants.

The constants for the non-lifted arithmetic operators must have at least one of

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 173

their arguments evaluated to the point of distinction to determine if the expression can be

reduced. If reduction is not possible or there are not enough arguments for the operator,

they are treated as uninterpreted constants.

6.4 Evaluation algorithm

The goal of symbolic functional evaluaton is to evaluate expressions in higher-order logic

to the point where the expression falls into a particular level of evaluation. The user

chooses the mode for SFE usually based on the minimum mode that is suitable for the

type of analysis to be carried out.

For an input expression that falls into any level, there are three modes for SFE:

evaluate: produce an expression that is either fully evaluated or symbolically evaluated.

evaluate for rewrite simpli�cation: produce an expression that is either fully evalu-

ated, symbolically evaluated, or evaluated for rewrite simpli�cation.

evaluate to the point of distinction: produce an expression that is in any level except

not evaluated.

The above classi�cation applies only to terminating evaluation sequences. No spe-

cial provisions have been provided to check for non-termination.

We now present an algorithm that implements symbolic functional evaluation. It

carries out lazy evaluation which means arguments to functions are not evaluated until they

are used, and evaluation is carried out in place. This normal order reduction algorithm

extends the spine unwinding algorithm presented in Section 3.2 on page 59 to deal with

uninterpreted constants and variables.

Figure 6.2 gives the top-level algorithm. It is called initially with an expression, an

empty argument list, and the desired level of evaluation of the expression. This algorithm

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 174

expression EvalExpression(expression *exp, expressionlist arglist, flag mode)

/* stopping point ? */

if (arglist==NULL) and (EvalLevel(exp) >= mode) then

return exp

else if (mode == PD_EVAL) AND (EvalLevel(exp) >= mode) then

Recombine(exp,arglist,NOT_EVAL)

endif

switch (formof(exp))

case VARIABLE (v) :

SetEvalLevel(exp,SYM_EVAL)

if (arglist) then

return Recombine(exp, arglist, mode)

else

return exp

endif

case APPLICATION (f a) :

newarglist = add a to beginning of arglist

newexp = EvalExpression(f, newarglist,mode)

if (arglist==NULL) then

ReplaceExpr(exp, newexp)

endif

return newexp

case ABSTRACTION (parem exp):

(leftover_args,newexp) = Substitute(exp, parem, arglist)

return EvalExpression(newexp,leftover_args,mode)

case CONSTANT(c) :

return EvalConstant(exp, arglist, mode)

Figure 6.2: Top-level algorithm for symbolic functional evaluation

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 175

implements spine unwinding where the arguments to an application are placed on an

expression list until the tip of the application is reached.

The possible values for the \mode" parameter are the three tags representing the

minimum desired level of the output expression: SYM EVAL, RW EVAL, and PD EVAL.

The possible tags are ordered with the highest level being FULL EVAL. The two functions

EvalLevel and SetEvalLevel respectively access and set the tag giving the evaluation

level in the data structure representing an expression.

The �rst part of the algorithm determines if the top-level expression (i.e., args

is NULL) has been su�ciently evaluated already, in which case no processing needs to be

carried out. If the expression has already been partially unwound (i.e., args is not NULL),

but the left branch of the application has already been evaluated to PD EVAL and this

tag is the mode of SFE, then evaluation can stop and the left branch can be recombined

with its arguments.

Figure 6.3 gives the algorithm for Recombine. If the desired level of evaluation

is RW EVAL then each argument is evaluated to the point of distinction. If the mode

is PD EVAL, then the arguments to the function do not need to be evaluated. If the

mode is SYM EVAL then the arguments also need to be evaluated to the level SYM EVAL.

The function Combine evaluates the arguments to the desired level and re-creates the

application. Because evaluation is carried out in place, the arguments may already have

been evaluated to some level. The evaluation level of the result is determined according

to the rules found in Table 6.1 which are derived from the BNF for the evaluation levels.

The �rst row for the case where the tip of an application has the tag NOT EVAL should

never be encountered.

Turning again to Figure 6.2, if the expression does not have the desired tag or

higher, the algorithm proceeds based on the form of the expression. If the expression is a

variable, its evaluation level is set to SYM EVAL. If there are arguments to the expression,

an application is recreated by combining it with its arguments.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 176

expression Recombine (expression exp, arglist args, flag mode)

if (mode==RW_EVAL) then

return Combine(exp,args,PD_EVAL)

else if (mode==PD_EVAL) then

return Combine(exp,args,NOT_EVAL)

else

return Combine(exp,args,mode)

endif

Figure 6.3: Rebuilding the application of an unde�ned function

Table 6.1: Combining evaluation levels

Left Branch

Right Branch

NOT EVAL PD EVAL RW EVAL SYM EVAL FULL EVAL

NOT EVAL ERR ERR ERR ERR ERR

PD EVAL PD EVAL PD EVAL PD EVAL PD EVAL PD EVAL

RW EVAL PD EVAL RW EVAL RW EVAL RW EVAL RW EVAL

SYM EVAL PD EVAL RW EVAL RW EVAL SYM EVAL SYM EVAL

FULL EVAL PD EVAL RW EVAL RW EVAL SYM EVAL FULL EVAL

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 177

If the expression is an abstraction, the arguments are substituted for the param-

eters in the body of the lambda abstraction and the resulting expression is evaluated.

Substitution is discussed in the next section (Section 6.4.1).

If the expression is an application, spine unwinding is carried out. After evalua-

tion, the original expression is replaced with the evaluated expression, using the function

ReplaceExpr, to accomplish evaluation in place to maximise the re-use of results. A

pointer to the expression is used.

The case for expressions that are constants will be presented separately in Sec-

tion 6.4.2.

6.4.1 Substitution

This section describes the Substitute function used in the algorithm of Figure 6.2. Beta-

reduction relies on substitution to replace the parameters of an abstraction or de�nition

with arguments. Multiple substitutions are made within one substitution operation by

using a local context. A context is a matching of parameters with arguments. Once each

parameter and its argument have been placed in the context, substitution by means of the

algorithm of Figure 6.4 can proceed (SubstituteAux). Afterwards, if there are too few

arguments for parameters (i.e., the number of arguments unwound in an application is

less than the number of parameters), the expression is returned as an abstraction over the

extra parameters. If there are more arguments than parameters, the leftover arguments

are returned to the calling function. Leftover arguments often occur in evaluating function

applications such as FST with an argument that is a pair of higher-order functions. The

result of the substitution is later evaluated as an application with these arguments.

The SubstituteAux algorithm recursively walks over the expression making the

appropriate substitutions. By adding a
ag to every expression to indicate if it has any

variables, we can optimise this process. Parameters are variables when they are used

in an expression. If no variables are present in a subexpression, there will not be any

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 178

expression SubstituteAux(expression exp)

if (not (containsVar(exp))) then

return exp

endif

switch (formOf(exp))

case VAR (v) :

if (v is in a local context with a substitution r) then

return r

else

return exp

endif

case APPL (f a):

return NewAppl(Substitute(f),Substitute(a)))

case ABS (parem exp):

/*

assumes a list of free vars in all arguments to be substituted has

already been calculated in freevars

*/

if (parem in freevars)

newparem = a variable name that

is not in freevars and is not free in exp

match parem with newparem in substitution list

exp = NewAbs(newparem,Substitute(exp))

remove parem from substitution list

return exp

else

return NewAbs(parem,Substitute(exp))

endif

Figure 6.4: Part of the substitution algorithm

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 179

substitutions to carry out and the algorithm does not need to walk over that subexpression.

This optimisation arises because uninterpreted constants are not considered variables (as

they would normally be in the lambda calculus).

If a variable is encountered, it checks for a substitution within the context. If it

encounters an expression that is an abstraction, it must check for name capture. Our

algorithm for dealing with name capture is based on the rules for substitution presented

in Table 3.1 on page 52. The variables contained in all of the arguments being substituted

are calculated the �rst time an abstraction is encountered in the expression. They are

stored in the global variable freevars. If the parameter of the abstraction expression is

also in the list of free variables, then the name of the parameter must be changed to avoid

name capture of the free variables in the substituted arguments. A new name is chosen

that is in neither freevars, nor the remaining list of parameters, and is not a free variable

in the body of the abstraction. The matching between the old name and the new name is

inserted into a local context just as a normal substitution.

6.4.2 Evaluation of expressions with constants at the tip

The evaluation of constant expressions is decomposed into cases depending on the category

of the constant. Figure 6.5 presents an algorithm for this process. If the constant is

a constructor, its evaluation level is set to FULL EVAL and it is recombined with its

arguments which are evaluated to the desired level of evaluation. If the constant is a

built-in function, the particular algorithm for the built-in constant is executed. If the

expression is an uninterpreted constant, its evaluation level is set to SYM EVAL and it is

recombined with its arguments. If the expression is a constant de�ned by a non-pattern

matching de�nition, it is treated as an abstraction.

The most complicated case involves a constant de�ned by a pattern matching with

at least one argument. Its �rst argument must be evaluated to the point of distinction and

then compared with the constructors determining the possible branches of the de�nition.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 180

If a match is found, the arguments to the constructor expression as well as the remaining

arguments to the expression are substituted into the body of the appropriate branch of

the de�nition. The expression resulting from this substitution is then evaluated. A match

may not be found because the constant was partially speci�ed (i.e., it was not de�ned for

all constructors), or because its �rst argument has an uninterpreted constant at its tip.

If a match is not found, the expression is recombined with its arguments as if it is an

uninterpreted constant.

6.5 Data structures

The data structure representing an expression is a directed acyclic binary graph where, as

much as possible, common subexpressions are the same graph. As an expression is �rst

constructed, it is possible to ensure that there is no duplication of subexpressions through

a canonical node representation, which is a particularly attractive feature since it makes

checking for syntactic equality of expressions a constant time operation.

To carry out evaluation in place, placeholder nodes must be inserted in the graph.

The expression that was evaluated becomes a placeholder pointing to the evaluated expres-

sion and the structure loses the property of being canonical. Therefore, equality checking

cannot rely on this property; however, by beginning with an expression in canonical form,

equality of pointers will reduce some of the time needed to check for equality of expressions.

The replace operation (ReplaceExpr used in Figure 6.2) has to ensure no loops are

created in the data structure from evaluation of non-well-founded recursion. This process

can be optimised by determining whether a de�nition is recursive on its input. If it is not

recursive, then it can never create a loop.

As expressions are evaluated and no longer used, and new expressions are created,

garbage collection becomes an issue. In general, with uninterpreted constants, evaluated

expressions are often larger than their unevaluated forms. We chose to use reference

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 181

expression EvalConstant(expression exp, expressionlist arglist, flag mode)

if (isConstructor(c)) then

SetEvalLevel(exp,FULL_EVAL)

if (args) then

exp = Recombine(exp,arglist,mode)

endif

return exp

else if (isBuiltInFcn(c)) then

return appropriate_built-in_fcn(arglist, mode)

else if (isUninterpreted(c)) then

SetEvalLevel(exp,SYM_EVAL)

if (arglist) then

return Recombine(exp,arglist,mode)

else

return exp

endif

else if (isPatternMatchingDefinition(c)) then

if (arglist==NULL) then

SetEvalLevel(exp,SYM_EVAL)

return exp

else

arg1 = EvalExpression(first arg on arglist,NULL,PD_EVAL)

if (there is a constructor at the tip of arg1) then

t = constructor at the tip of arg1

argparts = arguments to t in arg1

if (there is a branch of Defn(c) that matches t) then

body = branch of Defn(c) that matches t

constrpars = parameters to t in branch definition

(leftovers_args,newexp) = Substitute(body,

constrpars and rest of parameters to defn,

argparts and rest of arglist)

return EvalExpression(newexp,leftover_args,mode)

else

return Recombine(exp,arglist,mode)

endif

else

return Recombine(exp,arglist,mode)

endif

endif

else /* non-pattern matching constant definition */

(pars, body) = Defn(c)

(leftover_args,newexp) = Substitute(body, pars, arglist)

return EvalExpression(newexp,leftover_args,mode)

endif

Figure 6.5: Evaluating a constant expression

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 182

counting, where the number of expressions pointing to a subexpression are tallied, and

garbage collection is carried out on the
y.

Experiments with the analysis techniques that will be described in the next two

chapters pointed out the value of being able to present the user with the unevaluated

form of expressions, which makes it easier to interpret the results of the analysis. This

technique is part of our solution to the problem of reporting results to the user intro-

duced in Section 1.2.9. For example, it is used in the output of completeness analysis of

tables. Cases missing from a table are presented in terms of the row labels found in the

speci�cation, rather than the evaluated (and potentially expanded) row labels.

Evaluation in place, i.e., replacing the original expression with its evaluated expres-

sion, implies the original expression is no longer available. However since a placeholder

is used to point to the new expression, by not discarding the subexpressions of the old

expression, the less evaluated version of the expression is present. An option of SFE keeps

the unevaluated versions of expressions. If the old expression is not kept, then our imple-

mentation of some of the automated techniques collapses the expression back to canonical

form to save space and improve performance of equality tests. Statistics for examples

presented in Chapter 8 will be described in terms of the collapsed size of an evaluated

expression.

Keeping the unevaluated version of the expressions can increase the evaluation time

because substitutions made in the evaluated expression must also be made in the original

expression. Consequently keeping the unevaluated expressions is an optional feature for

evaluation. We can also customise which function applications have their unevaluated

version kept. For example, the unevaluated versions of the semantic de�nitions are of

little use in the output. The user is only interested in the more abstract versions of the

elements of their speci�cation. These optimisations save time and space.

Even though evaluation is carried out in place, expressions are created and de-

stroyed during evaluation. Consequently a cache is used based on pointer equality of

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 183

expressions only, which signi�cantly improves performance.

6.6 Optimisation of the CoreSc semantics

For e�cient evaluation, one optimisation is made in the CoreSc semantic de�nitions found

in Appendix H. Rather than having the TransTaken function use a list to match the

transition labels to their
ags, the
ags are paired with the transition descriptions passed

as arguments to the various functions. It does not change the meaning of the CoreSc

notation.

As the transition list becomes long, this optimisation results in signi�cant perfor-

mance improvement. Before this optimisation, every evaluation of TransTaken had to

search the list of transition labels to determine the
ag for the transition. Using our op-

timisation, the transition descriptions are passed around to where they are relevant. By

including the
ag as an element of the transition description, it is only necessary to access

the �eld of a tuple to determine the
ag. This optimisation eliminates the search time

making a considerable di�erence when the list of transition labels is long.

6.7 Built-in constants

Although it is possible to de�ne the Boolean and arithmetic functions and constants as re-

cursive lambda expressions such that the functions have the expected behaviour [Gor88b],

evaluation of built-in functions in this manner may be regarded as more a matter of the-

oretical interest than a practical implementation strategy. Instead we use arithmetic and

Boolean functions in the C programming language in our implementation.

Built-in functions, such as arithmetic operators, cannot be evaluated in a lazy order.

Their arguments must be evaluated to the point of distinction before the evaluation of the

function is carried out.

Evaluation of most of the built-in constants in S+ proceeds by �rst determining

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 184

if enough arguments are present to carry out the operation. If not, then the arguments

are evaluated to the level required and an expression giving the application of the built-in

function to the arguments is returned. The level of evaluation of the application depends

on the level of evaluation of the arguments.

If enough arguments are present, they are evaluated to the level required, which is

at least the point of distinction. If the evaluated arguments have the tag FULL EVAL then

the function can be carried out and a fully evaluated expression is returned. Otherwise

the return expression is the application of the built-in constant to its arguments and its

level of evaluation depends on the level of evaluation of the arguments.

Some simpli�cations, such as the evaluation of F /\ a into F (false), are carried

out for the Boolean operations even if only one of the arguments can be fully evaluated.

Addition and multiplication are both associative. This property can be used to

simplify expressions of the form (a+4)+3 to a+7. To make it easy to carry out this kind of

simpli�cation, if one argument to the operator is fully evaluated, the convention of always

returning this argument on the left branch of the application is adopted.

To check the equality of two expressions, they must each �rst be evaluated at least

to the point of distinction. If both the expressions have constructors at their tips, these

constructors can be compared. If they are not equal, then false is returned. If they are

equal, then evaluation proceeds through the arguments to the constructors to see if they

are equal.

If one or both expressions do not have constructors at their tip then they can only

be compared to see if they are syntactially equivalent. If so, then true can be returned.

6.8 Quanti�cation over �nite types

If the variable of quanti�cation is of Boolean type, evaluation of the inner expression

proceeds to the level required.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 185

A simple enumerated type is one where the constructors do not take any arguments.

If the variable of quanti�cation is of a simple enumerated type, then the quanti�er is

eliminated by applying the inner expression to all possible values of the type. For example,

using the de�nitions

: chocolate := Cadburys | Hersheys | Rogers ;

tastesGood : chocolate -> BOOL;

the expression

FORALL (\(x:chocolate). tastesGood (x))

is evaluated to:

tastesGood (Cadburys) /\ tastesGood (Hersheys) /\ tastesGood (Rogers)

6.9 Beyond evaluation

Symbolic functional evaluation expands the use of de�ned constants and carries out beta-

reduction. In the examples illustrating the dissertation, a few additional inference rules,

optionally applied as SFE proceeds, aid in the analysis techniques. These inference rules

are all applied automatically.

6.9.1 Rewriting: if-lifting

An application of the built-in function COND is an if-then-else expression. Many analysis

techniques work with expressions only in propositional logic so it can be useful to turn

an if-then-else expression into one that uses only the logical connectives of conjunction,

disjunction, and negation.

The condition of the if-then-else expression must have Boolean type. As recognised

in Seger [SJ92], if the value returned by the expression is Boolean, then the following

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 186

equality holds and can be used as a rewrite rule to eliminate the COND function. We call

the following Rule #1.

COND a b c � (a /\ b) \/ (~a /\ c)

A method for lifting the COND operator outside of equality operations is described in

the work on integrating BDD-based simpli�cation into PVS [Raj95]. Jones et al. [JDB95]

also describe \if-lifting" of expressions as a heuristic for their validity checking algorithm.

They present two rewrite rules2:

((COND a b c) EQ COND a d e) � COND a (b EQ d) (c EQ e)

((COND a b c) EQ d) � COND a (b EQ d) (c EQ d)

This procress is called \if-lifting" because the function EQ is moved in and the conditional

operator is moved to the outside.

We generalise slightly on the approach of Jones et al. by considering any unin-

terpreted constant applied to an argument with COND at the tip of the argument. For

example, if g is an uninterpreted function, then:

g (COND a b c) d � COND a (g b d) (g c d)

If there are multiple arguments that have COND at their tip, there are more possible com-

binations, such as:

g (COND a b c) (COND d e f) �

COND (a /\ b) (g b e)

(COND (~a /\ b) (g c e)

(COND (a /\ ~b) (g b f) (g c f)))

2We use \COND" rather than \ite", and \EQ" rather than \=" and the English alphabet for
variables rather than Greek letters.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 187

The semantics for a model produces a next con�guration relation which has Boolean

type. Therefore, it must always be possible to remove completely the COND function by

carrying out a sequence of these rewrite rules that eventually results in an expression that

returns a Boolean value, which can be rewritten using Rule #1.

We have implemented an option for SFE in which it carries out rewriting for ex-

pressions using COND based on these rules. As in general rewriting, this option involves

pattern matching and checking of types of parts of the expression. It also causes multiple

evaluation iterations of an expression as a COND operator makes its way out of an expres-

sion. This option is used when speci�cations involve tables whose semantics are de�ned

using the COND operator, and information within the table is required to prove a particular

property of the sytem using automated analysis.

6.9.2 Rewriting: equality of constructor expressions

Rajan [Raj95] breaks apart expressions involving equalities between lists into equalities

between elements of the list. More generally, this operation can be applied to expressions

with constructors at their tips. If the constructors are the same, this expression can be

reduced to equalities between the corresponding arguments to the constructor because

constructors return distinct values of a type. For example, if \," is a constructor for the

tuple type, then the following is true:

((a,b) EQ (c,d)) � ((a EQ c) /\ (b EQ d))

This rewrite rule can be used to replace an expression of the form of the left-hand side

with the one on the right. For the examples carried out to illustrate the framework, this

type of rewriting was not needed. However, it could be easily implemented in SFE.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 188

6.9.3 Implicit assumptions: NAME

Section 5.3.2 discusses how the built-in operator NAME can be used as an identi�er for

the assignable name of an action. Model semantics use this component of the meaning

of an action to make assignable names retain their values in a step and to resolve race

conditions. The advantage of this approach is that a packaged embedding can be used

where the names used in the speci�cation are just constants, rather than strings in a

concrete syntax.

In evaluating the semantics for a speci�cation written in the statechart style, uses

of the NAME constant appear in expressions such as:

NAME (requestHeat KITCHEN) EQ NAME (valvePos LIVING_ROOM)

Well-formedness constraints limit requestHeat KITCHEN and

valvePos LIVING_ROOM to be lifted constants, or constants applied to constructors result-

ing in a lifted expression. These constraints ensure an action modi�es a unique assignable

name. To the user, it is quite obvious that the name (requestHeat KITCHEN) is distinct

from the name valvePos LIVING_ROOM. Within the logic this distinction cannot be made

because an expression such as

(requestHeat KITCHEN) EQ (requestHeat LIVING_ROOM)

refers to the equality of their values not their names.

As a convenience, to provide this meta-level of reasoning that the speci�er could

deduce, we implicitly assume that the evaluation of a speci�cation, where the function NAME

is encountered, is predicated on assumptions for all relevant comparisons using NAME, such

as:

~(NAME (requestHeat KITCHEN) EQ NAME (valvePos LIVING_ROOM))

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 189

Likewise the following is an assumption:

NAME (requestHeat KITCHEN) EQ NAME (requestHeat KITCHEN)

Using these implicit assumptions, expressions involving NAME in evaluation can be reduced

to false or true.

To implement this reasoning, SFE associates the concatenation of the identi�ers of

the argument with the application of NAME to an argument. For example, NAME x would

return 'x'. As constructors for the type STRING, these values can be compared to each

other and distinguished.

This method works well for carrying out automated analysis. It provides
exibility

in speci�cation and frees the user from having to generate tedious assumptions. To reason

about a speci�cation using actions (possibly in conjunction with statecharts) within a

theorem prover, these assumptions would need to be explicitly added (and could be auto-

matically generated by SFE) to produce the same behaviour as is found in the evaluation

that we have implemented.

6.9.4 Specialisation (universal instantiation)

Specialisation (or universal instantiation) is a derived inference rule in higher-order

logic [GM93]. Given a term t0 and a theorem forallx:t, it can be inferred that t[t0=x], where

t0 replaces free occurrences of x in t. This inference rule can be used to make information

found in an environmental constraint that involves universal quanti�cation accessible to

automated analysis techniques. For example, an environmental constraint found in the

separation minima is:

forall (A:flight) . NOT (IsLevel A AND InCruiseClimb A)

This constraint limits combinations of values for the two uninterpreted constants IsLevel

and InCruiseClimb. The type flight is an uninterpreted type. In analysis of the sepa-

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 190

ration minima, there are only two
ights that are relevant. Specialisation derives that for

constants f1 and f2 representing
ights:

NOT (IsLevel f1 AND InCruiseClimb f1) AND

NOT (IsLevel f2 AND InCruiseClimb f2)

SFE has a \specialisation" option that carries out universal instantiation for any constants

within the current context of the correct type when universal quanti�cation (over non-

Boolean and non-simple enumerated types) is encountered in evaluation.

6.10 Summary

This chapter has described how the meaning of a speci�cation is determined in a rigorous

manner in our framework. Symbolic functional evaluation expands the semantic functions

and speci�cation de�nitions. It also reduces redexes to expose more details of the speci�-

cation for analysis. SFE is less general than rewriting but avoids the problem of general

uni�cation. It accomplishes the same task as rewriting and removes the need for theorem

proving infrastructure. SFE uses lazy evaluation (arguments are not evaluated until they

are used) and evaluation in place.

SFE plays a key role in linking notational styles and automated analysis techniques

without the infrastructure of a theorem prover. Symbolic functional evaluation of a spec-

i�cation is usually the �rst step in performing any type of automated analysis. Because

multiple forms of analysis rely on this same �rst step, we can ensure that all forms of

analysis have the same meaning of the speci�cation. Evaluation in place also means that

within one run, the SFE step does not have to be repeated for multiple queries.

We have de�ned three modes of SFE based on the desired level of evaluation of an

expression. The user can choose the mode based on the type of analysis. Usually the mode

that reaches the minimum level of evaluation needed for the type of analysis is chosen for

e�ciency.

CHAPTER 6. SYMBOLIC FUNCTIONAL EVALUATION (SFE) 191

Other options for SFE include saving the unexpanded version of the expressions,

rewriting of expressions involving the COND operator, and specialisation of expressions with

universal quanti�cation.

Evaluation of an expression can be a useful means of debugging even if no subse-

quent analysis is carried out. For example, evaluating the semantic functions applied to

particular speci�cations was a great help in examining their correctness. Evaluation is a

form of symbolic simulation.

Symbolic functional evaluation is applicable to any expression in higher-order logic.

It can have uses outside the framework. For example, in a theorem prover such as HOL,

it can be considered a \super-duper tactic" to expand quickly all de�nitions and reduce

all redexes in a proof goal.

Chapter 7

Architecture and Link to

Automated Analysis Procedures

This chapter describes our solution to the last three sub-problems introduced in Chap-

ter 1, namely, abstraction and automated analysis procedures (Section 1.2.8), reporting

analysis results (Section 1.2.9), and exploiting structure (Section 1.2.10). We describe the

architecture of an implementation of our framework. We demonstrate how the framework

links easily with some well-known con�guration space automated analysis techniques and

illustrate the use of these techniques on the heating system example.

We believe our approach constitutes a contribution to the second generation of

formal methods-based analysis. A key characteristic of the second generation is the de-

coupling of speci�cation notation from analysis technique. Symbolic functional evaluation

allows analysis to be parameterised by the semantic functions. In this chapter we consider

how automated analysis techniques can be linked into our framework. We demonstrate

how model checking, simulation, completeness and consistency checking are all carried out

on the heating system speci�cation in our framework.

This chapter demonstrates the extensibility of the framework with new analysis

techniques. The techniques of symmetry checking and BDD-based simulation of speci�-

192

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 193

cations with uninterpreted constants are introduced (Sections 7.5.3 and 7.8 respectively).

We demonstrate our claim that information contained in the structure of the speci-

�cation can be used to supplement BDD-based analysis approaches by producing a better

abstraction of the speci�cation (Section 7.3.1).

Our architecture is novel in that it uses only a lightweight parse tree interface to

allow multiple automated analysis procedures to be applied to the speci�cation within

the same tool. This approach contrasts with theorem provers. Theorem provers include

decision procedures as automated techniques for returning \yes or no" answers; they

do not usually provide facilities for returning other results. Non-specialist users are often

unable to take advantage of the powerful deductive mechanisms found in a theorem prover.

Automated analysis techniques include more than just decision procedures. In particular

they return results that help indicate the source of a problem in a speci�cation. For

example, completeness checking of a table can determine not only if the table is complete

but also the cases that are not covered if the table is incomplete. We found it is su�cient

to provide a common parse tree interface to implement a variety of automated analysis

procedures.

To bridge the gap between higher-order logic and automated techniques, a toolkit

of re-usable elements is provided. Often analysis procedures can only be applied to a

�nite speci�cation. We have grouped commonly used techniques in analysis procedures in

a toolkit. Creating this toolkit allows the same functionality to be re-used rather than re-

implemented and makes it easier to implement new automated analysis techniques. This

toolkit includes symbolic functional evaluation (Chapter 6) and Boolean abstraction to

create a �nite abstraction of a speci�cation.

Section 7.1 describes the architecture of our implementation. Most of the remain-

der of the chapter describes how existing analysis techniques �t into our framework. Sec-

tion 7.2 describes the general method for implementing analysis procedures. Section 7.3

discusses Boolean abstraction and binary decision diagrams, which are elements of the

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 194

toolkit. This section covers the problem of reporting analysis results and exploiting struc-

ture. Completeness, consistency and symmetry checking of tables is described in Sec-

tion 7.5. Section 7.6 discusses another element of the toolkit: the automatic separation of

the constraints in the next con�guration relation into those on previous values of names

and those on next values of names. This element is used in symbolic CTL model checking

and simulation, which are described in Sections 7.7 and 7.8. In each of the example

analysis techniques, we consider how environmental constraints can increase the accuracy

of the results.

The new contributions found in this chapter are

� an architecture where multiple automated analysis procedures can be applied to the

same speci�cation through a lightweight parse tree interface

� the use of a �nite partitioning of numeric ranges suggested by the structure of a row

in a table

� symmetry checking of the tabular style using BDDs

� automatic separation of constraints in the next con�guration relation into those on

previous values of names and those on next values of names

� BDD-based simulation of speci�cations with uninterpreted constants.

The framework and the decision procedures described in this chapter have been imple-

mented in a tool called Fusion1. In many cases, the actual commands entered by a user

to invoke the analysis procedures are included to provide intuition for how the framework

is used in practise.

1There is no relationship between our implementationand any commercial tools named \fusion".

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 195

7.1 Architecture

The �rst tool support for the S language was a parser and type checker called Fuss, written

in C, created by the author, Je� Joyce and Michael Donat. Fusion uses a slightly modi�ed

version of this parser and type checker. An abstract data type interface is provided to the

node structure representing the parse tree2, and to the data type containing the declared

and de�ned types and the declared and de�ned constants and constructors. The parse

tree is produced by the parser and type checker.

Often tools supporting formal notations, such as theorem provers, provide a \term

language", which is the notation and a \meta-language", which is used to manipulate

the term language. For example, the user interface to the HOL theorem prover is the

programming language ML [Pau91]. Expressions in ML are used to pass de�nitions to the

core of HOL. Having to understand and use two languages to accomplish the speci�cation

task may create a steep learning curve for prospective users of HOL.

Alternatively, the Voss Veri�cation System [Seg93] has a general-purpose functional

programming language as its interface, which is used both to write the speci�cation and to

program automated analysis procedures. This approach requires the speci�cation language

to include programming facilities.

Our choice was to make the S+ notation the input language to Fusion and imple-

ment analysis techniques in C. To provide a user interface to the analysis techniques, we

needed a way for the user to instruct Fusion to carry out operations using various parts

of the speci�cation. % commands were created to carry out this task. A % command is

a meta-level command that causes the tool to look up the C procedure to be performed

in a registry and then carry out that procedure. All arguments to % commands must

be constants. For example, a later section will describe the %simulate command, which

takes a constant giving a next con�guration relation and a constant de�ned by a list of

2Future implementations may hide the node structure and provide an abstract data type inter-
face to the parse tree only.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 196

parse tree

interface

symbolic
functional
evaluation

Boolean
abstraction

semantic
definitions

Binary
Decision
Diagrams

Previous/ Next
Boolean Variables

Toolkit

specification commands

USER INTERFACE

Legend:
calls

Analysis

Procedure 3

Analysis

Analysis

Procedure 2

Procedure 1

parser /
type checker

Figure 7.1: Architecture of Fusion

conditions. This method makes Fusion easily extensible and allows a user to write speci�-

cations without any knowledge of the potential analysis procedures (except type checking)

until they are needed.

Fusion's architecture is illustrated in Figure 7.1. It takes as input a speci�cation,

the de�nitions of the semantic functions described in Chapter 5, and commands. Analysis

procedures are called when the user enters a command. Results of the analysis procedures

are produced to standard output.

Many analysis techniques use common procedures that can be grouped (and there-

fore re-used) in a toolkit. The �rst element in our toolkit is the interface to the parse

tree.

The second element is symbolic functional evaluation as described in Chapter 6.

The �rst step in all the automated analysis procedures described in this chapter is to

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 197

use symbolic functional evaluation to expose the details of the speci�cation to the desired

evaluation level.

The third element is Boolean abstraction, which is a technique for creating a speci-

�cation with a �nite con�guration space in Boolean logic from one with a possibly in�nite

state space. The e�ciency of automated analysis procedures is often highly dependent

on a way of manipulating Boolean expressions. Coudert et al. [CBM89] showed the value

of representing Boolean expressions symbolically using reduced ordered binary decision

diagrams (BDDs) [Bry86]. The fourth element of the toolkit is a BDD package. Boolean

abstraction and binary decision diagrams are described in Section 7.3.

The �fth element is a technique for automatically recognising constraints on previ-

ous and next values of names of the speci�cation (Section 7.6), which is used in conjunction

with the Boolean abstraction technique to explore the con�guration space of a model.

Some automated analysis procedures are just wrappers around elements of the

toolkit. For example, Boolean simpli�cation is carried out using Boolean abstraction and

BDDs.

7.2 Implementing an analysis procedure

Using a parse tree representation of the speci�cation, many di�erent analysis procedures

can be implemented that return information about the speci�cation. The toolkit provides

operations that are used by multiple procedures.

An analysis procedure is implemented as a function in the C programming language

and is associated with a particular command in Fusion in the registry. Facilities are

provided for passing arguments to the procedure. In a typical analysis procedure, the

�rst step is to look up the de�nition of the S+ constants passed as arguments. The

expression of the de�nition body is evaluated to the desired evaluation level using SFE

to expose details about the speci�cation. Rewriting and specialisation are applied during

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 198

this process according to the settings of the options. Structures, such as that of the Row

keyword, are also identi�ed.

Analysis procedures manipulate the speci�cation to return particular information

to the user. This manipulation often takes the form of creating and evaluating a logical

condition concerning the speci�cation. If the condition is not true then information about

the reason why it is not true is returned.

Conditions can be created in analysis procedures using a variety of methods. For

example, a condition can be formed as an S+ expression or a series of S+ expressions

derived from the speci�cation that are later conjoined together.

At some point in the analysis procedures, conditions over non-�nite speci�cations

are usually abstracted. Boolean abstraction is a simple method of creating a �nite ab-

straction of the speci�cation that is used by the examples presented in this chapter. An

abstraction created this way is often represented in a data structure called a binary deci-

sion diagram. Operations on BDDs are used to determine the truth or falsehood of the

condition.

If the condition is false, expressions are isolated to indicate the source of the prob-

lem. These expressions need to be put back in terms of the speci�cation. This process

involves turning the expressions back into S+ and possibly outputting them in their struc-

tured form using the \unevaluated" forms of S+ expressions.

Alternatively, analysis procedures, such as simulation, produce results showing how

a series of conditions are satis�ed. The conditions in this case describe con�gurations as

the speci�cation moves from step to step.

In presenting the elements of the toolkit not previously described and the examples

of automated analysis currently implemented in Fusion, verbatim font is used to represent

S+ fragments of the speci�cation and semantics, math mode is used to describe logical

operations, and small caps font is used for C functions.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 199

7.3 Boolean abstraction and BDDs

Speci�cations within the framework can involve elements of unknown or arbitrarily large

types (numbers). Many analysis procedures can only be applied to �nite speci�cations. A

�nite abstraction of the speci�cation must be created to apply these analysis procedures.

Abstractions can be created by hand or by automatic means. The choice of ab-

straction greatly a�ects the properties that can be demonstrated for the system. An

abstraction can be proven to maintain certain properties of the system. A simple auto-

matic technique for creating a �nite conservative abstraction is Boolean abstraction. It

produces a conservative abstraction, which has more possible behaviours than the original

speci�cation. If a universal property, such as the absence of unsafe behaviour, is shown to

be true of a conservative abstraction of the speci�cation then it is also true of the original

speci�cation.

This section discusses two elements of the toolkit: Boolean abstraction

(Section 7.3.1) and binary decision diagrams (Section 7.3.2). These elements are pre-

sented together because abstracted versions of speci�cations can be represented using

BDDs. Section 7.3.3 describes an automated analysis technique called Boolean simpli�-

cation, which is simply a wrapper around the abstraction process. Section 7.3.4 discusses

variable ordering, which is a key component to the use of BDDs.

7.3.1 Boolean abstraction

Rajan presents an algorithm for creating a conservative abstraction in Boolean logic of an

arbitrary expression in higher-order logic [Raj95]. The expression is decomposed based on

the applications of logical connectors. In carrying out the decomposition, any subexpres-

sion that is not the application of a logical connector to arguments is not decomposed any

further. In the abstraction, these subexpressions are considered as independent Boolean

variables. The abstracted expression is the result of applying the same logical connectors

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 200

used in the original expression to the Boolean variables. For example, the expression

InBasicState (IDLE_NO_HEAT KITCHEN) cf /\

(valvePos KITCHEN cf) EQ CLOSED

can be represented in Boolean logic as

a ^ b

using the substitutions:

a for InBasicState (IDLE_NO_HEAT KITCHEN) cf

b for (valvePos KITCHEN) cf EQ CLOSED

Rajan's algorithm creates binary encodings of values of �nite types. These encod-

ings are similar to those carried out automatically in Ever [HDDY93].

Fusion uses this algorithm to create a Boolean abstraction of an arbitrary S+ ex-

pression. We call the S+ expressions that are matched to Boolean variables substitutions.

A list of the matches between the substitutions and variables is maintained in the abstrac-

tion process so the same subexpression (lexically) used multiple places in the expression is

considered the same Boolean variable. The following two sections discuss the encoding of

�nite types and the use of the row structure captured by the Row keyword in the tabular

style of expressions to encode partitions of numeric ranges.

If Boolean abstraction is applied in the analysis technique, then symbolic functional

evaluation need only be carried out to the level of PD EVAL. Further evaluation exposes

details that are lost in the abstraction.

Encoding of �nite types

The Boolean abstraction process is conservative in that related expressions may be treated

independently. For example, in the speci�cation

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 201

: Valve_Pos:= OPEN | HALF | CLOSED ;

: valve_pos == config -> Valve_Pos;

valvePos : Room -> valve_pos;

expr1 :=

valvePos KITCHEN cf EQ OPEN /\

valvePos KITCHEN cf EQ CLOSED;

a simple Boolean encoding of expr1 would treat the two subexpressions

valvePos KITCHEN cf EQ OPEN, valvePos KITCHEN cf EQ CLOSED

as independent Boolean variables. A satisfying assignment of the encoding of expr1 is a

case where both of these subexpressions are true. However the type de�nition implicitly

includes an axiom that the constructors OPEN and CLOSED are unique.

Following in the work carried out in both model checking research [HDDY93] and

theorem-proving research [Raj95], a less conservative abstraction can be automatically

created using an encoding of �nite types. Currently, we restrict the application of this

process to elements of �nite types where the type constructors take zero parameters.

The substitution for an S+ expression can now involve multiple Boolean variables.

