
A Discipline of Speci�cation-Based Test Derivation

by

Michael R. Donat

M.Sc., University of Edinburgh, 1987

B.MATH, University of Waterloo, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia

September 1998

c
 Michael R. Donat, 1998

Abstract

System-level requirements-based testing is an important task in software develop-

ment, providing evidence that each requirement has been satis�ed. There are two

major problems with how these tests are derived. First, the notion of coverage is

subjective, i.e., there is a lack of objective de�nitions of coverage criteria. Second,

there is a surprising lack of automation in deriving system-level requirements-based

tests. Research into solutions for these problems has led to the formulation of the

discipline of speci�cation-based test derivation presented in this dissertation.

This discipline, which is based on predicate logic, provides a scienti�c foun-

dation for objective de�nitions of coverage criteria and algorithms for partially

automating test derivation. This dissertation de�nes some fundamental coverage

criteria as examples. A general test frame generation process illustrates a general

application of the discipline to a broad range of formal speci�cations, which can

include existential and universal quanti�cation. A re�nement of the process can be

applied to system-level requirements-based testing.

The discipline leverages work invested in compiling the requirements speci-

�cation. In addition to partially automating the task of verifying that the require-

ments have been satis�ed, the re�ned process automates the traceability of require-

ments to test descriptions. Other applications of the discipline of speci�cation-based

ii

test derivation include requirements validation and objective measurements for re-

quirements complexity. The discipline can also be used to predict the expected

number of tests to be derived, which can then be used for process statistics. The

uses of this discipline as a basis for repeatable processes, de�nitions, and measure-

ments imply that it can form part of software development processes at Capability

Maturity Model (CMM) Levels 2 through 5.

iii

Contents

Abstract ii

Contents iv

List of Tables x

List of Figures xi

Acknowledgements xii

Dedication xiv

1 Introduction 1

1.1 Objective . 2

1.2 Motivation . 2

1.3 Related Techniques . 3

1.4 Approach . 4

1.5 Contributions . 6

1.6 Outline . 9

2 The Problem 11

iv

2.1 Introduction . 12

2.2 Testing . 14

2.3 Coverage Criteria . 15

2.4 System-Level Requirements-Based Testing 16

2.5 Manual Test Frame Derivation . 19

2.6 Coverage via Traceability . 26

2.7 Lack of Automation . 27

2.8 Towards a Solution . 31

2.9 Motivation for a Mathematical Approach 33

3 Existing Solutions 37

3.1 Introduction . 37

3.2 Systematic Approaches . 38

3.3 Code-based Testing . 40

3.3.1 Principles . 40

3.3.2 An Objective Criterion . 42

3.3.3 Automation . 43

3.4 Logic-Based Techniques . 44

3.4.1 Finite State Machines . 45

3.4.2 Logical Manipulation . 48

3.4.3 Disadvantages of Modelling 50

3.4.4 Coverage Schemes . 51

3.5 Conclusion . 51

4 Fundamental Challenges 53

4.1 Introduction . 53

v

4.2 Speci�cations as Code . 55

4.3 Structural Independence . 59

4.4 Condition Dependence . 60

4.5 Quanti�cation . 62

4.6 The Delta Problem . 63

4.7 Summary . 64

5 A Foundation for the Discipline 66

5.1 Introduction . 66

5.2 A Place to Start . 68

5.3 Notation and Terminology . 69

5.4 Overview . 72

5.5 Test Class Normal Form . 75

5.5.1 The Test Class Algorithm 75

5.5.2 Example . 79

5.5.3 Existential Quanti�cation . 83

5.5.4 Demonic Choice . 85

5.6 Generating Test Frames . 86

5.6.1 Frame Stimuli . 87

5.6.2 Coverage Schemes . 91

5.7 Conclusion . 94

6 Coverage Criteria 95

6.1 Introduction . 95

6.2 Objective De�nitions of Coverage Criteria 97

6.3 Relative E�ectiveness . 98

vi

6.4 Test Class Variations . 99

6.4.1 Detailed . 99

6.4.2 Focused . 100

6.5 Resolving Non-Deterministic Test Classes 100

6.6 Assuming a Closed World . 101

6.7 Simplifying Quanti�ers . 102

6.8 Mathematical De�nition of Term Coverage 105

6.9 Di�erentiated Test Frames . 106

6.10 Summary . 109

7 Formal Speci�cation-Based Testing 110

7.1 Introduction . 110

7.2 Process Overview . 112

7.3 Tackling Complex Speci�cations . 114

7.4 Formalizing Domain Knowledge . 115

7.4.1 Elaboration . 116

7.4.2 Simpli�cation and Infeasibility 117

7.5 Rewrite System . 121

7.6 Distinguishing Stimuli and Responses 123

7.7 Algorithms for Coverage Schemes 124

7.7.1 Implicant Coverage . 125

7.7.2 DNF Coverage . 126

7.7.3 Term Coverage . 127

7.7.4 Infeasible Test Frames and Coverage Schemes 127

7.8 Examples . 128

7.8.1 Steam Boiler . 128

vii

7.8.2 North Atlantic Separation Minima 133

7.9 Conclusion . 138

8 System-Level Requirements-Based Testing 140

8.1 Introduction . 140

8.2 Process Overview . 142

8.3 The Q Speci�cation Language . 144

8.3.1 Overview . 144

8.3.2 Expressions . 150

8.3.3 Predicate De�nitions . 151

8.3.4 Conjunctive and Disjunctive Lists 151

8.3.5 Argument-Based Conjunctions and Disjunctions 152

8.3.6 Expression Aliasing . 153

8.3.7 Argument Permutation . 154

8.3.8 Quanti�cation . 154

8.4 Traceability . 155

8.5 Examples . 155

8.5.1 CAATS SRS . 155

8.5.2 ICAO Flight Plan . 158

8.6 Additional Bene�ts . 161

8.6.1 Validation . 161

8.6.2 Complexity and Progress Measurement 163

8.7 Summary . 163

9 Conclusions 165

9.1 Research Results . 165

viii

9.2 Foundations for Future Work . 168

9.2.1 Test Frame Generation Process Improvements 168

9.2.2 Delta Heuristics . 169

9.2.3 Methodology . 169

9.2.4 Next Step for Q . 171

9.2.5 Speci�cation Projection . 171

9.3 Epilogue . 172

Bibliography 173

Appendix A Rules for Argument-Based Conjunctions and Disjunc-

tions 180

Appendix B Automatically Generated Test Frames for the Steam

Boiler Control 182

B.1 S Speci�cation . 182

B.2 Base Test Frames . 185

B.3 Di�erentiated Test Frames . 191

Appendix C A Heuristic for the Delta Problem 213

ix

List of Tables

7.1 Numbers of Prime Implicants and Test Frames 132

8.1 An Automatically Generated Test Frame 157

x

List of Figures

2.1 Table A-7 from DO178B . 28

3.1 Example Program . 42

5.1 Entity Relationships . 73

5.2 Coverage Schemes . 93

7.1 Automated Test Frame Generation 112

7.2 NATS S Speci�cation Fragment. 133

7.3 A NATS Test Frame. 134

8.1 Integrating Automated Test Frame Generation 143

8.2 ICAO Flight Plan Speci�cation Fragment. 159

8.3 An ICAO Flight Plan Test Frame. 159

xi

Acknowledgements

Most of all, thanks to my supervisor, Dr. Je�rey J. Joyce, for his encouragement

when the light at the end of the tunnel was only a �gment of my imagination. I

would like to thank my wife, Cindy Goundrey, for her understanding, support, and

encouragement. I would also like to thank my fellow students and friends for their

\in-the-trenches" camaraderie and inspiration. I am also deeply indebted to the

members of my committee, Mark Greenstreet, Norm Hutchinson, Paul Gilmore,

Philippe Kruchten, and Kal Toth, who have provided many insights from their

di�erent perspectives of my work.

I am proud of the condition of this dissertation, and owe a great deal of thanks

to those who have contributed many valuable comments on earlier drafts: Je� Joyce,

my thesis committee, Tony Earnshaw, Christoph Kern, and Shauna Turner.

Comments from those in industry have had great in
uence on my work. I

would especially like to thank Jim Ronback of Raytheon Systems Canada Ltd., and

Phil Gray and Richard Yates of MacDonald Dettwiler for their questions, comments,

criticisms, and insights.

This work was supported by formalWARE, a university-industry collabo-

rative research project sponsored jointly by the BC Advanced Systems Institute,

Raytheon Systems Canada Ltd., MacDonald Dettwiler, The University of British

xii

Columbia and The University of Victoria.

http://www.cs.ubc.ca/formalWARE

Michael R. Donat

The University of British Columbia

September 1998

xiii

Chapter 1

Introduction

This dissertation proposes a discipline of deriving test descriptions, which are called

test frames, from system-level requirements speci�cations. The discipline includes

a nomenclature which consists of a collection of well-de�ned names of speci�cation

components and test frame properties. The nomenclature can be used to objec-

tively de�ne the completeness of a set of test frames relative to the requirements.

De�nitions of completeness, called coverage criteria, can be used as a basis for au-

tomatically deriving test frames from a formal speci�cation of requirements. The

discipline supports repeatability and de�nability, which facilitate its use in soft-

ware development processes aspiring to Capability Maturity Model (CMM) Levels

2 through 5. In this dissertation, a formal speci�cation is a speci�cation written in

a language that can be algorithmically transformed into a set of mathematical logic

formulae.

1

1.1 Objective

The objective of this research has been to provide a more scienti�c basis for system-

level requirements-based testing in order to help transform this activity from a craft

requiring considerable apprenticeship and experience, into an engineering discipline.

A second objective has been the partial automation of this task to improve test

frame quality and to reduce the time and e�ort required for derivation and review,

thereby reducing the overall costs of system-level requirements-based testing.

1.2 Motivation

The focus of this thesis, system-level requirements-based testing, is an important

part of the disciplined development of large, software-based systems for which a

detailed set of requirements is speci�ed. This type of functional, or black-box, testing

typically appears in software development processes as portions of System-Level

Testing, Acceptance Testing, and Independent Validation and Veri�cation (IV&V).

The objective of system-level requirements-based testing is to provide evidence that

each behaviour speci�ed in the requirements has been satis�ed. Documentation that

a system has passed each test step in a set of test procedures is commonly used as

su�cient evidence. The test steps are instances of test frames, which satisfy a given

coverage criteria. Test procedures are sequences of test steps. This thesis addresses

the derivation of test frames. The derivation of test steps and other types of testing,

which may address properties such as robustness, performance, and availability, are

not within the scope of this thesis.