In the abstraction process, if an expression like valvePos KITCHEN cf EQ OPEN is en-

countered, one of the operands of the application of EQ is checked to see if it is of �nite

type. If so, this expression is encoded as an equality between two vectors of Boolean

values (one for each operand). If the operand is a constructor, it is assigned a vector of

concrete Boolean values representing its position in the declaration of the type. The �rst

type constructor listed in its de�nition has the bit vector representing the number zero

and so on. If the number of Boolean variables needed to encode an element of the type is

not equal to a power of two, then the last element of the type is encoded as all possible

remaining encodings (as in Damon et al. [DJJ96]).

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 202

For example, the expression valvePos KITCHEN cf EQ OPEN would be represented

as the Boolean expression :x1 ^ :x2 if the constructor OPEN is represented as [F ;F]

and the expression valvePos KITCHEN cf is represented as [x1; x2]. The matching of

valvePos KITCHEN cf with the vector [x1; x2] is recorded for future substitutions. The

list of associated substitutions is also maintained. In this case, this list is:

valvePos KITCHEN cf EQ OPEN :x1 ^ :x2

valvePos KITCHEN cf EQ HALF x1 ^ :x2

valvePos KITCHEN cf EQ CLOSED (:x1 ^ x2)_ (x1 ^ x2)

Partitioning of numeric values

The Row keyword of the tabular style of expressions provides a structure for grouping

related conditions. The speci�er can use it to partition an expression with a numeric

value into ranges of interest. The Boolean abstraction process uses a partition speci�ed

by the structure to create a less conservative abstraction for conditions on numeric values.

This technique is used in addition to the encoding of �nite types. The �rst row of the table

specifying the valve adjustment of the heating system is found in Table 7.1. The entries

of this row partition the possible numeric values of the di�erence between the actual and

desired temperatures into �ve ranges of interest:

1 dT i - aT i < C -5

2 (C -5 <= dT i - aT i) AND (dT i - aT i < C -2)

3 (C -2 <= dT i - aT i) AND (dT i - aT i <= C 2)

4 (C 2 < dT i - aT i) AND (dT i - aT i <= C 5)

5 C 5 < dT i - aT i

Structure is notation-speci�c. Therefore, to exploit the structure we must extend

Fusion with some knowledge about this particular structure. This structure is encountered

in the evaluation step carried out by SFE. We extend SFE with a registry of keywords and

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 203

T
ab
le
7.
1:
R
ow
1
of
ta
b
le
sp
ec
if
y
in
g
va
lv
e
ad
ju
st
m
en
t

1

2

3

4

5

6

7

d
T
i
-
a
T
i

_
<
C
-
5

C
-
5
<
=
_

C
-
5
<
=
_

C
-
2
<
=
_

C
2
<
_

C
2
<
_

C
5
<
_

A
N
D

A
N
D

A
N
D

A
N
D

A
N
D

_
<
C
-
2

_
<
C
-
2

_
<
=
C
2

_
<
=
C
5

_
<
=
C
5

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 204

procedures to be carried out when those keywords are encountered in evaluation. SFE

checks this registry every time it evaluates an application. The Row keyword is associated

with a simple \interval checking" algorithm that takes the list of expressions in a row and

determines if they represent a non-overlapping partition. In our current implementation,

interval checking works for S+ expressions that contain relational numeric operations and

have a constructor on at least one side of the operator. Interval checking also returns any

ranges not used in the row entries. This partition is used in the Boolean abstraction step

of analysis to encode in Boolean values the related expressions that had previously been

considered independent. Our registry mechanism makes it possible to extend easily SFE

with other mechanisms that exploit structure for analysis.

This section has described our technique for using information contained in the

structure of a speci�cation to supplement BDD-based approaches to analysis by producing

a more precise abstraction of the speci�cation.

7.3.2 Reduced ordered binary decision diagrams

A reduced ordered binary decision diagram [Bry86] (BDD) is a data structure for rep-

resenting expressions in Boolean logic. A BDD is a directed acyclic binary graph with

nodes representing the Boolean variables of the expression. The variables are in the same

order along all paths in the graph (although not all variables need to be present along a

path). Each path leads to a leaf node of T (true) or F (false). The edges of the graph

represent assignments of the values T or F to the variable of the node that is the source

of the edge. The same subexpressions of an expression are shared in the tree. The size of

the representation is highly dependent on the order chosen for the variables. Figure 7.2 is

an example of a BDD for the expression a ^ b with variable ordering a then b.

This data structure is well suited for use in automated analysis procedures for a

number of reasons. First, for a particular variable order, an expression is represented in

canonical form, which makes comparison of expressions possible in constant time. Sec-

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 205

F T

F T

F T

a

b

Figure 7.2: BDD for a ^ b

ond, the sharing of subexpressions creates a compact representation. Third, a BDD can

represent multiple logic functions in one directed acyclic graph that has a di�erent root

for each function. Fourth, BDDs can be e�ciently manipulated in logical operations.

A BDD can be built to represent the Boolean abstraction of an S+ expression.

The process of building the BDD occurs concurrently with creating the abstraction. The

S+ operations of conjunction, disjunction, negation, and existential and universal quan-

ti�cation of Boolean values in an expression invoke the respective operations on the BDD

data structures.

Our implementation makes use of the BDD and memory management packages

developed by David Long at Carnegie Mellon University [Lon]. Our implementation can

be easily changed to use a di�erent BDD package.

7.3.3 Boolean simpli�cation

Creating a Boolean abstraction of an S+ expression and then reversing the process, can

be a useful method of simplifying expressions that include quanti�cation over Boolean

variables. The resulting expression is logically equivalent to the original. Fusion provides

the command %bddsimp <constant1> <constant2> for this purpose. This command

evaluates constant1 to the desired level of evaluation, creates a BDD representation of

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 206

the expression, and then creates an S+ expression from the BDD.

Boolean simpli�cation was used in the heating system example to build the BDD

for the next con�guration relation. Section 5.13 showed that if the components of an AND-

state are independent then the next con�guration relation for the system can be partitioned

into a conjunction of the next con�guration relations for the components. This result

allows the existential quanti�cation of the transition
ags to be pushed inwards. BDD

simpli�cation eliminates these quanti�ed variables, making it possible to build the heating

system's next con�guration relation from the simpli�ed version of the next con�guration

relation of each component, reducing the size of intermediate BDDs.

A BDD with an associated list of substitutions, created through Boolean abstrac-

tion, can be turned back into the S+ expression it represents by traversing the BDD from

its root and �nding the substitution matching the variable at the root node of the BDD.

Two subexpressions are created recursively: one for the substitution having the value true,

and the other for the substitution having the value false. Using this method the BDDs

for the subexpressions do not need to be computed; they are simply the left and right

branches of the BDD.

For encodings of �nite types and partitions, all associated substitutions that involve

the variable at the root of the BDD must be considered. The BDD being converted must

be conjoined with each of the BDDs representing the related substitutions (unlike for

a simple substitutions, which can just use the left and right branch of the BDD). For

example, the result of applying Boolean simpli�cation to the expression j EQ k where j

and k are of type Valve_pos, is:

(j EQ OPEN /\ k EQ OPEN) \/

(j EQ HALF /\ k EQ HALF) \/

(j EQ CLOSED /\ k EQ CLOSED)

Both the abstraction and the reverse abstraction process bene�t from the use of a

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 207

cache in implementation.

This reverse abstraction technique together with SFE's ability to remember the

unevaluated forms of expressions allows us to report analysis results to the speci�er in

terms of the original speci�cation (Section 1.2.9).

7.3.4 Boolean variable order

For the most part, the automated procedures can be invoked by the user without being

conscious of the Boolean abstraction process. However, the size of a BDD is highly de-

pendent on the variable order chosen. In Fusion's implementation of Boolean abstraction,

the Boolean variables representing the substitutions are created as new substitutions are

encountered in building the BDD from the S+ expression. The order of the Boolean vari-

ables is the order of their creation. In dealing with large speci�cations, for example the

ATN described in the next chapter, the size of the BDDs becomes a limiting factor.

To deal with this problem, we developed a way of supplying a variable ordering to

Fusion for building BDDs. The variable ordering is a list of S+ expressions of type order.

Because there are three types of substitutions (simple, �nite type and partitions), order

has three constructors, each of which contains the appropriate information for one type

of substitution. Its de�nition is:

: order :=

SE :BOOL :(NUM)list |

FT :BOOL :(NUM)list :(BOOL)list |

PT :(NUM)list :(BOOL)list;

Each type of substitution is accompanied by a list of numbers representing the position

in the order of the Boolean variables used to represent the S+ expressions.

The �rst constructor is for a single Boolean S+ expression that is abstracted using

one Boolean variable. For example, the following is a substitution for the heating system:

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 208

SE (requestHeat KITCHEN cf') [4]

The presence of this element in the S+ order indicates that the Boolean variable associated

with this S+ expression is to be the fourth variable in the order.

The second type of order information represents an encoding of a �nite type. For

example, the following is for the encoding of the S+ expression valvePos KITCHEN cf,

which is of type Valve_Pos:

FT (Element (valvePos KITCHEN cf)) [12 ; 8]

[valvePos KITCHEN cf EQ CLOSED ;

valvePos KITCHEN cf EQ HALF ;

valvePos KITCHEN cf EQ OPEN]

The Element function is a wrapper to make it possible to type check a list of elements of

type order. It is uninterpreted and takes an element of any type and returns a Boolean.

The list of numbers indicates the position in the order of the Boolean variables used in

the encodings of the expressions that follow.

The third type of substitution structure is a partition of a numeric range. For

example:

PT [3 ; 1 ; 2]

[(C 5 < (dT KITCHEN - aT KITCHEN)) cf ;

((C 2 < (dT KITCHEN - aT KITCHEN)) AND

((dT KITCHEN - aT KITCHEN) <= C 5)) cf ;

((C -2 <= (dT KITCHEN - aT KITCHEN)) AND

((dT KITCHEN - aT KITCHEN) <= C 2)) cf ;

((C -5 <= (dT KITCHEN - aT KITCHEN)) AND

((dT KITCHEN - aT KITCHEN) < C -2)) cf ;

((dT KITCHEN - aT KITCHEN) < C -5) cf]

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 209

This substitution structure is similar to the constructor for �nite types except the S+

expression is not isolated.

The constant de�ned by a list of these orders can be used as an argument to the

command %setorder <constant>. This command creates the substitutions and declares

the Boolean variables in this order.

To determine a good variable order to supply to Fusion for an expression, we chose

to subcontract the problem to another tool. The Voss Veri�cation System [Seg93] can

return an optimised variable order. To link this capability with Fusion, we created a

% command that identi�ed and output the substitutions with an associated a Boolean

variable name without building the BDD. This process also translated the S+ expression

into the input language of Voss (called FL). Voss was then run with this input and the

variable order produced was used with the list of substitutions matched with variable

names to produce an order of S+ expressions, in the variable order suggested by Voss.

This process is extremely valuable in dealing with the size of BDDs. However future

implementations of Fusion could use a BDD package that carried out dynamic variable

reordering su�ciently well to avoid the need for this process. The variable order generated

by Voss is provided as input in the same way a user-created order would be. It does not

a�ect the logical content of the speci�cation.

After determining a good variable order, the next con�guration relation for the

heating system was built in one second (after evaluation3) on a dual-processor Ultra-Sparc

60 (300 MHz) with 1 GB of memory and is 2785 BDD nodes in size with 127 variables.

Evaluation and BDD simpli�cation of each component took three seconds, much of which

was spent in rewriting of the COND operator found in the semantics for tables.

3Evaluation took very little time because the components had already been evaluated.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 210

7.4 Choosing a mode for SFE

In Chapter 6, three modes of evaluation for SFE were presented. These modes are: eval-

uate, evaluate for rewrite simpli�cation, and evaluate to the point of distinction. In this

section, we discuss how an appropriate mode for SFE is chosen by a speci�er.

The evaluate mode evaluates all arguments to uninterpreted functions. It is always

possible to use this mode for any type of analysis.

The other two modes provide short cuts because full evaluation is not necessary

when analysis uses Boolean abstraction. The extra information exposed by further eval-

uation is lost in the abstraction process. The most e�cient mode is evaluate to the point

of distinction.

If rewrite simpli�cation is to be carried out (Sections 6.9.1 and 6.9.2), the evaluate

for rewrite simpli�cation or evaluate modes must be chosen. Rewriting is often necessary

when a decision table is used because the semantics for decision tables use the COND

operator. To expose information within the table for analysis, the COND operator must be

\if-lifted".

Another reason for choosing the evaluate or evaluate for rewrite simpli�cation

modes over the most e�cient mode is that by evaluating the arguments to uninter-

preted functions the output may be more succinct. For example, the semantics for the

CommEvent notation use the uninterpreted function Msg. The arguments to this function

are often calculated values. The meaning of an expression including this function is more

understandable once SFE has carried out the calculation.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 211

7.5 Completeness, consistency and symmetry checking of

tabular expressions

Completeness, consistency and symmetry checking are really three di�erent analysis proce-

dures, but because they are all applied to the same notation, they are considered together

for presentation. The con�guration space of a tabular speci�cation is the possible assign-

ments to the inputs of a table.

These procedures evaluate the relevant parts of a table using symbolic functional

evaluation, then convert them to BDDs, and examine the properties of completeness, con-

sistency and symmetry. The particular properties are presented in the relevant sections

that follow. In stating these properties, we refer to a column as the conjunction of the

conditions speci�ed by the row entries in that column. A case is a combination of values

for the row labels. One column in a table often covers multiple cases. The de�nitions used

for completeness and consistency of tables are similar to those of Heimdahl and Leve-

son [Hei96], and the properties of coverage and disjointness of Heitmeyer et al. [HJL96].

Examples of the results are provided. Section 7.5.4 discusses how the results are output

in a tabular form.

These procedures are invoked using the commands %comp <constant> <env>,

%cons <constant> <env>, and %sym <constant> <env>. The env argument is an op-

tional environmental constraint, which is discussed in Section 7.5.5.

7.5.1 Completeness

An expression in the notation TableExpr is complete if all possible combinations of values

for the row labels are covered by at least one column of the table. A function table with

a \Default" column is always complete. However, it is possible that more cases than

intended fall into the \Default" column. When a \Default" column is used in a tabular

speci�cation, it is desirable to enumerate the cases included in that column as part of the

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 212

validation e�ort.

A function table without a default column is complete if the disjunction of its

columns is a tautology. A function table FT, equal to Table rowlist resultrow, and

without a default column, is complete if

Exists (Columns rowlist) cf

is a tautology, where Columns is one of the semantics de�nitions for tables. Because a

table is a lifted expression, its value must be considered in a con�guration (cf). However if

the constant representing the con�guration is not de�ned (i.e., it is left uninterpreted), the

property is checked for all possible con�gurations. If the property is not true, the analysis

returns those cases not covered by the table, which are described by the expression:

:(Exists (Columns rowlist) cf)

For a function table that has a \Default" column, the same completeness property

as above is checked without including the \Default" column for the table. If the property

is not true, useful output is a description of the cases that fall into the default column. If

the property is true, then no cases fall into the \Default" column.

A predicate table is complete by de�nition since any cases not covered in the table

return false. For a predicate table the analysis returns the cases that result in the predicate

having the value false.

Figure 7.3 shows the results of checking the completeness of the table specifying

the valve adjustment in the heating system (Table 4.4, which was previously presented

on page 87 and is repeated in Table 7.2). The SFE mode of evaluate to the point of

distinction was used for this example because no rewrite simpli�cation is needed and the

analysis uses Boolean abstraction. The listed cases are those not found as a column of the

table (i.e., those described by :(Exists (Columns rowlist) cf)). The analysis is carried

out for any instantiation of the parameters of the table. For the heating system, the result

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 213

T
ab
le
7.
2:
V
al
ve
p
os
it
io
n

d
T
i
-
a
T
i

_
<
C
-
5

C
-
5
<
=
_

C
-
5
<
=
_

C
-
2
<
=
_

C
2
<
_

C
2
<
_

C
5
<
_

A
N
D

A
N
D

A
N
D

A
N
D

A
N
D

_
<
C
-
2

_
<
C
-
2

_
<
=
C
2

_
<
=
C
5

_
<
=
C
5

v
a
l
v
e
P
o
s
i

.

_
=
C
O
P
E
N

_
=
C
H
A
L
F

.

_
=
C
C
L
O
S
E
D

_
=
C
H
A
L
F

.

n
e
x
t
V
p
i

C
C
L
O
S
E
D

C
H
A
L
F

C
C
L
O
S
E
D

v
a
l
v
e
P
o
s
i

C
H
A
L
F

C
O
P
E
N

C
O
P
E
N

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 214

holds for any argument i of type Room. These results rely on automatically recognising

the numeric partition provided by the row and the encoding of elements of the �nite type

Valve_Pos.

This output indicates that the table is not complete: no behaviour is speci�ed for

the two cases output. This error is corrected by adding a default column that returns the

value valvePos i meaning that the valve position does not change.

This example demonstrates how information contained in the structure of the speci-

�cation can be used to supplement BDD-based approaches to analysis by producing a more

precise abstraction of the speci�cation. Section 7.3.1 described a technique that uses the

structure found in the rows of a table to determine a partition into ranges for a numeric

value. This partition is encoded in BDDs. Without recognition of the partition found in

�rst row of the nextVp table, the results would include an impossible case. The analysis

would produce the result that the case where the di�erence between the desired and actual

temperatures (dT i - aT i) does not fall into any of the ranges described by row one is

not covered. Because the partition provided by row one is complete, this is an impossible

case that would be produced by an overly conservative abstraction.

7.5.2 Consistency

A table is consistent if there is no overlap in the cases covered by columns that return

di�erent values for the function. A predicate table can never be inconsistent because all

of its columns return the value true for the function.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 215

>%comp nextVp

nextVp is:

(

(Table

[

((Row ((dT i) - (aT i)))

[(\x.(x < (C -5)));

(\x.(((C -5) <= x) AND (x < (C -2))));

(\x.(((C -5) <= x) AND (x < (C -2))));

(\x.(((C -2) <= x) AND (x <= (C 2))));

(\x.(((C 2) < x) AND (x <= (C 5))));

(\x.(((C 2) < x) AND (x <= (C 5))));

(\x.((C 5) < x))]);

((Row (valvePos i))

[Dc;(\x.(x = (C OPEN)));(\x.(x = (C HALF)));Dc;

(\x.(x = (C CLOSED)));(\x.(x = (C HALF)));Dc])])

[(C CLOSED);(C HALF);(C CLOSED);(valvePos i);(C HALF);

(C OPEN);(C OPEN)])

The table is NOT complete.

Cases not covered:

Case 1

Row 1 : (((C -5) <= ((dT i) - (aT i))) AND

(((dT i) - (aT i)) < (C -2)))

Row 2 : ((valvePos i) = (C CLOSED))

Case 2

Row 1 : (((C 2) < ((dT i) - (aT i))) AND

(((dT i) - (aT i)) <= (C 5)))

Row 2 : ((valvePos i) = (C OPEN))

Figure 7.3: Completeness checking results for the table specifying valve adjustment

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 216

For a function table, FT, equal to Table rowlist returnlist, let i and j be

indices to both the list of columns determined by Columns rowlist and to the elements

in returnlist. Consistency analysis examines a series of properties for all pairings of i

and j. Two columns are consistent if:

(i = j) _ (returnlisti cf = returnlistj cf)_

:((Columns rowlist)i cf ^ (Columns rowlist)j cf)

If the above property is not satis�ed for a pair of columns, the analysis procedure returns

the cases that satisfy the following (for di�ering values of i and j):

(Columns rowlist)i cf ^ (Columns rowlist)j cf

No inconsistencies were found in either table of the heating system speci�cation.

7.5.3 Symmetry

In some speci�cations a function with two arguments may be symmetric in its arguments,

i.e., the order of the two arguments is irrelevant. Functions speci�ed by tables in the

separation minima example should be symmetric. We developed a form of symmetry

checking to check that the order of the two parameters to a table is irrelevant. For any

table K, this property can be stated as

K (A; B) = K (B; A)

If the con�guration cf is not de�ned then the above property is equivalent to K (A; B) cf =

K (B; A) cf, which is examined using the Boolean abstraction technique. Using only

Boolean abstraction, it may not be possible to prove conclusively whether or not a table

is symmetric. This analysis technique may rely on assumptions about the symmetry of

the return values of the table if they contain uninterpreted constants. These assumptions

are output.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 217

7.5.4 Presentation of results

This section discusses how the results of completeness and consistency checking are pre-

sented in the same tabular form of their input as seen in Figure 7.3. Completeness and

consistency checking report to the speci�er the set of cases that are either not covered in

the table or that are covered by multiple columns. Previous sections de�ned the properties

that denote these cases. These properties are output to the user in a form where they can

be viewed as a possible column in the table. This form of output is easy to interpret by

the speci�er since it matches the original speci�cation in form and order of the rows in the

table. This presentation is possible because SFE maintains the unevaluated versions of

expressions. Tracing the source of inconsistencies through nested tables where the output

is completely expanded was identi�ed as a problem by Heimdahl [Hei96]. Likely the best

approach would be one of initially providing the source of the inconsistencies in terms of

the original row label (as we do) and then iteratively exploring the more detailed source

of the problem.

Producing this output is more complicated than enumerating the paths found in

a BDD because the condition speci�ed by one row entry may be represented by a BDD

of multiple variables. The original rows in order can be determined from the unevaluated

representation of the table. This order is used for the output. The row entries in a row

may not cover all possible related entries. For example, the row entries may contain only

True and Dc. The row entry False is another possible entry for a row with a row label

of Boolean type. To determine other possible related row entries that are not covered

in the original table, but might be needed to express the cases to be output, the list of

associated substitutions (those for �nite types and partitions) is used. Our algorithm

iterates over the list of rows and possible row entries producing the cases to be output as

a potential column in the table. Row entries that involve constraints on multiple names,

such as False (AllOf [A;B] IsLevel), appearing in the output mean there is some

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 218

way of satisfying the expression False (AllOf [A;B] IsLevel) that is included in the

output case. Individual row entries are presented in their unevaluated form to match the

row labels and entries in the original table.

In all cases in our example speci�cations, the possible row entries are mutually

exclusive, although this is not required by the table notation. Consequently the above

method may result in overlapping output cases but only when di�erent row entries are

not independent.

The cases produced using this method represent the full disjunctive normal form

of the output. Just as the user will often take great advantage of the ability to put a

\don't care" element in a row, the number of output cases can be summarised by using a

Dc element to combine multiple cases.

We have developed a method of limiting the number of cases output using an

approximation of the minimal sum of products (SOP) form4. For e�ciency reasons, pro-

ducing an approximation is more suitable than attempting to achieve the exact minimal

SOP form. For review, it is also useful that the cases reported to the speci�er are disjoint.

Brie
y, our algorithm extracts the cases that can be grouped with a \don't care"

value in row i by using the list of all possible row entries for row i to determine all cases

that di�er only in row i and that cover all possible entries for row i. For these cases a Dc

value is used as the row entry. After extracting these cases, the remaining cases are output

with particular entries for this row. The output does not produce overlapping groups of

cases. The choice of \don't care" entries for rows is highly dependent on the order of the

rows.

4The work on summarising results in Tablewise [HC95] is comparable here. However they search
for output closer to the minimal sum of products.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 219

7.5.5 Including the environment in completeness, consistency and sym-

metry checking

Sometimes rows in a table are not independent. For example in the separation minima

speci�cation, the predicates IsLevel and InCruiseClimb are used on di�erent rows in a

table. These predicates are time-varying properties of a
ight, indicating its slope. A
ight

cannot have both of these attributes at the same time. This environmental constraint can

be speci�ed as:

forall (A:flight). NOT (IsLevel A AND InCruiseCLimb A);

Using the specialisation option described in Section 6.9.4, for two
ights A and B,

symbolic functional evaluation expands the application of this environmental constraint

to the cf argument to:

~ (IsLevel A cf /\ InCruiseClimb A cf) /\

~ (IsLevel B cf /\ InCruiseClimb B cf)

The environmental constraint is conjoined with the expression describing the out-

put to eliminate infeasible cases.

7.6 Separating previous and next con�guration constraints

Returning again to the elements of the toolkit, this section describes a technique needed

for analysis procedures that use the next con�guration relation to explore iteratively the

con�guration space. After the Boolean abstraction step, names that are of in�nite or

uninterpreted types may exist in expressions such as x cf' EQ (x cf PLUS 1). The

abstraction phase considers this expression one Boolean variable. This section discusses

how all expressions, including these expressions that reference multiple con�gurations, are

split into lists of previous and next variables needed for con�guration space analysis.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 220

To ensure the generality of our framework for possible future uses, we de�ne both

the semantics of a notation and a speci�cation in higher-order logic. Often con�guration

space exploration tools provide special constructs to assign a value to a name in the

next con�guration. For example, SMV [BCM+90] uses \Next", while Ever [Hu95] and

Voss [Seg93] use \becomes". We accomplish the same e�ect by formalising the concept of

a con�guration.

By using variables to represent the previous and next con�gurations and by making

names be functions from con�gurations to values, we avoid the need to group explicitly

the names in a record structure as has been done in PVS [Raj95]. Once a speci�cation has

been expanded by SFE, the variables representing con�gurations are used to determine

the references to next and previous values of names.

Boolean abstraction of a next con�guration relation produces a list of substitutions

(constraints). The elements of the list must be separated into two lists of substitutions.

One list consists of substitutions referring to the previous values of names. The second list

consists of substitutions referring to the next values of names. Previous and next values

for the same name are associated by the order of the two lists. We now describe the rules

for constructing these two lists.

If an S+ expression associated with a substitution contains cf but no cf', it is

considered a constraint on the value of a name in the previous con�guration. A search is

carried out among the substitutions for the same S+ expression with cf replaced by cf'.

If no match is found, then there are no constraints (that can be matched lexically) on that

S+ expression in the next con�guration. A placeholder is used in the list of next value

constraints to ensure previous and next values of names hold corresponding positions in

each list.

If a substitution has only a cf', it is considered a constraint on the value of a

name in next con�guration. If no substitution exists that has the cf' replaced by cf,

a substitution must be created with cf' replaced by cf to represent the constraint on

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 221

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf)

(

(((C 2) < ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) <= (C 5))) cf)

(

(((C -2) <= ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) <= (C 2))) cf)

(

(((C -5) <= ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) < (C -2))) cf)

((((dT KITCHEN) - (aT KITCHEN)) < (C -5)) cf)

((requestHeat KITCHEN) cf)

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) = (C 0)) cf)

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf))

((InBasicState (WAIT_FOR_COOL KITCHEN)) cf)

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) = coolDownTime) cf)

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf)

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf)

((InBasicState (IDLE_HEATING KITCHEN)) cf)

((tooCold KITCHEN) cf)

((tooHot KITCHEN) cf)

((InBasicState (WAIT_FOR_COOL LIVING_ROOM)) cf)

Figure 7.4: Partial list of previous con�guration constraints in the heating system

the value in the previous con�guration. The version of the substitution with cf must

exist because iterations of the next con�guration relation replace constraints on the next

con�guration with constraints on the previous con�guration.

If a substitution includes both cf and cf', it is treated as a constraint on the value

of names in the next con�guration. An S+ expression is created replacing occurrences of cf

by p_cf to represent the con�guration before the previous con�guration, and occurrences

of cf' by cf. This new expression is considered the matching constraint on the names in

the previous con�guration.

The result of this process is two lists of constraints, which correspond in order. One

list has constraints on the value of names in the previous con�guration and the other has

constraints on the values of names in the next con�guration (and may possibly include

some placeholders). The list of constraints on previous con�guration names of a next

con�guration relation can be examined using the command %showprev <nc>. Figure 7.4

shows a partial list of previous con�guration constraints for the heating system.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 222

:ctl :=

At :BOOL | /* atomic formula */

AX :ctl | /* for all paths, true in the next configuration */

EX :ctl | /* for some path, true in the next configuration */

AG :ctl | /* for all paths, true in all configurations */

EG :ctl | /* for some path, true in all configurations */

AF :ctl | /* for all paths, eventually true */

EF :ctl | /* for some path, eventually true */

AU :ctl :ctl | /* for all paths, arg 1 holds until arg 2 is true */

EU :ctl :ctl | /* for some path, arg 1 holds until arg 2 is true */

CTLNOT :ctl | /* arg is not true */

CTLAND :ctl :ctl;/* arg 1 and arg 2 are true */

CTLOR A B := CTLNOT (CTLAND (CTLNOT A) (CTLNOT B));

A (_ CTLIMPL _) B := CTLOR (CTLNOT A) B;

Figure 7.5: CTL operators in S+

7.7 Symbolic CTL model checking

Clarke, Emerson and Sistla [CES86] introduced a technique called model checking for

searching all possible con�gurations of a system to see if the system satis�es a particular

temporal property. In CTL model checking, the properties are written in a propositional,

branching time temporal logic called computational tree logic (CTL). The speci�cation

must be a �nite state automaton that has a next con�guration for every reachable con-

�guration. The next con�guration relation determined by the semantics of a model in

Chapter 5 always has a next con�guration even if there is no change in the con�guration.

The Boolean abstraction process produces a �nite model.

CTL operators describe a property with respect to a particular starting set of

con�gurations. CTL operators are combinations of path and con�guration quali�ers.

Each operator begins with A, meaning true in all paths starting from a con�guration in

the execution of the model, or E, meaning true in some path. The con�guration quali�ers

are X meaning true in the next con�guration, G meaning true in every con�guration along

a path, F meaning eventually true and U which takes two formulae and means the �rst

is true until the second becomes true. The CTL operators are declared in the S+ type

de�nition found in Figure 7.5.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 223

We draw on the presentation of Burch et al. [BCM+90] to show how the lists

of previous (v) and next (v') con�guration Boolean variables, and a next con�guration

relation (nc) can be used to produce a symbolic representation of the set of con�gurations

that can be reached in one step from a set of con�gurations. Starting from a set of

con�gurations c1, the set of con�gurations that can be reached from c1 is:

9v:c1^ nc

This results in a condition in terms of the next con�guration variables. Substituting the

previous con�guration variables for the next con�guration variables, results in a symbolic

representation of the set of con�gurations that can be reached in one step from c1. (This

type of substitution is di�erent from that used in Boolean abstraction to associate Boolean

variables with S+ expressions.)

A representation of the set of reachable con�gurations can be constructed using

the following operations of a BDD package:

� substitute(v,v',a) - This operation takes two lists of Boolean variables (v and v')

and a BDD (a) and creates the BDD resulting from substituting the variables in v

with the corresponding variable (determined by list position) in v' into a.

� andexists(v,a,b) - This operation is an optimisation proposed by

McMillan [McM92] to carry out the steps of existential quanti�cation and conjunc-

tion concurrently when evaluating the expression exists v . a and b to reduce

the intermediate size of the BDDs. This method is also called the relational prod-

uct [Lon].

Using these BDD operations, the symbolic representation of the set of con�gurations

reachable from c1 can be implemented as:

NextConfig (c1, nc, v, v') = substitute(v,v',andexists(v,c1,nc))

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 224

CTLAND p q = p ^ q

CTLNOT p = :p

EG p = �Y:(p^ EX Y)
EU q p = �Y:(p _ (q ^EX Y)
EF p = �Y:(p_ EX Y)

AX p = :EX:p
AG p = :EF:p
AU q p = :((EU :p (:q ^ :p)) _EG:p)
AF g = AU true g

Figure 7.6: De�nitions of CTL formula

The validity of a CTL formula is determined by iterating the next con�guration re-

lation until all relevant reachable states have been examined. Iteration is carried out using

least (�) and greatest (�) �xed point computations, and EX , which is the NextConfig

operator de�ned in the previous section. Figure 7.6 contains the de�nitions of the CTL

formulae in these terms (as found in McMillan [McM92])5.

Using a symbolic representation for a set of con�gurations, the �xed point compu-

tation checks at each iteration if any new con�gurations are encountered. When no new

con�gurations are encountered the algorithm can halt. Because BDDs have a canonical

form, this check takes constant time.

Fusion includes an implementation of CTL model checking. The command

%ctlmc <ctl_formula> <nc> <ic> <env> takes constants with de�nitions that are 1)

a CTL formula, 2) a next con�guration relation (a model applied to the constants cf and

cf'), 3) an initial condition, and 4) an optional environmental constraint described in

the next section. Internally the expression representing the CTL formula is decomposed

to invoke procedures based on the de�nitions of the component formulae. Each atomic

formula is evaluated to the set SFE evaluation level and converted to a BDD. The previous

and next con�guration variables are determined from the next con�guration relation and

5
EF can be de�ned in terms of EU .

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 225

the initial condition. If all con�gurations satisfying the initial condition are in the set of

con�gurations satisfying the CTL formula then this process returns that the formula is

satis�ed. Otherwise it returns that the formula is not satis�ed.

A key feature of model checkers is their ability to produce a counterexample when

a formula is not satis�ed. Fusion includes counterexample generation for the CTL for-

mulae EF and AG. Both of these formulae are de�ned as least �xed point calculations.

A counterexample can be created by keeping track of the new previous con�gurations

encountered in each step of the �xed point calculation.

The statechart speci�cation of a room in the heating system (parameterised by the

room i) is found in Figure 7.76. We would like to ensure that whenever a room is in the

HEAT_REQUESTED state, the synchronisation name requestHeat is also true for that room.

For all rooms, this property is:

safe :=

(forall (i:Room).

(NOT

(InState (HEAT_REQUESTED i) heatingSystemScStruct AND

NOT (requestHeat i)))) cf;

Fusion's model checking showed that this formula is valid, taking one second to search

the state space. The SFE mode of evaluate for rewrite simpli�cation was chosen because

rewriting is used to expand the tables of the speci�cation.

The conservative abstraction may admit more possible reachable con�gurations

than the original speci�cation. An \A" CTL formula shown to be valid in the abstracted

model is also true in the original speci�cation. An \E" formula valid in the abstracted

model may not be true of the speci�cation.

6The textual representation of the room statechart is found in Figure 4.9 on page 103

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 226

IDLE
NO

HEAT i

WAIT
FOR

HEAT i

WAIT
FOR

COOL i

IDLE

i
HEATING

NO_HEAT_REQUESTED i

T9 i: [NOT (tooCold i)]

T10 i: waitedForWarm i / adjValve i

T8 i: [tooCold i] / adjValve i

T14 i: [NOT (tooHot i)]

T15 i: [tooHot i] / adjValve i

T13 i: waitedForCool i /adjValve i

HEAT_REQUESTED i

cancel_rH i
T11 i: waitedForCool i [vClosed i] /

T12 i: waitedForWarm i
[vOpen i] / rH i

ROOM i

Figure 7.7: Room statechart

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 227

7.7.1 Including the environment in model checking

Adding environmental constraints to model checking can help reduce inaccurate results

produced as a consequence of the Boolean abstraction of the model7. An environmen-

tal constraint limits the set of reachable con�gurations. In CTL model checking, the

environmental constraint is conjoined to each atomic property in the formula, the next

con�guration relation (thereby limiting the possible previous con�gurations), and the ini-

tial condition. Furthermore, anytime a negation of the set of con�gurations described by

a CTL formula is carried out, such as for CTLNOT or AG, the environmental constraint

must be conjoined to the result to stay within the set of reachable con�gurations speci�ed

by both the next con�guration relation and the environment.

For example, in the heating system it is important to know that transition T8 of

the room statechart cannot be interfered with by any other behaviour of the speci�cation.

Furthermore, we want to check that the valve is adjusted correctly when the room is too

cold.

Inspired by the speci�cation pattern work of Avrunin, Corbett and

Dwyer [DAC98], we de�ne the property:

P (_ ImmediateResponse _) Q :=

AG ((At P) CTLIMPL (AX (At Q)));

This de�nition means that whenever P is true, Q is always true in the next con�guration8.

7In the context of CTL model checking, fairness constraints are often discussed. A fairness
constraint is a temporal property. The environmental constraints described here are limitations on
the set of previous con�gurations of a step and cannot be used to describe a fairness constraint.

8The speci�cation patterns work contains many similar patterns to help make temporal logic
formulae more readable but not this exact formula.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 228

A property of transition T8 can be stated as:

p :=

((InBasicState (IDLE_NO_HEAT KITCHEN) AND

(valvePos KITCHEN = C CLOSED) AND

((C 2 < dT KITCHEN - aT KITCHEN) AND

(dT KITCHEN - aT KITCHEN <= C 5))) cf)

ImmediateResponse

(((valvePos KITCHEN = C HALF) AND

InBasicState (WAIT_FOR_HEAT KITCHEN)) cf);

To show that this property holds in the heating system speci�cation, the analysis procedure

needs to recognise the relationship between the trigger of transition T8, which is the con-

dition tooCold KITCHEN, and the di�erence between the desired and actual temperatures.

Our analysis tool does not currently have the capability to make this logical deduction.

However, using an environmental constraint, these two conditions can be related to show

that the property is valid. The suitable environmental constraint is9:

env :=

(forall i.

let delta := dT i - aT i in

(tooCold i =

(((C 2 < delta) AND (delta <= C 5)) OR

(C 5 < delta))) AND

(tooHot i =

((delta < C -5) OR

((C -5 <= delta) AND (delta < C -2))))) cf;

This constraint states that the condition tooCold is true if and only if the di�erence in

9This constraint was previously mentioned in Section 4.16 on page 108.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 229

the temperatures is between two and �ve degrees or greater than �ve degrees. It includes

a similar constraint on the condition tooHot.

The property p also relies on the knowledge that the range partitions are mutually

exclusive. To validate this property, the desired temperature was left as an uninterpreted

constant and rewriting was applied to expressions involving the conditional operator to

break apart the if-then-else construct of the valve adjustment table. Fusion took less than

a second to search the state space to validate this property.

This property does not depend on any of the timeout events. To prove that the

system eventually responds to a room being too cold for a �nite duration, the timeout

delays must be �nite, which can be speci�ed using the TmB keyword instead of Tm.

7.8 Simulation

A non-exhaustive form of con�guration space exploration is simulation. Simulation nor-

mally allows the user to set values of names and then take a step and observe the next

value of the names. New inputs to the system can be provided at each step. In a nonde-

terministic speci�cation, the analysis procedure can arbitrarily choose a next value based

on the possibilities. The presence of uninterpreted constants in the speci�cation forces

the simulation to be symbolic. The values are dependent on the unknown values of the

uninterpreted constants.

There are two ways that simulation can be applied to a speci�cation in Fusion. The

�rst is similar to previous e�orts at symbolic simulation in theorem provers as mentioned

in Section 2.3. A deterministic speci�cation can be written as a function that takes

a con�guration and produces a con�guration. By creating an expression in S+ that

iteratively applies this function to its own results, the result of executing a �nite sequence

of steps of the speci�cation is denoted. Evaluating this expression using SFE determines

the con�guration resulting from the execution of the sequence of steps. SFE provides an

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 230

e�cient means of carrying out symbolic simulation of functional speci�cations.

For speci�cations that are models, the semantics produce a relation. These spec-

i�cations may be nondeterministic. The Boolean abstraction process creates a �nite ab-

straction of the speci�cation. The Boolean variables of this abstraction are separated

into those representing constraints on the previous con�guration and those of the next

con�guration. By choosing an assignment of truth values for the Boolean variables of an

initial con�guration, and then applying the NextConfig operation, a BDD describing

the possible assignments to Boolean variables of the next con�guration is produced. Again

a particular assignment from this set is chosen, and this assignment becomes the previous

con�guration for the next iteration. By choosing a particular assignment each time, this

form of simulation does not encounter the con�guration space explosion problem as in

model checking.

The user can constrain the set of assignments possible for the initial con�guration

and each subsequent con�guration using a list of conditions. This list of conditions is input

to the simulator, instructing it to produce a sequence of con�gurations where constrainti

is true in con�guration i of the sequence, using the %simulate <nc> <list> command.

The script of a session simulating the heating system is provided in Figure 7.8.

The SFE mode of evaluate for rewrite simpli�cation was chosen because rewriting is used

to expand the tables of the speci�cation. Where \..." appears in the �gure, parts of

the output have been removed for presentation. Figure 7.8 shows how an occurrence of

the heatSwitchOn event results in the controller moving from the OFF state to the IDLE

state. The heating system involves many timeout events, which result in many constraints

on the timer history functions. This output is automatically �ltered to print only the

substitutions associated with the Boolean variables assigned the value true (T) (all others

have the value false). As the number of Boolean variables representing a con�guration

grows large, this �ltering mechanism is very valuable. The entire output and several other

simulations are found in Appendix L.

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 231

>%load_bdd nsr heating_nsr_bddfile

Bdd of nsr, size 2785 successfully loaded.

>ic := InitialCond (heating_system_sc_struct) cf;

ic := ((InitialCond heating_system_sc_struct) cf);

>sim1 := [

ic;

heatSwitchOn cf;

T

];

sim1 := [ic;(heatSwitchOn cf);T];

>%simulate nc sim1

Configuration 0:

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

calculating next config took: 0 sec bdd size: 48

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(heatSwitchOn cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

...

calculating next config took: 0 sec bdd size: 48

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 2:

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

...

Figure 7.8: Simulation of the heating system

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 232

A sequence of steps may not exist that satis�es the listed conditions. This case

occurs when there are no next con�gurations that satisfy the condition for the results of

that step. It is possible that an arbitrary choice of a particular con�guration that satis�es

a condition made early in the simulation results in a satisfying sequence of steps not

being found when one does exist. To help with this problem, an alternative simulation

process carries out \one-lookahead" (%simulate_one_ahead). At each step, it chooses

a con�guration that satis�es the applicable condition and has a next con�guration that

satis�es the next condition in the list. Some examples in the Appendix L demonstrate the

use of this command.

In simulation, environmental constraints are conjoined with each constraint in the

list.

7.9 Summary

This chapter has presented the architecture of our implementation of the framework pro-

posed in this dissertation. We have described our solutions to the problems of linking

automated analysis to the framework, reporting analysis results in terms of the original

speci�cation, and exploiting structure.

Our architecture consists of a parser and a type checker that produce a parse tree

representation of the speci�cation. Analysis procedures manipulate this parse tree to de-

termine information about the speci�cation. In working with one common base formalism

we identi�ed a re-usable toolkit of techniques such as symbolic functional evaluation and

Boolean abstraction for multiple analysis techniques. Examples of �ve automated analysis

procedures were described in this chapter. Analysis procedures such as simulation and

model checking are available to speci�cations in any notational styles in the model cate-

gory (and potential new styles). The toolkit and parse tree interface make it easy to add

analysis procedures. For example, our implementation of a symbolic CTL model checker

CHAPTER 7. ARCHITECTURE AND LINK TO ANALYSIS 233

(without counterexample generation) is approximately 330 lines of C code.

Being able to apply multiple analysis procedures to the heating system speci�ca-

tion, which consists of multiple notations (tables, statecharts, and higher-order logic) and

uninterpreted constants, demonstrates the power of the framework. Model checking and

simulation analysis relied on information found in multiple notations in the heating system

speci�cation.

Analysis results are presented to the speci�er in terms of the original speci�ca-

tion through a combination of reversing the Boolean abstraction process and using the

unevaluated form of an expression maintained by the SFE step.

We demonstrate the use of structure in the way a partition found in the speci�er's

arrangement of items in a row can form the basis for an encoding of a numeric value

in a BDD. This technique produces a more precise abstraction for analysis than strictly

BDD-based approaches.

Fusion is an implementation of our framework. It is an example of a second gener-

ation analysis tool. First generation tools are those that closely couple the notation with

the analysis capabilities of the tool. The identi�cation of a toolkit of common techniques

that bridge the gap between the general-purpose logic and the input to analysis techniques

facilitates re-use of code and ease of extension. Our architecture is suitable for adding

techniques to broaden their applicability to speci�cations written in multiple notations.

Chapter 8

Examples

This chapter presents two major examples that illustrate the use of our framework: the

separation minima for aircraft in the North Atlantic region and the Aeronautical Telecom-

munications Network (ATN)1. The �rst of these examples was previously presented in Day,

Joyce and Pelletier [DJP97a]2. A discussion of the formalisation of the second was previ-

ously presented in Andrews, Day, and Joyce [ADJ97].

This chapter provides a sense of how the framework is used to tackle real speci�ca-

tions. In both cases, multiple notations are used for di�erent aspects of the speci�cation.

The analysis results indicate that much can be learned about a speci�cation using au-

tomated analysis, even when that analysis is conservative. Furthermore there are useful

types of analysis between type checking and model checking that do not encounter space

and time limitations for large problems.

The separation minima example shows the combination of decision tables with

higher-order logic. The tables are used as entries and results in other tables interchange-

ably with other forms of expressions. This speci�cation includes many uninterpreted

1Although the author of this dissertation has made every e�ort to ensure the technical accuracy
of the presentations of these systems, they should not be regarded as anythingmore than illustrative
examples.

2A tutorial and the complete analysis results can be found in Day, Joyce and Pelletier [DJP97b].

234

CHAPTER 8. EXAMPLES 235

Figure 8.1: Separation minima

constants whose de�nitions are irrelevant to the analysis of the speci�cation. The names

of the uninterpreted constants have meaning to air tra�c control experts. Completeness

and consistency checking, along with the new analysis technique of symmetry checking, are

applied to the separation minima. Our structure-based technique improves the analysis

results compared to a strictly BDD-based approach.

The ATN example combines statecharts with higher-order logic. This combination

allows the statechart speci�cations of the ATN components to be parameterised without

any changes to the statecharts notation or its semantics. This example uses the new no-

tations of CommAction and CommEvent for directed communication among statechart

components. Model checking and the new analysis technique of simulation are demon-

strated for the ATN.

The times for all results are from execution on a dual-processor Ultra-Sparc 60

(300 MHz) with 1 GB RAM running SunOS 5.6.

CHAPTER 8. EXAMPLES 236

8.1 Separation minima for the North Atlantic Region

The �rst example is the speci�cation of the separation minima for aircraft in the North

Atlantic region (NAT). This speci�cation provides guidance to air tra�c controllers man-

aging the region of oceanic airspace between Europe and North America. It is also used as

the basis for the development of computer-based systems that support the management of

the NAT region. For example, it would be used to plan a
ight from New York to London

to check whether the route is free from separation con
icts with other aircraft expected

to be in the NAT region at the same time. This example speci�cation was chosen as a

good test of the use of the framework to check for the application-independent properties

of completeness, consistency and symmetry in a real system. The development of sym-

metry checking was motivated by this example and using the toolkit of Fusion was easily

implemented.

We begin by describing the speci�cation and the e�ort to create it. The introduc-

tion and use of environmental assumptions in the analysis are also discussed. Our formal

speci�cation was developed in consultation with Gerry Pelletier of Hughes International

Airspace Management Systems who is an expert in the development of computer-based

systems that support the management of air tra�c.

The conventional method for validating the informal speci�cation is manual re-

view. The results of our analysis, presented in Section 8.1.2, showed three places where

the speci�cation of the separation minima is inconsistent that had not previously been

identi�ed.

This example demonstrates the value of integrating notations (tabular style and

predicate logic) and of using uninterpreted types and constants to maintain a level of

abstraction. The restructuring of results to produce output in terms of the original spec-

i�cation, possible through the information retained in the process of symbolic functional

evaluation, made the output of the analysis easily reviewable by our domain expert. The

CHAPTER 8. EXAMPLES 237

use of environmental constraints, as well as the structure found in the Row keyword, pro-

duced a more precise abstraction of the speci�cation. The better abstraction made the

results of analysis more accurate. As with all analysis procedures in the framework, the

semantic de�nitions are used directly in the analysis.

8.1.1 Formal speci�cation

Our formal speci�cation is based on a document published by Transport Canada on behalf

of the International Civil Aviation Organization (ICAO). This document describes the

o�cial North Atlantic separation minima published by ICAO. The document is an informal

(English) speci�cation that has been scrutinised by the NATSPG (NAT Systems Planning

Group). NATSPG members are air tra�c control specialists from the NAT countries.

Most of them maintain and use automated systems that implement these rules.

The formal representation of the separation minima is written in a mixture of the

tabular style presented in Section 4.8 and S+. It can be found in Appendix M. S+ is used

to declare the uninterpreted types and constants of the speci�cation, such as:

:FLIGHT;

:flight == config -> flight;

FlightLevel : flight -> num;

The use of uninterpreted types and constants ensured the formalisation did not add any

details not present in the original informal speci�cation. The informal speci�cation was

written for an audience of air tra�c control domain experts whose knowledge includes the

meaning of these uninterpreted terms. Also the de�nition of how the
ight level of an

aircraft is calculated is irrelevant to the speci�cation of the separation minima. Carrying

out analysis over uninterpreted elements is one distinguishing feature of our approach over

previous work on completeness and consistency analysis. S+ is also used for parts of the

speci�cation that are not well suited to tables such as the top-level de�nition of separation,

CHAPTER 8. EXAMPLES 238

AreSeparated(A:flight,B:flight,t:time) :=

/* A and B are vertically separated based on flight level */

(ABS(FlightLevel A - FlightLevel B) > VerticalSeparationRequired(A,B))

OR

/* A and B are laterally separated based on either position in degrees

of latitude or position in miles */

(if (LatitudeEquivalent(A,B))

then

(ABS(LateralPositionInDegrees A - LateralPositionInDegrees B) >

"LateralSeparation RequiredInDegrees" (A,B))

else

(ABS(LateralPositionInMiles A - LateralPositionInMiles B) >

"LateralSeparation RequiredInMiles" (A,B)))

OR

/* A and B are longitudinally separated based on time

depending on whether the two flights are in the approximate

same or opposite direction */

(if (AngularDifferenceGreaterThan90Degrees

(RouteSegment A, RouteSegment B))

then /* opposite direction */

NOT (WithinOppDirNoLongSepPeriod(A,B,t))

else /* same direction */

ABS(TimeAtPosition A - TimeAtPosition B) >

LongSameDirSepRequired(A,B));

Figure 8.2: Top-level speci�cation of separation

which can be found in Figure 8.23.

A tabular style was chosen because the speci�cation consists of complex decision

logic describing predicates and functions. The tabular style of Section 4.8 allows related

conditions to be placed in the same row, which is not allowed in more conventional forms

of AND/OR tables. The use of TableExpr aided in the review of the formal speci�cation

as well as providing a structure that could be exploited in analysis to produce more precise

results.

The tabular approach is modular in that a table can be split into multiple tables

3AreSeparated is a lifted de�nition. It may seem strange that \time" is a lifted variable, but it
is a value that changes through multiple con�gurations.

CHAPTER 8. EXAMPLES 239

Table 8.1: Function table for longitudinal separation required between same direction

ights

Default

AllOf [A;B] IsSupersonic True False

AllOf [A;B] IsTurbojet Dc True

LongSameDirSepRequired ssSameDir turbojetSameDir otherSameDir

(A,B) LongSep(A,B) LongSep (A,B) LongSep(A,B)

Table 8.2: Function table for longitudinal separation required between same direction
supersonic
ights

Default

ssSubcondition(A,B) True True

SameOrDivergingTracks(A,B) True True

ReportedOverCommonPoint(A,B) True Dc

AppropriateTimeSepAtCommonPoint(A,B) Dc True

ssSameDirLongSep(A,B) C 10 C 10 C 15

when it grows too large in the number of columns or rows needed. A table represents an

expression so it can be used anywhere in another table. Tables 8.1, 8.2, and 8.3 are exam-

ples of tables that reference other tables in the separation minima speci�cation. Table 8.1

is a de�nition of the expression LongSameDirSepRequired(A,B) used in Figure 8.2.

The value of using a packaged embedding to facilitate the use of multiple notations

within one speci�cation is demonstrated in the way expressions in S+ and tables are used

interchangeably. If a deep embedding had been used, when a table referenced another

table, the semantic function would have to appear explicitly in the speci�cation. For

example, the �rst row of Table 8.2 uses ssSubcondition, which is speci�ed by a table.

In a deep embedding, the semantic function would have to appear there. The alternative

would be to have a �xed combination of notations whose concrete syntaxes are known in

advance.

The speci�cation includes environmental constraints, which help increase the ac-

CHAPTER 8. EXAMPLES 240

Table 8.3: Predicate table for conditions relating to supersonic
ights

ssSubcondition(A,B)

AllOf [A;B] IsLevel True Dc

SameMachNumber(A,B) True Dc

SameType(A,B) Dc True

AllOf [A;B] InCruiseClimb Dc True

curacy of the output. Three categories of environmental constraints were useful. The �rst

relates the truth values of uninterpreted predicates, as in:

forall (A:flight). NOT (IsLevel (A) AND InCruiseClimb (A))

The second describes the symmetry of some uninterpreted constants such as:

forall (A:flight) (B:flight).

ReportedOverCommonPoint(A,B) = ReportedOverCommonPoint(B,A)

The third describes relationships between uninterpreted constants representing numeric

comparisons such as4:

forall A.

if "LatChange Per10DLong LessThanOrEq2" (A)

then "LatChange Per10DLong LessThanOrEq3" (A)

Pelletier reviewed and edited the speci�cation after minimal explanation of the

notations being used. The speci�cation went through several iterations as we clari�ed

concepts in the informal document. All but one section of the informal speci�cation

was formalised; the one section left out was not of immediate interest to our domain

expert for investigating our techniques. The resulting speci�cation consists of 15 tables

(both predicate and function tables), 18 de�nitions in S+, and 40 uninterpreted constants.

4As inequalities rather than uninterpreted constants, these relationships could have been de-
termined automatically by a decision procedure.

CHAPTER 8. EXAMPLES 241

The largest table consisted of eight rows and four columns. The formal speci�cation is

approximately 350 lines, which includes both table rows and S+ de�nitions.

8.1.2 Analysis and results

All of the tables in our formal speci�cation of the separation minima have been checked

for the properties of completeness, consistency and symmetry. A summary of these results

is found in Table 8.4. This section highlights some of these results. The maximum time

for any of these checks was one second. The largest BDD had 71 nodes and depended on

43 Boolean variables.

Analysis parameters

For the analysis of the separation minima, the evaluate to the point of distinction mode was

chosen for symbolic functional evaluation because the analysis technique relies on Boolean

abstraction. Rewrite simpli�cation was not necessary and the output was su�ciently

succinct without further evaluation. Rewriting was not used5. If it had been used, function

tables within tables would have had their conditionals expanded. The use of rewriting

could have made a di�erence if any nested tables relied on the same predicates as the

table, which is not the case in any of the separation minima tables. Any remaining

function applications in the evaluated expression have uninterpreted functions at their

tip. The specialisation option was used in symbolic functional evaluation to expand the

environmental constraints to apply to the two
ights that are parameters to each table.

Completeness

Completeness analysis revealed the cases that are covered by the default column of func-

tion tables and the cases that return false in the predicate tables. All the function

5The \if-then" construct found in some environmental constraints is de�ned using implication
rather than the conditional operator.

CHAPTER 8. EXAMPLES 242

Table 8.4: Summary of analysis results of the separation minima

Table Rows Cols Type Compl Cons Symm

VerticalSeparationRequired 4 4 F,D 4 0 YES

LateralSeparation 8 4 F,D 16 4 YES
RequiredInDegrees

LateralSeparation 8 4 F,D 16 4 YES
RequiredInMiles

LatitudeEquivalent 5 6 P 17 n/a NO

LongSameDirSepRequired 2 2 F,D 1 0 YES-A

OppDir NoLongSepPeriod 2 2 F,D 1 0 YES-A

ssOppDir NoLongSep 1 2 F 0 0 YES-A

ssSameDirLongSep 4 2 F,D 3 0 YES

ssSubcondition 4 2 P 3 n/a YES

turbojetSameDir 2 4 F 0 0 YES-A
LongSep

turbojetOppDir 2 4 F 0 0 YES-A
NoLongSepPeriod

MNPSSameDir LongSep 3 5 F,D 3 0 NO

WATRSCondition 6 2 P 8 n/a YES

genSameDir LongSep 6 3 F,D 5 0 NO

otherSameDirLongSep 3 2 F,D 2 1 YES

Type: F = function table; P = predicate table; D = has default column
Compl (completeness): number of cases not covered in table using \don't cares"
Cons (consistency): number of overlapping cases; n/a means \not applicable"

if it is a predicate table
Symm (symmetry): whether the analysis could determine if the table is symmetric;

YES-A means \yes, with assumptions"

CHAPTER 8. EXAMPLES 243

>%comp VerticalSeparationRequired

VerticalSeparationRequired is:

< omitted for presentation >

The following cases

yield the default value of (C 2000)

Case 1

Row 1 : (((C 280) < (FlightLevel A)) AND ((FlightLevel A) <= (C 450)))

Row 2 : ((FlightLevel B) > (C 450))

Row 3 : Dc

Row 4 : Dc

Case 2

Row 1 : ((FlightLevel A) > (C 450))

Row 2 : (((C 280) < (FlightLevel B)) AND ((FlightLevel B) <= (C 450)))

Row 3 : Dc

Row 4 : Dc

Case 3

Row 1 : (((C 280) < (FlightLevel A)) AND ((FlightLevel A) <= (C 450)))

Row 2 : (((C 280) < (FlightLevel B)) AND ((FlightLevel B) <= (C 450)))

Row 3 : Dc

Row 4 : Dc

Case 4

Row 1 : ((FlightLevel A) > (C 450))

Row 2 : ((FlightLevel B) > (C 450))

Row 3 : (False (IsSupersonic A))

Row 4 : (False (IsSupersonic B))

Figure 8.3: Output of completeness analysis of vertical separation table

tables that did not have default columns are complete. Figure 8.3 shows the output

of completeness analysis for Table 8.5, which speci�es the vertical separation required

between two aircraft. The results are summarised using \don't care" values in some

rows. This output illustrates the use of the Row construct to partition the numeric

range. By exploiting the information in the Row structure, the missing range in the ta-

ble ((C 280 < FlightLevel A) AND (FlightLevel A <= C 450)) is determined and is

used in the output.

For some tables there are a great number of cases (e.g., 16) that are covered by the

default column relative to the number of columns in a table. Our domain expert did not

�nd any errors in the speci�cation from these results.

The results produced are all output using the unexpanded version of the row la-

CHAPTER 8. EXAMPLES 244

T
ab
le
8.
5:
V
er
ti
ca
l
se
p
ar
at
io
n

D
ef
a
u
lt

F
l
i
g
h
t
L
e
v
e
l
A

_
<
=
C
2
8
0

.

_
>
C
4
5
0

_
>
C
4
5
0

F
l
i
g
h
t
L
e
v
e
l
B

.

_
<
=
C
2
8
0

_
>
C
4
5
0

_
>
C
4
5
0

I
s
S
u
p
e
r
s
o
n
i
c
A

.

.

_
=
C
T

.

I
s
S
u
p
e
r
s
o
n
i
c
B

.

.

.

_
=
C
T

V
e
r
t
i
c
a
l
S
e
p
a
r
a
t
i
o
n

R
e
q
u
i
r
e
d
(
A
,
B
)

C
1
0
0
0

C
1
0
0
0

C
4
0
0
0

C
4
0
0
0

C
2
0
0
0

CHAPTER 8. EXAMPLES 245

>%comp ssSubcondition env

ssSubcondition is:

(PredicateTable

[((Row ((AllOf [A;B]) IsLevel)) [True;Dc]);

((Row (SameMachNumber (A , B))) [True;Dc]);

((Row (SameType (A , B))) [Dc;True]);

((Row ((AllOf [A;B]) InCruiseClimb)) [Dc;True])])

The predicate is false

for the following cases:

Case 1

Row 1 : (False ((AllOf [A;B]) IsLevel))

Row 2 : Dc

Row 3 : (False (SameType (A , B)))

Row 4 : Dc

Case 2

Row 1 : (True ((AllOf [A;B]) IsLevel))

Row 2 : (False (SameMachNumber (A , B)))

Row 3 : Dc

Row 4 : (False ((AllOf [A;B]) InCruiseClimb))

Case 3

Row 1 : (False ((AllOf [A;B]) IsLevel))

Row 2 : Dc

Row 3 : (True (SameType (A , B)))

Row 4 : (False ((AllOf [A;B]) InCruiseClimb))

Figure 8.4: Completeness checking of supersonic subcondition

bels. For example, FlightLevel A > C 450 appears rather than its evaluated form of

FlightLevel A cf GREATER_THAN 450.

Figure 8.4 shows the results of completeness checking of the supersonic subcon-

dition found in Table 8.3. This analysis used the environmental constraints relating the

uninterpreted predicates InCruiseClimb and IsLevel. It also shows how the predicate

AllOf is presented in its unexpanded form.

Consistency

The most signi�cant result of the analysis of the separation minima was the discovery of

three tables that are inconsistent. Our domain expert concluded that these results are

cases where the informal speci�cation (i.e., the original source document) is ambiguous.

Table 8.6 speci�es the number of minutes that must exist between two aircraft

CHAPTER 8. EXAMPLES 246

Table 8.6: Longitudinal separation required between same direction
ights of \other"
types

Default

ReportedOverCommonPoint(A,B) True Dc

SameOrDivergingTracks(A,B) True Dc

AllOf [A;B] (IsOnRoute Routes3) Dc True

otherSameDirLongSep(A,B) C 15 C 20 C 30

>%cons otherSameDirLongSep env

otherSameDirLongSep is:

(

(Table

[((Row (ReportedOverCommonPoint (A , B))) [True;Dc]);

((Row ("SameOr Diverging Tracks" (A , B))) [True;Dc]);

((Row ((AllOf [A;B]) (IsOnRoute Routes3))) [Dc;True])]

) [(C 15);(C 20);(C 30)])

Columns 1 and 2 conflict in the following:

Case 1

Row 1 : (True (ReportedOverCommonPoint (A , B)))

Row 2 : (True ("SameOr Diverging Tracks" (A , B)))

Row 3 : (True ((AllOf [A;B]) (IsOnRoute Routes3)))

Figure 8.5: Output of consistency analysis of Table 8.6

(that are not both turbojet or both supersonic)
ying in the same direction for them to

be considered longitudinally separated. The analysis output in Figure 8.5 identi�es that,

for the case where two aircraft have reported over a common navigation point, are on

the same or diverging tracks, and are both on a particular set of routes that have special

criteria, the speci�cation is ambiguous as to whether there should be 15 or 20 minutes of

separation between them. These results are output using the unexpanded form of the row

labels, such as (True ((AllOf [A;B] (IsOnRoute Routes3))).

The other two tables with inconsistencies describe requirements for lateral separa-

tion. These two tables are the same except that the �rst table returns a value in degrees

of latitude and the second table returns a value in miles. These tables have eight rows

and four columns. Four inconsistent pairs of columns were found for each table. The

CHAPTER 8. EXAMPLES 247

>%sym "ssOppDir NoLongSepPeriod" env

"ssOppDir NoLongSepPeriod" is:

(

(Table [((Row (ReportedOverCommonPoint (A , B))) [True;False])]

)

[(P ((ept (A , B)) , ((ept (A , B)) + (C 10))));

(P (((ept (A , B)) - (C 15)) , ((ept (A , B)) + (C 15)))

)])

Assumption:

((P ((ept (A , B)) , ((ept (A , B)) + (C 10)))) cf)

=

((P ((ept (B , A)) , ((ept (B , A)) + (C 10)))) cf)

Assumption:

((P (((ept (A , B)) - (C 15)) , ((ept (A , B)) + (C 15))))

cf)

=

((P (((ept (B , A)) - (C 15)) , ((ept (B , A)) + (C 15))))

cf)

The table is symmetric.

Figure 8.6: Symmetry checking of the supersonic opposite direction no longitudinal sepa-
ration period

inconsistent cases involve special provisions for particular routes that overlap with the

more general criteria. The results clearly reveal cases in the informal speci�cation that

are ambiguous as to the amount of lateral separation required between aircraft.

Symmetry

Twelve of the �fteen tables in the separation minima were automatically shown to be

symmetric under assumptions about the equality of return values of the tables. These

results relied heavily on the environmental assumptions about the symmetry of uninter-

preted constants. Figure 8.6 presents an example of the output of symmetry checking for

a simple table. Fusion is unable to determine the equivalence of values in the result row

so corresponding columns are compared to provide the user with some helpful feedback.

These assumptions can be examined by manual review.

Symmetry checking of the table describing the conditions for \latitude equivalence"

CHAPTER 8. EXAMPLES 248

pointed out that in one row a condition was written x < 58 and in another row it was

written 58 > x. The analysis carried out by the tool is based on syntax so it is not able

to show these terms are equal. However if the table is amended to use only one form of

this expression, symmetry analysis would show the table is symmetric.

In general, symmetry analysis highlighted information about the primitive terms

that might not be known by an implementor of the separation minima in software.

8.2 Aeronautical Telecommunications Network

The Aeronautical Telecommunications Network (ATN) is a speci�cation for a global

telecommunications network for air tra�c control systems. The ATN is being developed

to allow aircraft and ground stations to exchange data. The various software components

of the ATN reside in aircraft or ground station computers, and interact with human users

and with each other to perform this data exchange (Figure 8.7). The communications

protocols used by the software components are de�ned in International Civil Aviation

Organization (ICAO) documents referred to as Standards and Recommended Practices

(SARPs) [ATN96].

A conventional method of validating this speci�cation would likely involve its im-

plementation in a programming language followed by extensive simulation and testing.

As an alternative to this conventional method, we created a formal speci�cation of as-

pects of the ATN SARPs using a combination of the notations that have been embedded

within our framework. We hoped to show that this approach would require less e�ort

than conventional methods and be more e�ective in the discovery of potential problems

or shortcomings in the speci�cation. In particular, we expected that the ability to use

uninterpreted constants in our speci�cation would avoid some of the e�ort that would

otherwise be required in a prototyping approach to \
esh out" irrelevant details. We also

expected that the choice of a specialised notation that matched the original informal spec-

CHAPTER 8. EXAMPLES 249

Figure 8.7: Aeronautical Telecommunications Network

i�cation well, namely statecharts, would be more economical than using the \
at" control

structures (e.g., if-then-else) of a programming language. Finally, we expected that model

checking and simulation of the formal speci�cation itself would be a more e�ective way to

explore the con�guration space than testing a prototype implementation.

Aspects of a draft version of the ATN SARPs were formally speci�ed by a team of

researchers at the University of British Columbia (Jamie Andrews (project lead), Kendra

Cooper, Michael Donat, and Ken Wong), and the University of Victoria (Dilian Gurov

and Bruce Kapron), who were advised by members of Hughes International Airspace

Management Systems (Ayman Farahat, Je� Joyce, Alec MacKay, Ofelia Moldovan, Greg

Saccone, and Robert Taylor). The author of this dissertation provided the framework and

tool support during the speci�cation e�ort. There were two goals for this e�ort: �rst,

to help validate the SARPs protocols; and second, to provide a formal description of the

SARPs that can potentially act as a basis for validating implementations of the ATN. The

�rst phase of the e�ort involved all project members and consisted of writing and type

checking a formal speci�cation and doing some informal validation. Some problems in the

draft SARPs were identi�ed as a result of this work. The second phase was carried out

CHAPTER 8. EXAMPLES 250

by the author of this dissertation and involved con�guration space exploration analysis of

the speci�cation. At the time of the formal speci�cation e�ort, the type of analysis to be

carried out had not been determined.

This example demonstrates the combination of the notations: statecharts,

CoreEvent, CoreAction, CommAction, CommEvent and S+. The use of uninterpreted

constants, such as Msg, which is associated with the semantics of the Send and Receive

keywords (Section 5.11 on page 156), reduced the number of declarations needed in the

speci�cation. The use of S+ allowed the speci�cation authors to partition the speci�ca-

tion and use auxiliary declarations to make the speci�cation more compact and readable.

It also allowed the parameterisation of statechart speci�cations without any extension

to the notation, which eliminated the need to specify the same behaviour for multiple

components.

The analysis demonstrates the scalability of symbolic functional evaluation as this

speci�cation is quite large. Simple e�orts, such as examining the list of previous variables

for its next con�guration relation, uncovered some errors in the speci�cation. Building the

BDD for the next con�guration relation involved the auxiliary BDD reordering tool and

partitioning the speci�cation based on the structure of the statechart. We also adjusted

the level of detail in the speci�cation by using the Send and Receive keywords rather than

SendData and ReceiveData, which involved changes to only two lines in the speci�cation.

Simulation and model checking were carried out on the formal speci�cation of the ATN.

In general, our goal was to determine the scalability of the framework by testing it on a

large example.

8.2.1 Formal speci�cation

The ATN is structured as a set of concurrent components that interact by means of mes-

sages. The top-level components of the ATN, which human users interact with, are referred

to as \applications". Applications do not communicate directly with each other; rather,

CHAPTER 8. EXAMPLES 251

Control

Function

(CF)

Association Control

Service Element (ACSE)

Service Element (ASE)

Application

Application Entity (AE)

Supporting Service

Application

Figure 8.8: Structure of the ATN

they use a number of Application Entities (AEs) found in the OSI application layer [Tan88]

to provide them with communication services. The four types of AEs formally speci�ed

are the Automated Dependent Surveillance (ADS), Context Manager (CM), Controller

Pilot Data Link Communication (CPDLC), and Flight Information Service (FIS). There

are two versions of each type of AE: a ground version, which resides in ground stations,

and an air version, which resides in aircraft. The AEs communicate with each other by

means of the supporting service found in the OSI presentation layer.

As shown in Figure 8.8, each AE consists of three entities. The Application Ser-

vice Element (ASE) performs the duty of receiving messages from the application and

translating them into OSI-standard messages. The Association Control Service Element

(ACSE) allows its AE to form associations with other (peer) AEs. The Control Function

(CF) mediates all communication amongst the ASE, the ACSE, the application, and the

supporting service. Each type of AE contains a unique type of ASE, but the CF and the

ACSE have the same behaviour for all types of AEs.

The SARPs consist of on the order of 1000 pages of text, containing detailed

CHAPTER 8. EXAMPLES 252

CM_Ground 1 CM_Air 2

ACSE 1

SuppSvc 1 2

CF 2

ACSE 2

CF 1

ATN

Figure 8.9: Statechart structure of example ATN

speci�cations of the four types of ASEs and the CF, along with requirements for the lower

OSI layers and various less formal guidelines documents. The ACSE is described in a

separate 40-page document, ISO 8650 [Int94].

Each entity (component) is described using an informal state transition table as

well as text in paragraphs. Statecharts were a good match to the informal model. The

compact representation of concurrent components of statecharts helped avoid the state

explosion of a
at �nite state machine. Each cell of the informal state tables mapped

directly to one transition of a statechart.

Figure 8.9 shows the top-level decomposition of a two application entity ATN. Each

AE consists of an application control service element (ACSE), a control function (CF),

and a speci�c application service element. In this case the application service elements

are the context manager for the ground version (CM Ground 1) and the context manager

for the air version (CM Air 2). The formal speci�cation includes an abstract speci�cation

of the supporting service, which simply translates messages from one AE to the other

(SuppSvc 1 2).

Part of the informal state table for the ACSE component is presented in Table 8.7

from the SARPs [Int94]. The whole table consists of nine columns, four of which are

shown. The rows that have no entries for the three columns shown have entries for other

columns. The ACSE can be in one of several status states (e.g., Idle, Awaiting AARE).

CHAPTER 8. EXAMPLES 253

Table 8.7: Part of the ACSE state table

STATE) STA0 STA1 STA2
Idle- Awaiting Awaiting . . .

EVENT + Unassoc AARE A-ASCrsp

A-ASCreq p1
AARQ
STA1

A-ASCrsp+ AARE+
STA5

A-ASCrsp- AARE-
STA0

AARQ p1
A-ASCind
STA2

~p1
AARE-
STA0

AARE+ A-ASCconf+
STA5

AARE- A-ASCconf-
STA0

A-RLSreq

A-RLSrsp+

A-RLSrsp-

RLRQ

RLRE+

RLRE+

RLRE-

A-ABRreq ABRT ABRT
STA0 STA0

ABRT A-ABRind A-ABRind
STA0 STA0

P-PABind A-PABind A-PABind
STA0 STA0

CHAPTER 8. EXAMPLES 254

The possibles states are listed across the top of the table. The SARPs also use the names

STA0 and STA1 for these states but the formal speci�cation used the more descriptive

names. Each of these status states was modelled by a basic state, and these basic states

were put together in an OR-state to de�ne the overall component.

The �rst column of the informal state table is a list of messages that can be received

by the component. Receiving a message triggers a transition. Each cell of the table

represents a transition. These transitions can have guarding conditions, such as \p1",

which are de�ned elsewhere in the documentation. For example, \p1" is \can support

requested connection". The action of a transition consists of sending a message, such as

AARQ. The destination state of the transition is speci�ed in the last line of the cell. The

blank cells also represent transitions. In the ACSE state table, the blank cells mean an

\error" message should be sent to the Error state and the component should move into

the Idle state.

The messages that are both received and sent are listed in these tables using short

forms and are described in separate tables in the SARPs. The speci�ers followed the trail

through the informal speci�cation to use a smaller set of more descriptive message names.

For example, \AARE+" is speci�ed using the message name P_CONNECT_cnf_pos.

By combining statecharts with S+, it was possible to make extensive use of parame-

terisation in specifying the components without complicating the semantics of statecharts.

Each component was parameterised by their AE number. One speci�cation was written

for each of the CF and ACSE components and multiple instantiations of the speci�cation

were used to create the two AE ATN example.

Components were speci�ed by di�erent authors. Each author exploited the inte-

gration with S+ to customise their formal speci�cation to suit the component and their

particular speci�cation style. An example of an auxiliary de�nition for a \transition con-

structor" used in the ACSE speci�cation is found in Figure 8.10. The function ACSE_TRANS

maps �ve parameters, i (the AE number), sourceState, outMessage, destState and

CHAPTER 8. EXAMPLES 255

inMessage, to an instance of a transition denoted by a �ve-tuple of the form (transition

label, source state, event, action, destination state).

The use of auxiliary de�nitions made the speci�cation more compact and readable.

Our approach of integrating textual notations di�ers considerably from a graphical ap-

proach to statecharts speci�cation where the speci�er would likely have a �xed palette of

constructs for the composition of a speci�cation. The advantage of not having a �xed set

of constructs stems from the generality of S+ coupled with the use of SFE in the prelim-

inary stage of analysing a speci�cation within our framework. No new infrastructure is

required for the customisations chosen by speci�ers.

The SendData action and ReceiveData event, described in Sections 4.14 and 4.15,

were used extensively in this speci�cation. Messages, such as A_ASSOCIATE_req, are con-

structors of type msg. The functions ATNSend and ATNReceivewere de�ned to be SendData

and ReceiveData respectively, limited to messages of the correct type. This customisation

helps reduce the chance of erroneously sending messages of a di�erent type.

Figure 8.11 shows a typical section of the ACSE speci�cation that lists the tran-

sitions from the state ACSE_Awaiting_AARE. This list corresponds to the third column of

Table 8.7 under the heading \STA1 Awaiting AARE". Part of the statechart that uses

these transitions is found in Figure 8.12. The graphical version is provided only for il-

lustration; our speci�cation was developed using a textual representation of statecharts.

Figure 8.11 shows the eight basic states that are substates in the ACSE component. To

match clearly a column of the original informal state table, transitions leaving each state

were grouped together in a de�nition in the speci�cation of this component. Lines 7 to

12, 14 to 19, and 21 to 23 of Figure 8.11 each represent one transition that matches one

cell in the original informal state table. The comments provided in Figure 8.11 show the

correspondence with the transitions labelled in Figure 8.12. There are ten transitions of

the form of the transition labelled te in Figure 8.12, which all send an error message and

return to the idle state. The complete formal speci�cation of the ACSE component can

CHAPTER 8. EXAMPLES 256

be found in Appendix N.

In the de�nition of Transitions_From_Awaiting_AARE (Figure 8.11), ACSE_TRANS

is used in a let-de�nition of the local function TRANS_CELL. In TRANS_CELL, the function

ACSE_TRANS is partially evaluated when it is applied to two values, i and Awaiting_AARE,

as arguments for the �rst two of the �ve parameters of ACSE_TRANS. TRANS_CELL denotes

transitions that always originate from the state Awaiting_AARE. TRANS_CELL is parame-

terised by the remaining three parameters of ACSE_TRANS, namely outMessage, destState

and inMessage.

In the list of transitions, the element at the beginning of each dot expression is

the triggering message. For example, transition t1 speci�ed by line 11 in Figure 8.11 is a

transition triggered by the event P_CONNECT_cnf_pos. Expanding the use of TRANS_CELL

results in the transition:

(PTrans ((ACSE i).ACSE_Awaiting_AARE) P_CONNECT_cnf_pos, /* trans label */

(ACSE i).ACSE_Awaiting_AARE /* source state */

ATNReceive s (CF i) P_CONNECT_cnf_pos (ACSEData i), /* event */

ATNSend s (CF i) A_ASSOCIATE_cnf_pos (ACSEData i), /* action */

(ACSE i).ACSE_Associated) /* destination state */

The function PTrans produces an appropriate label for the transition. The triggering

event is the message P_CONNECT_cnf_pos from the CF component. The action is sending

the message A_ASSOCIATE_cnf_pos to the CF component.