Two problems motivate this research. The �rst is lack of objective cover-

age criteria. This contributes to the second problem: lack of automated analysis

2

tools for test frame derivation. The lack of automated analysis is due partly to the

subjectivity of many existing guidelines for coverage criteria. These guidelines are

interpreted by specialists who decide which tests are appropriate, and how many

tests are required to satisfy the guidelines. This subjectivity can lead to di�erent

opinions of what constitutes satisfaction of the guidelines. Furthermore, the com-

munication among individuals of coverage issues is di�cult. This is due to the lack

of a precise vocabulary, such as a nomenclature for expressing relationships between

requirements and test speci�cations.

Some automated tools assist in bookkeeping tasks associated with system-

level requirements-based testing. However, much of the analysis required for test

derivation is currently done manually. Reviews of test frames are necessary in order

to ensure that they are logically consistent with the requirements, and that the

appropriate coverage has been achieved. The analysis is laborious, and the results

are expensive to review.

As this thesis shows, these two problems are intimately related. Atomic

components of test frames are referred to in this dissertation as frame stimuli. A

fundamental concept of this thesis is that coverage criteria describe a relationship

between the frame stimuli of test frames and the frame stimuli that appear within

the original requirements.

1.3 Related Techniques

The related test derivation techniques can be categorized as systematic, code-based,

and logic-based techniques. Systematic techniques have the advantages that they

are relatively simple and typically evolve out of a manual approach. This evolution

provides a good �t between the automated tools and the current process, reducing

3

the costs for retraining. Unfortunately, systematic techniques lack the mathematical

soundness required to ensure that transformations involved in test frame derivation

do not compromise the meaning of the requirements. This is substantiated in Sec-

tion 3.2.

Code-based testing, traditionally applied at the unit level, is well developed.

However, the circumstances and objectives of this type of testing are fundamentally

di�erent from those of system-level requirements-based testing. One issue is that,

in the context of system-level requirements-based testing, test frames should be

structurally independent from the requirements, i.e., the wording of a requirement

should be irrelevant provided that the appropriate meaning is conveyed. Another

distinction is the importance of an expressive requirements language, such as one

allowing universal and existential quanti�cation, which does not appear in a code-

based context. Further issues relevant to system-level requirements-based testing

include dependencies between conditions within the requirements speci�cation, and

the need to minimize the impact of requirements changes on previously generated

test frames.

While techniques based on mathematical logic can provide a sound and ex-

pressive basis, they do not yet support the combination of automation and expres-

siveness that would allow them to be applied e�ectively to system-level requirements-

based testing. This is substantiated in Section 3.4.

1.4 Approach

Test generation techniques based on mathematical logic that appear in the literature

are based on restricted languages. The philosophy of these techniques is that certain

mathematical structures have the advantage that they support capabilities such

4

as the generation of test data for test steps, i.e., instances of test frames, and

sequences of test steps. In contrast, code-based test generation techniques produce

what tests they can. Rather than imposing a speci�cation language designed for

test generation, code-based techniques are required to use program source code.

However, due to the undecidability of loop invariants, there are situations where

code-based techniques cannot generate test data.

The approach of this thesis is similar to code-based techniques in that as

few restrictions as possible are placed on the content of a speci�cation. However,

this freedom for speci�cation authors has a cost. Logics permitting undecidable1

formulae are used in speci�cation languages such as Z [61] and VDM-SL [37] because

these logics are expressive, i.e., properties can be expressed precisely and concisely.

This dissertation demonstrates that speci�cations based on expressive mathematical

logics can be manipulated algorithmically in order to produce test frames. The cost

of using logics permitting undecidable formulae is that the instantiation of test

frames cannot be fully automated. As is the case with code-based techniques, the

approach described in this dissertation may fail to produce test frames in certain

situations. However, these situations are well-de�ned and can be identi�ed within

O(n log n) time, where n is a measure of the size of the given speci�cation.

A nomenclature is an important part of a scienti�c discipline. Names within

nomenclatures are often more than simple identi�ers. They may also provide func-

tional information about the objects they identify. As an example, a classi�cation

of languages can be achieved using the nomenclature from the Chomsky Hierar-

chy which names the minimal type of machine needed to recognize a sentence from

the language. The nomenclature presented in this dissertation provides a basis for

1A formula is undecidable if a proof of the truth or falsehood of the formula cannot be determined
by a mechanical procedure.

5

classifying test frame sets using coverage criteria that relate properties of a test

frame set to individual behaviours which follow logically from the requirements.

The nomenclature is structured so that de�nitions of coverage criteria are parame-

ters to the algorithms of the discipline. Thus, coverage criteria de�ne the automatic

production of the corresponding sets of test frames. The nomenclature allows test

engineers to communicate coverage criteria details more precisely than by using the

terminology in current system-level requirements-based testing guidelines found in

standards documents such as DO178B, DOD-STD-2167A, ANSI/IEEE 829-1983,

and MIL-STD-498 [56, 60, 35, 15].

The algorithms presented in this dissertation are based on strategies simi-

lar to those of Dick and Faivre [17], but with signi�cant di�erences. However, the

process of system-level requirements-based testing is not fully automated by em-

ploying the algorithms of the discipline presented in this dissertation. The original

requirements speci�cation must be formalized before test frames can be generated.

Furthermore, as stated in Section 1.2, the selection of test data to satisfy a test frame

is beyond the scope of this thesis. This is due to the use of expressive speci�cation

languages.

1.5 Contributions

The thesis of this dissertation has two main ideas. First, objective criteria for test

coverage can be de�ned by embedding system-level requirements in mathematical

logic. Second, such criteria form a basis for the algorithmic translation from a formal

requirements speci�cation to test frames, which can be used by test engineers to

produce test steps.

The following are the major contributions of this thesis.

6

� A nomenclature for de�ning coverage criteria relative to requirements speci�-

cations.

The nomenclature is based on three fundamental entities: test classes, frame

stimuli, and test frames. The term \test frame" is used by Ostrand and Bal-

cer [46]. The terms \test class" and \frame stimuli" are introduced in this

dissertation. A test class is a behaviour extracted from the requirements, and

is based on the required response. Frame stimuli express the elementary con-

ditions used to determine when a response is required. Test frames prescribe

particular conjunctions of frame stimuli that require a particular response. A

set of test frames is derived from each test class. The frame stimulus is the

principal entity on which coverage criteria are de�ned. Coverage criteria relate

test frames to test classes.

� Algorithms for producing sets of test frames that satisfy coverage criteria de-

�ned in terms of the nomenclature.

The algorithms described in this dissertation produce test frames that have

the following important properties:

{ Conservative

Each test frame is a logical consequence of the requirements. The sound-

ness of the rules of logic used in the algorithms of the discipline ensures

that a test frame generator that correctly implements the algorithms will

produce only test frames that are implied by the requirements.

{ Tractable

Test engineers can control the automatic derivation of test frames, which

allows them to exercise engineering judgement.

7

{ Complete

The set of test frames is produced in compliance with a speci�ed coverage

criterion that is an objective de�nition of completeness.

{ Traceable

It is possible to determine the original elements in the formal speci�cation

from which a selected test frame was derived.

� De�nitions of fundamental coverage criteria.

This thesis presents a template for detailed mathematical de�nitions of cover-

age criteria. The de�nitions of some fundamental coverage criteria are given

as examples. It is likely that more elaborate coverage criteria will be de�ned

according to the discipline of this thesis as it becomes more widely used.

Along with the above contributions, other results of this research are noted

below.

Logical expressions can be partitioned based on whether or not test frames

can be algorithmically produced from them. To allow maximum expressiveness, the

input to the algorithms is allowed to be as arbitrary a predicate logic expression

as possible. However, certain restrictions are necessary to ensure that test frame

generation can be achieved algorithmically.

A speci�cation language, Q, has been designed for specifying system-level

requirements. This language contains features speci�cally designed to ease the task

of formalizing a natural language speci�cation. Q speci�cations tend to be as concise

as natural language, but, of course, do not contain ambiguities.

Requirements changes are inevitable during the course of software develop-

ment. The Delta Problem is the problem of integrating existing test frames into new

8

test frame sets produced from the new version of the requirements. The Delta Prob-

lem can be de�ned mathematically. In general, the Delta Problem is undecidable,

but partial solutions exist.

The value of the formal speci�cation of system-level requirements is in-

creased. By providing a means of automating the generation of test frames, this

thesis allows more to be done with a formal speci�cation of system-level require-

ments than simple type-checking. It also provides a less expensive means than

theorem-proving for deriving other artifacts from a speci�cation.

The novelty of this thesis is that it provides a �rm mathematical foundation

for the automation of system-level requirements-based testing. While there are many

excellent works devoted to speci�cation-based testing, they focus on techniques that

are applied to unit-level speci�cations or to simple models of selected aspects of

system-level requirements. These techniques are too restrictive to be successfully

applied to the broad range of system-level requirements addressed by this thesis.

1.6 Outline

Chapters 2 through 4 establish the research problem and motivation for the disci-

pline, while Chapters 5 through 7 form the core of the discipline and its application.

Chapter 2 describes system-level requirements-based testing in greater detail, and

examines the associated problems. Chapter 3 describes existing solutions. Chap-

ter 4 identi�es the issues of system-level requirements-based testing that distinguish

this level of testing from others, such as code-based testing. Chapter 5 presents

a discipline of test derivation that provides a nomenclature that can be used for

de�ning coverage criteria. Chapter 5 represents the central contribution of this the-

sis. Chapter 6 de�nes coverage criteria using the nomenclature based on extensions

9

of the algorithms from Chapter 5. This represents the fundamental application

of the discipline. Chapter 7 examines an application of this discipline in its most

general setting. Chapter 8 presents one possible application of this discipline to

system-level requirements-based testing. Conclusions and future work are presented

in Chapter 9.

10

Chapter 2

The Problem

The development of test frames is a key stage in system-level requirements-based

testing. This chapter identi�es a set of limitations and ine�ciencies encountered

during this stage of test derivation. A coverage criterion determines the \complete-

ness" of a set of test frames with respect to the requirements speci�cation from

which they were derived. Subjective coverage standards and the manual derivation

of system-level requirements-based testing incur signi�cant expense. Contributing

factors include: the labour required to analyze the requirements and derive the ap-

propriate tests; reviews ensuring the quality, correctness, and completeness of the

tests; and the impact of these activities on software development schedules. This the-

sis focuses on decreasing the subjectivity and increasing the accuracy of test frame

derivation by providing a mathematical foundation for de�ning coverage criteria and

calculating test frames from speci�cations. These capabilities have the potential to

reduce the costs associated with system-level requirements-based testing.

11

2.1 Introduction

Defective software can be frustrating, expensive, and, in the worst case, life threaten-

ing. However, for complex software systems, it is rarely possible to perform enough

tests to guarantee that running yet another test is fruitless. For this reason, it is

necessary to de�ne a milestone that signals the end of testing and the point at which

the software can be installed in the �eld. This milestone is de�ned as the successful

completion of a set of tests. For the milestone to be credible, this test set must

satisfy some pre-agreed criterion. A central concept in testing, such criteria de�ne

test set completeness, inspire methods of test generation, and provide a medium for

communicating issues relevant to ensuring that software is released in both a moral

and �scally prudent fashion.

The focus of this thesis is a discipline that can be applied to system-level

requirements-based testing. This type of testing considers statements of the sys-

tem's required behaviour in terms of stimuli and responses. Although the internal

mechanisms that implement that behaviour are not considered, an abstract view of

internal states of the system typically plays a role in test derivation.

Traditionally, tests are derived manually by analyzing the natural language of

the requirements. Rules of thumb are used to determine the meaning of standardized

phrases within the requirements. Test engineers use common sense transformations

of these phrases to derive test frames. This derivation implicitly includes an under-

standing of a coverage criterion. However, the particular criterion and the derivation

methodology depend on the skill and experience of the test engineers. A goal of this

thesis is to standardize non-domain-speci�c aspects of test derivation methodology,

thereby allowing the skill and experience of test engineers to be focused on domain

speci�c issues.

12

Assurance that a set of test frames satis�es a given criterion is achieved

through a review process. This review process relies on a mechanism known as

traceability. The traceability of requirements to test frames allows reviewers to

con�rm that the test frames are consistent with the requirements, and that the set

of test frames satis�es the given criterion.

Although the derivation of test frames from requirements incurs signi�cant

cost, there is a surprising lack of automation of the analysis required for this task.

This is partly due to the di�culties of automatically processing natural language,

but a more important obstacle is the subjectivity of test derivation guidelines such as

those found in DO178B, DOD-STD-2167A, ANSI/IEEE 829-1983, and MIL-STD-

498. Any solution providing a means of automation, will also provide objective

de�nitions of criteria for sets of test frames. Additional characteristics of a solution

include: controls enabling test engineers to exercise engineering judgement, trace-

ability of requirements to test frames, and some degree of containment of the impact

of requirements changes.

Several qualities of system-level requirements-based testing point towards a

solution based on mathematical logic. The automation of logical transformations

and the requirements for test frame correctness are both addressed by such a solu-

tion, and would also provide the required objectivity. The importance of objective

criteria is a central point of this chapter.

The importance of testing and the need for criteria signaling its completion

is given in Section 2.2. The signi�cance of these general criteria is examined further

in Section 2.3. Section 2.4 describes the application domain of this thesis, system-

level requirements-based testing, while Section 2.5 details the process of manual test

frame derivation. The notion of the traceability of requirements to test frames and

13

its current relevance to ensuring completeness is given in Section 2.6. Section 2.7

examines the lack of a process for automatically deriving test frames.

Based on the limitations and ine�ciencies presented in Sections 2.2 through

2.7, Section 2.8 details characteristics of a solution. Section 2.9 provides the impetus

for a solution based on mathematical logic, and gives a scienti�c perspective of the

essence of system-level requirements-based testing.

2.2 Testing

A simpli�ed view of software development identi�es four basic phases: requirements

speci�cation, design, implementation, and testing. Requirements speci�cation es-

tablishes the required behaviour of the system. The design phase determines how

these requirements will be achieved. Implementation is the building and assembling

of components according to the design. One of the purposes of testing is to provide

a degree of con�dence that each of the required behaviours is exhibited by the im-

plementation. Testing is essential to ensuring software quality, yet it is a task that

can rarely be completed to the point where nothing can be gained by performing

more testing. A substantial problem in testing is determining when enough testing

has been performed to ensure the desired quality with �scal e�ciency.

In general, a substantial measure of professional and public con�dence in the

design and implementation of a critical system is based on the assumption that the

system has been \completely tested." However, it is rarely practical to test every

conceivable situation in which such a system must perform
awlessly. This is partly

due to the immense size of the input domain that exists for a large system. To

exhaustively test the inputs for even a simple program that implements a function

of two 16-bit integers requires (216)2 = 4; 294; 967; 296 tests.

14

Clearly, then, a non-trivial software system cannot be \completely tested" in

the sense that every possible situation has been accounted for. The classic \divide

and conquer" approach does not work. It is impractical to decompose a non-trivial

system to a level of granularity that could be completely tested and then integrate

the results for the whole system. Some criteria are needed to de�ne an adequate set

of tests to be used to determine when software can be installed in the �eld.

2.3 Coverage Criteria

A program's proximity to being \completely tested" is determined by the properties

of the set of tests as a whole. Criteria describing desirable properties are used to

construct a test set which is both small, and also satis�es the chosen criteria. The

intention is that these coverage criteria lead to test sets which exercise a sample

of the program's input domain that is likely to uncover faults, if they exist. The

\completeness" of a test set is measured relative to a particular coverage criterion.

Use of the word coverage stems from the notion that the criterion implies

a categorization of the input domain, and that any test set satisfying the coverage

criteria covers, or exercises, one or more representatives of each of the categories.

The categorization is not necessarily a partition, i.e., the categories are not required

to be disjoint subsets of the input domain.

Conclusions about the performance of a system are generalized from the

successful completion of a test set. The validity of these conclusions depends on the

coverage criteria satis�ed by the test set.

There are several di�erent types of coverage criteria, which correspond to

di�erent types of testing. Each type of organized testing focuses on a di�erent

objective and a di�erent abstract view of the software. For example, unit testing

15

focuses on demonstrating the correctness and robustness of individual components of

the system. From this testing, conclusions may be drawn regarding each component

in isolation. This type of testing supports conclusions about system components,

but general conclusions cannot be drawn regarding the operation of the system as a

whole, or how well the system meets the original requirements speci�cation. Other

coverage criteria focus on these latter concerns.

Coverage criteria serve a dual purpose: 1) as a de�nition of completeness

to guide the construction of test sets and evaluate their completeness, and 2) as a

description to others of the degree to which a program has been tested.

2.4 System-Level Requirements-Based Testing

This thesis addresses software development processes similar to those outlined in

software system development documents such as DO178B, DOD-STD-2167A,ANSI/-

IEEE 829-1983, and MIL-STD-498. In these processes, system-level, requirements-

based testing refers to a particular level of software testing with the goal of verifying

through demonstration that each of the requirements within the speci�cation has

been satis�ed. This can be only a partial veri�cation, due to the sizes of the input

and state spaces. Such a demonstration assists in signaling the completion of the

development cycle. In some software development processes, this demonstration is

necessary for the legal completion of a contract between a customer and a software

manufacturer.

One method of achieving this demonstration is by performing a number of

tests. Each test is de�ned by a test procedure. Each test procedure is a sequence

of test steps. Each test step contributes to the demonstration that a speci�ed

requirement has indeed been satis�ed. Each test step involves the application of

16

a stimulus to the software system, and a comparison of the actual response of the

system with the expected response speci�ed by the requirements.

This level of testing is \system-level" in the sense that the internal structure

of the system is not visible; all testing must be performed by the application of

externally generated stimuli and the observation of externally visible responses. It

is \requirements-based" in contrast to other kinds of system-level testing which may,

for instance, be based on scenarios intended to approximate the expected use of the

system for such purposes as determining system performance or reliability.

This thesis is oriented to a very general style of requirements speci�cation in

which requirements are expressed by statements that express relationships between

externally generated stimuli and externally visible responses. The requirements

may also contain references to an abstract representation of the internal state in the

form of pre-conditions and post-conditions. This style of requirements speci�cation

strongly discourages the description of internal processing. It is distinguishable from

\model-oriented" approaches which involve the presentation of an abstract model

as a means of describing the desired functionality of a system. In particular, the

style of speci�cation addressed by this thesis is characterized by logically complex

statements of behaviour, relating system stimuli and responses rather than stating

simple transitions amongst a complex network of states.

In a typical large system, each test procedure serves as a script for a test

session that would typically require no more than several hours of e�ort to execute.

However, many months of e�ort may be required to develop the test procedure. The

manual development of a test procedure by a test engineer can be described in terms

of two main phases.

The �rst phase decomposes requirement statements into a set of test frames.

17

This involves lexical analysis of the syntactic structure of the requirements state-

ments guided by key words and phrases such as \and," \or," \not," \if," \unless,"

\whenever," \provided that," \on the condition that," and \except if one of the

following conditions is true."

The second phase of a typical test procedure development process is to or-

ganize the test frames into sequences. The sequences must be arranged in order

to ensure that the pre-conditions of each test frame are satis�ed by the preceding

sequence of test frames. The pre-conditions and post-conditions may be assertions

about the internal state of the software system, or they may be assertions about

parameters of the stimuli or responses.

This second phase of developing a test procedure also involves the instan-

tiation of sequenced test frames into test steps in a test procedure by replacing

data references, e.g., \the current altitude of the aircraft," with actual values, e.g.,

\10,000 feet." The instantiation of test frames during this second phase may involve

the use of techniques such as Boundary Analysis and Equivalence Partitioning [45]

to ensure that a suitable sample of actual values is used in the test procedure. A

test step, an instantiated test frame, is often referred to in the literature as a test

case. 1

As stated in Section 1.2, the scope of this thesis is limited to the �rst of

the two phases described above: the decomposition of requirements into a set of

test frames. The second phase of this process, both the instantiation of test frames

with actual data values and the ordering of test steps, is outside the scope of this

dissertation.

1Other authors also use \test case" to refer to an entire test procedure. Due to the multiple mean-
ings of this term, it is excluded from the vocabulary of this dissertation to avoid misinterpretations.