The ATN SARPs include timers for purposes such as timing out dropped connec-

tions. The SARPs do not usually give details of the duration before timing out. Conse-

quently, timers were speci�ed as external events that could occur at any time, rather than

using the Tm event.

Table 8.8 shows the e�ort required to create the formal speci�cation and its size.

The two CM components were created by the same speci�er so their hours and lines are

grouped together. The formal speci�cation analysed is approximately 43 pages. Compared

with the 1000 pages of text in the SARPs, the formal speci�cation that was analysed did

CHAPTER 8. EXAMPLES 257

ACSE_TRANS (s:(stateName,transName)sc_struct) i sourceState (outMessage:msg)

(destState: stateName -> stateName) (inMessage:msg) :=

((PTrans ((ACSE i).sourceState) inMessage),

((ACSE i).sourceState),

(ATNReceive s (CF i) inMessage (ACSEData i)),

(ATNSend s (CF i) outMessage (ACSEData i)),

((ACSE i).destState)

);

Figure 8.10: Transition constructor in predicate logic

1 Transitions_From_ACSE_Awaiting_AARE s i :=

2 /* From ACSE_Awaiting_AARE state (STA1) */

3 let Error_Cell := (ACSE_error s i ACSE_Awaiting_AARE) in

4 let TRANS_CELL := (ACSE_TRANS s i ACSE_Awaiting_AARE) in

5

6 [/* Making connection */

7 A_ASSOCIATE_req . Error_Cell; /* te */

8 A_ASSOCIATE_rsp_pos . Error_Cell; /* te */

9 A_ASSOCIATE_rsp_neg . Error_Cell; /* te */

10 P_CONNECT_ind . Error_Cell; /* te */

11 P_CONNECT_cnf_pos . (TRANS_CELL A_ASSOCIATE_cnf_pos ACSE_Associated); /* t1 */

12 P_CONNECT_cnf_neg . (TRANS_CELL A_ASSOCIATE_cnf_neg ACSE_Idle); /* t2 */

13 /* Releasing connection normally */

14 A_RELEASE_req . Error_Cell; /* te */

15 A_RELEASE_rsp_pos . Error_Cell; /* te */

16 A_RELEASE_rsp_neg . Error_Cell; /* te */

17 P_RELEASE_ind . Error_Cell; /* te */

18 P_RELEASE_cnf_pos . Error_Cell; /* te */

19 P_RELEASE_cnf_neg . Error_Cell; /* te */

20 /* Releasing connection abnormally */

21 A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle); /* t3 */

22 P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle); /* t4 */

23 P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle) /* t5 */

24];

Figure 8.11: Typical section of the ACSE speci�cation

CHAPTER 8. EXAMPLES 258

ACSE_Awaiting_AARE i

ACSE_Idle i

ACSE_Associated i

ACSE_Awaiting_AASCrsp i

ACSE_Awaiting_RLRE i

ACSE_Awaiting_ARLSrsp i

ACSE_Collision_initiator i

ACSE_Collision_responder i

t1

t5t3 t4t2te

ACSE i

Figure 8.12: Speci�cation of part of the ACSE component

not include the ADS, CPDLC, or FIS. The SARPs also contain explanatory text and

detailed requirements on the contents of the data sent in messages, which were not for-

mally speci�ed. Minor changes were made after the original speci�cation e�ort because

our framework had evolved. An example of a change needed was to declare state names

and transition labels as constructors. The group e�ort had left these labels as uninter-

preted constants that returned elements of the types stateName and transName. For the

most part, the uninterpreted constants could be de�ned as returning the appropriate type

constructor so the speci�cation changed little beyond the addition of the stateName and

transName type de�nitions. Another change was to \lift" many of the data types and a few

of the operators. Problems with the draft SARPs uncovered as a result of the speci�cation

and type checking analysis can be found in Andrews, Day and Joyce [ADJ97].

8.2.2 Analysis and results

Simulation and model checking of the two AE example ATN in Figure 8.9 were carried

out to demonstrate the framework presented in this dissertation.

CHAPTER 8. EXAMPLES 259

Table 8.8: Size and time of formal speci�cation e�ort

of basic # of worker
Component states trans hours lines

common 32 200

SuppSvc 1 10 5 50

CF 5 96 24 680

ACSE 7 123 20 400

CM Air 5 70 44 1790
CM Ground 8 168

Totals 26 467 125 3120

Analysis parameters

With the size of the ATN speci�cation, both in terms of S+ nodes and BDDs6, we chose not

to keep the unexpanded version of expressions. This choice did not a�ect the readability

of the output because the elements of the ATN speci�cation appearing in the output are

mainly the status of the basic states and the messages. We chose the SFE mode of evaluate

for rewrite simpli�cation. This mode reduces the arguments of uninterpreted constants,

such as Msg, to their most compact form for readability. No rewriting was needed for this

speci�cation.

The functions ATNSend and ATNReceive were changed to use the less detailed Send

action and Receive event as conservative abstractions of SendData and ReceiveData,

because the properties checked did not depend on the data. This abstraction reduced

the size of the con�guration space and was su�cient to produce interesting results in the

analysis.

Symbolic functional evaluation

The �rst step in both simulation and model checking is to evaluate the next con�guration

relation. Our implementation of symbolic functional evaluation performed well taking 39

6Table 8.9 provides details on these sizes.

CHAPTER 8. EXAMPLES 260

seconds for the largest component of the ATN, which demonstrates the scalability of the

technique.

Evaluation uncovered two errors in the formal speci�cation. The �rst was found

in the speci�cation of the CF component, which contained the following:

AmInitiator : NUM -> bool;

AmResponder i := NOT(AmInitiator i);

CFT cf_sc i STA0 (SuppSvc, P_CONNECT_ind, dataSS)

STA1

(Both

(ATNSend (ACSE i) P_CONN_ind (ACSEofSS dataSS))

(Asn (AmResponder i) (C T)));

CFT is an auxiliary de�nition for building transitions used by the author of the CF com-

ponent. SFE halted in evaluation indicating that AmResponder is an illegal left-hand side

for an assignment statement. This error was uncovered because the NAME function used in

the action semantics was applied to an illegal expression. The correction for this problem

is to use Asn (AmInitiator i) (C F) as the second action of the Both statement.

CHAPTER 8. EXAMPLES 261

The second error discovered was in the speci�cation of the supporting service, which

consists of one basic state SuppSvc 1 2. The following auxiliary de�nition was speci�ed:

Translation (s:(stateName,transName)sc) i j

(outMessage:msg) inMessage :=

((SSTrans i j inMessage), /* transition label */

(SuppSvc i j).Translate, /* source state */

ATNReceive s (CF i) inMessage SuppSvcData, /* event */

ATNSend s (CF j) outMessage SuppSvcData, /* action */

(SuppSvc i j).Translate /* destination state */

);

The constant Translation was used as in:

P_CONNECT_rsp_neg . (Translation s j i P_CONNECT_cnf_neg);

The swapping of the two AE designator numbers (i and j) resulted in the use of the state

name Translate (SuppSvc 2 1), which does not exist. This error was discovered when

SFE could not evaluate the next con�guration relation for the supporting service.

Building the BDD

Because of the size of the con�guration space, building the BDD representing the next

con�guration relation for the example ATN could only be accomplished by partitioning

the speci�cation component-wise. The ATN satis�ed the requirements for the components

of the AND-state being independent as described in Section 5.13. The next con�guration

relation for each component was evaluated and Boolean simpli�cation was used to remove

the existentially quanti�ed transition
ags. No information was lost in this process. A

suitable variable order for each component was found and input to build the intermediate

BDDs (Section 7.3.4).

CHAPTER 8. EXAMPLES 262

The ATN next con�guration relation was then created as the conjunction of the

simpli�ed next con�guration relations for each component. Another variable order was

required to build the �nal BDD. Table 8.9 presents the sizes and times for the symbolic

functional evaluation phase (\SFE time"), the construction of the BDD (\abs time"), and

the process of turning it back into an S+ expression (\rev abs")7. The last row of the table

gives the times and sizes for building the ATN next con�guration relation, which consists

of the other components. The sizes of the collapsed S+ expressions are presented because

they are in canonical form. The reverse abstraction process also produces a canonical form.

The number of Boolean variables used for the ATN is equal to the sum of the Boolean

variables for each component (with two CFs and two ACSEs), indicating the independence

of the components, which is required to build the next con�guration relation in parts. A

message sent by one component to another denotes a constraint on the next con�guration,

while the same message received by another component is a constraint on the previous

con�guration.

The statistics of Table 8.9 are for the �nal version of the ATN used in analysis.

As errors were uncovered, the speci�cation was modi�ed and, at times, the process of

determining a new variable order had to be iterated. The next con�guration relation

BDD was saved in a �le so it did not need to be recalculated for each analysis run.

The process of building the BDD resulted in an error being discovered in the CF

speci�cation. When the number of Boolean variables used in all the components added

up to greater than the number in the ATN, smaller combinations of components were

investigated to see where the overlap in variables existed. It was discovered that the data

declarations of the CF component had not been parameterised. Consequently, the multiple

CF components incorrectly constrained the same data. This problem was easily �xed by

parameterising �ve data declarations in the CF and adding let-de�nitions to instantiate

7The abstraction process for the CM Ground component took much longer than the rest because
it is the largest and its variable order had not been optimised.

CHAPTER 8. EXAMPLES 263

Table 8.9: Times and sizes for constructing the ATN next con�guration relation

SFE collapsed abs # rev abs rev abs
time size time BDD Bool time size

Component (sec) (nodes) (sec) size vars (sec) (nodes)

SuppSvc 0 415 0 97 22 0 282

CF 15 2748 1 2024 80 0 4284

ACSE 17 4406 7 823 50 0 1795

CM Air 8 2347 2 1660 44 0 3186

CM Ground 39 5429 75 20183 69 2 37082

ATN 0 52076 32 15553 395

the uses of the data in the CF statecharts for the particular AE number.

Messages

After an initial version of the BDD for the next con�guration relation was constructed,

an attempt at simulation was made. It was discovered that there were no external mes-

sages that could be used to initiate a simulation. The CM ASE components assumed

messages from their application would come via the CF. The CF component had a top-

level interface of receiving messages from the CM ASE components (the ASE lower level

interface) because the speci�cation of the upper interface is left ASE-independent in the

informal speci�cation. After consulting the project lead, the most suitable resolution of

this di�culty was to drop the top exchange between the CF and the two CM ASEs and

allow the CM ASEs to communicate directly with the application. The role of the CF in

between the ASE and the application had only been translation. This revised structure is

illustrated in Figure 8.13.

The next step in analysis was to determine an appropriate initialisation constraint

that ensures no internal messages exist in the initial con�guration. A list of the messages

used in the ATN could be obtained by sorting through the results of the %showprev

command on the ATN next con�guration relation (Section 7.6). Two messages were found

CHAPTER 8. EXAMPLES 264

Association Control

Service Element (ACSE)

Service Element (ASE)

Application

Control

Function

(CF)

Application Entity (AE)

Supporting Service

Application

Figure 8.13: Simpli�ed structure of the ATN

that originated at the CF and were destined for the CF. These messages were the result of

typing errors in the formal speci�cation e�ort and required changes to eight transitions.

Another result of this process was a list of four messages that are sent from the

CF to the ASE but are never received in the CM Ground and CM Air ASEs. They may

be messages not applicable to certain ASEs.

Simulation

The SARPs contain a number of message sequence charts8 to describe the typical be-

haviour of the protocol. Simulation can be used to demonstrate this behaviour. An

example of a message sequence chart in the SARPs is found in Figure 8.14. A D-START

request from a dialogue initiator should be followed in time by a D-START indication

being received by the dialogue responder. Then the dialogue responder can reply with

a D-START response, which is received by the dialogue initiator as a D-START con�r-

mation. A simulation of this sequence chart was produced using the list of constraints,

8Message sequence charts are part of the Speci�cation and Description Language (SDL) devel-
oped by the CCITT (the International Telegraph and Telephone Consultative Committee).

CHAPTER 8. EXAMPLES 265

D-START request

Time

Dialogue Initiator Dialogue Service Dialogue Responder

D-START response

D-START indication

D-START confirmation

Figure 8.14: D-START message sequence chart

which is found in Figure 8.15, on each con�guration of the simulation. The simulation

begins from a con�guration that satis�es the initial condition of the ATN, atn_ic, which

includes being in the default basic states and no internal messages existing. The ini-

tial constraint also sends a message from the application user to the CM ground ASE.

The CM_UPDATE_req message is a dialogue initiation message. In the next con�guration

the D_START_req is sent from the CM ground ASE to the appropriate CF. Figures 8.16

and 8.17 show highlights of the simulation output giving only the changes between the

con�gurations. The complete simulation can be found in Appendix O.

Extra information was needed in the constraints producing the simulation to resolve

nondeterminism. This extra information is not described in the message sequence chart,

such as ((ACSEVersionSupported 1) = (C T)) cf in con�guration 2. The simulation

also highlighted side e�ects of the sequences, such as ((AmInitiator 1) cf) EQ T, which

is an assignment that occurs in the CF component. It also showed that not all transitions

result in state changes.

Model checking

Model checking analysis was used to check the reachability of states in the ATN by checking

properties such as:

EF (InBasicState (CM_Ground_CONTACT_DIALOGUE 1) cf)

CHAPTER 8. EXAMPLES 266

page2_4 :=

[

/* cf0 */ atn_ic /\ Msg (AppUser 1) (CM_Ground 1) (CM_UPDATE_req) cf;

/* cf1 */ Msg (CM_Ground 1) (CF 1) D_START_req cf;

/* cf2 */ ((ACSEVersionSupported 1) = (C T)) cf;

/* cf3 */ T;

/* cf4 */ T;

/* cf5 */ T;

/* cf6 */ ((ACSEVersionSupported 2) = (C T)) cf;

/* cf7 */ T;

/* cf8 */ (dataCM_USER 2 = C CM_UPDATE_ind) cf;

/* Msg (CF 2) (CM_Air 2) D_START_ind cf */

/* cf9 */ T;

/* cf10 */ T;

/* cf11 */ T;

/* cf12 */ T;

/* cf13 */ T;

/* cf14 */ T;

/* cf15 */ T;

/* cf16 */ T

];

Figure 8.15: Simulation constraints for message sequence chart

Model checking this property returns a witness that is the shortest path to the state from

the initial con�guration. One case showed a path that had not been possible in the original

informal state tables. This case was an error in the destination state of a transition in the

CM ground component in the formal speci�cation. This particular model checking run

produced a witness of a sequence of �ve con�gurations in one second.

The ATN speci�cation includes \cannot occur" transitions. These transitions trig-

ger on the reception of internal messages that are not supposed to occur in a particular

state. The SARPs indicate that if these messages are sent, there is an error in the im-

plementation of the ATN. Therefore, the speci�cation should not allow behaviour where

these transitions are triggered. The speci�cation also included transitions triggered on

certain messages from the application user that are \not permitted". We anticipated that

the \cannot occur" message would only occur if a \not permitted" message had been sent.

CHAPTER 8. EXAMPLES 267

>%simulate atn_nc page2_4

Configuration 0:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA0 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((((Msg (AppUser 1)) (CM_Ground 1)) CM_UPDATE_req) cf) EQ T

((InBasicState (CM_Ground_IDLE 1)) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

Configuration 1:

((((Msg (CM_Ground 1)) (CF 1)) D_START_req) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

Configuration 2:

((InBasicState (CF_STA1 1)) cf) EQ T

((ACSEVersionSupported 1) cf) EQ T

((((Msg (CF 1)) (ACSE 1)) A_ASSOCIATE_req) cf) EQ T

Configuration 3:

((((Msg (ACSE 1)) (CF 1)) P_CONNECT_req) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

Configuration 4:

((((Msg (CF 1)) ((SuppSvc 1) 2)) P_CONNECT_req) cf) EQ T

Configuration 5:

((((Msg ((SuppSvc 1) 2)) (CF 2)) P_CONNECT_ind) cf) EQ T

Configuration 6:

((InBasicState (CF_STA1 2)) cf) EQ T

((((Msg (CF 2)) (ACSE 2)) P_CONNECT_ind) cf) EQ T

((ACSEVersionSupported 2) cf) EQ T

Configuration 7:

((((Msg (ACSE 2)) (CF 2)) A_ASSOCIATE_ind) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

continued in Figure 8.17

Figure 8.16: Simulation output for message sequence chart: Part 1

CHAPTER 8. EXAMPLES 268

continued from Figure 8.16

Configuration 8:

((((Msg (CF 2)) (CM_Air 2)) D_START_ind) cf) EQ T

(((dataCM_USER 2) cf) EQ CM_UPDATE_ind) EQ T

Configuration 9:

((((Msg (CM_Air 2)) (CF 2)) D_START_rsp_pos) cf) EQ T

((((Msg (CM_Air 2)) (AppUser 2)) CM_UPDATE_ind) cf) EQ T

Configuration 10:

((((Msg (CF 2)) (ACSE 2)) A_ASSOCIATE_rsp_pos) cf) EQ T

Configuration 11:

((((Msg (ACSE 2)) (CF 2)) P_CONNECT_rsp_pos) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

Configuration 12:

((((Msg (CF 2)) ((SuppSvc 1) 2)) P_CONNECT_rsp_pos) cf) EQ T

Configuration 13:

((((Msg ((SuppSvc 1) 2)) (CF 1)) P_CONNECT_cnf_pos) cf) EQ T

Configuration 14:

((((Msg (CF 1)) (ACSE 1)) P_CONNECT_cnf_pos) cf) EQ T

Configuration 15:

((((Msg (ACSE 1)) (CF 1)) A_ASSOCIATE_cnf_pos) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 1))) cf) EQ T

Configuration 16:

((AmInitiator 1) cf) EQ T

((((Msg (CF 1)) (CM_Ground 1)) D_START_cnf_pos) cf) EQ T

Figure 8.17: Simulation output for message sequence chart: Part 2

CHAPTER 8. EXAMPLES 269

The formal speci�cation included these \cannot occur" transitions, such as:

CM_UTN i CM_Ground_IDLE

D_START_cnf_neg

(CM_send_error CannotOccur)

CM_Ground_IDLE;

We used model checking to search for ways to reach a con�guration where a component

sends a CannotOccur message to the error state, as in:

EF (Msg (CM_Ground 1) Error CannotOccur

The �rst result of this analysis showed that timers modelled as external events were too

conservative of an abstraction of the ATN behaviour. These external events could occur

in the �rst con�guration and immediately trigger a CannotOccur message. This model

checking run took one second. This di�culty had been previously noted by Jamie Andrews

by inspection.

Limiting the applicability of the timers was accomplished by adding Boolean
ags

associated with each timer to indicate whether the timer is active or not. Wherever the

SARPs indicated that a timer is started, this
ag is set to true. Likewise wherever a timer

is stopped, the appropriate timer is set to false. This change a�ected 66 transitions in the

CM air and ground components. These
ags were initialised to false.

At this point the model checking times and BDD sizes grew large, which consid-

erably slowed down (and possibly would have made it impossible) continuing to check for

CannotOccur messages. To work around this limitation, four of the seven ATN compo-

nents were left uninterpreted as in:

CHAPTER 8. EXAMPLES 270

suppsvc, cf1, acse1, cm_ground : model;

atn_nc :=

cm_air_nc /\

cf2_nc /\

acse2_nc /\

suppsvc (cf,cf') /\

cf1 (cf,cf') /\

acse1 (cf,cf') /\

cm_ground (cf,cf');

This speci�cation is a conservative abstraction of the ATN speci�cation and therefore con-

tains behaviours not found in the original speci�cation. But it produced results much more

quickly than model checking the complete ATN next con�guration relation. The model

checking results included constraints such as

acse1(p_cf,cf) EQ T in each con�guration of the witness.

Using only half of the ATN speci�cation, output for the model checking property

was produced in 19 seconds. This output pointed out another
aw in the speci�cation.

Timers were not explicitly turned o� when a timeout occurred. The informal speci�cation

should have contained explicit \stop timer" actions for these transitions. This error was

�xed by setting the timer
ag to false in these transitions. Greg Saccone at Raytheon9

reported that this error had been corrected in a more recent version of the SARPs.

With this correction, the search for CannotOccur messages being sent in half of

the ATN was continued. A run taking 1083 seconds produced a case that seemed to

indicate messages coming in from the application user and from the supporting service

at the same time could cause this behaviour. To ensure that this behaviour was not

a consequence of the conservative abstraction created by using only half of the ATN, a

9During the time of this project, Hughes International Airspace Management Systems became
Raytheon.

CHAPTER 8. EXAMPLES 271

simulation of the complete ATN was created demonstrating this behaviour. A similar case

had been discovered by Dilian Gurov and Bruce Kapron using a CCS (Milner's Calculus

Communicating Systems) speci�cation of the ATN [Kap97]. In their work, they used only

the CM Ground and CM Air components and therefore could not ensure that the CF

and ACSE did not stop this behaviour. Our approach has demonstrated this case is a

behaviour of the ATN.

The model checking output is found in Figure 8.18. The output of the simulation

is found in Appendix P and illustrated using a message sequence chart-like diagram in

Figure 8.19. Each component is represented by a vertical bar. A message being sent from

one component to another is illustrated by a dashed line and label. The horizontal bars

represent con�gurations. This sequence of messages cannot actually occur in the system

due to the following two paragraphs found in the SARPs that had been unknown to several

of the speci�ers:

Note 6.{ This CF speci�cation assumes that the embedded ASEs (ATN-App
ASE and ACSE) are modelled as atomic entities, such that when an input event
is invoked by the CF, that event is processed to completion by the ASE and
the CF responds to any resulting output events from the ASE, all within the
same logical processing thread. This model avoids the need to specify further
transient states within the CF. It does not imply any particular implementation
architecture.

Note 9 { For the purposes of this speci�cation, the ATN-App AE is modelled
such that a new instance of communication (e�ectively a new AE invocation)
is implicitly created (a) for each request from the AE-User that will require a
new association (i.e., that will result in a D-START request being invoked),
and (b) for each indication from the underlying communications service that
a new connection is requested. The AE invocation ceases to exist when the
underlying communications service connection is disconnected and the CF is
idle (i.e., in the NULL state).

Thus the ATN dynamically creates components. The analysis could be continued

by holding all but one external input (from the application or the supporting service)

constant using an environmental constraint. Another possibility would be to incorporate

a notion of microsteps into our statechart semantics.

CHAPTER 8. EXAMPLES 272

Configuration 0:

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

Configuration 1:

((((Msg ((SuppSvc 1) 2)) (CF 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

(suppsvc (p_cf , cf)) EQ T

(cf1 (p_cf , cf)) EQ T

(acse1 (p_cf , cf)) EQ T

(cm_ground (p_cf , cf)) EQ T

Configuration 2:

((InBasicState (CF_STA1 2)) cf) EQ T

((ACSEVersionSupported 2) cf) EQ T

((((Msg (CF 2)) (ACSE 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

(suppsvc (p_cf , cf)) EQ T

(cf1 (p_cf , cf)) EQ T

(acse1 (p_cf , cf)) EQ T

(cm_ground (p_cf , cf)) EQ T

Configuration 3:

((((Msg (ACSE 2)) (CF 2)) A_ASSOCIATE_ind) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

((((Msg (AppUser 2)) (CM_Air 2)) CM_LOGON_req) cf) EQ T

(suppsvc (p_cf , cf)) EQ T

(cf1 (p_cf , cf)) EQ T

(acse1 (p_cf , cf)) EQ T

(cm_ground (p_cf , cf)) EQ T

Configuration 4:

((((Msg (CM_Air 2)) (CF 2)) D_START_req) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((((Msg (CF 2)) (CM_Air 2)) D_START_ind) cf) EQ T

(((dataCM_USER 2) cf) EQ CM_UPDATE_ind) EQ T

((InBasicState (CM_Air_LOGON 2)) cf) EQ T

(CM_TIMEOUT_logon_active cf) EQ T

(suppsvc (p_cf , cf)) EQ T

(cf1 (p_cf , cf)) EQ T

(acse1 (p_cf , cf)) EQ T

(cm_ground (p_cf , cf)) EQ T

Configuration 5:

((InBasicState (CF_STA1 2)) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Air_LOGON 2)) cf) EQ T

(CM_TIMEOUT_logon_active cf) EQ T

((((Msg (CM_Air 2)) Error) CannotOccur) cf) EQ T

(suppsvc (p_cf , cf)) EQ T

(cf1 (p_cf , cf)) EQ T

(acse1 (p_cf , cf)) EQ T

Figure 8.18: Model Checking output of EF (Msg (CM Ground 1) Error CannotOccur)

CHAPTER 8. EXAMPLES 273

9

8

7

6

5

4

3

2

1

0

P_CONNECT_req

CM_CONTACT_req

D_START_req

A_ASSOCIATE_req

P_CONNECT_req

P_CONNECT_ind

P_CONNECT_ind

A_ASSOCIATE_ind

D_START_ind D_START_req

CM_Ground 1
CF 1

ACSE 1 CM_Air 2ACSE 2

CM_LOGON_req

SuppSvc 1 2 CF 2

Config

CannotOccur

Figure 8.19: Possible behaviour of the ATN

CHAPTER 8. EXAMPLES 274

8.3 Summary

This chapter has presented examples of using our framework to specify and analyse two real

speci�cations, namely, the separation minima for aircraft in the North Atlantic region and

an instantiation of the Aeronautical Telecommunications Network. In each case, notations

were chosen to suit the di�erent aspects of the problem. Multiple notations were easily

combined in the speci�cations, allowing parameterisation and modularisation to make the

speci�cations more compact and readable. Extensive use was also made of uninterpreted

constants to maintain the level of abstraction of the original informal speci�cations.

In both cases, useful analysis results were produced that were unknown to the

speci�ers at the beginning of the analysis phase. Compared to conventional methods, these

results were generated automatically from the speci�cation itself. The e�ort of creating a

prototype implementation, which might have required the addition of unnecessary details,

was avoided and more exhaustive analysis techniques were applied.

In the separation minima, some of the results were actually problems in the original

speci�cation. In the ATN, many of the results uncovered errors in the formalisation

process. This review is important if the formalisation is to be used as the basis for

simulation, code generation, or development. Many of the errors were found through the

steps leading up to model checking thus demonstrating the value of a range of analysis

procedures that can be applied to the same speci�cation.

Chapter 9

Conclusions and Future Work

We may now summarize Aristotle's motivation in inventing logic. First, there
is the desire to know the truth about the nature of argument, an intellectual
curiosity which needs no further account or justi�cation. Second, there is the
desire to know the conditions under which something is proved. ... Third, there
is the desire to refute opponents. ..., logic is vastly more comprehensive and
useful than merely as a device which may be used to show that an opponent
is wrong. Yet we should not overlook the egotism and spirit of competitive-
ness which marked its origin. (Howard Delong, \A Pro�le of Mathematical
Logic" [DeL71]).

This chapter marks the successful completion of our attempt to validate the con-

jectures put forward in the introduction. We summarise our approach and the results

presented in this dissertation. Questions of the generality of the approach are then ad-

dressed. Our contributions are outlined and suggestions are provided for future research.

The chapter concludes with a �nal word on the lasting impact.

9.1 Summary

This dissertation has addressed the problem of how to analyse speci�cations, written in

multiple formal notations describing di�erent aspects of a system, in a systematic, rigorous,

and extensible manner.

Many requirements speci�cation methodologies use multiple notations for di�erent

275

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 276

aspects of the system's description. CASE (Computer-Aided Software Engineering) tools

often attempt to capture the best of many approaches by providing integrated editors to

link the syntax of multiple notations. The Object Modeling Technique (OMT) [R+91] and

the Uni�ed Modeling Language (UML) [Rat] use di�erent notations for each of the dy-

namic, functional, and object views of the system. Examples of formal languages that con-

tain a set of notations are the Requirements State Machine Language (RSML) [LHHR94]

and the Software Cost Reduction (SCR) [Hen80] methods. The need for integration of

notations is clear.

We have studied the problem of how the integration of notations can be system-

atised to provide
exibility in the choice of notations for specifying a system and to link

multi-notation speci�cations with formal analysis techniques. We provide a framework

that integrates the meaning of notations, not just their syntax.

In particular, we have studied model-oriented speci�cations that include uninter-

preted constants. Uninterpreted constants are useful in system speci�cations for �ltering

non-essential details and improving readability. They can also be used to create conser-

vative abstractions of speci�cations based on the user's knowledge of the system.

We have presented a framework for multi-notation requirements speci�cation and

analysis. The framework uses higher-order logic as the base formalism. Higher-order logic

was chosen because of its expressibility, generality, and ability to include uninterpreted

constants. The meaning of notations is de�ned by operational semantics. The use of

packaged embeddings allows notations to be integrated based only on type consistency.

Chapter 4 discussed notations and how they can be integrated in speci�cations.

Semantic categories of notations were identi�ed, namely models, actions, events and lifted

expressions. Each category has an associated type signature. The embedding of a notation

in higher-order logic is called a notational style. Keywords of the notation denote elements

of the type signature of a category. Arguments to the keywords have types that match

other categories. These matches are called join points and allow type checking to regulate

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 277

how notations can be used together in speci�cation.

Chapter 5 presented the semantic functions for our example notations. In a pack-

aged embedding, the keywords of a notation are de�ned in higher-order logic. These

de�nitions are semantic functions that associate a meaning with a speci�cation written

in the notation. Once written, they can be re-used for every speci�cation written in that

notation.

We have demonstrated the integration of a variant of the statecharts notation,

higher-order logic, and a tabular style of speci�cation, along with notations for events and

actions.

For analysis, a technique called symbolic functional evaluation was presented in

Chapter 6. This technique directly evaluates the semantic functions to produce a seman-

tically equivalent representation of a speci�cation. We have de�ned �ve distinct levels of

evaluation for expressions in higher-order logic. We used an algorithm based on techniques

from functional programming languages extended to handle uninterpreted constants for

carrying out symbolic functional evaluation. These techniques include evaluation in place

and lazy evaluation.

Chapter 7 presented the architecture of our implementation of the framework. No-

tation is de-coupled from analysis. Through the use of semantic functions and symbolic

functional evaluation, the analysis is parameterised by the set of notations used in the

speci�cation. Analysis procedures are applied to the expanded representations of speci-

�cations produced by symbolic functional evaluation. We used a lightweight parse tree

interface and toolkit of common, re-usable techniques to allow multiple automated analysis

procedures to be applied to the speci�cation within the same tool.

Our implementation includes a toolkit of techniques common to many con�guration

space analysis procedures. These include Boolean abstraction, binary decision diagrams,

and automatic identi�cation of constraints on previous and next con�gurations. We have

illustrated how multiple analysis techniques can be applied in the framework by giving

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 278

implementations of completeness, consistency, and symmetry checking of tables, simula-

tion, and symbolic CTL model checking. Multiple analysis procedures were applied to

each example speci�cation.

In Chapter 7, we demonstrated that the structure of the speci�cation has relevance

for automated analysis. This use of structure contrasts with approaches that consider only

the semantics of the speci�cation. In particular, the structure of the speci�cation found

in the speci�er's arrangement of items in a row in a tabular speci�cation can be used to

create a more precise abstraction for automated analysis.

The ease with which the most suitable notation for a part of the speci�cation can

be used in the framework is demonstrated through three examples: the heating system,

the separation minima for aircraft in the North Atlantic Region, and the Aeronautical

Telecommunications Network (ATN). The heating system was used throughout the dis-

sertation for illustration. The separation minima and ATN examples were discussed in

Chapter 8. Automated analysis techniques were applied to the three examples demon-

strating this work. Analysis of the separation minima found three inconsistencies in the

speci�cation previously unknown to domain experts. Our implementation of symbolic

functional evaluation performed well for speci�cations of substantial size, such as the

ATN where the largest component (consisting of 18 pages of formal speci�cation) took

only 39 seconds to evaluate on an Ultra-Sparc 60. Analysis of the ATN illustrated errors in

the formal speci�cation and uncovered assumptions about the system previously unknown

to the speci�ers.

9.2 Generality

This section discusses the generality of our framework both in terms of adding new nota-

tions and adding new types of analysis.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 279

9.2.1 Notations

Formal notations have a semantics. In our approach, we make direct use of these semantics

to ensure that all forms of analysis use the same meaning for a speci�cation. Existing

descriptions of the semantics of many notations could be \codi�ed" in higher-order logic

to extend the framework to include these notations. For example, the work of Wang et

al. [WRC97] on formalising and integrating the dynamic and object models of OMT could

aid in bringing OMT into our framework.

Our framework could be extended to include Z [Spi88] based on the work of Bowen

and Gordon [BG94], which describes a shallow embedding of Z in the object language of

the HOL theorem prover [GM93]. Z is a well-known model-oriented speci�cation notation,

which has been used in a number of industrial examples. The predicates of a Z schema are

relations between the previous and next con�gurations and therefore this notation falls

into the model category. They use the ML interface language of HOL to translate ASCII

representations of schemas in Z to higher-order logic. Schema-combining operators are

also programmed in ML. Z is based on sets and Bowen and Gordon's embedding uses a

representation of set theory within higher-order logic. Their method provides a means

of integrating parts of a speci�cation in Z with other notations in the framework. For

example, Z could be used to describe one member of a set of concurrent components.

Our approach is limited to textual, non-symbolic representations of notations.

There would be a greater gap between the Z notation and its textual representation than

found in the example notations used so far in the framework.

Con�guration space exploration analysis can be applied to Z as demonstrated in

the Nitpick model checker [DJJ96]. In Z, the references to the values of previous and next

con�guration names are usually indicated through primed and non-primed identi�ers of

the same name. For analysis, an approach other than distinction based on con�guration

lifting would be needed in the toolkit to separate these constraints. The result would be

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 280

that current analysis procedures implemented in the framework, such as model checking,

could immediately be applied. The optimisations already demonstrated in Nitpick, such

as reductions based on symmetry, could be added to extend this analysis. These exten-

sions might be applicable to speci�cations written in other notations and become part of

the toolkit. More general theorem proving reasoning for Z embedded in HOL has been

implemented in the ICL ProofPower tool [PP].

The semantics for our example notation of a variant of statecharts could form

the basis for including many state-transition notations in our framework. Our variant

deals with multiple levels of hierarchy, concurrency, and priority. SCR includes only one

level of hierarchy. RSML does not include priority of transitions at di�erent levels in the

hierarchy. The meaning of other notations, such as marked Petri nets, is often de�ned

in terms of transition systems (e.g., Manna and Pnueli [MP92]). Many of the elements

of the semantics of statecharts could be re-used to build the semantic functions for other

notations to extend the framework.

Another example of a useful extension to the current set of notations of the frame-

work would be an imperative language for actions, which would appeal to those more

familiar with programming than speci�cation. The use of uninterpreted constants lessens

the chance of adding in too many design details when using a code-like speci�cation no-

tation.

9.2.2 Analysis

In terms of analysis, the choice of higher-order logic as the base formalism places few

limits on the range of formal analysis methods that can be applied. Most formal methods-

based analysis techniques are justi�able using deduction in higher-order logic. A toolkit

of re-usable techniques helps bridge the gap between the general-purpose formalism and

automated techniques, allowing for the easy integration of new analysis techniques. For

example, the decision procedure of the Stanford Validity Checker [BD94, JDB95, BDL96]

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 281

for a quanti�er-free logic of equality with uninterpreted functions could be integrated

into the framework. An abstraction technique other than Boolean abstraction would be

needed since their decision procedure is applicable to more than just propositional logic.

This addition would be immediately useful for completeness and consistency checking of

tables and could improve the accuracy of output.

9.3 Limitations

This section discusses some limitations of our approach.

The framework is designed for notations that can be described using an operational

semantics. Most model-oriented notations can be given an operational semantics. We have

not yet explored the use of notations designed to specify complex data relationships. The

approach will be less e�ective for notations that are not easily represented textually until

appropriate interfaces to editors for those notations have been created.

Our framework inherits the limitations of the formal analysis techniques. Many

of these techniques are restricted by time and space complexities for large speci�cations.

The framework is mainly designed for analysis techniques that manipulate expressions and

next con�guration relations. We have not explored analysis techniques for the detection of

inconsistencies among multiple models used together in a speci�cation written in di�erent

notations, such as statecharts and Petri Nets.

The implementations of analysis tools potentially contain errors, which may detract

from the rigour of the approach. The implementations of some analysis tools achieve

rigour by using a central mechanism, such as a core set of inference rules, to minimise

opportunities for implementation errors. Our tool, Fusion, achieves rigour by centralising

the translation function for all notations in symbolic functional evaluation. The SFE step

can be viewed as one large, core inference rule.

Application-independent checks provide a means of determining if a speci�cation

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 282

has certain standard properties. It is impossible to ensure that the set of application-

dependent checks carried out are su�cient because requirements can only be compared

to a person's intention for a system. Thus, no approach can eliminate all errors in the

requirements speci�cation.

Finally, use of the framework requires having a familiarity with the particular spec-

i�cation notations and at least limited knowledge of higher-order logic. Those familiar

with functional programming languages would only require an additional understanding

of uninterpreted constants. To carry out application-dependent checks, knowledge of the

notation used to express the properties, such as CTL, is necessary. Formal methods ex-

pertise is required to change the semantics or to add a new notation or analysis technique.

9.4 Contributions

The main contribution of this work is an extensible, systematic, and rigorous framework

for analysis of multi-notation, model-oriented speci�cations, which may include uninter-

preted constants. Our work provides speci�ers with the means to explore new options

in the combinations of notations with immediate access to well-known automated analy-

sis techniques. Furthermore, we achieve this result without using the infrastructure of a

theorem prover.

Our framework achieves the desirable qualities through the use of operational se-

mantics in higher-order logic. The choice of this core technology led us to use type checking

as a mechanism for regulating combinations of notations. It also led us to develop symbolic

functional evaluation, which is a rigorous method for determining the meaning of a speci-

�cation in any notation. Thus, the key ingredients for creating our framework are higher-

order logic, operational semantics, type checking and symbolic functional evaluation. The

choice of these general-purpose techniques avoids a multiplicity of special-purpose tools

for notations and analysis.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 283

The framework is systematic in the regulation of the combinations of notations

provided by the categorisation of notations and join points. It is also systematic in the

separation of concerns between integrating the meaning of notations and carrying out

analysis. It is rigorous in the direct use of semantic functions in higher-order logic. It

is extensible in notations because of the packaging of notations with their semantics in

embeddings. The toolkit of common analysis components aids in the extensibility of the

architecture for analysis.