18

2.5 Manual Test Frame Derivation

Experienced test engineers use \rules of thumb" to decompose requirement state-

ments into test frames. For example, the presence of the key word \or" in the

antecedent of a requirement of the form,

When Stimulus S occurs and Condition C1 or Condition C2 is true, then

the system shall produce Response R

indicates that the requirement must be decomposed into at least two separate test

frames - one for when Condition C1 is true, and another, separate test frame for

when Condition C2 is true. This would yield a pair of test frames,

1. S and C1 and (not C2)) R, and

2. S and (not C1) and C2) R,

where the symbol \)" separates the stimulus part (both the externally generated

stimulus and the pre-conditions) from the response part (both the externally visible

response and the post-conditions). This symbol may be read informally as \yields"

or \results in." Depending on the coverage criterion used by the test engineers,

additional test frames may also be generated to test for situations when the response

R should not be produced, i.e., \) not R."

It is often necessary to combine requirement statements to generate test

frames. For instance, a statement of the form,

Unless Conditions C3 and C4 are both true, the system shall also produce

Response R1 whenever Response R2 is produced

needs to be paired with another statement such as,

19

When Stimulus S occurs, then the system shall produce Response R2

to obtain an \end-to-end" stimulus-response relationship between Stimulus S and

Response R1. The combination of these two statements can then be decomposed

into a set of test frames.

While performing this task, test engineers manually apply rules of logical

reasoning such as DeMorgan's Laws, e.g.,

not (A and B) = (not A) or (not B).

This is illustrated by the above example, which would likely involve substituting

(perhaps just mentally) the phrase \unless Conditions C3 and C4 are both true"

with the logically equivalent phrase \if Condition C3 is false or Condition C4 is

false." The \or" in the result of this substitution could then be used to split this

requirement into two test frames. Another example is the substitution of the phrase

\whenever Response R2 is produced" with the phrase \when stimulus S occurs,"

using a rule of logical reasoning sometimes called \pre-condition strengthening."

Test engineers may not be aware of the fact that they are using DeMorgan's Laws or

\pre-condition strengthening," but, reassuringly, there is a correspondence between

engineering intuition and formal logic.

Thus, the decomposition of requirements into test frames can be viewed as a

series of lexical transformations based on rules of logical reasoning. In general, the

resulting test frames are logically implied by the requirements. This makes sense

from a practical engineering point of view. Obviously, it would be undesirable to

test for stimulus-response relationships not implied by the requirements.

The work performed by a test engineer during this �rst phase is not entirely

a matter of routine logical deduction. Much e�ort is typically spent \disambiguat-

ing" natural language in order to expose the logical structure of the requirements

20

statements. Other considerations, such as domain knowledge, also contribute to

this process. Knowledge of the application domain is needed to understand depen-

dencies between various conditions referenced in the requirements, and to avoid the

generation of impractical or infeasible combinations of conditions in test frames. For

example, the conditions \is airborne" and \has landed" may appear together as con-

ditions in a test frame which is logically derivable from the requirements for an air

tra�c control system { but which would be rejected by a test engineer on the basis

that it is infeasible. Nevertheless, reasoning about stimulus-response relationships

in a systematic manner is a central part of this task.

The e�ectiveness of these conventions is highly subject to the discipline of

requirements authors in avoiding words or phrases which may be ambiguous or

have shown a tendency to be misinterpreted. For example, experience shows that a

requirement of the form,

When Stimulus S2 occurs and Condition C3 is true, then the system

shall produce Response R2 unless Condition C4 is false

is not necessarily ambiguous, but it is more likely to be misinterpreted than the

following, logically equivalent, statement of this requirement:

When Stimulus S2 occurs and Conditions C3 and C4 are both true, then

the system shall produce Response R2.

The task of systematically deriving test frames becomes more complex when the

interpretation of a particular requirement depends on other requirements. For ex-

ample, the interpretation of the requirement,

When Response R3 is produced and Condition C5 is true, then also

produce Response R4

21

depends on the set of requirements which specify conditions under which Response

R3 will be produced. When interpreting this requirement for the purpose of deriving

test frames, one possibility is to lexically replace the phrase \When Response R3

is produced" with one of the possible conditions under which Response R3 will be

produced. Another possibility is to lexically replace this phrase by the logical dis-

junction of all of the possible conditions under which Response R3 will be produced.

For example, suppose that the conditions for producing Response R3 are expressed

by the following two requirements:

When Stimulus S4 occurs, then produce Response R3.

When Stimulus S5 occurs, then produce Response R3.

With the �rst approach, lexical replacement of the phrase \When Response R3 is

produced" will yield a re-statement of the original requirement in a form,

When Stimulus S4 occurs, then also produce Response R4 if Condition

C5 is true.

which would then be decomposed into a single test frame. This is di�erent from the

result of following the second approach,

When Stimulus S4 or Stimulus S5 occurs, then also produce Response

R4 if Condition C5 is true,

which would be decomposed into two distinct test frames because of the introduction

of the word \or" into the text of the requirement.

Yet another source of complexity in the process of deriving test frames from

requirements is illustrated by the following example requirement:

22

When Stimulus S6 occurs, and ((Condition C6 is true or Condition C7 is

true) and (Condition C8 is true or Condition C9 is true)), then produce

Response R5.

In this example, parentheses are used to unambiguously state the requirement by

clarifying the nesting of the logical connectives, \or" and \and." As an alternative to

parentheses, a decision table or an itemized list of conditions may be more readable.

However, the formatting style of a requirements speci�cation is beyond the scope of

this thesis.

The nesting of disjunctions, i.e., phrases containing the word \or", within

a conjunction, i.e., the phrase containing the word \and", is the source of a fun-

damental choice of coverage in the methodology used to systematically derive test

frames from a set of requirements. For the above example, this choice is a matter of

deciding which subset of the following test frames are necessary to verify the above

requirement:

23

Frame Stimulus Conditions Response

1 S6 C6, C7, C8, C9 R5

2 S6 C6, C7, C8, not C9 R5

3 S6 C6, C7, not C8, C9 R5

4 S6 C6, not C7, C8, C9 R5

5 S6 not C6, C7, C8, C9 R5

6 S6 C6, not C7, C8, not C9 R5

7 S6 C6, not C7, not C8, C9 R5

8 S6 not C6, C7, C8, not C9 R5

9 S6 not C6, C7, not C8, C9 R5

10 S6 C6, C8 R5

11 S6 C7, C9 R5

12 S6 C6, C9 R5

13 S6 C7, C8 R5

Several notions of completeness are possible. Those discussed here are given

names and de�nitions in Chapters 5 and 6. Under one notion of completeness, only

the �rst nine test frames are necessary to claim that the veri�cation set for the

requirement is complete. Under another notion of completeness, test frames 10-13

are su�cient. The di�erence between these two test frame sets is the amount of

detail speci�ed in the test frames. Under yet another notion of completeness, it

would be possible to reduce the veri�cation set to just test frames 6-9. Under yet

another notion of completeness, it would be possible to reduce the veri�cation set

for this requirement to just test frames 6 and 9, or, alternatively, just test frames

7 and 8. Hence, depending on the notion of completeness used in the methodology,

the minimal size of the veri�cation set for this requirement would be nine, four or

24

two test frames. Di�erent situations may favour a larger number of test frames or

a smaller one. However, it is clear that these notions of completeness need to be

distinguished in a standard way, and referred to using standard names.

The illustrative examples given above are simplistic in the sense that they

amount to relatively small di�erences in the number of test frames required to

completely verify a requirement. However, di�erences in the coverage criteria used to

derive test frames from requirements, when applied to large, complex speci�cations

of requirements, have potentially large di�erences with respect to the number of test

frames required to satisfy a particular form of coverage.

Perhaps more importantly, the examples given above suggest that the deriva-

tion of test frames from a set of requirements is not necessarily a routine process

that always leads to the same result independently of the skill and experience of

the individuals performing the work. Some skill and experience will always be re-

quired to perform this task. However, this thesis is motivated by a desire to focus

test engineer skill and experience on less tedious aspects of the task. In addition

to improving the process by reducing the number of corrections that need to be

made during test procedure reviews, the precise description of coverage criteria for

system-level requirements-based testing provides the basis for the development of

software tools to partially automate the derivation of test frames from requirements.

The extraction of test frames from a requirements speci�cation requires a

great deal of manual e�ort. The volume of the requirements, and the complexity

that can be present through the use of decisions within the text referring to several

conditions and negating such decisions, make this task tedious, routine, and error

prone. Thus, additional e�ort must be spent in reviews to ensure that the set of

test frames satisfy certain properties. Re-working test procedures as a result of

25

speci�cation changes is costly not only due to the e�ort involved, but also due to

the impact on schedules.

The act of producing test frames often uncovers anomalies in the speci�-

cation. However, the loose connection between speci�cation authoring and test

planning causes this feedback to be delayed until late in the authoring stages.

2.6 Coverage via Traceability

In a disciplined approach to requirements-based testing, the \completeness" of a set

of test procedures is determined by inspecting the relationship between the require-

ments speci�cation and the contents of steps in test procedures. A traceability

mapping from requirements to individual test steps is used to demonstrate that

the set of test procedures is \complete" in the sense that every functional require-

ment can be traced to an appropriate set of distinct steps in a test procedure [16].

The size of this appropriate set is determined by the number of choices within the

requirement.

Typically, each requirement has a unique identi�er, and each step in a test

procedure is annotated with a list of requirement identi�ers. Con�rmation of the

implementation of a requirement is demonstrated upon successful completion of

all steps associated with that requirement. The requirement identi�ers provide a

method of maintaining this association.

The completeness of a set of test procedures can be determined automatically

by a software tool that parses out requirement identi�ers listed in the test proce-

dure and compares this set of identi�ers against a complete set of all requirement

identi�ers. The test set is not complete until every functional requirement has been

mapped to an appropriate number of speci�c test steps. In this case, coverage refers

26

to coverage of the requirements.

Traceability is necessary for providing an audit trail to support process mon-

itoring as well as assisting in evaluating completeness. Traceability between require-

ments and tests also assists in determining the scope of test set changes required

when requirements changes occur by providing an index that can be used to facilitate

the appropriate review tasks.

However, traceability is only a partial solution to determining the complete-

ness of a test set. This type of tool assumes that the requirement identi�ers attached

to the test steps are correct. More importantly, it is also assumed that the appropri-

ate combination of tests that refer to any particular requirement has been produced.

The reality of human error necessitates the use of reviews to ensure that these re-

quirement identi�ers are correct and that a suitable number of test steps has been

produced for each requirement.

2.7 Lack of Automation

It is possible that the proprietary state-of-the-art is more advanced than the doc-

uments quoted below. However, the quoted documents represent the published

sources of coverage criteria upon which industry standards could be based.

Requirements-based testing guidelines contained in documents such as

DO178B, DOD-STD-2167A2, ANSI/IEEE 829-1983, and MIL-STD-498 do not con-

tain enough detail to objectively de�ne algorithms for deriving test frames in the con-

text of logically complex requirements speci�cations. Of these documents, DO178B

gives the most detailed description. Paragraph 6.4.4.1(a) states:

2Although superseded by MIL-STD-498, some software development projects still use DOD-
STD-2167A

27

Test cases exist for each software requirement.

Figure 2.1 is an image of Table A-7 from DO178B, and indicates the di�erences

in the amount of detail given between requirements-based test coverage and code-

based test coverage: The descriptions for code-based coverage criteria given in Rows

5 through 8 refer to speci�c, objective de�nitions. By comparison, the description

of coverage in Row 3, for requirements-based testing, is not de�ned.

Figure 2.1: Table A-7 from DO178B

28

In paragraph 4.3.4 of DOD-STD-2167A, coverage is described by referring

to traceability:

The contractor shall document the traceability of the requirements in

the Software Requirements Speci�cations (SRSs) and Interface Require-

ments Speci�cation (IRS) that are satis�ed or partially satis�ed by each

test case identi�ed in the Software Test Description (STD).

Paragraph 5.5 of MIL-STD-498, the document which supersedes DOD-STD-2167A,

speci�es only that the coverage criterion should be documented:

5.5 Software requirements analysis. The developer shall de�ne and record

the software requirements to be met by each CSCI [Computer Software

Con�guration Item], the methods to be used to ensure that each require-

ment has been met, and the traceability between the CSCI requirements

and system requirements. The result shall include all applicable items

in the Software Requirements Speci�cation (SRS).

ANSI/IEEE 829-1983 is the IEEE standard for software test documentation. Its

contribution is similar to that of MIL-STD-498, as it states that the approach must

be documented but does not specify a collection of possible approaches for system-

level requirements:

3.2.6 ...Identify the techniques which will be used to judge the compre-

hensiveness of the testing e�ort...

In addition to a lack of detail in the above guidelines, the de�nitions of cov-

erage criteria are determined by the subjective interpretation of these documents.

This subjective interpretation is the responsibility of experienced test engineers.

29

To prevent this interpretation from becoming too ad hoc or unsystematic, well es-

tablished techniques impose discipline and formality, e.g., the use of requirement

identi�ers for tracing requirements to test steps. While established techniques pro-

vide a disciplined approach to interpreting standard guidelines, certain problems

arise due to the lack of an objective de�nition of coverage.

As described in Section 2.5, to derive test frames from a set of requirements,

a test engineer is required to break up possibly logically complex requirements into

a set of atomic stimulus-response relationships. Addressing logical complexity to

the degree necessary to derive an appropriate set of system-level test frames has

not been addressed in software development literature. The guidelines mention

data selection concepts such as \average," \boundary," and \out-of-bounds" values.

They add only that there should exist a test for each software requirement, and

that di�erent combinations of operations should be exercised. Unfortunately, none

of this describes the analysis of logical complexity, nor does it de�ne the level of

detail that should be re
ected in the test steps produced.

While documents such as DO178B, DOD-STD-2167A, ANSI/IEEE 829-1983,

and MIL-STD-498 provide some general guidelines for requirements-based testing,

they do not provide the speci�c detail required to objectively decide if a particular

test frame is missing from the test set, or if a particular element of the test set

is redundant. Di�erent experiences amongst senior test engineers, combined with

subjective guidelines, almost guarantee that disagreements will arise. Resolutions of

these disagreements can only be arbitrary, and are in danger of being inconsistent.

Therefore, the lack of an objective de�nition becomes a management issue because

it places too much dependence on engineering judgment and experience.

Communications with the customer regarding the thoroughness of the testing

30

performed are sometimes in terms of statistics based on the amount of resources

spent, rather than an objective account of the coverage achieved. This forces the

customer to place a great deal of faith in the developer, or to incur additional expense

to review the test process in order to become familiar with the level of testing being

applied to their product.

The lack of objective de�nitions of coverage has resulted in a lack of auto-

mated tools for the analysis of requirements. There are commercial tools for deriv-

ing tests from executable models of requirements. The disadvantages of executable

models are presented in Section 3.4. The discipline presented in this dissertation

advocates the use of formal translation rather than modelling.

2.8 Towards a Solution

Any solution to the limitations and ine�ciencies presented in this chapter should

exhibit the following characteristics:

1. A means of de�ning objective coverage criteria is provided.

2. Test frame derivation is, at least partially, automated.

3. Test engineers can control the automated portions of test frame generation in

order to exercise engineering judgment when necessary.

4. Traceability is supported.

5. The impact of requirements changes on previously derived test frames can be

contained, to some degree. This capability requires analysis beyond traceabil-

ity.

31

Characteristic 1), objective de�nitions of coverage criteria, is the most im-

portant. The existence of such de�nitions would:

(a) eliminate the subjectivity of current coverage guidelines upon which disagree-

ments of interpretation are based;

(b) reduce the impact of experience on the performance of test engineers, allowing

junior test engineers to perform more like senior test engineers earlier;

(c) allow completeness to be measured objectively and, perhaps, algorithmically;

(d) provide a means of partially automating the construction of test sets; and

(e) allow communications to the customer to be based on progress relative to

pre-agreed coverage criteria, thus re
ecting actual achievement.

Furthermore, objective de�nitions of coverage, standardized across the software de-

velopment industry, would provide a clearer picture of the degree to which products

had been tested.

Characteristic 2) could potentially reduce testing costs and increase the con-

sistency and accuracy of the tests produced. Characteristic 3) is essential to any

software development process applied to a non-trivial project. Test engineers must

be able to control the test frame generation process in order to deal with special

circumstances which may arise. It is also important that the test frame generator be

able to build test sets around test engineer guidance, rather than simply tolerating

it. Characteristic 4) provides an audit trail for various purposes. Traceability not

only provides a means of reviewing the test frame sets produced by the test frame

generator, but also provides a means of tracking down errors in the requirements

agged by an incorrect test frame. Characteristic 5) is important for reducing costs,

32

but will be limited since the underlying logic allows undecidable formulae in order

to be expressive.

2.9 Motivation for a Mathematical Approach

Mathematics provides the means of achieving the accuracy required to accomplish

great feats. As long as 4,500 years ago, Khufu's Great Pyramid at Giza was con-

structed so accurately that the perimeter of the base divided by twice the height is

equal to Pi to 5 decimal places. The Pont du Gard, built before the �rst century

A.D., is an architectural masterpiece that belies the accuracy of the aqueduct it

supports. This Roman aqueduct had the capacity to deliver 120,000 m3 of water

per day along a 50 km run and a mere 17 metre drop (34 cm/km) into a \castellum

divisorium" with the capacity to distribute 125,000 m3 per day. Today, mathemat-

ics provides the means of piloting spacecraft on gravity-assisted trajectories taking

them close to the inner planets to steal momentum in order to hasten the spacecraft

towards Jupiter and Saturn.

In the �eld of computer science, the construction of parsers for higher level

programming languages in the late 1950's and early 1960's was a craft, not a science.

It was not until Noam Chomsky proposed a mathematical hierarchy of languages,

originally for classifying natural languages, that parsing became well understood.

In addition, the Chomsky Hierarchy has had a profound in
uence on the syntactic

structure of modern programming languages. This is one example of the use of math-

ematics to change a labour-intensive, error-prone process, e.g., parser construction,

into one that is automatic and
awless.

It is reasonable to expect a similar bene�t by applying a mathematical so-

lution to automating test frame generation. The logical complexity within require-

33

ments speci�cations forces test engineers to perform logical reasoning (informally)

during their manual derivation of test frames. This reasoning process is an excellent

candidate for the application of mathematical logic.

These considerations motivate the use of rules of mathematical logic to ma-

nipulate a formal expression of the requirements speci�cation for the purpose of

calculating test frames. The idea of using logic as a medium for calculation is not

new, e.g., Prolog [4] and Binary Decision Diagrams (BDDs) [8]. Using a set of

mathematically sound rules guarantees that the algorithmically derived test frames

are logical consequences of the speci�cation. It is possible that an incorrect im-

plementation of these algorithms may introduce errors into the test frames derived.

However, the centralization of expression manipulation employed in theorem provers

such as HOL [28], PVS [57], and Isabelle [50, 48, 47], can provide a high degree of

con�dence that the risk of such errors is negligible.

A scienti�c perspective of system-level requirements-based testing can be

expressed by the following questions:

� How can test frames be derived from an arbitrary formula expressing a rela-

tionship between stimuli and responses?

Currently, requirements speci�cation authors are free to express the require-

ments in any way they �nd appropriate to accurately and e�ciently convey

the meaning of a requirement. Although a mathematical logic approach will

impose some restrictions on authors' styles, this must be minimized in order

to make the implementation of such an approach practical in an industrial

setting. To achieve this, any algorithm must assume that the input format of

the formal version of the requirements is as general as possible.

34

� What constitutes a test frame?

It is likely that a test frame will consist of a list of stimuli and a list of expected

responses. However, to satisfy authors' needs for expressiveness, it is likely

that the underlying logic will allow quanti�cation. The e�ect of quanti�ers on

these lists of stimuli and responses must be understood. Also, it is likely that

test engineers will require some control of the amount of detail contained in

the test frames.

� What restrictions on the stimulus-response formula are necessary in order to

allow automatic processing?

Since the elements of the logic that allow undecidable formulae cannot be re-

moved without reducing expressiveness, it is likely that there must be some

other restrictions on the use of these elements in order to allow for an algo-

rithmic transformation from a de�nable class of input speci�cations to test

frames.

� How can the relationship between test frames and the original stimulus-response

formula be described?

Some means of relating test frames to the stimulus-response formula supplied

by the requirements authors must be possible in order to provide some measure

of completeness.

A mathematical logic foundation for the de�nition of coverage criteria for

system-level requirements-based testing should provide a depth of understanding

similar to that of language syntax. Mathematics is both a method of de�nition and

a means of calculation. Both of these aspects are present in the goals of de�ning

objective coverage criteria and automating test frame generation. The nomenclature

35

of coverage-criteria de�nitions is motivated by the goal of calculating test frames

from speci�cations.

36

Chapter 3

Existing Solutions

This chapter presents existing solutions which might be applied to system-level

requirements-based testing. Although each approach has advantages in deriving

di�erent types of tests, certain shortcomings remain. Examining these techniques

introduces the background for underlying issues which are examined further in Chap-

ter 4.