We have achieved a balance between the more general approach of Zave and Jack-

son [ZJ93], which considers all types of notations and overlapping speci�cations, and

the more state-transition notation focus of Pezz�e and Young [PY97]. Our method has

the following advantages over automated translation techniques and other approaches to

multi-notation analysis. The use of higher-order logic as the base formalism allows the

use of uninterpreted constants and provides a formal foundation for analysis techniques

to be applied to both speci�cations and semantics of notations. Packaged embeddings of

notations and the semantic categories provide an extensible and systematic way to add

new notations to the framework. Direct use of the semantics ensures all analysis tech-

niques rely on the same meaning for the speci�cation. Structure is preserved in symbolic

functional evaluation and used in analysis. Finally, our architecture is easily extensible to

new analysis techniques.

Our framework links a general-purpose formalism with automated analysis tech-

niques, which allows us to de-couple speci�c notations from analysis. We obtain the ben-

e�ts of multiple notations in a rigorous and extensible manner together with the bene�ts

of automatic analysis.

Our framework eases the introduction of new notations and new combinations of

notations for analysis. There does not appear to be any evidence to conclude that an

ideal general-purpose requirements speci�cation notation will ever be developed. Par-

nas and Madey note, \If history is a good predictor of the future, we will continue to

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 284

invent improved forms of expressions as we discover new classes of functions to be of

interest." [PM95].

9.5 Suggestions for future research

The research area of analysis of formal speci�cations is extremely active. This section

discusses immediate questions resulting from this work.

9.5.1 Data speci�cation

This work concentrates on model-oriented speci�cations. It has addressed the areas of

combining control with functional behaviour. Many systems are dominated by their data

complexity. Our demonstration of the framework is lacking in notations for data speci�-

cation. We currently rely on higher-order logic to specify the data involved in the system

using constant declarations. While S+ includes a close approximation of the speci�cation

of arrays and records, more structured notations such as ASN.1 and entity-relationship

diagrams would be useful additions to the framework. Many languages include notations

for data description. For example, LOTOS, a protocol description language, uses ACT

ONE [CB87] for data descriptions. A means of capturing object hierarchies is necessary

for notations such as UML and ObjectCharts [CHB92].

An open question is how well predicate logic can accommodate data speci�cations.

As noted in Lamport and Paulson [LP97], set theory o�ers more
exibility than a typed

notation. For example, sets consisting of objects of di�erent types cannot be directly

speci�ed in higher-order logic. While typed systems o�er the bene�ts of catching errors in

the speci�cation through type checking, set theory may be more convenient for specifying

elements of object hierarchies such as classes and methods. Gordon o�ers a discussion on

set theory and higher-order logic and possible combinations of the two [Gor96]. Gilmore's

impredicative simple theory of types (ITT) [Gil98] o�ers an interesting alternative as a base

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 285

formalism for our framework since it combines features of set theory and Church's higher-

order logic. ITT makes a distinction between the use and mention of predicate names.

Cooper's research investigates speci�cation of more complex data relationships [Coo].

9.5.2 Symbolic simulation

A second area for exploration is that of simulation. Here we have presented a simple

type of simulation that proved useful, but it does not provide all the facilities that we

usually think of in terms of simulation. It involves the user knowing the number of steps

to simulate at the beginning and there is no interaction during the simulation. Techniques

that combine veri�cation and simulation in one environment, such as symbolic trajectory

evaluation (STE), rely on a functional presentation of the model where the behaviour of

each variable is a function of previous values of variables [SB95]. However, STE limits the

types of properties that can be analysed to gain e�ciency. Symbolic model checking relies

instead on a next con�guration relation and can check properties of unknown duration. A

next con�guration relation and functional presentation of the speci�cation often capture

the same information. An interesting question for study is how to carry out interactive

simulation and model checking within the same environment for speci�cations including

uninterpreted constants.

9.5.3 Structure

This work has demonstrated in a small way that structure, not just semantics, can play a

role in analysis by producing a more precise abstraction. The work on completeness and

consistency checking by Heimdahl and Leveson [HL96] and by Heitmeyer et al. [HJL96]

rely on structure to compose results of their analysis and to provide an overall statement

of the completeness or consistency of a speci�cation. Bharadwaj and Heitmeyer [BH97a]

use structure-based techniques to reduce the size of the con�guration space for model

checking of speci�cations in SCR. Further work on using structure to compose results,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 286

reduce the size of con�guration space, or aid in the choice of abstraction holds promise

for handling scalability of formal analysis techniques.

9.5.4 Methodology

Research in formal methods is close to reaching a point of being readily applicable in

industry. While scalability is still an issue for use on real problems, formal methods are

being selectively applied to great advantage. Type checking and checking for application-

independent properties help to isolate quickly areas of concern. As pointed out in the

results of a survey of industry applications of formal methods, we need to determine how

formal methods contribute to the overall development of systems [CGR95]. Guidelines for

answers to the questions of \how much?", \how deeply?" and \where?" in the application

of formal methods need to be provided. The use of uninterpreted constants can be a key

ingredient in limiting the depth needed to apply formal methods. Contributions towards

addressing these questions for application-independent properties can be found in Ja�e

et al. [JL89, JLHM91], which describes criteria for checking whether speci�cations are

complete. Simple e�orts such as linking speci�cations with hypertext browsers, as we

did automatically for the separation minima example, contribute towards the usability of

formal methods [DJP97a, YAG98].

For the use of application-dependent techniques, there is currently less documented

methodology. Perhaps the most pressing concern in applying techniques such as model

checking is the lack of methodology. Work on speci�cation patterns by Dwyer, Avrunin

and Corbett [DAC98] begins to address this problem by providing a taxonomy of proper-

ties and mappings from informal statements of properties to formal ones in a variety of

temporal logics. However, much still needs to be done in determining the relevant prop-

erties for a speci�cation. The questions of what to check, what order to use for carrying

out the checks, and when su�cient analysis has been done are important questions that

when answered, even for particular classes of systems, will allow formal methods to take

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 287

the next step forward.

9.6 A �nal word

We believe that the discipline of formal methods is in the midst of an evolutionary change

that will be seen in the years to come as a new generation in its application to system

development.

A decade ago, there was a wide chasm between specialised automated methods

such as model checking, speci�cation-intensive methods such as the use of Z, and gen-

eral proof-based reasoning found in tools such as HOL. This �rst generation consisted of

many exciting developments in the use of formal analysis to help in the validation and

veri�cation of a wide range of systems. Much of this work was based on early e�orts

by logicians and computer scientists. The bene�ts and limitations of these approaches

were explored. Speci�c notations have proved suitable and been used successfully for real

hardware veri�cation e�orts. However, requirements speci�cations necessitate the ability

to express easily more abstract concepts. Research in requirements speci�cation resulted

in the development of precise, readable formal notations. Structured, graphical notations

are being accepted and used in industry. To bridge the gap between requirements speci�-

cation notations and notation-speci�c analysis techniques, in some cases translators were

constructed.

The key characteristic of the second generation of formal methods-based analysis is

the de-coupling of notation from analysis. The use of suitable, understandable notations is

critical for formal methods to become accepted in industry. Even if an analysis technique

is only applicable to an abstraction of a speci�cation, a great deal of bene�t can be derived

from its use in our quest to improve system development through analysis. The second

generation will include e�orts to link multiple kinds of analysis to a range of systems

speci�ed using di�erent notations. Having made signi�cant progress in developing useful

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 288

techniques in the �rst generation, researchers will explore the range of applicability of

these techniques and provide guidelines for their use in system development. The second

generation opens up formal methods to non-specialists in providing an extensible set of

notations together with automated analysis.

As a contribution to the second generation, we provide a framework that is param-

eterised by notation through the use of semantic functions. A general-purpose notation

provides the formal basis for their integration. Symbolic functional evaluation exposes the

meaning of the speci�cation for analysis. Using a toolkit of re-usable components, auto-

mated analysis can be applied to requirements speci�cations. Extending the framework

with new notations provides immediate access to automated analysis. We achieve the

bene�ts of multiple notations for speci�cation without sacri�cing automation in analysis.

Bibliography

[AB96] Joanne M. Atlee and Michael A. Buckley. A logic-model semantics for SCR

software requirements. In Proceedings of the International Symposium on Soft-

ware Testing and Analysis, pages 280{292, January 1996.

[ABB+96] Richard J. Anderson, Paul Beame, Steve Burns, William Chan, Francesmary

Modugno, David Notkin, and Jon D. Reese. Model checking large software

speci�cations. In Proceedings of the Fourth ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pages 156{166, 1996.

[ACD97] George S. Avrunin, James C. Corbett, and Laura K. Dillon. Analyzing

partially-implemented real-time systems. In 19th International Conference

on Software Engineering, pages 228{238. ACM Press, 1997.

[ADJ97] J. H. Andrews, N. A. Day, and J. J. Joyce. Using a formal description tech-

nique to model aspects of a global air tra�c telecommunications network. In

FORTE/PSTV'97 (1997 IFIP TC6/WG6.1 Joint International Conference on

Formal Description Techniques for Distributed Systems and Communication

Protocols, and Protocol Speci�cation, Testing, and Veri�cation), November

1997.

[AG93] Joanne M. Atlee and John Gannon. State-based model checking of event-driven

system requirements. IEEE Transactions on Software Engineering, 19(1):24{

289

BIBLIOGRAPHY 290

40, January 1993.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic ver-

i�cation of embedded systems. IEEE Transactions on Software Engineering,

22(3):181{201, March 1996.

[AL93] Mart�in Abadi and Leslie Lamport. Conjoining speci�cations. Technical Report

118, Digital Systems Research Center, December 1993.

[And97] James H. Andrews. Executing formal speci�cations by translating to higher

order logic programming. In 1997 International Conference on Theorem Prov-

ing in Higher Order Logics (TPHOLs'97), number 1275 in Lecture Notes in

Computer Science, pages 17{32. Springer Verlag, August 1997. Bell Labs, New

Jersey.

[ATN96] ATN Panel, Working Group 3, International Civil Aviation Organization.

Aeronautical Telecommunications Network Panel: Draft SARPs and Guidance

Material for ATN Upper Layers for the CNS/ATM-1 Package, 1996.

[BCM+90] J. R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Symbolic

model checking: 1020 states and beyond. In Proceedings of the Fifth Annual

Symposium on Logic in Computer Science, June 1990.

[BD94] Jerry R. Burch and David L. Dill. Automatic veri�cation of pipelined micro-

processor control. In 6th International Conference, CAV '94, volume 818 of

Lecture Notes in Computer Science, pages 68{79, Stanford, California, June

1994. Springer-Verlag.

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-

nations of theories with equality. In Mandayam Srivas and Albert Camilleri,

editors, Formal Methods In Computer-Aided Design, volume 1166 of Lecture

BIBLIOGRAPHY 291

Notes in Computer Science, pages 187{201. Springer-Verlag, November 1996.

Palo Alto, California, November 6{8.

[BG94] Jonathan P. Bowen and Michael J. C. Gordon. Z and HOL. In J. Anthony

Hall, editor, Proceedings of the 8th Annual Z User Meeting, Workshops in

Computing, St. John's College, University of Cambridge, Cambridge, England,

29{30 June 1994. BCS-FACS, Springer-Verlag, London.

[BGG+92] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Her-

bert, and John Van Tassel. Experience with embedding hardware description

languages in HOL. In Theorem Provers in Circuit Design, pages 129{156,

Amsterdam, 1992. North-Holland.

[BH97a] R. Bharadwaj and C. Heitmeyer. Verifying SCR requirements speci�cations

using state space exploration. In Proceedings of the First ACM SIGPLAN

Workshop on Automatic Analysis of Software, January 1997.

[BH97b] Ramesh Bharadwaj and Constance Heitmeyer. Applying the SCR require-

ments method to a simple autopilot. In Lfm97: Fourth NASA Langley Formal

Methods Workshop, pages 87{99. NASA Conference Publication 3356, Septem-

ber 1997.

[BM88] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook,

volume 23. Academic Press, Inc., Boston, 1988.

[Boo91] Grady Booch. Object Oriented Design. The Benjamin/Cummings Publishing

Company, Inc., 1991.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677{691, August 1986.

BIBLIOGRAPHY 292

[Cam88] Albert John Camilleri. Simulation as an aid to veri�cation using the HOL

theorem prover. Technical Report 150, University of Cambridge Computer

Laboratory, October 1988.

[CB87] The SPECS Consortium and J. Bruijning. Evaluation and integration of speci-

�cation languages. Computer Networks and ISDN Systems, 13(2):75{89, 1987.

[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Veri�cation of

synchronous sequential machines based on symbolic execution. In Proceedings

of the Workshop on Automatic Veri�cation Methods for Finite State Systems,

June 1989.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic. ACM Transactions on Pro-

gramming Languages and Systems, 8(2):244{263, April 1986.

[CGR95] Dan Craigen, Susan Gerhart, and Ted Ralston. Formal methods reality

check: Industrial usage. IEEE Transactions on Software Engineering, 21:90{

98, February 1995.

[CHB92] Derek Coleman, Fiona Hayes, and Stephan Bear. Introducing objectcharts

or how to use statecharts in object-oriented design. IEEE Transactions on

Software Engineering, 18(1):9{18, January 1992.

[Che80] Brian F. Chellas. Modal logic: an introduction. Cambridge University Press,

Cambridge, 1980.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5(2):56{68, June 1940.

BIBLIOGRAPHY 293

[COHH92] Rachel Cardell-Oliver, Roger Hale, and John Herbert. An embedding of timed

transition systems in HOL. In Higher Order Logic Theorem Proving and its

Applications, pages 263{278, Leuven, Belgium, Sept 1992.

[Coo] Kendra Cooper. PhD work in preparation entitled SPECL: A Formal Speci�-

cation Language, Department of Electrical Engineering, University of British

Columbia, expected completion 1999.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property

speci�cation patterns for �nite-state veri�cation. In Mark Ardis, editor, Pro-

ceedings of FMSP'98. The Second Workshop on Formal Methods in Software

Practice, pages 7{15. ACM Press, March 1998.

[Day93] Nancy Day. A model checker for statecharts. Master's thesis, Department of

Computer Science, University of British Columbia, 1993. Available as Techni-

cal Report 93-35.

[DeL71] Howard DeLong. A Pro�le of Mathematical Logic. Addison-Wesley, Reading,

Massachusetts, 1971.

[DeM79] Tom DeMarco. Structured Analysis and System Speci�cation. Yourdon Press,

Englewood Cli�s, New Jersey, 1979.

[DJJ96] Craig A. Damon, Daniel Jackson, and Somesh Jha. Checking relational spec-

i�cations with binary decision diagrams. In Proceedings of the Fourth ACM

SIGSOFT Symposim on the Foundations of Software Engineering, pages 70{

80, 1996.

[DJP97a] Nancy A. Day, Je�rey J. Joyce, and Gerry Pelletier. Formalization and analysis

of the separation minima for aircraft in the North Atlantic Region. In Lfm97:

BIBLIOGRAPHY 294

Fourth NASA Langley Formal Methods Workshop, pages 35{49. NASA Con-

ference Publication 3356, September 1997.

[DJP97b] Nancy A. Day, Je�rey J. Joyce, and Gerry Pelletier. Formalization and analysis

of the separation minima for the North Atlantic Region: Complete speci�ca-

tion and analysis results. Technical Report 97-12, Department of Computer

Science, University of British Columbia, October 1997.

[Don98] Michael R. Donat. A Discipline of Speci�cation-Based Test Derivation. PhD

thesis, Department of Computer Science, University of British Columbia, 1998.

[DS95] Heping Dai and C. Keith Scott. AVAT, a CASE tool for software veri�cation

and validation. In Proceedings of the IEEE 7th International Workshop on

Computer-Aided Software Engineering (CASE'95), pages 358{367, 1995.

[Dur98] David M. Durham. JPL Virtual Technical Tour (presentation handout). In

8th Annual International Symposium of the International Council on Systems

Engineering, July 1998.

[EC97] Steve Easterbrook and John Callahan. Formal methods for V & V of partial

speci�cations: An experience report. In Third IEEE International Symposium

on Requirements Engineering (RE'97), pages 160{168, Annapolis, MD, 1997.

[EK94] Dirk Eisenbiegler and Ramayya Kumar. Evaluation techniques as a part of the

veri�cation procress. In 1994 International Conference on Higher Order Logic

Theorem Proving and its Applications: Supplementary Proceedings, 1994.

[Fau95] Stuart R. Faulk. Software requirements: A tutorial. Technical Report

NRL/MR/5546{95-7775, Naval Research Laboratory, November 1995.

[GG77] David Gries and Narain Gehani. Some ideas on data types in high-level lan-

guages. Communications of the ACM, 20(6):414{420, June 1977.

BIBLIOGRAPHY 295

[Gil98] Paul Gilmore. An impredicate simple theory of types. In 14th Workshop on

the Mathematical Foundations for Programming Systems, 1998.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software

Engineering. Prentice Hall, Englewood Cli�s, NJ, 1991.

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge

University Press, 1993.

[Goo93] K.G.W. Goossens. Operational semantics based formal symbolic simulation.

In Higher Order Logic Theorem Proving and its Applications, pages 487{506.

North-Holland, 1993.

[Gor79] Michael J. C. Gordon. The Denotational Description of Programming Lan-

guages. Springer-Verlag, New York, 1979.

[Gor85] M. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. Technical Report 77, University of Cambridge Computer

Laboratory, September 1985.

[Gor87] Mike Gordon. A proof generating system for higher-order logic. Technical

Report No. 103, University of Cambridge Computer Laboratory, January 1987.

[Gor88a] Michael J. C. Gordon. Mechanizing programming logics in higher-order logic.

In Graham M. Birtwistle and P. A. Subrahmanyam, editors, Current Trends

in Hardware Veri�cation and Automated Theorem Proving (Proceedings of the

Workshop on Hardware Veri�cation), pages 387{439, Ban�, Canada, 1988.

Springer-Verlag, Berlin.

[Gor88b] Michael J. C. Gordon. Programming Language Theory and its Implementation.

International Series in Computer Science. Prentice Hall, New York, 1988.

BIBLIOGRAPHY 296

[Gor96] Mike Gordon. Set theory, higher order logic or both? In The 1996 Interna-

tional Conference on Theorem Proving in Higher Order Logics, number 1125

in Lecture Notes in Computer Science, pages 191{202. Springer-Verlag, 1996.

[Han87] Peter Hancock. Polymorphic type-checking. In The Implementation of Func-

tional Programming Languages, International Series in Computer Science,

chapter 8, pages 139{162. Prentice Hall, New York, 1987.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computing, 8:231{274, 1987.

[Har88] David Harel. On visual formalisms. Communications of the ACM, 31(5):514{

530, May 1988.

[HBGL95] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*:

A toolset for specifying and analyzing requirements. In Proceedings of the 10th

Annual Conference on Computer Assurance (COMPASS'95), pages 109{122,

New York, June 1995. IEEE.

[HC95] D.N. Hoover and Z. Chen. Tablewise, a decision table tool. In Proceedings of

the 10th Annual Conference on Computer Assurance (COMPASS'95), pages

97{108, New York, June 1995. IEEE.

[HDDY93] Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang. Higher-level

speci�cation and veri�cation with BDDs. In Computer-Aided Veri�cation:

Fourth International Workshop, 1992. Springer-Verlag, 1993.

[Hei94] Mats Per Erik Heimdahl. Static Analysis of State-Based Requirements Analysis

for Completeness and Consistency. PhD thesis, University of California, Irvine,

1994.

BIBLIOGRAPHY 297

[Hei96] Mats P. E. Heimdahl. Experiences and lessons from the analysis of TCAS

II. In Proceedings of the International Symposium on Software Testing and

Analysis, pages 79{83, January 1996. San Diego.

[Hen80] K.L. Heninger. Specifying software requirements for complex systems: New

techniques and their applications. IEEE Transactions on Software Engineer-

ing, SE-6(1):2{13, January 1980.

[HJL96] Constance L. Heitmeyer, Ralph D. Je�ords, and Bruce G. Labaw. Automated

consistency checking of requirements speci�cations. ACM Transactions on

Software Engineering and Methodology, 5(3):231{261, July 1996.

[HL+90] David Harel, H. Lachover, et al. STATEMATE: A working environment for

the development of complex reactive systems. IEEE Transactions on Software

Engineering, 16(4):403{414, April 1990.

[HL93] Constance L. Heitmeyer and Bruce G. Labaw. Consistency checks for SCR-

style requirements speci�cations. Technical Report NRL/FR/5540-93-9586,

United States Naval Research Laboratory, Washington, D.C., December 1993.

[HL96] Mats P.E. Heimdahl and Nancy G. Leveson. Completeness and consistency in

hierarchical state-based requirements. IEEE Transactions on Software Engi-

neering, 22(6):363{377, June 1996.

[HLCM92] C.L. Heitmeyer, B.G. Labaw, P.C. Clements, and A.K. Mok. Engineering

CASE tools to support formal methods for real-time software development. In

5th International Workshop on Computer-Aided Software Engineering, pages

110{113, 1992.

BIBLIOGRAPHY 298

[HLK95] Constance Heitmeyer, Bruce G. Labaw, and Daniel Kiskis. Consistency checks

of SCR-style requirements speci�cations. In Proceedings International Sympo-

sium on Requirements Engineering, pages 56{63, March 1995. York, England.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming. In OOP-

SLA, pages 411{428, 1993.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Soft-

ware Engineering, 23(5):279{295, May 1997.

[HPSS87] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of

statecharts. In Proceedings of the 2nd IEEE Symposium on Logic in Computer

Science, pages 54{64, Ithaca, New York, June 1987.

[Hu95] Alan John Hu. Techniques for e�cient formal veri�cation using binary deci-

sion diagrams. PhD thesis, Department of Computer Science, Stanford Uni-

versity, 1995.

[i-L91] i-Logix Inc., Burlington, MA. The Semantics of Statecharts, January 1991.

[Int94] International Organization for Standardization. ACSE Protocol, ITU-T Rec.

X. 227 { ISO/IEC 8650-1: Edition 2, 1994.

[Jac95] Michael Jackson. Software Requirements and Speci�cations: a lexicon of prac-

tice, principles and prejudices. Addison-Wesley Publishing Company, Woking-

ham, England, 1995.

[JDB95] Robert B. Jones, David L. Dill, and Jerry R. Burch. E�cient validity checking

for processor veri�cation. In Proceedings of the 1995 International Conference

on Computer-Aided Design, 1995.

[JDD94] J. Joyce, N. Day, and M. Donat. S: A machine readable speci�cation notation

based on higher order logic. In 7th International Workshop on Higher Order

BIBLIOGRAPHY 299

Logic Theorem Proving and Its Applications, pages 285{299, Valletta, Malta,

September 1994. Springer-Verlag.

[JL89] Matthew S. Ja�e and Nancy G. Leveson. Completeness, robustness, and safety

in real-time software requirements speci�cation. In 11th International Confer-

ence on Software Engineering, pages 302{311, May 1989. Pittsburgh, Penn-

sylvania.

[JLHM91] M. S. Ja�e, N. G. Leveson, M. P. E. Heimdahl, and B. Melhart. Software re-

quirements analysis for real-time process-control systems. IEEE Transactions

on Software Engineering, 17(3):241{259, March 1991.

[JM94] Farnam Jahanian and Aloysius K. Mok. Modechart: A speci�cation lan-

guage for real-time systems. IEEE Transactions on Software Engineering,

20(12):933{947, December 1994.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. International Series in Computer Science. Prentice Hall, New York,

1987.

[Joy89] Je�rey Joyce. Multi-Level Veri�cation of Microprocessor Based Systems. PhD

thesis, University of Cambridge Computer Laboratory, 1989. Technical Report

195.

[JS88] Farnam Jahanian and Douglas A. Stuart. A method for verifying properties

of modechart speci�cations. In 1988 Symposium on Real-Time Systems, pages

12{21, 1988.

[JS93] J. Joyce and C-J. Seger. Linking BDD-based symbolic evaluation to interactive

theorem-proving. In Proceedings of the 30th Design Automation Conference.

IEEE Computer Press, June 1993.

BIBLIOGRAPHY 300

[Kap97] Bruce Kapron. Private communication, February 1997.

[KM97] Matt Kaufmann and J Strother Moore. An industrial strength theorem prover

for a logic based on common lisp. IEEE Transactions on Software Engineering,

23(4):203{213, April 1997.

[LBH+95] Nancy Leveson, Ken Bauer, Mats Heimdahl, Wayne Ohlrich, Kurt Partidge,

Vivek Rata, and Jon Reese. A CAD environment for safety-critical software.

University of Washington Safety-Critical Systems Project, July 1995.

[LHHR94] Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon D. Reese.

Requirements speci�cation for process-control systems. IEEE Transactions on

Software Engineering, 20(9):684{707, September 1994.

[Lon] David E. Long. bdd - a binary decision diagram (BDD) package. Man page.

[LP97] Leslie Lamport and Lawrence C. Paulson. Should your speci�cation language

be typed? Technical Report 147, Digital Systems Research Center, May 1997.

[Lut97] Robyn R. Lutz. Reuse of a formal model for requirements validation. In Lfm97:

Fourth NASA Langley Formal Methods Workshop, pages 75{85, September

1997. NASA Conference Publication 3356.

[McM92] Kenneth L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon

University, May 1992.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17(3):348{375, 1978.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concur-

rent Systems: Speci�cation. Springer-Verlag, New York, 1992.

[Nes93] Monica Nesi. Value-passing CCS in HOL. In Higher Order Logic Theorem

Proving and Its Applications, pages 352{365. LNCS 780, Springer-Verlag, 1993.

BIBLIOGRAPHY 301

[NVG92] Sanjiv Narayan, Frank Vahid, and Daniel D. Gajski. Modeling with spec-

charts. Technical Report 90-20, Dept. of Information and Computer Science,

University of California, Irvine, October 1992.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.

In 11th International Conference on Automated Deduction (CADE), volume

607 of Lecture Notes in Computer Science, pages 748{752, Saratoga, NY, 1992.

Springer-Verlag.

[ORS96] S. Owre, J.M. Rushby, and Nataranjan Shankar. Analyzing tabular and state-

transition requirements speci�cations in PVS. Technical Report CSL-95-12,

Computer Science Laboratory, SRI International, April 1996.

[ORS97] Sam Owre, John Rushby, and Natarajan Shankar. Integration in PVS: Tables,

types, and model checking. In Proceedings of the Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), volume

1217 of Lecture Notes in Computer Science, pages 336{383. Spinger-Verlag,

April 1997.

[Par92] David Lorge Parnas. Tabular representations of relations. Technical Report

260, Communications Research Laboratory, Faculty of Engineering, McMaster

University, October 1992.

[Par93a] D. L. Parnas. Predicate logic for software engineering. IEEE Transactions on

Software Engineering, 19(9):856{862, September 1993.

[Par93b] David Lorge Parnas. Some theorems we should prove. In Higher Order Logic

Theorem Proving and Its Applications, pages 155{162. LNCS 780, Springer-

Verlag, 1993.

BIBLIOGRAPHY 302

[Par94] David Parnas. Inspection of safety-critical software using program-function

tables. In 13th IFIP World Computer Congress, pages 270{277, 1994.

[Pau91] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,

1991.

[Plo81] Gordon D. Plotkin. A structural approach to operation semantics. Technical

Report DAIMI FN - 19, Computer Science Department, Aarhus University,

September 1981. Reprinted April 1991.

[PM95] D. L. Parnas and J. Madey. Functional documentation for computer systems.

Science of Computer Programming, 25(1):41{61, October 1995.

[PP] Proofpower server. Send email to ProofPower-server@win.icl.co.uk.

[PS91] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts.

In Proceedings of the Symposium on Theoretical Aspects of Computer Software,

Lecture Notes in Computer Science, vol.526, pages 244{264. Springer-Verlag,

1991.

[PY97] Mauro Pezz�e and Michal Young. Constructing multi-formalism state-space

analysis tools. In 19th International Conference on Software Engineering,

pages 239{249. ACM Press, 1997.

[R+91] James Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall,

1991.

[Raj93] P. Sreeranga Rajan. Executing HOL speci�cations: Towards an evaluation

semantics for classical higher order logic. In Higher Order Logic Theorem

Proving and its Applications, pages 527{535. North-Holland, 1993.

BIBLIOGRAPHY 303

[Raj95] P. Sreeranga Rajan. Transformations on Data Flow Graphs: Axiomatic Speci-

�cation and E�cient Mechanical Veri�cation. PhD thesis, University of British

Columbia, 1995.

[Rat] Rational Software. UML Notation Guide: Version 1.1. Available at

\www.rational.com/uml/html/notation".

[RSS95] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking

with automated proof checking. In Seventh Workshop on Computer-Aided

Veri�cation, Liege, Belgium, July 1995.

[Rus97] John Rushby. Subtypes for speci�cations. In Fifth ACM Foundations of Soft-

ware Engineering, September 1997. Revised version of invited paper.

[SA96a] Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking soft-

ware requirements: A case study. Technical Report CS96-05, Department of

Computer Science, University of Waterloo, 1996.

[SA96b] Tirumale Sreemani and Joanne M. Atlee. Feasibility of model checking soft-

ware requirements: A case study. In Proceedings of the 11th Annual Conference

on Computer Assurance, June 1996.

[SB95] C.-J. H. Seger and R. E. Bryant. Formal veri�cation of partially-ordered tra-

jectories. Formal Methods in Systems Design, 6:147{189, March 1995.

[Seg93] Carl-Johan H. Seger. Voss - a formal hardware veri�cation system: User's

guide. Technical Report 93-45, Department of Computer Science, University

of British Columbia, December 1993.

[Sha90] Mary Shaw. Prospects for an engineering discipline of software. IEEE Software,

pages 15{24, November 1990.

BIBLIOGRAPHY 304

[SJ92] Carl-Johan H. Seger and Je�rey J. Joyce. A mathematically precise two-level

formal hardware veri�cation methodology. Technical Report 92-34, University

of British Columbia, Department of Computer Science, December 1992.

[Smu68] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.

[Spi88] J.M. Spivey. Understanding Z. Cambridge University Press, Cambridge, 1988.

[Sta94] J�rgen Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic

Publishers, 1994.

[Tan88] Andrew S. Tanenbaum. Computer Networks, Second Edition. Prentice Hall,

Englewood Cli�s, New Jersey, 1988.

[Tas93] John P. Van Tassel. A formalization of the VHDL simulation cycle. In Higher

Order Logic Theorem Proving and its Applications, pages 359{374. North-

Holland, 1993.

[vdB94] Michael von der Beeck. A comparison of statecharts variants. In Proc. of

3rd Int. Symposium on Formal Techniques in Real Time and Fault Tolerant

Systems (FTRTFT '94), volume 863, pages 128{148. LNCS, Springer, 1994.

[VG93] Myra VanInwegan and Elsa Gunter. HOL-ML. In Higher Order Logic Theorem

Proving and Its Applications, pages 61{74. LNCS 780, Springer-Verlag, 1993.

[Win90] P. J. Windley. The Formal Veri�cation of Generic Interpreters. PhD thesis,

University of California, Davis, 1990.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. The MIT

Press, Cambrige, Massachusetts, 1993.

[WR27] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge Univer-

sity Press, Cambridge, England, 1927. 2nd edition.

BIBLIOGRAPHY 305

[WRC97] Enoch Y. Wang, Heather A. Richter, and Betty H. C. Cheng. Formalizing and

integrating the dynamic model within OMT. In 19th International Conference

on Software Engineering, pages 45{55. ACM Press, May 1997.

[YAG98] Richard Yates, James H. Andrews, and Phil Gray. Practical experience ap-

plying formal methods to air tra�c management software. In International

Council on Systems Engineering (INCOSE'98), July 1998.

[ZJ93] Pamela Zave and Michael Jackson. Conjunction as composition. ACM

Transactions on Software Engineering and Methodology, 2(4):379{411, Octo-

ber 1993.

Appendix A

Heating System Speci�cation

/*

Specification of Heating System

(loosely based on Chapter 8, "Object Oriented Design"

by Grady Booch,

The Benjamin/Cummings Publishing Company,

1991)

*/

/* import all semantic definition files */

%addpath ..

%include all.s+

/* type declarations and definitions */

: Room := KITCHEN | LIVING_ROOM | BEDROOM;

: Behaviour :=

NOT_OCCUPIED |

EXPECT_SOON |

EXPECT_NOW ;

: behaviour == config -> Behaviour ;

: Valve_Pos := OPEN | HALF | CLOSED ;

: valve_Pos == config -> Valve_Pos;

/* outputs of the system */

valvePos : Room -> valve_Pos;

/* internal synchronization between components */

requestHeat : Room -> bool;

306

APPENDIX A. HEATING SYSTEM SPECIFICATION 307

/* user inputs */

livingPattern : Room -> behaviour;

setTemp : Room -> num;

heatSwitchOn, heatSwitchOff, userReset : simpleEvent;

/* system specific parameters */

/* time to wait before adjusting valve again */

warmUpTime, coolDownTime : num;

furnaceStartupTime: num;

/* inputs from the environment */

actualTemp : Room -> num;

occupied : Room -> bool;

activate, deactivate,

furnaceFault, furnaceReset,

furnaceRunning, furnaceNotRunning : simpleEvent;

/* states and transition of the system */

: stateName :=

HEATING_SYSTEM |

FURNACE |

FURNACE_NORMAL |

FURNACE_OFF |

FURNACE_ACTIVATING |

FURNACE_RUNNING |

FURNACE_ERROR |

ROOM :Room |

NO_HEAT_REQUESTED :Room |

IDLE_NO_HEAT :Room |

WAIT_FOR_HEAT :Room |

HEAT_REQUESTED :Room |

IDLE_HEATING :Room |

WAIT_FOR_COOL :Room |

CONTROLLER |

OFF |

ERROR |

CONTROLLER_ON |

IDLE |

HEATER_ACTIVE |

ACTIVATING_HEATER |

HEATER_RUNNING ;

APPENDIX A. HEATING SYSTEM SPECIFICATION 308

:transName :=

T1 | T2 | T3 | T4 | T6 | T7 |

T8 :Room | T9 :Room | T10 :Room | T11 :Room | T12 :Room |

T13 :Room | T14 :Room | T15 :Room |

T16 | T17 | T18 | T19 | T20 | T21 | T22 ;

/* room statechart */

/* shorthands */

sT := setTemp;

aT := actualTemp;

desiredTemp (i:Room) :=

Table

[Row (occupied i) [True; False ; False];

Row (livingPattern i)

[Dc;

(\x.x = C EXPECT_NOW) ;

(\x.x = C EXPECT_SOON)]]

[sT i; sT i; sT i - C 5; sT i - C 10];

dT := desiredTemp;

/*

optionally leave dT unintepreted, replace above with

dT : Room -> num;

*/

/* shorthands */

tooCold i := (dT i - aT i) > C 2;

tooHot i := (aT i - dT i) > C 2;

vOpen i := valvePos i = C OPEN;

vClosed i := valvePos i = C CLOSED;

/* setting the valve position */

nextVp i :=

Table

[Row (dT i - aT i)

[(\x.x < C -5);

(\x. C -5 <= x AND x < C -2);

(\x. C -5 <= x AND x < C -2);

(\x. C -2 <= x AND x <= C 2);

(\x. C 2 < x AND x <= C 5);

(\x. C 2 < x AND x <= C 5) ;

APPENDIX A. HEATING SYSTEM SPECIFICATION 309

(\x. C 5 < x)];

Row (valvePos i)

[Dc ;

(\x. x = C OPEN) ;

(\x. x = C HALF) ;

Dc ;

(\x. x = C CLOSED) ;

(\x. x = C HALF) ;

Dc]]

[C CLOSED; C HALF; C CLOSED; valvePos i; C HALF; C OPEN; C OPEN];

/* shorthands */

rH i := Asn (requestHeat i) (C T);

cancelrH i := Asn (requestHeat i) (C F);

adjValve i := Asn (valvePos i) (nextVp i);

roomSc (i:Room) :=

let waitedForWarm :=

\i.Tm (En (WAIT_FOR_HEAT i) (roomSc i)) warmUpTime in

let waitedForCool :=

\i. Tm (En (WAIT_FOR_COOL i) (roomSc i)) coolDownTime in

OrState (ROOM i) (NO_HEAT_REQUESTED i)

[OrState (NO_HEAT_REQUESTED i) (IDLE_NO_HEAT i)

[BasicState (IDLE_NO_HEAT i);

BasicState (WAIT_FOR_HEAT i)]

[(T8 i,IDLE_NO_HEAT i,EvCond NonEvent (tooCold i),

adjValve i,WAIT_FOR_HEAT i);

(T9 i,WAIT_FOR_HEAT i,EvCond NonEvent (NOT (tooCold i)),

NoAction, IDLE_NO_HEAT i);

(T10 i, WAIT_FOR_HEAT i, waitedForWarm i,

adjValve i, WAIT_FOR_HEAT i)] ;

OrState (HEAT_REQUESTED i) (IDLE_HEATING i)

[BasicState (IDLE_HEATING i);

BasicState (WAIT_FOR_COOL i)]

[(T15 i,IDLE_HEATING i,EvCond NonEvent (tooHot i),

adjValve i,WAIT_FOR_COOL i);

(T14 i,WAIT_FOR_COOL i,EvCond NonEvent (NOT(tooHot i)),

NoAction, IDLE_HEATING i);

(T13 i, WAIT_FOR_COOL i, waitedForCool i,

adjValve i, WAIT_FOR_COOL i)]]

[(T11 i, WAIT_FOR_COOL i, EvCond (waitedForCool i) (vClosed i),

cancelrH i, NO_HEAT_REQUESTED i);

(T12 i, WAIT_FOR_HEAT i, EvCond (waitedForWarm i) (vOpen i),

rH i, HEAT_REQUESTED i)];

APPENDIX A. HEATING SYSTEM SPECIFICATION 310

/* furnace statechart */

furnaceSc :=

OrState FURNACE FURNACE_NORMAL

[BasicState FURNACE_ERROR;

OrState FURNACE_NORMAL FURNACE_OFF

[BasicState FURNACE_OFF;

BasicState FURNACE_ACTIVATING ;

BasicState FURNACE_RUNNING]

[(T1,

FURNACE_OFF,

Ev activate,

NoAction,

FURNACE_ACTIVATING);

(T2,

FURNACE_ACTIVATING,

Ev deactivate,

NoAction,

FURNACE_OFF);

(T3,

FURNACE_ACTIVATING,

Tm (En FURNACE_ACTIVATING furnaceSc) furnaceStartupTime,

Gen furnaceRunning,

FURNACE_RUNNING);

(T4,

FURNACE_RUNNING,

Ev deactivate,

NoAction,

FURNACE_OFF)]]

[(T7,

FURNACE_NORMAL,

Ev furnaceFault,

NoAction,

FURNACE_ERROR);

(T6,

FURNACE_ERROR,

Ev furnaceReset,

NoAction,

FURNACE_NORMAL)];

/* central controller */

/* shorthands */

APPENDIX A. HEATING SYSTEM SPECIFICATION 311

roomNeedsHeat := exists i. requestHeat i;

noRoomsNeedHeat := NOT (roomNeedsHeat);

controllerSc :=

OrState CONTROLLER OFF

[BasicState OFF;

BasicState ERROR;

OrState CONTROLLER_ON IDLE

[BasicState IDLE;

OrState HEATER_ACTIVE ACTIVATING_HEATER

[BasicState ACTIVATING_HEATER;

BasicState HEATER_RUNNING]

[(T21, ACTIVATING_HEATER, Ev furnaceRunning,

NoAction, HEATER_RUNNING)]]

[(T20, IDLE, EvCond NonEvent (roomNeedsHeat),

Gen activate, HEATER_ACTIVE);

(T22, HEATER_ACTIVE, EvCond NonEvent (noRoomsNeedHeat),

Gen deactivate, IDLE)]]

[(T16, ERROR, Ev userReset, Gen furnaceReset, OFF);

(T17, OFF, Ev heatSwitchOn, NoAction, CONTROLLER_ON);

(T18, CONTROLLER_ON, Ev heatSwitchOff, Gen deactivate, OFF);

(T19, CONTROLLER_ON, Ev furnaceFault, NoAction, ERROR)];

/* Heating System */

heatingSystemScStruct :=

AndState HEATING_SYSTEM

[roomSc (KITCHEN);

roomSc (BEDROOM);

roomSc (LIVING_ROOM);

furnaceSc;

controllerSc];

HeatingSystem := Sc heatingSystemScStruct;

Appendix B

Built-in constants of S+

(:ty) LET (x:ty) := x;

(:ty)FORALL :(ty -> BOOL) -> BOOL;

(:ty)EXISTS :(ty -> BOOL) -> BOOL;

(_ /\ _) : BOOL -> BOOL -> BOOL;

(_ \/ _) : BOOL -> BOOL -> BOOL;

~ : BOOL -> BOOL;

a (_ AND _) b (cf:config) := (a cf) /\ (b cf);

a (_ OR _) b (cf:config) := (a cf) \/ (b cf);

NOT a (cf:config) := ~(a cf);

(:ty) COND (T) (a:ty) b := a | COND (F) a b := b;

a (_ ==> _) b := (NOT a) OR b+

(ty) C (x:ty) (cf:config) := x;

(:ty1,:ty2) FST :(ty1#ty2)->ty1;

(:ty1,:ty2) SND :(ty1#ty2)->ty2;

(_ PLUS 12 _) : NUM->NUM->NUM;

a (_ + 12 _) b (cf:config) := (a cf) PLUS (b cf);

(_ MULT 14 _) : NUM->NUM->NUM;

a (_ * 14 _) b (cf:config) := (a cf) MULT (b cf);

(_ MINUS 12 _) : NUM->NUM->NUM;

a (_ - 12 _) b (cf:config) := (a cf) MINUS (b cf);

(_ DIV 14 _) : NUM->NUM->NUM;

a (_ / 14 _) b (cf:config) := (a cf) DIV (b cf);

(_ iMOD 14 _) : NUM->NUM->NUM;

a (_ MOD 14 _) b (cf:config) := (a cf) iMOD (b cf);

(:ty) (_ EQ 2 _) : ty->ty->BOOL;

(:ty) (a:config->ty) (_ = 2 _) b cf:= (a cf) EQ (b cf);

(:ty) (a:config->ty) (_ != 2 _) b := NOT (a = b);

(_ GREATER_THAN 10 _) : NUM -> NUM -> BOOL;

a (_ > 10 _) b (cf:config) := (a cf) GREATER_THAN (b cf);

312

APPENDIX B. BUILT-IN CONSTANTS OF S+ 313

(_ LESS_THAN 10 _) : NUM -> NUM -> BOOL;

a (_ < 10 _) b (cf:config) := (a cf) LESS_THAN (b cf);

(_ GREATER_THAN_OR_EQUAL 10 _) : NUM -> NUM -> BOOL;

a (_ >= 10 _) b (cf:config) := (a cf) GREATER_THAN_OR_EQUAL (b cf);

(_ LESS_THAN_OR_EQUAL 10 _) : NUM -> NUM -> BOOL;

a (_ <= 10 _) b (cf:config) := (a cf) LESS_THAN_OR_EQUAL (b cf);

iABS: NUM -> NUM;

ABS a (cf:config) := iABS (a cf);

(:ty)NAME:ty->STRING;

Appendix C

Types for Semantic Categories

/*

Types for semantic categories

*/

/* model */

:step == config # config;

Prev (x:step) := FST x;

Next (x:step) := SND x;

:model == step -> BOOL;

/* step extended to include extra information */

:(label)ext_step == (config # config) # (label->BOOL);

(:label)ExtPrev (x:(label)ext_step) := FST (FST x);

(:label)ExtNext (x:(label)ext_step) := SND (FST x);

/* expressions -------------------------------------- */

:(ty)exp == config -> ty;

/* events -- */

:(label)eventinfo ==

(bool # /* Occurred */

(BOOL->(label)ext_step -> BOOL) # /* Update */

((label)ext_step -> BOOL) # /* Occurs */

(BOOL-> bool) # /* Init */

bool); /* OccursAtInit */

: eventLabelPath := S | L | R;

314

APPENDIX C. TYPES FOR SEMANTIC CATEGORIES 315

: path == (eventLabelPath)list;

: (label) event ==

label -> path -> (label)eventinfo;

(:label)

Occurred (ev:(label)event) (lab:label) (p:path)

:= FST (ev lab p);

(:label)

Update (ev:(label)event) (lab:label) (p:path)

:= FST(SND (ev lab p));

(:label)

Occurs (ev:(label)event) (lab:label) (p:path)

:= FST(SND(SND (ev lab p)));

(:label)

Init (ev:(label)event) (lab:label) (p:path)

:= FST(SND(SND(SND (ev lab p))));

(:label)

OccursAtInit (ev:(label)event) (lab:label) (p:path)

:= SND(SND(SND(SND (ev lab p))));

/* event labelling */

(:label)Sub path := append path [S];

(:label)Left path := append path [L];

(:label)Right path := append path [R];

/* actions --*/

: mod == (STRING # model # model);

: action == (mod)list;

/* useful shorthand */

(:t)NoConstraintcfcf' (step:(t)ext_step) := T;

Appendix D

Basic de�nitions

/*

basics.s+

*/

(:ty)UNKNOWN:ty;

/* Operations on Lists */

(:ty)

length (NIL) := 0 |

length (CONS (e:ty) l) := 1 PLUS length l;

(:ty)

hd (CONS (e:ty) l) := e;

(:ty)

tl (NIL) := NIL |

tl (CONS (e:ty) l) := l ;

(:ty1,:ty2)

map (CONS a b) (f:ty1->ty2) := CONS (f a) (map b f) |

map (NIL) f := NIL;

(:ty)

append NIL l := l |

append (CONS (e:ty) l) j := CONS e (append l j) ;

(:ty)

flatten (NIL) := NIL |

316

APPENDIX D. BASIC DEFINITIONS 317

flatten (CONS (h:(ty)list) t) := append h (flatten t);

/* Operations on lists whose elements are lifted */

(:ty)

everyAux (NIL) (p:ty->BOOL) := T |

everyAux (CONS e l) p := (p e) /\ everyAux l p;

(:ty)

every (p:ty->BOOL) l := everyAux l p;

(:ty)

anyAux (NIL) (p:ty->BOOL) := F |

anyAux (CONS e l) p := (p e) \/ anyAux l p;

(:ty)

any (p:ty->BOOL) l := anyAux l p;

(:ty)

(a:ty) (_ member _) b :=

COND (b EQ NIL)

F

(COND (a EQ hd b) T (a member (tl b)));

(:ty)

lastElement (CONS (a:ty) b) :=

COND (b EQ NIL) a (lastElement b);

(:ty)

repeats NIL := NIL |

repeats (CONS (a:ty) b) :=

COND (a member b)

(CONS a (repeats b))

(repeats b);

(:ty)

allFalse NIL (charfcn:ty->BOOL) := T |

allFalse (CONS (a:ty) t) charfcn :=

~(charfcn a) /\ allFalse t charfcn;

/* know there is at least one element */

(:ty)

sizeIsOneAux NIL (charfcn:ty->BOOL) := T |

sizeIsOneAux (CONS (a:ty) t) charfcn :=

COND (t EQ NIL) (charfcn a)

APPENDIX D. BASIC DEFINITIONS 318

(((charfcn a) /\ allFalse t charfcn) \/

(~(charfcn a) /\ sizeIsOneAux t charfcn));

(:ty)

sizeIsOne NIL (charfcn:ty->BOOL) := F |

sizeIsOne (CONS a b) charfcn :=

sizeIsOneAux (CONS a b) charfcn;

/* Lifting constructors and pairs */

(:ty)

C (a:ty) (cf:config) := a;

(:ty1,:ty2)

P (a:config->ty1,b:config->ty2) (cf:config) := (a cf, b cf);

/* Operations on lists whose elements are lifted */

(:ty)

EveryAux NIL p := C T |

EveryAux (CONS a b) (p:ty->bool) := p a AND EveryAux b p;

(:ty)

Every (p:ty->bool) l := EveryAux l p;

(:ty)

AnyAux NIL p := C F |

AnyAux (CONS a b) (p:ty->bool) := p a OR AnyAux b p;

(:ty)

Any (p:ty->bool) l := AnyAux l p;

/*

Operations over sets that are represented by

explicit characteristic functions as lists of (*,bool) pairs

These are all lifted operations (i.e. relative to a particular

configuration).

*/

/* creating a set of this form */

(:ty)

MakeCharFcnSet NIL (cfcn:ty->bool) := NIL |

MakeCharFcnSet (CONS h t) cfcn :=

CONS (h,cfcn h) (MakeCharFcnSet t cfcn);

APPENDIX D. BASIC DEFINITIONS 319

(:ty)

SubsetAux NIL (a:ty#bool) := NOT(SND a) |

SubsetAux (CONS h t) a :=

COND (FST a EQ FST h) (SND a ==> SND h) (SubsetAux t a);

(:ty)

(a:(ty#bool)list) (_ Subset _) b :=

Every (\el.SubsetAux b el) a;

(:ty)

Empty NIL := C T |

Empty (CONS (h:ty#bool) t) := (NOT (SND h)) AND Empty t ;

(:ty)

IntersectAux (NIL) (a:ty#bool) := NIL |

IntersectAux (CONS h t) a :=

COND (FST a EQ FST h)

[(FST a,SND a AND SND h)]

(IntersectAux t a);

(:ty)

(a:(ty#bool)list) (_ Intersect _) b :=

COND (a EQ NIL)

NIL

(append (IntersectAux b (hd a)) ((tl a) Intersect b));

Appendix E

TableExpr

/*

TableExpr notation

Produces (ty)exp's

Keywords:

row labels: AllOf, AtLeastOneOf

row entries: Dc, True, False

rows: Row

tables: Table, PredicateTable

*/

: (ty) rowlabel == (ty)exp;

: (ty) rowentry == ((ty)exp)->bool;

: row == (bool)list;

/* produces a rowentry */

(:ty)

Dc := \(x:(ty)exp).C T;

/* produces a rowentry */

True := \x.(x = (C T));

/* produces a rowentry */

False := \x.(x = (C F));

/* produces a rowlabel */

(:ty)

AllOf (rl:((ty)exp)list) (p:(ty)exp->bool) := Every p rl;

320

APPENDIX E. TABLEEXPR 321

/* produces a rowlabel */

(:ty)

AtLeastOneOf (rl:((ty)exp)list) (p:(ty)exp->bool) :=

Any p rl;

(:ty)

RowAux NIL (rl:(ty)rowlabel) := NIL |

RowAux (CONS (re:(ty)rowentry) res) rl :=

CONS (re rl) (RowAux res rl);

/* produces a row */

(:ty)

Row (rl:(ty)rowlabel) (res:((ty)rowentry)list) :=

RowAux res rl;

/* produces a list of columns, type: (bool)list */

Columns (rowMatrix:(row)list) :=

/* last column is a list of empty lists */

COND ((hd rowMatrix) EQ NIL) NIL

(CONS (Every (hd) rowMatrix) (Columns (map rowMatrix (tl))));

(:ty)

TableAux (NIL) (resultRow:((ty)exp)list) :=

COND (resultRow EQ NIL) (UNKNOWN) (hd resultRow) |

TableAux (CONS col cols) resultRow :=

if col

then (hd resultRow)

else TableAux cols (tl resultRow);

(:ty)

Table (rowMatrix:(row)list) (resultRow:((ty)exp)list) :=

TableAux (Columns rowMatrix) resultRow;

PredicateTable (rowMatrix:(row)list) :=

Any (\x.x) (Columns rowMatrix);

(:ty)

WellFormedTable (rowMatrix:(row)list) (resultRow:((ty)exp)list) :=

~(rowMatrix EQ NIL) /\

(let lenFirstRow := length (hd rowMatrix) in

/* all rows are the same length */

every (\x.length x EQ lenFirstRow) (tl rowMatrix) /\

/* result row is same length as rows, or one more (default) */

((length resultRow EQ lenFirstRow)

APPENDIX E. TABLEEXPR 322

\/ (length resultRow EQ (lenFirstRow PLUS 1))));

WellFormedPredicateTable (rowMatrix:(row)list) :=

let lenFirstRow := length (hd rowMatrix) in

/* all rows are the same length */

every (\x.length x EQ lenFirstRow) (tl rowMatrix);

Appendix F

CoreEvent

/*

CoreEvents: event notational style

Keywords: NonEvent, Ev, EvCond, OrE, AndE, Tm, TmB

*/

/* Primitives */

(:label)

TimeEventLastOccurred : label -> path -> config -> NUM;

(:label)

Changed : label -> path -> bool;

/* NonEvent -- */

(:label)

NonEventUpdate (flag:BOOL) (step:(label)ext_step) := T;

NonEventInit (flag:BOOL) (cf:config) := T;

(:label)

NonEvent (lab:label) (p:path) :=

(C T,

(:label)NonEventUpdate,

(:label)NoConstraintcfcf',

NonEventInit,

C T);

323

APPENDIX F. COREEVENT 324

/* Ev simpleEvent -- */

/* wellformedness constraints on this */

: simpleEvent == bool;

(:label)

EvOccurs (ev:simpleEvent) (step:(label)ext_step) := ev (ExtNext step);

(:label)

EvUpdate (flag:BOOL) (step:(label)ext_step) := T;

EvOccursAtInit (ev:simpleEvent) (cf:config) := ev cf;

EvInit (ev:simpleEvent) (flag:BOOL) (cf:config) := T;

(:label)

Ev (ev:simpleEvent) (lab:label) (p:path) :=

(ev,

((:label)EvUpdate),

((:label)EvOccurs) ev,

EvInit ev,

EvOccursAtInit ev);

/* Ch condition --- */

(:label)

ChOccurs (cond:bool) (step:(label)ext_step) :=

~(cond (ExtPrev step) EQ cond (ExtNext step));

(:label)

ChOccurred (lab:label) (p:path) (cf:config) :=

Changed lab p cf;

(:label)

ChUpdate (cond:bool) (lab:label) (p:path)

(flag:BOOL) (step:(label)ext_step) :=

(~flag) \/

(Changed lab p (ExtNext step) EQ ChOccurs cond step);

(:label)

Ch (cond:bool) (lab:label) (p:path) :=

(ChOccurred lab p,

ChUpdate cond lab p,

(:label)ChOccurs cond,

APPENDIX F. COREEVENT 325

\(flag:BOOL).\(cf:config).T,

\(cf:config). F);

/* EvCond --- */

(:label)

EvCondOccurred (ev:event) (b:bool)

(lab:label) (p:path) (cf:config) :=

((:label)Occurred) ev lab (Sub p) cf /\ b cf;

(:label)

EvCondOccurs (ev:event) (b:bool) (lab:label) (p:path)

(step:(label)ext_step) :=

Occurs ev lab (Sub p) step /\ b (ExtNext step);

(:label)

EvCondOccursAtInit (ev:(label)event) (b:bool) (lab:label) (p:path) :=

((:label)OccursAtInit) ev lab (Sub p) AND b;

(:label)

EvCond (ev:(label)event) (b:bool) (lab:label) (p:path) :=

(EvCondOccurred ev b lab p,

Update ev lab (Sub p),

(:label)EvCondOccurs ev b lab p,

Init ev lab (Sub p),

((:label)EvCondOccursAtInit) ev b lab p);

/* AndEv -- */

(:label)

AndOccurred (ev1:event) (ev2:event) (lab:label) (p:path) :=

((:label)Occurred) ev1 lab (Left p) AND

((:label)Occurred) ev2 lab (Right p);

(:label)

AndUpdate (ev1:event) (ev2:event) (lab:label) (p:path) (flag:BOOL)

(step:(label)ext_step) :=

((:label)Update) ev1 lab (Left p) flag step /\

((:label)Update) ev2 lab (Right p) flag step;

(:label)

AndOccurs (ev1:event) (ev2: event) (lab:label) (p:path)

(step:(label)ext_step) :=

((:label)Occurs) ev1 lab (Left p) step /\

((:label)Occurs) ev2 lab (Right p) step;

APPENDIX F. COREEVENT 326

(:label)

AndInit (ev1:event) (ev2:event) (lab:label) (p:path) (flag:BOOL) :=

((:label)Init) ev1 lab (Left p) flag AND

((:label)Init) ev2 lab (Right p) flag;

(:label)

AndOccursAtInit (ev1:event) (ev2:event) (lab:label) (p:path) :=

((:label)OccursAtInit) ev1 lab (Left p) AND

((:label)OccursAtInit) ev2 lab (Right p);

(:label)

AndE (ev1:event) (ev2:event) (lab:label) (p:path) :=

(AndOccurred ev1 ev2 lab p,

AndUpdate ev1 ev2 lab p,

(:label)AndOccurs ev1 ev2 lab p,

AndInit ev1 ev2 lab p,

AndOccursAtInit ev1 ev2 lab p);

/* OrEv --- */

(:label)

OrOccurred (ev1:event) (ev2:event) (lab:label) (p:path) :=

(:label)Occurred ev1 lab (Left p) OR

(:label)Occurred ev2 lab (Right p);

(:label)

OrOccurs (ev1:event) (ev2: event) (lab:label) (p:path)

(step:(label)ext_step) :=

Occurs ev1 lab (Left p) step \/

Occurs ev2 lab (Right p) step;

(:label)

OrOccursAtInit (ev1:event) (ev2:event) (lab:label) (p:path) :=

(:label)OccursAtInit ev1 lab (Left p) OR

(:label)OccursAtInit ev2 lab (Right p);

(:label)

OrE (ev1:event) (ev2:event) (lab:label) (p:path) :=

(OrOccurred ev1 ev2 lab p,

((:label)AndUpdate) ev1 ev2 lab p, /* same as for AND */

((:label)OrOccurs) ev1 ev2 lab p,

AndInit ev1 ev2 lab p,

APPENDIX F. COREEVENT 327

OrOccursAtInit ev1 ev2 lab p);

/* Tm -- */

(:label)

TmOccurred (n:num) (lab:label) (p:path) (cf:config) :=

(TimeEventLastOccurred lab p = n) cf ;

(:label)

TmUpdate (ev:event) (lab:label) (p:path) (flag:BOOL)

(step:(label)ext_step) :=

((Occurs ev lab (Sub p) step /\

((TimeEventLastOccurred lab p = (C 0)) (ExtNext step))))

\/

(~(Occurs ev lab (Sub p) step) /\

(TimeEventLastOccurred lab p (ExtNext step) EQ

((TimeEventLastOccurred lab p + (C 1)) (ExtPrev step))))

/\

Update ev lab (Sub p) F step;

(:label)

TmOccurs (d:num) (lab:label) (p:path) (step:(label)ext_step) :=

(TimeEventLastOccurred lab p = d) (ExtNext step);

(:label)

TmOccursAtInit (ev:event) (n:num) (lab:label) (p:path) (cf:config) :=

((n cf EQ 0) /\ ((:label)OccursAtInit ev lab (Sub p) cf));

(:label)

TmInit (ev:event) (n:num) (lab:label) (p:path)

(flag:BOOL) (cf:config) :=

(TmOccursAtInit ev n lab (Sub p) cf EQ

((TimeEventLastOccurred lab p = (C 0)) cf))

/\ (:label)Init ev lab (Sub p) F cf;

(:label)

Tm (ev:event) (n:num) (lab:label) (p:path) :=

((:label)TmOccurred n lab p,

(:label)TmUpdate ev lab p,

(:label)TmOccurs n lab p,

TmInit ev n lab p,

TmOccursAtInit ev n lab p);

/* TmB --- */

APPENDIX F. COREEVENT 328

/* uses some bit vector operations defined elsewhere */

(:label)

TimeEventLastOccurredBPos: label -> path -> NUM -> bool;

(:label)

TimeEventLastOccurredB (n:NUM) (lab:label) (p:path) (cf:config) :=

COND (n EQ 0) NIL

(CONS (TimeEventLastOccurredBPos lab p n cf)

(TimeEventLastOccurredB (n MINUS 1) lab p cf));

BV NIL (cf:config) := NIL |

BV (CONS (h:bool) t) cf :=

CONS (h cf) (BV t cf);

(:label)

TmBEventOccurred (n:NUM) (delay:(bool)list) (lab:label) (p:path)

(cf:config) :=

/* counter is not at its maximum value */

(~(MaxValueBV (TimeEventLastOccurredB n lab p cf))) /\

((TimeEventLastOccurredB n lab p cf) EqualBV (BV delay cf));

(:label)

TmBOccurs (n:NUM) (delay:(bool)list) (lab:label) (p:path)

(step:(label)ext_step) :=

TmBEventOccurred n delay lab p (ExtNext step);

Inc (b:(BOOL)list) (c:(BOOL)list):=

((MaxValueBV b) /\ (b EqualBV c)) \/

((~(MaxValueBV b)) /\ (c EqualBV (IncBV b)));

(:label)

TmBUpdate (n:NUM) (ev:event) (lab:label) (p:path)

(step:(label)ext_step) :=

(Occurs ev lab (Sub p) step /\

ResetBV (TimeEventLastOccurredB n lab p (ExtNext step)))

\/

((~(Occurs ev lab (Sub p) step)) /\

Inc (TimeEventLastOccurredB n lab p (ExtPrev step))

(TimeEventLastOccurredB n lab p (ExtNext step)));

(:label)

TmBEventOccursAtInit (n:NUM) (ev:event) (delay:(bool)list)

(lab:label) (p:path) (cf:config) :=

((ResetBV(BV delay cf)) /\ (OccursAtInit ev lab p cf));

APPENDIX F. COREEVENT 329

(:label)

TmBInit (n:NUM) (ev:event) (delay:(bool)list) (lab:label) (p:path)

(flag:BOOL) (cf:config) :=

(TmBEventOccursAtInit n ev delay lab p cf EQ

(ResetBV(TimeEventLastOccurredB n lab p cf)))

/\ Init ev lab (Sub p) F cf;

(:label)

TmB (n:NUM) (ev:event) (delay:(bool)list) (lab:label) (p:path) :=

((:label)TmBEventOccurred n delay lab p,

(:label)TmBUpdate n ev lab p,

TmBOccurs n delay lab p,

(:label)TmBInit n ev delay lab p,

(:label)TmBEventOccursAtInit n ev delay lab p);

Appendix G

CoreAction

/*

CoreActions

Keywords: NoAction, Asn, Both, Gen

*/

/* NoAction -- */

NoAction := ((:STRING # model # model)NIL);

/* Assignment -- */

/* wellformedness constraints limit v */

(:ty)

AsnChange (v:(ty)exp) (exp:(ty)exp) (step:step) :=

v (Next step) EQ exp (Prev step);

(:ty)

AsnNoChange (v: (ty)exp) (step:step) :=

v (Next step) EQ v (Prev step);

(:ty)

Asn (v:(ty)exp) (exp:(ty)exp) :=

[(NAME v,

(:ty)AsnChange v exp,

(:ty)AsnNoChange v

)];

/* Both --- */

330

APPENDIX G. COREACTION 331

Both (a1:action) (a2:action) :=

append a1 a2;

/* Gen -- */

Gen (ev:bool) :=

[(NAME ev,

\(step:step).ev (Next step) EQ T,

\(step:step).ev (Next step) EQ F)];

Appendix H

CoreSc

H.1 Accessor functions

/*

CoreSc: statechart notational style

Accessor functions for parts of structure

Keywords: AndState, OrState, BasicState

*/

/* Textual Representation */

/* specialized version of events - label is transName */

: (stateName,transName) trans ==

transName#

stateName#

(transName)event #

action #

stateName;

/* optimisation - associate flag with transition */

: (stateName,transName) transrec ==

transName#

stateName#

(transName)event #

action #

stateName #

BOOL;

332

APPENDIX H. CORESC 333

: (stateName,transName) sc_struct :=

OR_STATE :stateName

:stateName

:((stateName,transName)sc_struct)list

:((stateName, transName)trans)list

| AND_STATE :stateName :((stateName,transName)sc_struct)list

| BASIC_STATE :stateName;

(:stateName,:transName)OrState := (:stateName,:transName)OR_STATE;

(:stateName,:transName)AndState := (:stateName,:transName)AND_STATE;

(:stateName,:transName)BasicState := (:stateName,:transName)BASIC_STATE;

/* Accessor Functions for elements of a transition ------------------ */

(:stateName,:transName)

transLabel (a:(stateName,transName)transrec) := FST a;

(:stateName,:transName)

transLabel1 (a:(stateName,transName)trans) := FST a;

(:stateName,:transName)

transSrc (a:(stateName,transName)transrec) := FST(SND a);

(:stateName,:transName)

transSrc2 (a:(stateName,transName)trans) := FST(SND a);

(:stateName,:transName)

transEvent (a: (stateName,transName)transrec) := FST(SND(SND a));

(:stateName,:transName)

transEvent1 (a: (stateName,transName)trans) := FST(SND(SND a));

(:stateName,:transName)

transAction (a:(stateName,transName)transrec) := FST(SND(SND(SND a)));

(:stateName,:transName)

transDest (a:(stateName,transName)transrec) :=

FST(SND (SND (SND (SND a))));

(:stateName,:transName)

transDest2 (a:(stateName,transName)trans) :=

SND (SND (SND (SND a)));

(:stateName,:transName)

transFlag (a:(stateName,transName)transrec) :=

APPENDIX H. CORESC 334

SND (SND (SND (SND (SND a))));

/*

Information about state and state hierarchy

given a state description return the following information about it

*/

(:stateName,:transName)

isBasicState

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= F |

isBasicState (AND_STATE stn substates) := F |

isBasicState (BASIC_STATE stn) := T;

(:stateName,:transName)

isAndState

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= F |

isAndState (AND_STATE stn substates) := T |

isAndState (BASIC_STATE stn) := F;

(:stateName,:transName)

isOrState

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= T |

isOrState (AND_STATE stn substates) := F |

isOrState (BASIC_STATE stn) := F;

(:stateName,:transName)

stateName

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= stn |

stateName(AND_STATE stn substates) := stn |

stateName(BASIC_STATE stn) := stn ;

/* returns list of state descriptions */

(:stateName,:transName)

stateSubstates

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= substates |

stateSubstates(AND_STATE stn substates) := substates ;

/*

returns a state description

*/

APPENDIX H. CORESC 335

(:stateName,:transName)

getStateFromStateList NIL fcn def := NIL |

getStateFromStateList (CONS (h:(stateName,transName)sc_struct) t)

fcn def :=

COND (stateName h EQ def)

[h]

(COND (fcn h def EQ NIL)

(getStateFromStateList t fcn def)

(fcn h def));

/*

given a state name returns the state description with this

state at the root

*/

(:stateName,:transName)

stateAux(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) stName :=

COND (stName EQ stn)

[(OR_STATE stn def substates trans)]

(getStateFromStateList substates stateAux stName) |

stateAux (AND_STATE stn substates) stName :=

COND (stName EQ stn)

[(AND_STATE stn substates)]

(getStateFromStateList substates stateAux stName) |

stateAux (BASIC_STATE stn) stName :=

COND (stName EQ stn)

[(BASIC_STATE stn)]

NIL;

(:stateName,:transName)

state (s:(stateName,transName)sc_struct) stn := hd (stateAux s stn);

(:stateName,:transName)

StateDefault

(OR_STATE stn def substates (trans:((stateName,transName)trans)list))

:= hd(getStateFromStateList substates stateAux def);

/* --- */

(:stateName,:transName)

findPathinList NIL findPathfcn stn := NIL |

findPathinList (CONS (a:(stateName,transName)sc_struct) b)

(findPathfcn:(stateName,transName)sc_struct

APPENDIX H. CORESC 336

-> stateName -> (stateName)list)

(stn:stateName) :=

COND (findPathfcn a stn EQ NIL)

(findPathinList b findPathfcn stn)

(findPathfcn a stn);

(:stateName,:transName)

findPath

(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) st :=

COND (stn EQ st)

[stn]

(COND ((findPathinList substates findPath st) EQ NIL)

NIL

(CONS stn (findPathinList substates findPath st))) |

findPath (AND_STATE stn substates) st :=

COND (stn EQ st)

[stn]

(COND ((findPathinList substates findPath st) EQ NIL)

NIL

(CONS stn (findPathinList substates findPath st))) |

findPath (BASIC_STATE stn) st :=

COND (st EQ stn) [st] NIL;

/* --- */

(:stateName)

scope (CONS (h:stateName) t) destpath :=

COND (~(hd t EQ hd (tl destpath)) \/

(tl t EQ NIL) \/ (tl(tl destpath) EQ NIL))

[h]

(CONS h (scope t (tl destpath)));

(:stateName,:transName)

transScope(tr:(stateName,transName)transrec)

(s:(stateName,transName)sc_struct) :=

let path1 := findPath s (transSrc tr) in

let path2 := findPath s (transDest tr) in

scope path1 path2 ;

/* -- */

(:stateName,:transName)

basicStates

(OR_STATE stn def substates

APPENDIX H. CORESC 337

(trans:((stateName,transName)trans)list)) :=

flatten (map substates basicStates) |

basicStates (AND_STATE stn substates) :=

flatten (map substates basicStates) |

basicStates (BASIC_STATE stn) := [stn];

/* -- */

(:stateName,:transName)

transInState

(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) :=

append trans (flatten((map substates (transInState)))) |

transInState (AND_STATE stn substates) :=

flatten(map substates transInState) |

transInState (BASIC_STATE stn) := [];

/* -- */

(:stateName,:transName)

exitBasicStates

(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) :=

flatten (map substates exitBasicStates) |

exitBasicStates (AND_STATE stn substates) :=

flatten (map substates exitBasicStates) |

exitBasicStates(BASIC_STATE stn) := [stn];

(:stateName,:transName)

basicStatesExited (s:(stateName,transName)sc_struct) stn :=

exitBasicStates (state s stn) ;

/* -- */

(:stateName,:transName)

enterBasicStates

(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) :=

enterBasicStates

(hd(getStateFromStateList substates stateAux def)) |

enterBasicStates (AND_STATE stn substates) :=

flatten (map substates enterBasicStates) |

enterBasicStates (BASIC_STATE stn) := [stn];

(:stateName,:transName)

APPENDIX H. CORESC 338

basicStatesEntered (s:(stateName,transName)sc_struct) stn :=

enterBasicStates (state s stn);

/* used by En, Ex events */

(:ty)

differingSuffixes (src:(ty)list,dest) :=

COND (~(hd src EQ hd dest))

(src,dest)

(COND ((tl src EQ NIL) \/ (tl dest EQ NIL))

(src,dest)

(differingSuffixes(tl src,tl dest)));

(:stateName,:transName)

statesEnteredBelowAux

(OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) :=

CONS stn (statesEnteredBelowAux

(hd(getStateFromStateList substates stateAux def))) |

statesEnteredBelowAux (AND_STATE stn substates) :=

CONS stn (flatten (map substates statesEnteredBelowAux)) |

statesEnteredBelowAux(BASIC_STATE stn) := [stn];

(:stateName,:transName)

statesEnteredBelow(s:(stateName,transName)sc_struct) stn :=

statesEnteredBelowAux (state s stn);

(:stateName,:transName)

statesExitedBelowAux (OR_STATE stn def substates

(trans:((stateName,transName)trans)list)) :=

CONS stn (flatten (map substates statesExitedBelowAux)) |

statesExitedBelowAux (AND_STATE stn substates) :=

CONS stn (flatten (map substates statesExitedBelowAux)) |

statesExitedBelowAux (BASIC_STATE stn) := [stn];

(:stateName,:transName)

statesExitedBelow (s:(stateName,transName)sc_struct) stn :=

statesExitedBelowAux (state s stn);

(:stateName,:transName)

getFullExitPath h (s:(stateName,transName)sc_struct) :=

COND (tl h EQ NIL)

(statesExitedBelow s (hd h))

(getFullExitPath (tl h) s);

APPENDIX H. CORESC 339

(:stateName,:transName)

getFullEnterPath h (s:(stateName,transName)sc_struct) :=

COND (tl h EQ NIL)

(statesEnteredBelow s (hd h))

(CONS (hd h) (getFullEnterPath (tl h) s));

/*

given two paths find point at which they differ

return those two parts suffixed with anything

it takes to get to basic states

*/

(:stateName,:transName)

getEntEx (fullsrcP, fulldestP) (s:(stateName,transName)sc_struct) :=

let (srcP,destP) := differingSuffixes (fullsrcP,fulldestP) in

(srcP,getFullExitPath srcP s,getFullEnterPath destP s);

(:stateName,:transName)

statesEntered (s:(stateName,transName)sc_struct)

(t:(stateName,transName)trans) :=

let p2src := findPath s (transSrc2 t) in

let p2dest := findPath s (transDest2 t) in

let (ex1,ex2,ent) := getEntEx (p2src,p2dest) s in

ent;

(:stateName,:transName)

statesExited (s:(stateName,transName)sc_struct)

(t:(stateName,transName)trans) :=

let p2src := findPath s (transSrc2 t) in

let p2dest := findPath s (transDest2 t) in

let (ex1,ex2,ent) := getEntEx (p2src,p2dest) s in

append ex1 ex2;

H.2 Semantics

/*

CoreSc: semantics

Keywords: Sc

*/

/* Primitives --------------------------------------- */

(:stateName)InBasicState : stateName -> (BOOL)exp;

/* -- */

APPENDIX H. CORESC 340

/* optimisation */

(:stateName,:transName)

TransTakenInt (tr:(stateName,transName)transrec)

(step:(transName)ext_step) :=

transFlag tr;

(:stateName,:transName)

TransTaken (tr:(stateName,transName)trans) (step:(transName)ext_step) :=

(SND step) (transLabel1 tr);

/* interface to event notation */

(:label)

EventUpdate (ev:(label)event) (lab:label) (p:path)

:= FST(SND (ev lab p)) T;

(:label)

EventInit (e:(label)event) (lab:label) (p:path)

:= FST(SND(SND(SND (e lab p)))) T;

/* Transition Condition ------------------------------- */

(:stateName,:transName)

inAnyBasicState cf (s:(stateName,transName)sc_struct) :=

COND (isBasicState s) (InBasicState (stateName s) cf)

(COND (isAndState s)

(every (inAnyBasicState cf) (stateSubstates s))

(any (inAnyBasicState cf) (stateSubstates s)));

(:stateName,:transName)

Instate stName (s:(stateName,transName)sc_struct) (cf:config) :=

inAnyBasicState cf (state s stName) ;

(:stateName,:transName)

Enabled (s:(stateName,transName)sc_struct)

(tr:(stateName,transName)transrec) :=

Instate (transSrc tr) s AND

Occurred (transEvent tr) (transLabel tr) [] ;

(:stateName,:transName)

oneTransTaken (trlist:((stateName,transName)transrec)list)

(step:(transName)ext_step) :=

sizeIsOne (trlist) (\tr.TransTakenInt tr step);

APPENDIX H. CORESC 341

(:stateName,:transName)

stateChange (s:(stateName,transName)sc_struct)

(tr:(stateName,transName)transrec)

(step:(transName)ext_step) :=

let allBasicStatesInScope :=

basicStatesExited s (stateName s) in

let basicStatesEnt :=

basicStatesEntered s (transDest tr) in

every

(\stn. COND (stn member basicStatesEnt)

(InBasicState stn (ExtNext step))

(~(InBasicState stn (ExtNext step))))

allBasicStatesInScope;

(:stateName,:transName)

oneEnabledTransIsTaken (s:(stateName,transName)sc_struct)

(trlist:(transrec)list)

(step:(transName)ext_step) :=

oneTransTaken (trlist) step /\

every

(\tr. ~(TransTakenInt tr step) \/

(Enabled s tr (ExtPrev step) /\

(stateChange s tr step)))

trlist;

(:stateName,:transName)

noEnabledTrans (s:(stateName,transName)sc_struct)

(trlist:(transrec)list) (step:(transName)ext_step) :=

(every (\tr. ~(Enabled s tr (ExtPrev step))) trlist) /\

(every (\tr. ~(TransTakenInt tr step)) trlist);

(:stateName,:transName)

thisScope NIL := (NIL,NIL) |

thisScope

(CONS (x:(stateName)list,y:(stateName,transName)transrec) b) :=

let (here,rest) := thisScope b in

COND (tl x EQ NIL)

(CONS y here,rest)

(here,CONS (x,y) rest);

(:stateName,:transName)

scopeWithin NIL (stn:stateName) := NIL |

scopeWithin

(CONS (x:(stateName)list,y:(stateName,transName)transrec) b) stn :=

COND (hd (tl x) EQ stn)

APPENDIX H. CORESC 342

(CONS (tl x,y) (scopeWithin b stn))

(scopeWithin b stn);

(:stateName,:transName)

noTransAreTaken

(rest:(((stateName)list)#(stateName,transName)transrec)list)

(step:(transName)ext_step) :=

every (\tr.~(TransTakenInt (SND tr) step)) rest;

(:stateName,:transName)

TransStateCondAux (s:(stateName,transName)sc_struct) trs

(step:(transName)ext_step) :=

COND (isBasicState s)

/* scopetranslist must be NIL */

(InBasicState (stateName s) (ExtNext step) EQ

InBasicState (stateName s) (ExtPrev step))

(COND (isAndState s)

(every (\sub. TransStateCondAux sub

(scopeWithin trs (stateName sub)) step)

(stateSubstates s))

/* OrState */

(let (trsThisLevel,rest) := thisScope trs in

(oneEnabledTransIsTaken s trsThisLevel step /\

(noTransAreTaken rest step))

\/

(noEnabledTrans s trsThisLevel step /\

(every (\sub.TransStateCondAux sub

(scopeWithin rest (stateName sub)) step)

(stateSubstates s)))));

(:stateName,:transName)

TransStateCond (s:(stateName,transName)sc_struct) trs step :=

TransStateCondAux s (map trs (\t.(transScope t s,t))) step;

/* Event Condition -- */

(:stateName,:transName)

EventCond (s:(stateName,transName)sc_struct)

(trs:((stateName,transName)transrec)list) step :=

every (\tr.EventUpdate (transEvent tr)

(transLabel tr) [] step) trs;

/* Name Condition -- */

/*

APPENDIX H. CORESC 343

returns a list of (transition,action) pairs

*/

(:stateName,:transName)

allLocalMods (NIL) := NIL |

allLocalMods (CONS (tr:(stateName,transName)transrec) t) :=

append

(map (transAction tr) (\x.(tr,x)))

(allLocalMods t);

(:stateName,:transName)

modTrans

(a:(stateName,transName)transrec, b:STRING, c:model, d:model) := a;

(:stateName,:transName)

modName

(a:(stateName,transName)transrec, b:STRING, c:model, d:model) := b;

(:stateName,:transName)

modNoChange

(a:(stateName,transName)transrec, b:STRING, c:model, d:model) := d;

(:stateName,:transName)

modChange

(a:(stateName,transName)transrec, b:STRING, c:model, d:model) := c;

(:stateName,:transName)

divideMatches NIL a := (NIL,NIL) |

divideMatches

(CONS (b:(stateName,transName)transrec#mod) c)

(a:STRING) :=

let (matches,nonmatches) := divideMatches c a in

COND (a EQ modName b)

/* put just the transition and the modification element on this list */

(CONS (modTrans b, modChange b) matches, nonmatches)

(matches, CONS b nonmatches);

(:stateName,:transName)

groupedModificationsAux NIL := NIL |

groupedModificationsAux

(CONS (a:(stateName,transName)transrec # mod) b) :=

let varname := modName a in

let (matches,nonmatches) := divideMatches b varname in

CONS

(varname,modNoChange a,(CONS (modTrans a,modChange a) matches))

(groupedModificationsAux nonmatches);

APPENDIX H. CORESC 344

(:stateName,:transName)

groupedModifications (trs:((stateName,transName)transrec)list) :=

groupedModificationsAux (allLocalMods trs);

: (stateName,transName)namerec ==

STRING # model # ((stateName,transName)transrec # model)list;

(:stateName,:transName)

nameTransList (vr:(stateName,transName)namerec) := map (SND(SND vr)) FST;

(:stateName,:transName)

nameNoChange (vr:(stateName,transName)namerec) := FST(SND vr);

(:stateName,:transName)

nameModList (vr:(stateName,transName)namerec) := SND(SND vr);

(:stateName,:transName)

NameCond

(s:(stateName,transName)sc_struct)

(trs:((stateName,transName)transrec)list)

(step:(transName)ext_step) :=

every

(\namerec.