3.1 Introduction

The techniques examined in this chapter can be categorized as systematic, code-

based, and logic-based. Some of the techniques referenced in this chapter produce

test frames, while others produce test steps and test procedures. In this dissertation,

when it is not necessary to distinguish the di�erences between these products, they

are referred to simply as tests.

Perhaps the most obvious approach to automating the analysis aspects of

system-level requirements-based testing is to simply de�ne standard phrases and the

systematic transformation of these phrases into test frames. Systematic approaches

37

have the potential to be successful within the environment for which they were

developed. However, the fact that they are not based on a mathematical foundation

will hamper their applicability in a general setting.

Discrepancies between the circumstances and objectives of unit-level testing

and those of system-level testing lead to the conclusion that system-level require-

ments-based testing and code-based testing are fundamentally di�erent. Thus, al-

though code-based testing is well understood, it does not provide a direct solution

for system-level requirements-based testing. This is examined further in Section 3.3.

Techniques based on mathematical logic solve some of the problems of the

systematic and code-based techniques. However, the primary di�culty with current

techniques based on mathematical logic is the lack of a combination of both au-

tomation and the expressiveness to specify what is required without specifying how

it is achieved.

Section 3.2 examines the systematic approach of using mechanized transfor-

mations to produce test frames from requirements. The possibility of exploiting the

success of code-based techniques from unit-level testing is explored in Section 3.3.

Section 3.4 examines current approaches based on mathematical logic.

3.2 Systematic Approaches

One possible approach to automating the derivation of test frames from system-level

requirements is to restrict the requirements language to a standard set of phrase

styles. This avoids the problems associated with parsing the ambiguities of natural

language. The information within the restricted phrases could then be extracted

by a parser designed for this language, and rearranged into test frames by a set

of standardized transformations. The distinction between this approach and those

38

described in Section 3.4 is that there is no mathematical basis for the soundness of

these transformations. This means that situations may exist where applications of

these transformations do not preserve the true meaning of a speci�cation. Therefore,

reviews are required to ensure test frame quality.

This approach would be �nely tuned to the process for which it was designed,

and would probably be reasonably successful. However, there are fundamental lim-

itations to this approach. The �rst is that this would be a solution only for spec-

i�cations that can be written using the particular set of phrases. There is also no

guarantee that a subsequent speci�cation author would not use the speci�cation

phrases in an unforeseen manner. Thus, improvements to the speci�cation style

would require changes to the test frame derivation algorithms.

A second limitation is that there is no well-founded assurance of test frame

correctness. Therefore, it would be necessary to maintain a strict review process in

order to monitor the test frames produced by this approach. This task may prove

to be more di�cult than in the manual approach of Section 2.5. For example, if an

incorrect test frame is produced, there are two possibilities: 1) the error occurred in

the derivation, or 2) there is an error in the speci�cation. Since the test frame was

produced automatically, there is no test engineer to justify the derivation of the test

frame, as there would be in the manual process.

A further limitation is that coverage criteria de�ned in terms of this approach

would be based on one set of phrases. Coverage criteria based on another set of

phrases could potentially refer to fundamentally di�erent entities, thereby creating

confusion.

This approach might be successful in mechanizing a current process, such as

the one described in Section 2.5, but would not be able to assist in improving and

39

evolving that process beyond mechanization. This is due to the lack of a sound basis

from which general conclusions about the process can be made. Such generalizations

are critical for process improvement.

It is likely that examples of these techniques exist in industry. However, it is

unlikely that published accounts are available for two reasons. First, they may be

too speci�c to be of general interest. Second, they may be reguarded as a proprietary

advantage.

3.3 Code-based Testing

Coverage criteria for unit and module testing are well known. These types of testing

�t into a category referred to as code-based testing. Objective code-based coverage

criteria are founded on a nomenclature provided by the inherent precision of code.

This advantage is absent from the type of system-level requirements-based testing

addressed by this thesis. This section describes code-based techniques, but also

illustrates the importance of a nomenclature for de�ning coverage criteria.

Unfortunately, code-based techniques cannot be directly applied to system-

level requirements-based testing because of di�erences between these levels of test-

ing. These di�erences are examined in greater detail in Chapter 4.

3.3.1 Principles

Code-based testing techniques attempt to �nd faults in an implementation by using

tests constructed from information extracted primarily from details within the pro-

gram source code itself, or from design speci�cations of system components. These

tests provide a means of evaluating the implementation components. Tests based

on component design speci�cations are referred to as black-box, or functional, tests,

40

while those based on source code are referred to as glass-box,1 or structural, tests.

One class of glass-box testing derives its tests from branch and loop structures

within the code. Attributes of these code structures are used to construct tests. For

branches, tests are constructed to expose the di�erence between the true and false

cases. The two tests distinguish between two di�erent execution paths through the

code. Similar tests are derived from loops. A typical set of tests for a loop will result

in zero, one, and some number of iterations of the loop that re
ects a \typical" use

of the component.

The existence of execution paths leads to the notion of code coverage. A

test set satisfying code coverage exercises each program statement at least once. A

more rigorous code-based coverage criterion is path coverage in which each feasible

path is executed at least once. Path coverage is rarely achieved for non-trivial

components due to the large number of tests required and the fact that some paths,

although feasible, may prove extremely di�cult to reach due to the sequence of

stimuli required.

Code-based coverage criteria need not refer only to execution paths within a

program, but can refer also to equivalence classes in the input domain, the assign-

ment and use of variables, or various other aspects of the implementation. Beizer [5]

mentions over a dozen types of coverage. Code-based coverage criteria are founded

on a nomenclature which is standardized by the constructs of programming lan-

guages. Programs contain a number of useful artifacts, such as branches, loops,

variables, blocks, and interfaces. Coverage criteria are de�ned in terms of these

artifacts, which are common to all programming languages.

1Also referred to as clear-box or white-box testing.

41

3.3.2 An Objective Criterion

Block A

if (x > 3)

Block B

else

Block C

if (y > 10)

Block D

Figure 3.1: Example Program

The example program in Figure 3.1 illustrates code-based testing principles

and the value of an objective coverage criterion. Such a criterion, Block Coverage,

is de�ned, simply for the purposes of this example, as:

There exists at least one test which exercises each block of code in the

program.

A block is de�ned as a sequence of statements containing no branches. Code-

based tests can be described by a set of input settings. The test set ffx = 4g; fx =

2; y = 11gg satis�es the example Block Coverage criterion. The test fx = 4g

exercises blocks A and B while fx = 2; y = 11g exercises blocks A, C and D. This

test set is complete because it satis�es the stated criterion. It can also be shown to

be a minimal test set, since removing either of the tests results in a test set that

fails to satisfy the example Block Coverage criterion.

This example provides an opportunity to show the value of an objective

coverage criterion. The precision of a well de�ned coverage criterion promotes test

team agreement of the level of con�dence attained by unit and module testing.

42

A member of a test team might argue that the test set in this example does not

adequately test this program, and that the addition of fx = 2; y = 5g would result

in an adequate test set. This is an argument that the chosen coverage criterion

is inadequate, not that the test set was produced incorrectly. The team member

is expressing their concern that perhaps a higher level of con�dence is required

for this piece of software. This concern should be addressed and a decision made

as to whether a di�erent coverage criterion should be chosen. The precision of

the coverage criterion focuses discussion on the issue of determining the proper

trade-o� between con�dence and resources. There can be no argument about the

completeness of the test set, since the de�nition of the coverage criterion provides a

simple means of evaluation.

The nomenclature provided by the precise structure of programming lan-

guages makes it possible to determine the completeness of a test set objectively.

The nomenclature also provides a forum for de�ning and evaluating di�erent cov-

erage criteria. This activity also supports con�dence in software by leveraging the

con�dence in well established code-based coverage criteria. These standards pro-

vide su�cient precision that the test steps can be derived automatically, or at least

in a much more rigorous and systematic way than system-level requirements-based

testing.

3.3.3 Automation

Several techniques exist for deriving some tests from code automatically. Loops pro-

vide the biggest obstacle to fully automatic code-based test generation, due to the

undecidability of loop invariants. Chilenski and Newcomb's Ada Testing Workbench

(ATW) [12] generates test speci�cations from an Ada subset and conducts coverage

43

analysis for 21 structural coverage criteria. ATW employs a theorem prover to elim-

inate infeasible paths. It uses abstract syntax trees to extract structural elements

from the Ada code, but does not construct test speci�cations for code with loops.

Ferguson and Korel [24] describe a chaining approach that uses data dependencies

within code to generate test data. The technique can produce test data for some

simple types of loops. Voas, Payne, and Miller [65] use a simpli�ed form of mutation

testing to automate the generation of unit level tests for coverage criteria mentioned

in DO178B.

Code-based techniques focus on a distinctly di�erent level of testing from

system-level requirements-based testing. One distinction between these levels of

testing is that quanti�cation appears in system-level requirements. Another dis-

tinction is that code-based tests are tightly coupled to the structure of the code

from which they were derived. This means that changes in the code are likely to

cause changes in the test set. This is quite desirable for unit-level testing, since the

structure of the code is closely related to the machine code which is fundamental

to system behaviour. Any change in the machine code warrants re-testing at the

unit level. However, this is not the case for changes to system-level requirements. A

change in requirements does not necessarily require re-testing. Chapter 4 addresses

these di�erences in more detail.

3.4 Logic-Based Techniques

A number of test generation techniques make use of various types of mathematical

logic speci�cations. These techniques have two signi�cant advantages. The �rst

is that they are based on logical systems that have been mathematically proven

to be sound. This ensures that derivations correctly maintain the meaning of the

44

speci�cation. The second advantage is that many of these logics are more expressive

than program source code.

Here, an executable language is a speci�cation language combined with a def-

inition of state such that transitions between states are decidable. For speci�cations

built on primitives within an executable language, the primary advantage is that the

resulting speci�cations can be simulated at some level of detail. Simulation allows

requirements authors to interact with their speci�cations in order to validate that

the speci�cation implies what the author intended. Some of these techniques also

provide partial code generation.

Formal speci�cations based on mathematical semantics provide a basis for

automatic test-generation techniques. This mathematical structure allows formal

speci�cations to be manipulated mechanically so that information contained within

the speci�cation can be isolated, transformed, assembled, and repackaged. Using

rules of transformation in this manner, test frames for a system can be derived

from its formal speci�cation. If the speci�cation is executable, test steps can also be

derived. The soundness of the transformation rules and the mathematical semantics

of the speci�cation language guarantee that the tests are logical consequences of the

speci�cation. This provides a high degree of assurance in the correctness of the tests

produced by test generators based on these techniques.