(every

(\tr. ~(TransTakenInt tr step))

(nameTransList namerec)

/\

nameNoChange namerec (ExtPrev step, ExtNext step))

\/

(any

(\(tr,md) . TransTakenInt tr step /\

md (ExtPrev step, ExtNext step))

(nameModList namerec)))

(groupedModifications trs);

/* Putting it all together --------------------------------- */

(:ty)

existsn_aux n (p:(BOOL)list->BOOL) list :=

COND

(n EQ 0)

(p list)

(EXISTS (\trn'. existsn_aux (n MINUS 1) p (append list [trn'])));

APPENDIX H. CORESC 345

(:ty)

existsn n (p:(BOOL)list->BOOL) :=

existsn_aux n p NIL;

(:t1)

match (NIL) x a := T |

match (CONS (h:t1) t) (flags:(BOOL)list) a :=

COND (h EQ a) (hd flags) (match t (tl flags) a);

(:stateName,:transName)

ScAux (s:(stateName,transName)sc_struct)

(trs:((stateName,transName)transrec)list)

(step:(transName)ext_step) :=

NameCond s trs step /\

EventCond s trs step /\

TransStateCond s trs step ;

/* have to get the associatively correct */

(:stateName,:transName)

trans2TransRec (a:(stateName,transName)trans) (b:BOOL) :=

(FST a,

FST(SND a),

FST(SND(SND a)),

FST(SND(SND(SND a))),

SND(SND(SND(SND a))),

b);

(:stateName,:transName)

pairs NIL a := NIL |

pairs (CONS (h:(stateName,transName)trans) t) j :=

COND (j EQ NIL) NIL (CONS (trans2TransRec h (hd j))

(pairs t (tl j)));

(:stateName,:transName)

Sc (s:(stateName,transName)sc_struct) (stp:step) :=

let trs := transInState s in

(existsn (length trs)

(\flags.

(let ext_step := (stp, match (map trs transLabel1) flags) in

ScAux s (pairs trs flags) ext_step)));

/* initialisation --- */

APPENDIX H. CORESC 346

(:stateName,:transName)

InitStates (s:(stateName,transName)sc_struct) :=

Every

(\bsn.

COND (bsn member (basicStatesEntered s (stateName s)))

(InBasicState bsn)

(NOT(InBasicState bsn)))

(basicStates s);

(:stateName,:transName)

InitEvents (s:(stateName,transName)sc_struct) cf :=

every

(\t. (EventInit (transEvent1 t) (transLabel1 t) [] cf))

(transInState s);

(:stateName,:transName)

InitialCond (s:(stateName,transName)sc_struct) :=

InitStates s AND InitEvents s;

Appendix I

ScExpr

/*

ScExpr: expression notation specific for statecharts

Depends on statechart notational style having been loaded.

Keywords: InState

*/

(:stateName,:transName)

InState stName (s:(stateName,transName)sc_struct) := Instate stName s ;

347

Appendix J

ScEvent

/*

ScEvents: event notation specific for statecharts

Depends on statechart notational style having been loaded.

Keywords: En, Ex

*/

/* Primitives */

(:stateName)

EnJustOccurred :stateName -> bool;

(:stateName)

ExJustOccurred :stateName -> bool;

/* En stn s - entered a state -------------------------------- */

(:stateName)

EnOccurred (stn:stateName) cf :=

EnJustOccurred stn cf;

(:stateName,:transName)

EnOccurs stn (s:(stateName,transName)sc_struct)

(step:(transName)ext_step) :=

let alltrans := transInState s in

any

(\t. TransTaken t step /\ (stn member (statesEntered s t))) alltrans ;

(:stateName,:transName)

EnUpdate stn (s:(stateName,transName)sc_struct) (flag:BOOL)

348

APPENDIX J. SCEVENT 349

(step:(transName)ext_step) :=

~flag \/

(EnJustOccurred stn (ExtNext step) EQ EnOccurs stn s step);

(:stateName,:transName)

EnOccursAtInit stn (s:(stateName,transName)sc_struct) :=

Instate stn s;

(:stateName,:transName)

EnInit stn (s:(stateName,transName)sc_struct) (flag:BOOL)

(cf:config) :=

~flag \/ (EnJustOccurred stn cf EQ EnOccursAtInit stn s cf);

/* produces an event */

(:stateName,:transName)

En stn (s:(stateName,transName)sc_struct) (lab:transName) (p:path) :=

(EnOccurred stn,

EnUpdate stn s,

(:stateName,:transName)EnOccurs stn s,

EnInit stn s,

EnOccursAtInit stn s);

/* Ex stn s -- */

(:stateName)

ExOccurred (stn:stateName) cf :=

ExJustOccurred stn cf;

(:stateName,:transName)

ExOccurs stn (s:(stateName,transName)sc_struct)

(step:(transName)ext_step) :=

let alltrans := transInState s in

any

(\t. TransTaken t step /\

(stn member statesExited s t)) alltrans;

(:stateName,:transName)

ExUpdate stn (s:(stateName,transName)sc_struct) (flag:BOOL)

(step:(transName)ext_step) :=

~flag \/

(ExJustOccurred stn (ExtNext step) EQ ExOccurs stn s step);

(:stateName,:transName)

ExInit (stn:stateName) (s:(stateName,transName)sc_struct)

(flag:BOOL) (cf:config) :=

APPENDIX J. SCEVENT 350

~flag \/ ~(ExJustOccurred stn cf);

/* produces an event */

(:stateName,:transName)

Ex stn (s:(stateName,transName)sc_struct) (lab:transName) (p:path) :=

(ExOccurred stn,

ExUpdate stn s,

(:stateName,:transName)ExOccurs stn s,

ExInit stn s,

(C F));

Appendix K

Extended Communication for

CoreSc

K.1 Primitives

/*

Primitives for extended sc communication constructs

*/

(:stateName,:msg)

Msg : stateName -> stateName -> msg -> bool;

(:stateName,:msg,:ty)

Data: stateName -> stateName -> msg ->(ty)exp;

K.2 CommEvent

/*

CommEvents: statechart communication events

Depends on statechart notational style and

statechart communication primitives having been loaded.

Keywords: ReceiveData, Receive

*/

(:stateName,:transName,:msg)

ReceiveDataOccurred

351

APPENDIX K. EXTENDED COMMUNICATION FOR CORESC 352

(src:stateName)

(dest:stateName)

(ms:msg)

(cf:config) :=

Msg src dest ms cf;

(:stateName,:transName,:msg)

ReceiveDataOccurs

(src:stateName)

(dest:stateName)

(ms:msg)

(step:(transName)ext_step) :=

Msg src dest ms (ExtNext step) ;

/* nothing to do because Send sets Msg to be true or false */

(:stateName,:transName,:msg,:ty)

ReceiveDataUpdate

(src:stateName)

(dest:stateName)

(ms:msg)

(data:(ty)exp)

(flag:BOOL)

(step:(transName)ext_step) :=

data (ExtNext step) EQ Data src dest ms (ExtNext step);

(:stateName,:transName,:msg)

ReceiveDataInit (src:stateName)

(dest:stateName)

(ms:msg)

(flag:BOOL)

(cf:config) := T;

(:stateName,:transName,:msg,:ty)

ReceiveData

(s:(stateName,transName)sc_struct)

(src:stateName)

(ms:msg)

(data:(ty)exp)

(x:transName)

(n:path) :=

(ReceiveDataOccurred src (stateName s) ms,

(:stateName,:transName,:msg,:ty)

ReceiveDataUpdate src (stateName s) ms data,

(:stateName,:transName,:msg)

ReceiveDataOccurs src (stateName s) ms,

APPENDIX K. EXTENDED COMMUNICATION FOR CORESC 353

ReceiveDataInit src (stateName s) ms,

C F);

/* abstracted version without constraints on data */

(:stateName,:transName,:msg)

Receive

(s:(stateName,transName)sc_struct)

(src:stateName)

(ms:msg)

(x:transName)

(n:path) :=

(ReceiveDataOccurred src (stateName s) ms,

(\(x:BOOL).(:transName)NoConstraintcfcf'),

(:stateName,:transName,:msg)

ReceiveDataOccurs src (stateName s) ms,

ReceiveDataInit src (stateName s) ms,

C F);

K.3 CommAction

/*

CommActions: Statechart communication actions

Depends on statechart notational style and

statechart communication primitives having been loaded.

Keywords: SendData, Send

*/

(:stateName,:msg)

MsgName (src:stateName) (dest:stateName) (ms:msg) :=

NAME (Msg src dest ms);

(:stateName,:msg)

DataName (src:stateName) (dest:stateName) (ms:msg) :=

NAME (Data src dest ms);

(:stateName,:msg)

SendMsgChange (src:stateName) (dest:stateName) (ms:msg)

(step:step) :=

(Msg src dest ms (Next step)) EQ T;

(:stateName,:msg)

SendMsgNoChange (src:stateName) (dest:stateName) (ms:msg)

(step:step) :=

(Msg src dest ms (Next step)) EQ F;

APPENDIX K. EXTENDED COMMUNICATION FOR CORESC 354

(:stateName,:msg,:A)

SendSetData (src:stateName) (dest:stateName) (ms:msg)

(data:config->A) (step:step) :=

(Data src dest ms (Next step)) EQ (data (Prev step));

(:stateName,:transName,:msg,:ty)

SendData

(s:(stateName,transName)sc_struct)

(dest:stateName)

(ms:msg)

(data:(ty)exp) :=

[(

MsgName (stateName s) dest ms,

(:stateName,:msg)SendMsgChange (stateName s) dest ms,

SendMsgNoChange (stateName s) dest ms);

(

DataName (stateName s) dest ms,

SendSetData (stateName s) dest ms data,

(\step.T))];

/* abstracted version without constraints on data */

(:stateName,:transName,:msg)

Send

(s:(stateName,transName)sc_struct)

(dest:stateName)

(ms:msg) :=

[(

MsgName (stateName s) dest ms,

(:stateName,:msg)SendMsgChange (stateName s) dest ms,

(:stateName,:msg)SendMsgNoChange (stateName s) dest ms)];

Appendix L

Simulation Runs of the Heating

System

Fusion+ - Version 1.0 Jun 13 1998 14:44:27

Copyright University of British Columbia, 1996, 1997

Type "%include <filename>" or type in S+ paragraphs directly

Type "%help" to see list of % commands.

search path: .

>/*

Heating system specification

simulation

Last modified: 28 Apr 98

Nancy A. Day

*/;

;

>%include rev_heating.s+

Including ./rev_heating.s+

search path: . ..

Including ../all.s+

Including ../basics.s+

Closing basics.s+

Including ../framework.s+

Closing framework.s+

Including ../bvfcns.s+

355

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 356

Closing bvfcns.s+

Including ../table.s+

Closing table.s+

Including ../events.s+

Closing events.s+

Including ../actions.s+

Closing actions.s+

Including ../sc.s+

Including ../scsyn.s+

Closing scsyn.s+

Including ../scsem.s+

Closing scsem.s+

Closing sc.s+

Including ../sc_ext_exp.s+

Closing sc_ext_exp.s+

Including ../sc_ext_ev.s+

Closing sc_ext_ev.s+

Including ../sc_comm_prim.s+

Closing sc_comm_prim.s+

Including ../sc_comm_action.s+

Closing sc_comm_action.s+

Including ../sc_comm_event.s+

Closing sc_comm_event.s+

Closing all.s+

Closing rev_heating.s+

>

/* analysis parameters:

(as found in build.s+ which build the bdd loaded from the file

below)

- leave keepOldNodes ON

- evaluate to rewrite level (for event label etc)

- do condreduction for next vp table

- no need to do sfe Boolean simplification

- fusionMode not necessary

- dT left uninterpreted

*/;

;

>%set sfeEvaluationLevel 3

sfeEvaluationLevel = 3

>%set condReduction ON

condReduction = 1

>%set doSfeBoolSimp OFF

doSfeBoolSimp = 0

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 357

>%set filterOutput 1

filterOutput = 1

>cf,cf':config;

cf, cf':config;

>%include heating_order.s+

Including ./heating_order.s+

Closing heating_order.s+

>%setorder heating_order

Setting up substitution order

.

Finished setting up substitution order

>%load_bdd nsr heating_nsr_bddfile

Bdd of nsr, size 2785 successfully loaded.

>/* --- */

ic := InitialCond (heatingSystemScStruct) cf;

ic := ((InitialCond heatingSystemScStruct) cf);

>sim1 := [

ic;

heatSwitchOn cf;

T

];

sim1 := [ic;(heatSwitchOn cf);T];

>/*

observe that we need an environmental constraint here

to connect "tooCold" and "tooHot" to differences in

temperature

*/;

;

>%simulate nsr sim1

nsr BDD exists, size: 2785

Evaluating condition on first configuration

.....

Converting condition on first configuration to BDD

++

Configuration 0:

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 358

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

calculating next config took: 0 sec bdd size: 48

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(heatSwitchOn cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 359

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

calculating next config took: 0 sec bdd size: 48

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 2:

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 360

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

>/* --- */

env :=

(forall i.

let delta := dT i - aT i in

(tooCold i =

(((C 2 < delta) AND (delta <= C 5)) OR

(C 5 < delta))) AND

(tooHot i =

((delta < C -5) OR

((C -5 <= delta) AND (delta < C -2))))) cf;

env :=

(

(\cf.

(FORALL

(\i.

(

(LET

(

(\delta.

(

((tooCold i) =

((((C 2) < delta) AND (delta <= (C 5))) OR

((C 5) < delta))) AND

((tooHot i) =

((delta < (C -5)) OR

(((C -5) <= delta) AND (delta < (C -2))))))

) ((dT i) - (aT i)))) cf)))) cf);

>/* observe that now tooHot or tooCold appears in ouput */;

;

>%simulate nsr sim1 env

nsr BDD exists, size: 2785

Evaluating expression nsr

.

Boolean cond rewriting: 0; cond rewriting: 0

sfe nsr takes user: 0 sec ; system; 0 sec ; expr size: 304

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 361

Collapsing expression nsr

collapse nsr takes: 0 sec ; expr size: 143 ; shared: 100

Converting nsr to BDD

convert nsr takes: 0 sec; bdd size: 25 #bddvars: 16

Evaluating condition on first configuration

Converting condition on first configuration to BDD

Configuration 0:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(heatSwitchOn cf) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = (C 0)) cf) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 362

((((TimeEventLastOccurred (T10 KITCHEN)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 2:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 363

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

>/* --- */

/*

typical simulation that takes the system from a room

being too cold to the heater running

*/;

;

>/*

with simulate_one_ahead can just go through states and

desired output

*/;

;

>sim2 := [

ic /\

heatSwitchOn cf /\

(valvePos KITCHEN = C CLOSED) cf;

InBasicState (WAIT_FOR_HEAT KITCHEN) cf /\

(valvePos KITCHEN = C HALF) cf;

InBasicState (WAIT_FOR_HEAT KITCHEN) cf /\

(valvePos KITCHEN = C OPEN) cf;

requestHeat KITCHEN cf;

T; /* activate should be true */

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 364

T;

InBasicState (FURNACE_RUNNING) cf;

T /* in heater running */

];

sim2 :=

[

(ic /\

((heatSwitchOn cf) /\ (((valvePos KITCHEN) = (C CLOSED)) cf))

);

(((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) /\

(((valvePos KITCHEN) = (C HALF)) cf));

(((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) /\

(((valvePos KITCHEN) = (C OPEN)) cf));

((requestHeat KITCHEN) cf);T;T;

((InBasicState FURNACE_RUNNING) cf);T];

>

%simulate_one_ahead nsr sim2 env

nsr BDD exists, size: 2785

env BDD exists, size: 25

Evaluating and converting all conditions on configurations

calculating "is next config satisfying" took: 0 sec; bdd size: 42

Configuration 0:

(

(((C 2) < ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) <= (C 5))) cf) EQ T

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

(heatSwitchOn cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 365

calculating next config took: 0 sec bdd size: 46

calculating "is next config satisfying" took: 0 sec; bdd size: 49

Configuration 1:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ HALF) EQ T

((tooCold KITCHEN) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = warmUpTime) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 366

calculating "is next config satisfying" took: 0 sec; bdd size: 46

Configuration 2:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = warmUpTime) cf) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 367

calculating next config took: 0 sec bdd size: 45

calculating "is next config satisfying" took: 0 sec; bdd size: 45

Configuration 3:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 368

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

calculating "is next config satisfying" took: 0 sec; bdd size: 45

Configuration 4:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

(activate cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 369

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

calculating "is next config satisfying" took: 0 sec; bdd size: 47

Configuration 5:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_ACTIVATING) cf) EQ T

((((TimeEventLastOccurred T3) []) = furnaceStartupTime) cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

((((TimeEventLastOccurred T3) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 370

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

calculating "is next config satisfying" took: 0 sec; bdd size: 45

Configuration 6:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_RUNNING) cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

(furnaceRunning cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 371

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Configuration 7:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_RUNNING) cf) EQ T

((InBasicState HEATER_RUNNING) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 372

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

>/* --- */

/*

to use just simulate we have to force triggers to be

true in precedings states (but same result is accomplished in

same number of steps)

Also note that even though the trigger of t10 and t12 are the same

they are different here based on transition label

*/;

;

>sim3 := [

ic /\

heatSwitchOn cf /\

(valvePos KITCHEN = C CLOSED) cf /\

((C 2 < dT KITCHEN - aT KITCHEN) AND

(dT KITCHEN - aT KITCHEN <= C 5)) cf;

InBasicState (WAIT_FOR_HEAT KITCHEN) cf /\

(TimeEventLastOccurred (T10 KITCHEN) [] = warmUpTime) cf /\

tooCold KITCHEN cf;

InBasicState (WAIT_FOR_HEAT KITCHEN) cf /\

(TimeEventLastOccurred (T12 KITCHEN) [S] = warmUpTime) cf;

T; /* requestHeat should be true */

T /* activate should be true */;

(TimeEventLastOccurred T3 [] = furnaceStartupTime) cf;

T; /* in heater running */

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 373

T /* in furnace running */

];

sim3 :=

[

(ic /\

((heatSwitchOn cf) /\

((((valvePos KITCHEN) = (C CLOSED)) cf) /\

(

(((C 2) < ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) <= (C 5))) cf))));

(((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) /\

(

((((TimeEventLastOccurred (T10 KITCHEN)) []) = warmUpTime) cf)

/\ ((tooCold KITCHEN) cf)));

(((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) /\

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = warmUpTime) cf

));T;T;

((((TimeEventLastOccurred T3) []) = furnaceStartupTime) cf);T;T

];

>%simulate nsr sim3 env

nsr BDD exists, size: 2785

nsr BDD exists, size: 25

Evaluating condition on first configuration

Converting condition on first configuration to BDD

.

Configuration 0:

(

(((C 2) < ((dT KITCHEN) - (aT KITCHEN))) AND

(((dT KITCHEN) - (aT KITCHEN)) <= (C 5))) cf) EQ T

(((valvePos KITCHEN) cf) EQ CLOSED) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_NO_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (IDLE_NO_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState OFF) cf) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 374

(heatSwitchOn cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ CLOSED) EQ T

(((valvePos BEDROOM) cf) EQ CLOSED) EQ T

calculating next config took: 0 sec bdd size: 46

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ HALF) EQ T

((tooCold KITCHEN) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = warmUpTime) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 375

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 2:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = warmUpTime) cf) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (WAIT_FOR_HEAT KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 376

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 3:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

((InBasicState IDLE) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 377

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 4:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_OFF) cf) EQ T

(activate cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 378

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 5:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_ACTIVATING) cf) EQ T

((((TimeEventLastOccurred T3) []) = furnaceStartupTime) cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

((((TimeEventLastOccurred T3) []) = (C 0)) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 379

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 6:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_RUNNING) cf) EQ T

((InBasicState ACTIVATING_HEATER) cf) EQ T

(furnaceRunning cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 380

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

calculating next config took: 0 sec bdd size: 45

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 7:

(((C 5) < ((dT KITCHEN) - (aT KITCHEN))) cf) EQ T

((requestHeat KITCHEN) cf) EQ T

(((valvePos KITCHEN) cf) EQ OPEN) EQ T

((tooCold KITCHEN) cf) EQ T

((InBasicState (IDLE_HEATING KITCHEN)) cf) EQ T

(((C 5) < ((dT LIVING_ROOM) - (aT LIVING_ROOM))) cf) EQ T

(((valvePos LIVING_ROOM) cf) EQ OPEN) EQ T

((tooCold LIVING_ROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT LIVING_ROOM)) cf) EQ T

(((C 5) < ((dT BEDROOM) - (aT BEDROOM))) cf) EQ T

(((valvePos BEDROOM) cf) EQ OPEN) EQ T

((tooCold BEDROOM) cf) EQ T

((InBasicState (WAIT_FOR_HEAT BEDROOM)) cf) EQ T

((InBasicState FURNACE_RUNNING) cf) EQ T

((InBasicState HEATER_RUNNING) cf) EQ T

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 KITCHEN)) [S]) + (C 1)) p_cf)) EQ T

APPENDIX L. SIMULATION RUNS OF THE HEATING SYSTEM 381

((((TimeEventLastOccurred (T10 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T10 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 KITCHEN)) []) cf) EQ

((((TimeEventLastOccurred (T13 KITCHEN)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 LIVING_ROOM)) [S]) + (C 1)) p_cf)

) EQ T

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 LIVING_ROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T11 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) cf) EQ

((((TimeEventLastOccurred (T12 BEDROOM)) [S]) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T10 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T10 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred (T13 BEDROOM)) []) cf) EQ

((((TimeEventLastOccurred (T13 BEDROOM)) []) + (C 1)) p_cf)) EQ T

((((TimeEventLastOccurred T3) []) cf) EQ

((((TimeEventLastOccurred T3) []) + (C 1)) p_cf)) EQ T

>

Cleaning up node use.

Cleaning up bdd use.

Fusion session over.

Appendix M

Speci�cation of the Separation

Minima for the North Atlantic

Region

The complete formal speci�cation of the separation minima for the North Atlantic Re-

gion written by the author, J. Joyce and G. Pelletier can be found in Day, Joyce and

Pelletier [DJP97b]. The document is formatted in HTML and contains the formal speci�-

cation as well as explanatory text. The fragments of the formal speci�cation are automat-

ically extracted from the HTML document and ordered based on their dependencies (so

items are declared or de�ned before they are used) for input to Fusion. Here we present

only the formal elements of the speci�cation. Certain information included here, such as

line numbers, is automatically generated for cross-referencing purposes with the HTML

document. This example is written in S+ together with the TableExpr notational style.

%sourcefile SeparationMinimaSpec.hpp

%linenum 723

382

APPENDIX M. SEPARATION MINIMA 383

(:ty) (_ In 10 _) : (ty) -> ((ty)set) ->bool;

%include ../basics.s+

%include ../framework.s+

%include ../table.s+

%linenum 570

:FLIGHT;

:flight == config -> FLIGHT;

%linenum 572

:location := Azores | BDA | CAN | Caribbean | IberianPeninsula

| Iceland | Scandinavia | UnitedKingdom | USA ;

%linenum 576

:SEGMENT;

:segment == config -> SEGMENT;

%linenum 577

:time == num;

:timeperiod == config -> (NUM # NUM);

%linenum 713

Min: ((num)set -> num);

%linenum 115

Routes1 := {(USA,BDA);(CAN,BDA);(IberianPeninsula, Azores);

(Iceland,Scandinavia);(Iceland, UnitedKingdom)};

%linenum 119

Routes2 := {(USA,Caribbean);(CAN,Caribbean);(BDA, Caribbean)};

%linenum 413

"WATRSSameDir LongSep" : (flight#flight) -> num;

%linenum 417

"WATRSOppDir NoLongSepPeriod": (flight#flight) -> timeperiod;

%linenum 467

Routes3 :=

{(USA,Caribbean);(CAN,Caribbean);

(BDA, Caribbean);(USA,BDA); (CAN,BDA)};

%linenum 587

IsSupersonic :(flight -> bool);

APPENDIX M. SEPARATION MINIMA 384

%linenum 588

IsTurbojet :(flight -> bool);

%linenum 589

HavePartOfRouteInMNPSAirspace : (flight -> bool) ;

%linenum 591

MeetMNPS :(flight -> bool);

%linenum 592

OnPublishedRoute :(flight -> bool);

%linenum 593

RouteDeparture :(flight -> location);

%linenum 594

RouteDestination :(flight -> location);

%linenum 596

MachTechniqueUsed : flight ->bool;

%linenum 603

FlightLevel:(flight -> num);

%linenum 604

InCruiseClimb:(flight -> bool);

%linenum 605

InWATRSAirspace :(flight -> bool);

%linenum 606

IsLevel:(flight -> bool);

%linenum 607

IsOutsideMNPSAirspace :(flight -> bool);

%linenum 609

IsWestOf60W :(flight -> bool);

%linenum 610

IsWestOf55W:(flight -> bool);

%linenum 611

"LatChange Per10DLong LessThanOrEq1" :flight->bool;

%linenum 613

"LatChange Per10DLong LessThanOrEq2" :flight->bool;

%linenum 615

"LatChange Per10DLong LessThanOrEq3" :flight->bool;

%linenum 617

LateralPositionInDegrees :(flight -> num);

%linenum 619

LateralPositionInMiles :(flight -> num);

%linenum 621

Mach : (flight->num);

%linenum 622

RouteSegment :(flight -> segment);

%linenum 623

"RouteSegment Degrees" :(flight -> num);

%linenum 624

APPENDIX M. SEPARATION MINIMA 385

TimeAtPosition :(flight->time);

%linenum 629

SameType :((flight # flight) -> bool);

%linenum 635

SameMachNumber :((flight # flight) -> bool);

%linenum 637

FirstAircraft :((flight # flight) -> flight);

%linenum 639

ept : ((flight # flight)->time);

%linenum 640

"SameOr Diverging Tracks" :((flight # flight) -> bool);

%linenum 642

SecondAircraft :((flight # flight) -> flight);

%linenum 647

ReportedOverCommonPoint :((flight # flight) -> bool);

%linenum 649

"Appropriate TimeSep AtCommon Point":((flight # flight) -> bool);

%linenum 651

EnterWATRSAirspaceAtSomeTime : (flight -> bool);

%linenum 657

AngularDifferenceGreaterThan90Degrees:(segment # segment)->bool;

%linenum 668

StartTime : (timeperiod) -> time;

%linenum 672

EndTime : (timeperiod) -> time;

%linenum 677

MinEarliestTime : (timeperiod)set -> time;

%linenum 682

MaxLatestTime : (timeperiod)set -> time;

%linenum 97

VerticalSeparationRequired (A,B) := Table

[Row (FlightLevel (A)) [(\x.x <= (C 280)); Dc ;

(\x.x>(C 450));(\x.x>(C 450))];

Row (FlightLevel (B)) [Dc;(\x.x <= (C 280));

(\x. x > (C 450));(\x.x>(C 450))];

Row (IsSupersonic (A)) [Dc;Dc;True;Dc];

Row (IsSupersonic (B)) [Dc;Dc;Dc;True]]

[C 1000;C 1000;C 4000;C 4000;C 2000];

%linenum 128

IsOnRoute (R:(location#location)set) (X:flight) :=

((RouteDeparture (X), RouteDestination (X)) In R) OR

APPENDIX M. SEPARATION MINIMA 386

((RouteDestination (X), RouteDeparture (X)) In R);

%linenum 136

FlightLevelAbove275 (X:flight) := FlightLevel X > (C 275);

%linenum 142

"LateralSeparation RequiredInDegrees" (A,B) := Table

[Row (AllOf [A;B] IsOutsideMNPSAirspace) [True;True;Dc;Dc];

Row (AllOf [A;B] (IsOnRoute (Routes1))) [True;Dc;Dc;Dc];

Row (AllOf [A;B] (IsOnRoute (Routes2))) [Dc;True;Dc;Dc];

Row (AllOf [A;B] IsWestOf55W) [Dc;True;Dc;Dc];

Row (AllOf [A;B] IsSupersonic) [Dc;Dc;True;Dc];

Row (AllOf [A;B] FlightLevelAbove275) [Dc;Dc;True;Dc];

Row (AllOf [A;B] MeetMNPS) [Dc;Dc;Dc;True];

Row (AllOf [A;B] HavePartOfRouteInMNPSAirspace) [Dc;Dc;Dc;True]]

[C 1.5;C 1.5;C 1;C 1;C 2];

%linenum 160

"LateralSeparation RequiredInMiles" (A,B) := Table

[Row (AllOf [A;B] IsOutsideMNPSAirspace) [True;True;Dc;Dc];

Row (AllOf [A;B] (IsOnRoute (Routes1))) [True;Dc;Dc;Dc];

Row (AllOf [A;B] (IsOnRoute (Routes2))) [Dc;True;Dc;Dc];

Row (AllOf [A;B] IsWestOf55W) [Dc;True;Dc;Dc];

Row (AllOf [A;B] IsSupersonic) [Dc;Dc;True;Dc];

Row (AllOf [A;B] FlightLevelAbove275) [Dc;Dc;True;Dc];

Row (AllOf [A;B] MeetMNPS) [Dc;Dc;Dc;True];

Row (AllOf [A;B] HavePartOfRouteInMNPSAirspace) [Dc;Dc;Dc;True]]

[C 90;C 90;C 60;C 60;C 120];

%linenum 190

LatitudeEquivalent (A,B) := PredicateTable

[Row ("RouteSegment Degrees" A)

[(\x.x<=C 58);Dc;(\x.((C 58)<x) AND (x< C 70));Dc;

(\x.(C 70<=x) AND (x<=C 80));Dc];

Row ("RouteSegment Degrees" B)

[Dc;(\x.x<=C 58);Dc;(\x.(x>C 58) AND (x< C 70));Dc;

(\x.(C 70<=x) AND (x<=C 80))];

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq3")

[True;True;Dc;Dc;Dc;Dc];

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq2")

[Dc;Dc;True;True;Dc;Dc];

APPENDIX M. SEPARATION MINIMA 387

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq1")

[Dc;Dc;Dc;Dc;True;True]];

% added 24 Apr 98 NAD for demonstration purposes

LatitudeEquivalent2 (A,B) := PredicateTable

[Row ("RouteSegment Degrees" A)

[(\x.x<=C 58);Dc;(\x.((C 58)<x) AND (x< C 70));Dc;

(\x.(C 70<=x) AND (x<=C 80));Dc];

Row ("RouteSegment Degrees" B)

[Dc;(\x.x<=C 58);Dc;(\x.(C 58<x) AND (x< C 70));Dc;

(\x.(C 70<=x) AND (x<=C 80))];

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq3")

[True;True;Dc;Dc;Dc;Dc];

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq2")

[Dc;Dc;True;True;Dc;Dc];

Row (AllOf [A;B] "LatChange Per10DLong LessThanOrEq1")

[Dc;Dc;Dc;Dc;True;True]];

%linenum 243

"ssOppDir NoLongSepPeriod" (A,B) := Table

[Row (ReportedOverCommonPoint(A,B)) [True;False]]

[P (ept(A,B),ept(A,B)+(C 10));P (ept(A,B)-(C 15),ept(A,B)+(C 15))];

%linenum 266

ssSubcondition(A,B) := PredicateTable

[Row (AllOf [A;B] IsLevel) [True;Dc];

Row (SameMachNumber (A,B)) [True;Dc];

Row (SameType(A,B)) [Dc;True];

Row (AllOf [A;B] InCruiseClimb) [Dc;True]];

%linenum 336

UnionOfRange (periods) :=

P (MinEarliestTime (periods), MaxLatestTime (periods));

%linenum 360

MNPSCondition(A,B) :=

(AllOf [A;B] MeetMNPS) AND

(AllOf [A;B] HavePartOfRouteInMNPSAirspace);

%linenum 371

APPENDIX M. SEPARATION MINIMA 388

"MNPSOppDir NoLongSepPeriod"(A,B) := "ssOppDir NoLongSepPeriod"(A,B);

%linenum 380

"MNPSSameDir LongSep" (A,B) := Table

[Row ("Appropriate TimeSep AtCommon Point" (A,B))

[True;True;True;True;True];

Row ("SameOr Diverging Tracks" (A,B)) [True;True;True;True;True];

Row (Mach (FirstAircraft (A,B)) - Mach (SecondAircraft (A,B)))

[(\x. (x> C 0.06));

(\x. ((C 0.06>=x) AND (x>C 0.05)));

(\x. (((C 0.05)>=x) AND (x>C 0.04)));

(\x. (((C 0.04)>=x) AND (x>(C 0.03))));

(\x. (((C 0.03)>=x) AND (x>C 0.02)))]]

[C 5;C 6;C 7;C 8;C 9;C 10];

%linenum 395

WATRSCondition(A,B) := PredicateTable

[Row (AllOf [A;B] EnterWATRSAirspaceAtSomeTime) [True;True];

Row (AllOf [A;B] IsWestOf60W) [True;Dc];

Row (AllOf [A;B] InWATRSAirspace) [Dc;True];

Row (AllOf [A;B] MachTechniqueUsed) [True;True];

Row (AllOf [A;B] OnPublishedRoute) [True;True];

Row ("SameOr Diverging Tracks" (A,B)) [True;True]];

%linenum 432

"genOppDir NoLongSep Period"(A,B) := "MNPSOppDir NoLongSepPeriod"(A,B);

%linenum 440

"genSameDir LongSep" (A,B) := Table

[Row ("SameOr Diverging Tracks" (A,B)) [True;True;True];

Row (AllOf [A;B] MachTechniqueUsed) [False;True;True];

Row (AtLeastOneOf [A;B] InCruiseClimb) [False;False;False];

Row (ReportedOverCommonPoint (A,B)) [True;Dc;Dc];

Row ("Appropriate TimeSep AtCommon Point" (A,B)) [Dc;True;True];

Row (Mach (FirstAircraft(A,B)) - Mach (SecondAircraft(A,B)))

[Dc;(\x. (x> C 0.6));(\x. (C 0.6>=x) AND (x>C 0.3))]]

[C 15;C 5;C 10;C 20];

%linenum 459

"otherOppDir NoLongSepPeriod" (A,B) :=

APPENDIX M. SEPARATION MINIMA 389

"genOppDir NoLongSep Period"(A,B);

%linenum 474

otherSameDirLongSep (A,B) := Table

[Row (ReportedOverCommonPoint(A,B)) [True;Dc];

Row ("SameOr Diverging Tracks"(A,B)) [True;Dc];

Row (AllOf [A;B] (IsOnRoute Routes3)) [Dc;True]]

[C 15;C 20;C 30];

%linenum 492

env1 :=

(forall (A:flight). NOT (IsLevel (A) AND InCruiseClimb (A)))

AND

(forall (A:flight).

NOT (IsOnRoute (Routes1) (A) AND IsOnRoute (Routes2) (A)));

%linenum 501

env2 :=

(forall (A:flight) (B:flight).

ReportedOverCommonPoint(A,B) = ReportedOverCommonPoint(B,A))

AND

(forall (A:flight) (B:flight).

SameMachNumber(A,B) = SameMachNumber(B,A))

AND

(forall (A:flight) (B:flight).

SameType(A,B) = SameType(B,A))

AND

(forall (A:flight) (B:flight).

"SameOr Diverging Tracks"(A,B) = "SameOr Diverging Tracks"(B,A))

AND

(forall (A:flight) (B:flight).

"Appropriate TimeSep AtCommon Point"(A,B) =

"Appropriate TimeSep AtCommon Point"(B,A)) ;

%linenum 523

env3 :=

(forall A.

if "LatChange Per10DLong LessThanOrEq2" (A)

then "LatChange Per10DLong LessThanOrEq3" (A))

AND

(forall A.

APPENDIX M. SEPARATION MINIMA 390

if "LatChange Per10DLong LessThanOrEq1" (A)

then "LatChange Per10DLong LessThanOrEq2" (A))

AND

(forall A.

if "LatChange Per10DLong LessThanOrEq1" (A)

then "LatChange Per10DLong LessThanOrEq3" (A));

%linenum 540

env := env1 AND env2 AND env3;

%linenum 254

ssSameDirLongSep(A,B) := Table

[Row (ssSubcondition(A,B)) [True;True];

Row ("SameOr Diverging Tracks"(A,B)) [True;True];

Row (ReportedOverCommonPoint(A,B)) [True;Dc];

Row ("Appropriate TimeSep AtCommon Point"(A,B)) [Dc;True]]

[C 10;C 10;C 15];

%linenum 306

MinAll(A,B) :=

Min {

"MNPSSameDir LongSep"(A,B);

"WATRSSameDir LongSep"(A,B);

"genSameDir LongSep"(A,B)};

%linenum 341

UnionAll (A,B) :=

let periods :=

{"MNPSOppDir NoLongSepPeriod"(A,B);

"WATRSOppDir NoLongSepPeriod"(A,B);

"genOppDir NoLongSep Period"(A,B)} in

P (MinEarliestTime (periods), MaxLatestTime (periods));

%linenum 291

"turbojetSameDir LongSep" (A,B) := Table

[Row (MNPSCondition (A,B)) [True;False;True;False];

Row (WATRSCondition (A,B)) [True;True;False;False]]

[MinAll (A,B);

Min { "WATRSSameDir LongSep" (A,B);

"genSameDir LongSep" (A,B)};

APPENDIX M. SEPARATION MINIMA 391

Min { "MNPSSameDir LongSep" (A,B);

"genSameDir LongSep" (A,B)};

"genSameDir LongSep" (A,B)];

%linenum 318

"turbojetOppDir NoLongSepPeriod" (A,B) := Table

[Row (MNPSCondition (A,B)) [True;False;True;False];

Row (WATRSCondition (A,B)) [True;True;False;False]]

[UnionAll (A,B);

UnionOfRange { "WATRSOppDir NoLongSepPeriod" (A,B);

"genOppDir NoLongSep Period" (A,B)};

UnionOfRange { "MNPSOppDir NoLongSepPeriod" (A,B);

"genOppDir NoLongSep Period" (A,B)};

"genOppDir NoLongSep Period" (A,B)];

%linenum 219

LongSameDirSepRequired (A,B) := Table

[Row (AllOf [A;B] IsSupersonic) [True;False];

Row (AllOf [A;B] IsTurbojet) [Dc;True]]

[ssSameDirLongSep (A,B);"turbojetSameDir LongSep" (A,B);

otherSameDirLongSep (A,B)];

%linenum 226

"OppDir NoLongSepPeriod" (A,B) := Table

[Row (AllOf [A;B] IsSupersonic) [True;False];

Row (AllOf [A;B] IsTurbojet) [Dc;True]]

["ssOppDir NoLongSepPeriod" (A,B);

"turbojetOppDir NoLongSepPeriod" (A,B);

"otherOppDir NoLongSepPeriod" (A,B)];

%linenum 212

WithinOppDirNoLongSepPeriod(A:flight,B:flight,t:time) :=

let timePeriod := "OppDir NoLongSepPeriod"(A,B) in

(StartTime(timePeriod) <= t) AND (t <= EndTime(timePeriod));

%linenum 60

AreSeparated(A:flight,B:flight,t:time) :=

/* A and B are vertically separated based on flight level */

(ABS(FlightLevel A - FlightLevel B) >

VerticalSeparationRequired(A,B))

APPENDIX M. SEPARATION MINIMA 392

OR

/* A and B are laterally separated based on either position

in degrees of latitude or position in miles */

(if (LatitudeEquivalent(A,B))

then

(ABS(LateralPositionInDegrees A - LateralPositionInDegrees B) >

"LateralSeparation RequiredInDegrees" (A,B))

else

(ABS(LateralPositionInMiles A - LateralPositionInMiles B) >

"LateralSeparation RequiredInMiles" (A,B)))

OR

/* A and B are longitudinally separated based on time

depending on whether the two flights are in the approximate

same or opposite direction */

(if (AngularDifferenceGreaterThan90Degrees

(RouteSegment A, RouteSegment B))

then /* opposite direction */

NOT (WithinOppDirNoLongSepPeriod(A,B,t))

else /* same direction */

ABS(TimeAtPosition A - TimeAtPosition B) >

LongSameDirSepRequired(A,B));

Appendix N

Speci�cation of the Association

Control Service Element

This appendix includes the formal speci�cation of the Association Control Service Ele-

ment (ACSE) written by Jamie Andrews as part of a group e�ort to specify formally

the Aeronautical Telecommunications Network (ATN). This speci�cation is written in S+

together with the notational styles: CoreSc, CoreEvent, CoreAction, CommEvent, and

CommAction. The �rst section is the �le of common declarations and de�nitions used by

all components of the ATN. The second section is the ACSE formal speci�cation. The

author of this speci�cation used the form of comments in S+ consisting of a % at the

beginning of a line following by a blank space.

N.1 Common declarations and de�nitions in the ATN

% File name: atncommon.s

% Author: Jamie Andrews

% Date: 1996 Dec. 2

% Description: Header file containing common declarations for all

393

APPENDIX N. Association Control Service Element 394

% ATN components being modelled by statecharts project

%addpath ../..

%include all.s+

% state names

% - components are parameterised by numbers

% e.g. (CM i) is the ASE for AE #i

% - basic state names within components are parameterised by

% numbers or state names as per author's choice

:stateName :=

System |

Ground_ADS :NUM |

CM_Ground :NUM |

CM_Ground_IDLE :NUM |

CM_Ground_LOGON :NUM |

CM_Ground_UPDATE :NUM |

CM_Ground_CONTACT :NUM |

CM_Ground_DIALOGUE :NUM |

CM_Ground_CONTACT_DIALOGUE :NUM |

CM_Ground_END :NUM |

CM_Ground_FORWARD :NUM |

CM_Air :NUM |

CM_Air_IDLE :NUM |

CM_Air_LOGON :NUM |

CM_Air_CONTACT :NUM |

CM_Air_DIALOGUE :NUM |

CM_Air_CONTACT_DIALOGUE :NUM |

CPDLC :NUM |

% Components of every AE; e.g. (CF i) is the CF for AE #1

CF :NUM |

CF_STA0 :NUM |

CF_STA1 :NUM |

CF_STA2 :NUM |

CF_STA3 :NUM |

CF_STA4 :NUM |

ACSE :NUM |

ACSE_Idle :stateName |

ACSE_Awaiting_AARE :stateName |

ACSE_Awaiting_AASCrsp :stateName |

ACSE_Awaiting_RLRE :stateName |

APPENDIX N. Association Control Service Element 395

ACSE_Awaiting_ARLSrsp :stateName |

ACSE_Associated :stateName |

ACSE_Collision_initiator :stateName |

ACSE_Collision_responder :stateName |

% (SuppSvc i j) is the supporting service connecting AE #i with AE #j

SuppSvc :NUM :NUM |

SuppSvc_Translate :stateName |

% The error state, to which errors should be reported

Error |

% applications - interact with CF

AppUser :NUM;

% Possible kinds of error messages

:msg :=

NotPermitted |

CannotOccur |

BlankCell |

% protocol messages

/* Going between the ASE and the CF */

D_START_req |

D_START_rsp_pos |

D_START_rsp_neg |

D_DATA_req |

D_END_req |

D_END_rsp_pos |

D_END_rsp_neg |

D_ABORT_req |

D_START_ind |

D_START_cnf_pos |

D_START_cnf_neg |

D_DATA_ind |

D_END_ind |

D_END_cnf_pos |

D_END_cnf_neg |

D_ABORT_ind |

D_P_ABORT_ind |

APPENDIX N. Association Control Service Element 396

/* Going between the CF and the ACSE */

A_ASSOCIATE_req |

A_ASSOCIATE_rsp_pos |

A_ASSOCIATE_rsp_neg |

A_RELEASE_req |

A_RELEASE_rsp_pos |

A_RELEASE_rsp_neg |

A_ABORT_req |

A_ASSOCIATE_ind |

A_ASSOCIATE_cnf_pos |

A_ASSOCIATE_cnf_neg |

A_RELEASE_ind |

A_RELEASE_cnf_pos |

A_RELEASE_cnf_neg |

A_ABORT_ind |

A_P_ABORT_ind |

/* Going between the ASE or ACSE and the supporting service

via the CF */

Prev_D_END_cnf :NUM |

P_CONNECT_req |

P_CONNECT_rsp_pos |

P_CONNECT_rsp_neg |

P_RELEASE_req |

P_RELEASE_rsp_pos |

P_RELEASE_rsp_neg |

P_U_ABORT_req |

P_DATA_req |

P_DATA_ind |

P_CONNECT_ind |

P_CONNECT_cnf_pos |

P_CONNECT_cnf_neg |

P_RELEASE_ind |

P_RELEASE_cnf_pos |

P_RELEASE_cnf_neg |

P_U_ABORT_ind |

P_P_ABORT_ind |

/* Going between CM_Air, CM_Ground and AppUser */

APPENDIX N. Association Control Service Element 397

CM_LOGON_req |

CM_LOGON_ind |

CM_LOGON_rsp_pos |

CM_LOGON_rsp_neg |

CM_LOGON_cnf_pos |

CM_LOGON_cnf_neg |

CM_UPDATE_req |

CM_UPDATE_ind |

CM_UPDATE_cnf_neg |

CM_CONTACT_req |

CM_CONTACT_ind |

CM_CONTACT_rsp_pos |

CM_CONTACT_cnf_pos |

CM_CONTACT_cnf_neg |

CM_END_req |

CM_END_ind |

CM_END_cnf_neg |

CM_FORWARD_req |

CM_FORWARD_ind |

CM_FORWARD_cnf_pos |

CM_FORWARD_cnf_neg |

CM_PROVIDER_ABORT_req |

CM_PROVIDER_ABORT_ind |

CM_USER_ABORT_req |

CM_USER_ABORT_ind |

CM_USER_ABORT_cnf_pos |

CM_USER_ABORT_cnf_neg ;

:transName :=

ACSE_tr :stateName :msg |

ACSE_tr_A_ASSOCIATE_req_ACSE_Idle :NUM :NUM |

ACSE_tr_P_CONNECT_ind_ACSE_Idle :NUM :NUM |

ACSE_tr_P_RELEASE_ind_ACSE_Awaiting_RLRE :NUM :NUM |

CF_tr :NUM |

SuppSvc_tr :NUM :NUM :msg |

APPENDIX N. Association Control Service Element 398

CM_Ground_tr :NUM |

CM_Air_tr :NUM ;

(:ty)

NumberTransAux NIL (tr_constr:NUM->transName) n := NIL |

NumberTransAux (CONS (a:ty) b) (tr_constr) n :=

COND (~(n EQ 0))

(CONS (tr_constr n,a) (NumberTransAux b tr_constr (n PLUS 1))) NIL;

(:ty)

NumberTrans (a:(ty)list) (tr_constr:NUM->transName) :=

NumberTransAux a tr_constr 1;

% added to ensure all uses of Send send the same message type

% use conservative Send, which only places constraints on

% messages (not data)

(:A)ATNSend s dst ms (data:(A)exp):=

(:stateName,:transName,:msg)Send s dst ms;

(:A)ATNReceive s src ms (data:(A)exp) :=

(:stateName,:transName,:msg)Receive s src ms;

N.2 Association Control Service Element

N.2.1 ACSE data declarations

% File name: acse_data.s+

% Author: Jamie Andrews

% A variable for recording whether this ACSE was the one

% initiating the association.

Initiating_ACSE:

NUM -> bool;

% A variable for recording whether the version of the protocol

% requested on a P_CONNECT_ind is supported by this ACSE.

ACSEVersionSupported:

NUM -> bool;

% The type of data in messages flowing through the ACSE.

APPENDIX N. Association Control Service Element 399

: DataInMessageToACSE;

: dataInMessageToACSE == config -> DataInMessageToACSE;

% A global for storing the data in a given message.

ACSEData: NUM -> dataInMessageToACSE;

N.2.2 ACSE speci�cation

% ACSE: Association Control Service Element

%include acse_data.s+

% Most transition names are given as

% (PTrans <source state> <message name>).

PTrans (s:stateName) (se:msg) :=

ACSE_tr s se;

% Special transition names for two places where we have

% to do something different depending on the above variables.

ACSE_A_ASSOCIATE_req_ACSE_Idle_transition (n1:NUM) (n2:NUM) :=

ACSE_tr_A_ASSOCIATE_req_ACSE_Idle n1 n2;

ACSE_P_CONNECT_ind_ACSE_Idle_transition (n1:NUM) (n2:NUM) :=

ACSE_tr_P_CONNECT_ind_ACSE_Idle n1 n2;

ACSE_P_RELEASE_ind_ACSE_Awaiting_RLRE_transition (n1:NUM) (n2:NUM) :=

ACSE_tr_P_RELEASE_ind_ACSE_Awaiting_RLRE n1 n2;

% A normal transition for the ACSE (no conditions).

% Normally called as "inMessage.(ACSE_TRANS ...)" in order to

% emphasize message.

ACSE_TRANS (s:(stateName,transName)sc_struct) i sourceState

(outMessage:msg) (destState: stateName -> stateName)

(inMessage:msg) :=

((PTrans ((ACSE i).sourceState) inMessage),

((ACSE i).sourceState),

(ATNReceive s (CF i) inMessage (ACSEData i)),

(ATNSend s (CF i) outMessage (ACSEData i)),

((ACSE i).destState)

);

% The "error" transition for the idle state (before an

% association has been initiated). Normally called as

APPENDIX N. Association Control Service Element 400

% "inMessage.(ACSE_idle_error i)" in order to emphasize message.

ACSE_idle_error (s:(stateName,transName)sc_struct) i inMessage :=

((PTrans ((ACSE i).ACSE_Idle) inMessage),

(ACSE i).ACSE_Idle,

ATNReceive s (CF i) inMessage (ACSEData i),

ATNSend s Error BlankCell (C T),

(ACSE i).ACSE_Idle

);

% The usual "error" transition; takes action recommended in ISO

% 8650 section 7.3.3.4. Normally called as "inMessage.(ACSE_error

% i sourceState)" in order to emphasize message.

ACSE_error (s:(stateName,transName)sc_struct) i sourceState inMessage :=

((PTrans ((ACSE i).sourceState) inMessage),

(ACSE i).sourceState,

ATNReceive s (CF i) inMessage (ACSEData i),

Both

(ATNSend s Error BlankCell (C T))

(Both (ATNSend s (CF i) A_ABORT_ind (C T))

(ATNSend s (CF i) P_U_ABORT_req (C T))),

(ACSE i).ACSE_Idle

);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Transitions: from ISO 8650, Table 14

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Transitions_From_ACSE_Idle s i :=

/* From ACSE_Idle state (STA0) */

let Error_Cell := (ACSE_idle_error s i) in

[/* Making connection */

/* For A_ASSOCIATE_req: must set P2 variable to T */

/* ("this ACSE initiated the association"). */

/* Also, must test whether version is supported. */

/* Written as message . function to make it the same */

/* as the others. */

A_ASSOCIATE_req .

(function inMessage .

((ACSE_A_ASSOCIATE_req_ACSE_Idle_transition i 1),

(ACSE i).ACSE_Idle,

APPENDIX N. Association Control Service Element 401

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((ACSEVersionSupported i) = (C T)),

Both (ATNSend s (CF i) P_CONNECT_req (ACSEData i))

(Asn (Initiating_ACSE i) (C T)),

(ACSE i).ACSE_Awaiting_AARE

)

) ;

A_ASSOCIATE_req .

(function inMessage .

((ACSE_A_ASSOCIATE_req_ACSE_Idle_transition i 2),

(ACSE i).ACSE_Idle,

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((ACSEVersionSupported i) = (C F)),

ATNSend s Error BlankCell (C T),

(ACSE i).ACSE_Idle

)

) ;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell ;

/* For P_CONNECT_ind: must set P2 variable to F */

/* ("this ACSE did not initiate the association"). */

/* If version supported, pass indication on normally. */

P_CONNECT_ind .

(function inMessage .

((ACSE_P_CONNECT_ind_ACSE_Idle_transition i 1),

(ACSE i).ACSE_Idle,

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((ACSEVersionSupported i) = (C T)),

Both (ATNSend s (CF i) A_ASSOCIATE_ind (ACSEData i))

(Asn (Initiating_ACSE i) (C F)),

(ACSE i).ACSE_Awaiting_AASCrsp

)

) ;

/* If version not supported, send negative response. */

P_CONNECT_ind .

(function inMessage .

((ACSE_P_CONNECT_ind_ACSE_Idle_transition i 2),

(ACSE i).ACSE_Idle,

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((ACSEVersionSupported i) = (C F)),

ATNSend s (CF i) P_CONNECT_rsp_neg (C T),

(ACSE i).ACSE_Awaiting_AASCrsp

)

APPENDIX N. Association Control Service Element 402

) ;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . Error_Cell ;

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell ;

/* Releasing connection abnormally */

A_ABORT_req . Error_Cell;

P_U_ABORT_ind . Error_Cell;

P_P_ABORT_ind . Error_Cell

];

Transitions_From_ACSE_Awaiting_AARE s i :=

/* From ACSE_Awaiting_AARE state (STA1) */

let Error_Cell := (ACSE_error s i ACSE_Awaiting_AARE) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Awaiting_AARE) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . (TRANS_CELL A_ASSOCIATE_cnf_pos

ACSE_Associated);

P_CONNECT_cnf_neg . (TRANS_CELL A_ASSOCIATE_cnf_neg ACSE_Idle);

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . Error_Cell;

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

APPENDIX N. Association Control Service Element 403

Transitions_From_ACSE_Awaiting_AASCrsp s i :=

/* From ACSE_Awaiting_AASCrsp state (STA2) */

let Error_Cell := (ACSE_error s i ACSE_Awaiting_AASCrsp) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Awaiting_AASCrsp) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell ;

A_ASSOCIATE_rsp_pos . (TRANS_CELL P_CONNECT_rsp_pos

ACSE_Associated) ;

A_ASSOCIATE_rsp_neg . (TRANS_CELL P_CONNECT_rsp_neg ACSE_Idle) ;

P_CONNECT_ind . Error_Cell ;

P_CONNECT_cnf_pos . Error_Cell ;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . Error_Cell;

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

Transitions_From_ACSE_Awaiting_RLRE s i :=

/* From ACSE_Awaiting_RLRE state (STA3) */

let Error_Cell := (ACSE_error s i ACSE_Awaiting_RLRE) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Awaiting_RLRE) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

APPENDIX N. Association Control Service Element 404

A_RELEASE_rsp_pos . Error_Cell;

A_RELEASE_rsp_neg . Error_Cell;

/* For P_RELEASE_ind: 2 possibilities depending on whether this is */

/* the ACSE which initiated the connection (the P2 variable). */

P_RELEASE_ind .

(function inMessage .

((ACSE_P_RELEASE_ind_ACSE_Awaiting_RLRE_transition i 1),

(ACSE i).ACSE_Awaiting_RLRE,

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((Initiating_ACSE i) = (C T)),

ATNSend s (CF i) A_RELEASE_ind (ACSEData i),

(ACSE i).ACSE_Collision_initiator

)

);

P_RELEASE_ind .

(function inMessage .

((ACSE_P_RELEASE_ind_ACSE_Awaiting_RLRE_transition i 2),

(ACSE i).ACSE_Awaiting_RLRE,

EvCond (ATNReceive s (CF i) inMessage (ACSEData i))

((Initiating_ACSE i) = (C F)),

ATNSend s (CF i) A_RELEASE_ind (ACSEData i),

(ACSE i).ACSE_Collision_responder

)

);

P_RELEASE_cnf_pos . (TRANS_CELL A_RELEASE_cnf_pos ACSE_Idle);

P_RELEASE_cnf_neg . (TRANS_CELL A_RELEASE_cnf_neg

ACSE_Associated);

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

Transitions_From_ACSE_Awaiting_ARLSrsp s i :=

/* From ACSE_Awaiting_ARLSrsp state (STA4) */

let Error_Cell := (ACSE_error s i ACSE_Awaiting_ARLSrsp) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Awaiting_ARLSrsp) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

APPENDIX N. Association Control Service Element 405

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . (TRANS_CELL P_RELEASE_rsp_pos ACSE_Idle);

A_RELEASE_rsp_neg . (TRANS_CELL P_RELEASE_rsp_neg

ACSE_Associated);

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

Transitions_From_ACSE_Associated s i :=

/* From ACSE_Associated state (STA5) */

let Error_Cell := (ACSE_error s i ACSE_Associated) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Associated) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . (TRANS_CELL P_RELEASE_req

ACSE_Awaiting_RLRE);

A_RELEASE_rsp_pos . Error_Cell;

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . (TRANS_CELL A_RELEASE_ind

ACSE_Awaiting_ARLSrsp);

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

APPENDIX N. Association Control Service Element 406

];

Transitions_From_ACSE_Collision_initiator s i :=

/* From ACSE_Collision_initiator state (STA6) */

let Error_Cell := (ACSE_error s i ACSE_Collision_initiator) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Collision_initiator) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . (TRANS_CELL P_RELEASE_rsp_pos

ACSE_Awaiting_RLRE);

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . Error_Cell;

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

Transitions_From_ACSE_Collision_responder s i :=

/* From ACSE_Collision_responder state (STA7) */

let Error_Cell := (ACSE_error s i ACSE_Collision_responder) in

let TRANS_CELL := (ACSE_TRANS s i ACSE_Collision_responder) in

[/* Making connection */

A_ASSOCIATE_req . Error_Cell;

A_ASSOCIATE_rsp_pos . Error_Cell;

A_ASSOCIATE_rsp_neg . Error_Cell;

P_CONNECT_ind . Error_Cell;

P_CONNECT_cnf_pos . Error_Cell;

P_CONNECT_cnf_neg . Error_Cell;

/* Releasing connection normally */

APPENDIX N. Association Control Service Element 407

A_RELEASE_req . Error_Cell;

A_RELEASE_rsp_pos . Error_Cell;

A_RELEASE_rsp_neg . Error_Cell;

P_RELEASE_ind . Error_Cell;

P_RELEASE_cnf_pos . (TRANS_CELL A_RELEASE_cnf_pos

ACSE_Awaiting_ARLSrsp);

P_RELEASE_cnf_neg . Error_Cell;

/* Releasing connection abnormally */

A_ABORT_req . (TRANS_CELL P_U_ABORT_req ACSE_Idle);

P_U_ABORT_ind . (TRANS_CELL A_ABORT_ind ACSE_Idle);

P_P_ABORT_ind . (TRANS_CELL A_P_ABORT_ind ACSE_Idle)

];

ACSE_sc i :=

OrState (ACSE i) ((ACSE i).ACSE_Idle) [

/* State names */

BasicState ((ACSE i).ACSE_Idle);

BasicState ((ACSE i).ACSE_Awaiting_AARE);

BasicState ((ACSE i).ACSE_Awaiting_AASCrsp);

BasicState ((ACSE i).ACSE_Awaiting_RLRE);

BasicState ((ACSE i).ACSE_Awaiting_ARLSrsp);

BasicState ((ACSE i).ACSE_Associated);

BasicState ((ACSE i).ACSE_Collision_initiator);

BasicState ((ACSE i).ACSE_Collision_responder)

]

/* Transitions: from ISO 8650, Table 14 */

(append (Transitions_From_ACSE_Idle (ACSE_sc i) i)

(append (Transitions_From_ACSE_Awaiting_AARE (ACSE_sc i) i)

(append (Transitions_From_ACSE_Awaiting_AASCrsp (ACSE_sc i) i)

(append (Transitions_From_ACSE_Awaiting_RLRE (ACSE_sc i) i)

(append (Transitions_From_ACSE_Awaiting_ARLSrsp (ACSE_sc i) i)

(append (Transitions_From_ACSE_Associated (ACSE_sc i) i)

(append (Transitions_From_ACSE_Collision_initiator (ACSE_sc i) i)

(Transitions_From_ACSE_Collision_responder (ACSE_sc i) i))))))));

Appendix O

First Example Simulation Run of

the ATN

Fusion+ - Version 1.0 Jun 13 1998 14:44:27

Copyright University of British Columbia, 1996, 1997

Type "%include <filename>" or type in S+ paragraphs directly

Type "%help" to see list of % commands.

search path: .

>/*

Simulating message sequence chart on page 2-4.

Last modified: 1 May 98

Nancy A. Day

This MSC shows that a dialogue initiator issuing

a D_START_req causes a D_START_ind to be sent to

the dialogue responder. This can then be followed by

the dialogue responder issuing a D_START_rsp which

causes a D_START_conf to be sent to the dialogue

initiator.

Here the dialogue initiator is CM_Ground and the

responder is CM_Air. A D_START_req is caused by

the AppUser sending a CM_UPDATE_req to CM_Ground.

408

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 409

*/;

;

>%set keepOldNodes OFF

keepOldNodes = 0

>%set sfeEvaluationLevel 3

sfeEvaluationLevel = 3

>%include load_system.s+

Including ./load_system.s+

Including ./atncommon.s+

search path: . ../..

Including ../../all.s+

Including ../../basics.s+

Closing basics.s+

Including ../../framework.s+

Closing framework.s+

Including ../../bvfcns.s+

Closing bvfcns.s+

Including ../../table.s+

Closing table.s+

Including ../../events.s+

Closing events.s+

Including ../../actions.s+

Closing actions.s+

Including ../../sc.s+

Including ../../scsyn.s+

Closing scsyn.s+

Including ../../scsem.s+

Closing scsem.s+

Closing sc.s+

Including ../../sc_ext_exp.s+

Closing sc_ext_exp.s+

Including ../../sc_ext_ev.s+

Closing sc_ext_ev.s+

Including ../../sc_comm_prim.s+

Closing sc_comm_prim.s+

Including ../../sc_comm_action.s+

Closing sc_comm_action.s+

Including ../../sc_comm_event.s+

Closing sc_comm_event.s+

Closing all.s+

Closing atncommon.s+

Including ./cf_data.s+

Closing cf_data.s+

Including ./acse_data.s+

Closing acse_data.s+

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 410

Including ./suppsvc_data.s+

Closing suppsvc_data.s+

Including ./cm_data.s+

Closing cm_data.s+

Including ./system_subst.s+

Closing system_subst.s+

Setting up substitution order

.

.

.

Finished setting up substitution order

Bdd of atn_nc, size 15553 successfully loaded.

Bdd of atn_ic, size 165 successfully loaded.

Closing load_system.s+

>

%set filterOutput 1

filterOutput = 1

>page2_4 :=

[

/* cf0 */ atn_ic /\ Msg (AppUser 1) (CM_Ground 1) (CM_UPDATE_req) cf;

/* cf1 */ Msg (CM_Ground 1) (CF 1) D_START_req cf;

/* cf2 */ ((ACSEVersionSupported 1) = (C T)) cf;

/* cf3 */ T;

/* cf4 */ T;

/* cf5 */ T;

/* cf6 */ ((ACSEVersionSupported 2) = (C T)) cf;

/* cf7 */ T;

/* cf8 */ (dataCM_USER 2 = C CM_UPDATE_ind) cf;

/* Msg (CF 2) (CM_Air 2) D_START_ind cf */

/* cf9 */ T;

/* cf10 */ T;

/* cf11 */ T;

/* cf12 */ T;

/* cf13 */ T;

/* cf14 */ T;

/* cf15 */ T;

/* cf16 */ T

];

page2_4 :=

[

(atn_ic /\

((((Msg (AppUser 1)) (CM_Ground 1)) CM_UPDATE_req) cf));

((((Msg (CM_Ground 1)) (CF 1)) D_START_req) cf);

(((ACSEVersionSupported 1) = (C T)) cf);T;T;T;

(((ACSEVersionSupported 2) = (C T)) cf);T;

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 411

(((dataCM_USER 2) = (C CM_UPDATE_ind)) cf);T;T;T;T;T;T;

T;T];

>

/*

don't need one_ahead because there is little non-determinism.

A few extra constraints are needed along the way

*/

%simulate atn_nc page2_4

nsr BDD exists, size: 15553

Evaluating condition on first configuration

Converting condition on first configuration to BDD

Configuration 0:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA0 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((((Msg (AppUser 1)) (CM_Ground 1)) CM_UPDATE_req) cf) EQ T

((InBasicState (CM_Ground_IDLE 1)) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg (CM_Ground 1)) (CF 1)) D_START_req) cf) EQ T

((InBasicState (CF_STA0 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 412

Configuration 2:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((ACSEVersionSupported 1) cf) EQ T

((((Msg (CF 1)) (ACSE 1)) A_ASSOCIATE_req) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 3:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg (ACSE 1)) (CF 1)) P_CONNECT_req) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 4:

((((Msg (CF 1)) ((SuppSvc 1) 2)) P_CONNECT_req) cf) EQ T

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 413

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 5:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg ((SuppSvc 1) 2)) (CF 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 6:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((ACSEVersionSupported 2) cf) EQ T

((((Msg (CF 2)) (ACSE 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 7:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg (ACSE 2)) (CF 2)) A_ASSOCIATE_ind) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 414

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 8:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((((Msg (CF 2)) (CM_Air 2)) D_START_ind) cf) EQ T

(((dataCM_USER 2) cf) EQ CM_UPDATE_ind) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 9:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg (CM_Air 2)) (CF 2)) D_START_rsp_pos) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

((((Msg (CM_Air 2)) (AppUser 2)) CM_UPDATE_ind) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 10:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 415

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((((Msg (CF 2)) (ACSE 2)) A_ASSOCIATE_rsp_pos) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 11:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg (ACSE 2)) (CF 2)) P_CONNECT_rsp_pos) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 12:

((((Msg (CF 2)) ((SuppSvc 1) 2)) P_CONNECT_rsp_pos) cf) EQ T

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA2 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 13:

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 416

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg ((SuppSvc 1) 2)) (CF 1)) P_CONNECT_cnf_pos) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA2 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 14:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA2 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((((Msg (CF 1)) (ACSE 1)) P_CONNECT_cnf_pos) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 15:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg (ACSE 1)) (CF 1)) A_ASSOCIATE_cnf_pos) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA2 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

APPENDIX O. FIRST EXAMPLE SIMULATION RUN OF THE ATN 417

Converting condition on next configuration to BDD

Configuration 16:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((AmInitiator 1) cf) EQ T

((InBasicState (CF_STA2 1)) cf) EQ T

((InBasicState (CF_STA2 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Associated (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_UPDATE 1)) cf) EQ T

(CM_TIMEOUT_update_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

((((Msg (CF 1)) (CM_Ground 1)) D_START_cnf_pos) cf) EQ T

>

Cleaning up node use.

Cleaning up bdd use.

Fusion session over.

Appendix P

Second Example Simulation Run

of the ATN

Fusion+ - Version 1.0 Jun 13 1998 14:44:27

Copyright University of British Columbia, 1996, 1997

Type "%include <filename>" or type in S+ paragraphs directly

Type "%help" to see list of % commands.

search path: .

>/*

Illustrate simulation of a full ATN that results in

behaviour found in model checking half of the ATN.

Last modified: 4 May 98

Nancy A. Day

*/

%set keepOldNodes OFF

keepOldNodes = 0

>%set sfeEvaluationLevel 3

sfeEvaluationLevel = 3

>%include load_system.s+

Including ./load_system.s+

Including ./atncommon.s+

search path: . ../..

Including ../../all.s+

418

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 419

Including ../../basics.s+

Closing basics.s+

Including ../../framework.s+

Closing framework.s+

Including ../../bvfcns.s+

Closing bvfcns.s+

Including ../../table.s+

Closing table.s+

Including ../../events.s+

Closing events.s+

Including ../../actions.s+

Closing actions.s+

Including ../../sc.s+

Including ../../scsyn.s+

Closing scsyn.s+

Including ../../scsem.s+

Closing scsem.s+

Closing sc.s+

Including ../../sc_ext_exp.s+

Closing sc_ext_exp.s+

Including ../../sc_ext_ev.s+

Closing sc_ext_ev.s+

Including ../../sc_comm_prim.s+

Closing sc_comm_prim.s+

Including ../../sc_comm_action.s+

Closing sc_comm_action.s+

Including ../../sc_comm_event.s+

Closing sc_comm_event.s+

Closing all.s+

Closing atncommon.s+

Including ./cf_data.s+

Closing cf_data.s+

Including ./acse_data.s+

Closing acse_data.s+

Including ./suppsvc_data.s+

Closing suppsvc_data.s+

Including ./cm_data.s+

Closing cm_data.s+

Including ./system_subst.s+

Closing system_subst.s+

Setting up substitution order

.

.

.

Finished setting up substitution order

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 420

Bdd of atn_nc, size 15553 successfully loaded.

Bdd of atn_ic, size 165 successfully loaded.

Closing load_system.s+

>

%set filterOutput 1

filterOutput = 1

>CannotOccurSim :=

[

atn_ic /\

Msg (AppUser 1) (CM_Ground 1) CM_CONTACT_req cf;

Msg (CM_Ground 1) (CF 1) D_START_req cf;

Msg (CF 1) (ACSE 1) A_ASSOCIATE_req cf /\

((ACSEVersionSupported 1) = (C T)) cf;

Msg (ACSE 1) (CF 1) P_CONNECT_req cf;

Msg (CF 1) (SuppSvc 1 2) P_CONNECT_req cf;

Msg (SuppSvc 1 2) (CF 2) P_CONNECT_ind cf;

Msg (CF 2) (ACSE 2) P_CONNECT_ind cf /\

((ACSEVersionSupported 2) = (C T)) cf;

Msg (ACSE 2) (CF 2) A_ASSOCIATE_ind cf /\

Msg (AppUser 2) (CM_Air 2) CM_LOGON_req cf;

Msg (CF 2) (CM_Air 2) D_START_ind cf /\

Msg (CM_Air 2) (CF 2) D_START_req cf /\

(dataCM_USER 2 = C CM_CONTACT_req) cf;

Msg (CM_Air 2) Error CannotOccur cf

];

CannotOccurSim :=

[

(atn_ic /\

((((Msg (AppUser 1)) (CM_Ground 1)) CM_CONTACT_req) cf));

((((Msg (CM_Ground 1)) (CF 1)) D_START_req) cf);

(((((Msg (CF 1)) (ACSE 1)) A_ASSOCIATE_req) cf) /\

(((ACSEVersionSupported 1) = (C T)) cf));

((((Msg (ACSE 1)) (CF 1)) P_CONNECT_req) cf);

((((Msg (CF 1)) ((SuppSvc 1) 2)) P_CONNECT_req) cf);

((((Msg ((SuppSvc 1) 2)) (CF 2)) P_CONNECT_ind) cf);

(((((Msg (CF 2)) (ACSE 2)) P_CONNECT_ind) cf) /\

(((ACSEVersionSupported 2) = (C T)) cf));

(((((Msg (ACSE 2)) (CF 2)) A_ASSOCIATE_ind) cf) /\

((((Msg (AppUser 2)) (CM_Air 2)) CM_LOGON_req) cf));

(((((Msg (CF 2)) (CM_Air 2)) D_START_ind) cf) /\

(((((Msg (CM_Air 2)) (CF 2)) D_START_req) cf) /\

(((dataCM_USER 2) = (C CM_CONTACT_req)) cf)));

((((Msg (CM_Air 2)) Error) CannotOccur) cf)];

>%simulate atn_nc CannotOccurSim

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 421

nsr BDD exists, size: 15553

Evaluating condition on first configuration

Converting condition on first configuration to BDD

Configuration 0:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA0 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((((Msg (AppUser 1)) (CM_Ground 1)) CM_CONTACT_req) cf) EQ T

((InBasicState (CM_Ground_IDLE 1)) cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 1:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg (CM_Ground 1)) (CF 1)) D_START_req) cf) EQ T

((InBasicState (CF_STA0 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 2:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((ACSEVersionSupported 1) cf) EQ T

((((Msg (CF 1)) (ACSE 1)) A_ASSOCIATE_req) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 422

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 3:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((((Msg (ACSE 1)) (CF 1)) P_CONNECT_req) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 4:

((((Msg (CF 1)) ((SuppSvc 1) 2)) P_CONNECT_req) cf) EQ T

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 5:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg ((SuppSvc 1) 2)) (CF 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (CF_STA0 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 423

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 6:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((ACSEVersionSupported 2) cf) EQ T

((((Msg (CF 2)) (ACSE 2)) P_CONNECT_ind) cf) EQ T

((InBasicState (ACSE_Idle (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

calculating next config took: 1 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 7:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((((Msg (ACSE 2)) (CF 2)) A_ASSOCIATE_ind) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_IDLE 2)) cf) EQ T

((((Msg (AppUser 2)) (CM_Air 2)) CM_LOGON_req) cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 8:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

APPENDIX P. SECOND EXAMPLE SIMULATION RUN OF THE ATN 424

((((Msg (CM_Air 2)) (CF 2)) D_START_req) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

(((dataCM_USER 2) cf) EQ CM_CONTACT_req) EQ T

((((Msg (CF 2)) (CM_Air 2)) D_START_ind) cf) EQ T

((InBasicState (CM_Air_LOGON 2)) cf) EQ T

(CM_TIMEOUT_logon_active cf) EQ T

calculating next config took: 0 sec bdd size: 193

Evaluating condition on next configuration

Converting condition on next configuration to BDD

Configuration 9:

((InBasicState (SuppSvc_Translate ((SuppSvc 1) 2))) cf) EQ T

((InBasicState (CF_STA1 1)) cf) EQ T

((InBasicState (CF_STA1 2)) cf) EQ T

((Initiating_ACSE 1) cf) EQ T

((InBasicState (ACSE_Awaiting_AARE (ACSE 1))) cf) EQ T

((InBasicState (ACSE_Awaiting_AASCrsp (ACSE 2))) cf) EQ T

((InBasicState (CM_Ground_CONTACT 1)) cf) EQ T

(CM_TIMEOUT_contact_active cf) EQ T

((InBasicState (CM_Air_LOGON 2)) cf) EQ T

(CM_TIMEOUT_logon_active cf) EQ T

((((Msg (CM_Air 2)) Error) CannotOccur) cf) EQ T

>

Cleaning up node use.

Cleaning up bdd use.

Fusion session over.