3.4.1 Finite State Machines

Richardson's work [22, 10, 64, 54, 53, 52] is based on speci�cations that are exe-

cutable models. The advantages of this approach include the following:

1. the speci�cation provides test oracles allowing testing to be fully automated

once the executable model has been constructed, and

45

2. the speci�cation can be simulated.

Some of the disadvantages of this approach are:

1. that test oracles assume that the portions of the speci�cation to be tested

actually terminate, and

2. that it might be quite costly to produce an executable model from a given

speci�cation that contains a similar level of detail as the original speci�cation.

Eickelmann and Richardson's evaluation of software test environment archi-

tectures [10] takes the position that testing should be fully automated. However,

the techniques addressed in their evaluation are typically applied at the unit level.

Richardson and Wolf [55] argue the importance of testing at the architectural

level. They suggest that this can be accomplished by applying current techniques

to an executable model of the architecture. The template for this model is called

\CHAM," Chemical Abstract Machine. This machine provides the structural basis

for a nomenclature for coverage criteria. The test process can be used to assess the

validity and testability of the architecture and the conformity of the implementation

to the architecture.

The T-VEC system by Blackburn and Busser [7] generates test vectors from

hierarchical, executable requirements speci�cations. A test vector includes both the

input data and the expected output. This allows the automation of test execution

by producing a report of the success or failure for each test. However, it also requires

that the speci�cation contain a mechanism which details precisely how the desired

output might be achieved. This runs counter to the philosophy of many system-level

speci�cation paradigms, which encourage specifying what is desired while refraining

from specifying how it is achieved.

46

T-VEC specializes in dealing with non-linear inequalities. T-VEC also per-

forms coverage analysis, test driver generation, and test results analysis. The cover-

age analysis is a matching of the feasible generated test vectors and the requirements

from which they were generated. Any mismatches indicate anomalies in the require-

ments. T-VEC does not deal with quanti�cation over in�nite domains, nor condition

dependencies beyond inequalities. Therefore, any speci�cation containing such de-

pendencies must be modeled in a way that expresses these dependencies in terms of

inequalities.

The primary disadvantage of T-VEC is that it requires an executable speci-

�cation. This requires that requirements be reformulated to match this model. The

limited expressiveness, e.g., lack of quanti�cation over in�nite sets, of the T-VEC

speci�cation language, makes this a non-trivial and expensive task when applied to

the type of speci�cations addressed in this dissertation.

Various techniques exist for deriving tests and test sequences from variations

on �nite state machines [33], e.g., those based on speci�cation languages such as

Statecharts [67], SDL [43], LOTOS [11], X-machines [42], and that of the Valida-

tor/Req [3] test generation tool. The test sequencing provided by these techniques is

important for testing protocols in communication systems, e.g., speci�cations with

simple transitions but a complex state space. In contrast, this thesis focuses on

speci�cations that do not necessarily refer to states, but whose complexity lies in

the logical relationships between stimuli and responses of the system.

These techniques have similar limitations of expression. Constructing an

executable model is often a complex and expensive task. This e�ort is well spent if

it adds value by proving certain properties of the model. However, this is a separate

issue and is not the purpose of system-level requirements-based testing.

47

3.4.2 Logical Manipulation

Laycock [41] applied the category-partition method of Ostrand and Balcer [46] to a

Z speci�cation. The work demonstrated the feasibility of automating test generation

from a formal speci�cation.

Inspired by the work of Bernot, Gaudel, and Marre [6], Dick and Faivre

[17] describe a technique for deriving test steps based on a disjunctive normal form

(DNF) of a formal speci�cation expressed as a state relation in �rst-order predicate

calculus. The technique is based on a procedure for transforming a formal spec-

i�cation into a disjunctive normal form that represents the possible states of the

system. Test steps are inferred from the disjuncts by determining the pre-condition

for the corresponding state. A means of sequencing test steps is also given by Dick

and Faivre. Their technique can produce a combinatorially large number of tests,

since it produces every possible combination of choices provided by disjunctions in

the speci�cation.

First-order predicate calculus is limited for general use in speci�cations at

the system level. Formal speci�cation languages such as Z [61] and VDM-SL [37] are

more suitable at the system level since they are more expressive, e.g., by allowing

quanti�cation. Work based on Z that is similar to the approach used by Dick and

Faivre has been done by H�orcher [34]. Helke, Neustupny, and Santen [32] have

re-implemented this technique using an embedding of Z in the Isabelle theorem

prover [50]. This latter work demonstrates the feasibility of applying theorem-

proving technology to test generation. This provides a standardized mechanism

for ensuring test correctness. The underlying logic of the speci�cation languages

for these techniques is expressive enough for use in system-level requirements-based

testing. However, the derivation algorithms do not deal with quanti�cation.

48

Stocks and Carrington [62] have presented a framework for speci�cation-

based testing that addresses such issues as test oracles and test suite maintenance.

The use of test oracles assumes that, for a given speci�cation, the output can be

computed from a given input. This assumption implies that the formal speci�ca-

tion must be executable. The approach presented in this dissertation allows non-

executable speci�cations, but does not produce test oracles. The importance of

non-executable speci�cations is argued by Hayes and Jones [30].

Gaudel [6, 26] describes a theory of testing based on algebraic speci�cations

that are characterized by the use of functions to denote operations. A set of axioms,

typically expressed as universally quanti�ed equations, de�nes a class of algebras.

Each algebra is a model of the speci�cation. In contrast, predicate logic speci�ca-

tions typically use relations between states to denote operations, and both universal

and existential quanti�cation are often present.

Hayes [31] argues that algebraic techniques are best suited to testing primi-

tive data types and that, for more complex abstract data types, model-based spec-

i�cation is simpler. Hayes describes a manual technique for applying model-based

speci�cations to module testing.

As noted by Gaudel, predicate logic speci�cations are more general than

algebraic speci�cations. However, the price of this generality is the restriction that,

in general, only test frames can be generated automatically. Algebraic techniques

such as the one by Bernot, Gaudel, and Marre [6] can generate test data. This test

data corresponds to what this thesis refers to as test steps. Test steps are instances

of test frames.

49

3.4.3 Disadvantages of Modelling

The techniques described in the previous section are based on mathematical mod-

elling. A disadvantage of the above techniques, in the context of system-level require-

ments-based testing for large projects, is that determining the underlying primitives

for the model is often a non-trivial task, which is outside the bounds of typical

requirements authoring. Constructing a model that supports the appropriate de-

pendencies between conditions within the requirements is a fundamentally di�erent

skill from the presentation of system-level requirements. This is because the model

contains technical detail particular to the model, or modelling language, that is

not readable by typical requirements authors. Thus, speci�cations based on math-

ematical logic often require the maintenance of two speci�cations: one readable by

requirements authors for contract purposes, and the formal version used to generate

tests. Thus, mathematical logic approaches usually incur additional costs associated

with this second speci�cation.

This approach also requires a review process to ensure that the two speci�ca-

tions remain synchronized as changes are made. This tends to delay the derivation

of the formal speci�cation in order to ensure that changes are minimized. However,

the process of generating tests often uncovers inaccuracies within the requirements

speci�cation. This feedback is critical for requirements authors. The result is that a

possibly lengthy delay for testing-to-requirements-author feedback is built into the

process.

For speci�cations where a large number of requirements can be based on

a small number of primitives with relative ease, these modelling costs are usually

repaid in ensuring consistency within the speci�cation. This is due to the high

degree of interdependence between requirements. However, for speci�cations with a

50

large number of independent requirements, the costs of modelling are less fruitful,

simply because there are fewer possibilities for inconsistencies. In such cases, a

manual review is likely to be less expensive and just as e�ective in discovering them.

3.4.4 Coverage Schemes

Some work has explored issues of coverage schemes. A coverage scheme is an algo-

rithm for constructing a test set that satis�es a given coverage criterion. MacColl,

Carrington, and Stocks [44] describe a mechanized but not automated approach to

deriving test steps from formal speci�cations. They provide for a variety of deriva-

tion strategies which could embody di�erent coverage schemes. Ammann and O�utt

[2] describe each-choice-used and base-choice coverage. These coverage criteria dra-

matically reduce the number of test steps produced. These criteria are di�erent

from code-based criteria, since they describe coverage in terms of a relationship be-

tween two behaviours of the system. These coverage criteria are examined further

in Chapter 6.

The author has introduced a framework for several coverage criteria based on

prime implicants of a partitioning of the speci�cation referred to as test classes [18].

The same paper presents details of generating test frames from a formal speci�cation

containing universal and existential quanti�cation. This thesis is the fruition of this

earlier work.

3.5 Conclusion

This chapter has described three categories of techniques that might serve as a basis

for a solution to the problem described in Chapter 2. Systematic techniques lack

the mathematical soundness required to ensure test frames correctness. Code-based

51

techniques, while providing well developed notions of coverage, do not address fea-

tures found in more expressive speci�cation languages that are suitable for system-

level requirements. Current logic-based techniques lack a combination of automation

and expressiveness.

52

Chapter 4

Fundamental Challenges

A central conclusion of this research is that the problem of generating test frames

algorithmically from a set of requirements for the purpose of system-level testing is

signi�cantly di�erent from the problem of generating test frames from code for the

purpose of unit level testing. This chapter examines the challenges that illustrate

this di�erence.

4.1 Introduction

There are four fundamental challenges to system-level requirements-based testing:

structural independence, condition dependence, quanti�cation, and the Delta Prob-

lem. Code-based techniques provide a rich vocabulary for describing coverage cri-

teria, the means of evaluating the coverage achieved by a given test set, and, to

some degree, a means of automatically generating tests. However, techniques for

code-based testing do not need to address the fundamental challenges of system-level

requirements-based testing.

At the system level, the readability of the requirements speci�cation is of pri-

53

mary concern. The purpose of this speci�cation is to communicate what is required

of the system so that the appropriate stakeholders, e.g., customers, requirements

authors, software designers, government regulators, can comprehend and discuss

requirements issues as easily as possible. To ensure that previously generated test

frames are not made obsolete by simple changes in presentation to address readabil-

ity issues, it is essential that the derivation of test frames be structurally independent

of how the requirements are stated.

Recognizing dependencies between conditions within the requirements is nec-

essary to avoid generating infeasible test frames. Depending on the way in which

requirements are speci�ed, di�erent strategies for recognizing condition dependen-

cies may be more or less appropriate. For example, properties of well understood

primitives can be used to compute dependencies between conditions de�ned in terms

of these primitives. However, in more abstract speci�cations, other techniques may

be more appropriate.

Existential and universal quanti�cation are logic mechanisms that re
ect

phraseology commonly found in natural language. These mechanisms provide a

means of describing what is required, rather than how it is achieved. For example,

it is easier to state universally that \all men are mortal," than to enumerate the

fact for each and every man. Thus, quanti�cation is an important quality of a

system-level speci�cation language.

The impact of speci�cation changes on previously generated test frames is

an important consideration when applying any automated test frame derivation

technique to large projects. When generating new test frames, it is expensive to

ignore test results based on existing test frames that are still valid. A valid test

frame is one that is logically implied by the speci�cation. The Delta Problem is to

54

integrate existing valid test frames into new test frame sets. Structural independence

is mandatory, but additional capability is required to solve the Delta Problem.

Section 4.2 examines an application of a code-based approach to system-level

requirements. This leads to the issue of structural independence, which is elaborated

further in Section 4.3. Section 4.4 examines the impact of speci�cation type on the

choice of condition recognition strategy. Section 4.5 presents the importance of

universal and existential quanti�cation to system-level requirements-based testing.

This is followed by Section 4.6, a description of the Delta Problem.

4.2 Speci�cations as Code

The systematic derivation of tests based on the structure of code for the purpose of

testing software components is well-established. It is sensible, therefore, to consider

the possibility of simply lifting this idea up to the level of requirements-based testing

for the purpose of generating test frames.

It is relatively easy to translate stimulus-response statements, provided they

do not require quanti�cation, into a logical representation using simple code-like con-

structs such as if-then-endif, if-then-else-endif, and, or, and not. For example,

the requirement,

When Stimulus S occurs and Condition C1 or Condition C2 is true, then

the system shall produce Response R

could be translated into the following code-like representation:

if S and (C1 or C2) then R endif.

This simple approach takes into account only the top-level logical structure.

The phrases represented symbolically by S, C1, C2 and R would correspond to

55

phrases such as \the aircraft is airborne," which are left unformalized. Such phrases

could be represented formally in a parseable notation such as S [39], which allows

text strings such as \the aircraft is airborne" to be introduced as uninterpreted

constants.

This simple approach would yield a code-like representation, in the sense that

it would have a logical structure expressed by standard logical operators of common

programming languages. This logical structure serves as the basis for generating

tests from code using well-known techniques.

For example, the following code-like statement,

if (S1 and S3)

or ((not S1) and S2)

or ((not S1) and (not S3)) then

R

endif

could be used as input to a test frame generation tool based on the condition/decision

coverage criterion de�ned by Chilenski and Newcomb [12]. Their de�nition of con-

dition/decision coverage is:

Every possible decision and condition has taken all possible outcomes at

least once.

For the above example, the decision is,

(S1 and S3) or ((not S1) and S2) or ((not S1) and (not S3))

and the conditions are: S1, S2, and S3.

A test frame generation tool based on condition/decision coverage must gen-

erate a set of test frames that includes at least one test frame in which the decision

56

evaluates to true, and at least one test frame in which the decision evaluates to false.

Also, for each condition, S1, S2 and S3, there must be at least one test frame in

which the condition is true, and another test frame in which the condition is false.

A minimal set of test frames satisfying condition/decision coverage is,

1. S1 and (not S2) and (not S3)) not R, and

2. (not S1) and S2 and S3) R

where, as before, the symbol \)" is used to separate the stimuli part of the test

frame from the response part.

The �rst test speci�es that when S1 is true and S2 and S3 are false in the

environment, the system should respond in a manner consistent with \not R." Under

the truth values speci�ed by the �rst test, the decision in the speci�cation evaluates

to false. In the second test, the decision evaluates to true and the appropriate

response is R. Since each of the conditions takes on the values true and false in at

least one test, these two tests satisfy the condition/decision coverage criterion. The

set is minimal because there must be at least two tests: one in which the decision

evaluates to true, and a second in which the decision evaluates to false.

So it may appear that the methods previously developed for algorithmically

generating tests from code can simply be re-used. These methods are based exclu-

sively on structure, which, in this example, is expressed by code-like constructs, e.g.,

if-then-endif, if-then-else-endif, and, or and not.

However, a limitation of this simple approach is illustrated by the fact that

the statement,

57

if (S1 and S3)

or ((not S1) and S2)

or ((not S1) and (not S3)) then

R

endif

might alternatively have been written in the logically equivalent form:

if (S1 and S3) then

R

else

if not S1 then

if S2 or (not S3) then

R

endif

endif

endif

For this alternative form, the test frames,

1. S1 and (not S2) and (not S3)) not R, and

2. (not S1) and S2 and S3) R

would not satisfy the condition/decision coverage criterion. This is because the

structure of the alternative form involves a di�erent set of decisions than the original

form, even though they are logically equivalent.

The fact that this coverage criterion yields di�erent results for logically equiv-

alent statements is not surprising, given that it is intended to be a coverage criterion

for code at the unit level. This is partially explained by the fact that the structure

58

of the code directly a�ects compilation in terms of which instructions are executed,

and the order in which they are executed. For unit testing, the test set must be

structurally tied to the implementation, since a change in implementation source

code actually changes the underlying system.

The situation is very di�erent for system-level, requirements-based testing,

where it is likely to be highly undesirable for two semantically equivalent, but struc-

turally di�erent, statements to yield a di�erent set of tests. Hence, the above ex-

ample suggests that the usefulness of techniques based purely on code-like structure

may be limited as the basis for automating the task of generating test frames from

formalized requirements for the purpose of verifying requirements.

4.3 Structural Independence

The term structural dependence refers to the coupling between the structure of the

input of a test frame generation process, and the test frames produced. Ideally, test

frames should be structurally independent from the speci�cation from which they

were derived. The output of a test frame generation process should be a�ected by

requirements changes only to the extent that the revised requirements di�er seman-

tically from the original requirements. Two structurally di�erent, but semantically

equivalent, versions of the requirements should ideally produce the same set of test

frames.

This conjecture is based on the observation that, for a variety of reasons,

requirements may be organized structurally in a manner that is not conducive to

generating tests. It would be undesirable for redundant test frames to be generated

simply because of the structure of the requirements. Also, for a variety of reasons,

a signi�cant change to the structure of the requirements may be made with little

59

or no semantic change, i.e., no implementation changes are required. It would be

undesirable for such changes to yield a signi�cantly di�erent set of test frames if this

entails re-working existing test procedures, and/or repeating previously executed

tests.

One approach to addressing structural dependence may be to impose con-

straints on the formal representation of requirements so that there is only one way

express the requirements. However, it is doubtful that it is possible to devise an

e�ective set of constraints that would gain wide acceptance. Instead, the strategy

adopted in Chapter 5 is based on the transformation of sets of requirements into a

normal form using rules of logical reasoning.

Unfortunately, complete structural independence cannot be achieved. A con-

dition expression can be rephrased such that the new form cannot be recognized as

being equivalent to the original by automatic means. In mathematical logic terms,

complete structural independence cannot be achieved because the truth of a conjec-

ture of the equivalence of two general formulae may be undecidable.

4.4 Condition Dependence

The term condition dependence refers to logical relationships between conditions

within a requirements speci�cation. It is often the case that these dependencies are

not explicitly documented in the requirements, though they impact the derivation

of test frames.

For instance, the requirements speci�cation for an air tra�c control system

may use phrases such as \is airborne," \has landed," and \is cleared for departure,"

as primitive terms. The choice of these phrases as primitives rests upon the assump-

tion that the users of the speci�cation have enough common domain knowledge to

60

recognize dependencies between these primitives. For example, an aircraft cannot

simultaneously satisfy the condition \is airborne" and \has landed."

The set of primitive terms used in a natural language requirements speci-

�cation of a system constitutes the level of abstraction used by the requirements

authors. One approach to addressing condition dependence is to reduce the number

of primitive terms to a very small number of purely mathematical primitives. Deci-

sion procedures can then be used to search for dependencies at this standard level.

In e�ect, this lowers the level of abstraction in a manner analogous to the re�ne-

ment of a requirements speci�cation into executable code. Whereas the primitives

in code are operations on bits, the primitives in this unrestrained style of formal-

ization are, for instance, operations on mathematical sets. In both cases, the result

is a much more detailed description that blurs the distinction between \what" and

\how" in the speci�cation of the required functionality. In more practical terms,

the re�nement of hundreds or thousands of primitives down to the level of abstract

mathematics, though it may be intellectually challenging, is an indirect and costly

way to address condition dependence.

The strategy presented in Chapter 7 allows the level of abstraction used by

the domain experts to be maintained by introducing the primitive terms of the nat-

ural language speci�cation as uninterpreted elements of the formal representation.

Many formal speci�cation notations allow elements such as types, constants, func-

tions and predicates to be introduced as uninterpreted elements. In simple terms,

this means that names for these elements may be declared as part of the working vo-

cabulary of the formal representation without providing a de�nition of the element

in terms of some previously introduced or built-in element. Condition dependence is

addressed in this dissertation by allowing the user to selectively provide some forms

61

of domain knowledge as input to the test frame generator. This domain knowledge

takes the form of axiom schemata that de�ne mutually exclusive conditions and con-

ditions forming partial orders and states. This provides the required information in

order to determine dependencies between conditions. This approach is described in

further detail in Chapter 7.

4.5 Quanti�cation

Finite forms of quanti�cation are, of course, expressible in any programming lan-

guage. Universal quanti�cation over a �nite set of values can be expanded into a

conjunction of conditions. Similarly, existential quanti�cation over a �nite set of

values can be expanded into a disjunction of conditions. However, formal speci�ca-

tions often involve quanti�cation over sets of values that are not necessarily �nite,

or whose members are left unspeci�ed. Even in the case of quantifying over some

�nite sets, it may not be practical to expand the quanti�cation into a conjunction

or disjunction if the �nite set is large, e.g., the set of all 32-bit integers.

Section 4.3 outlined how a modest level of formalization could be achieved

using only simple code-like structures, such as if-then-endif, if-then-else-endif,

and, or, and not. However, this propositional logic style of formal speci�cation

may not be adequate in all cases. Circumstances may require more expressive kinds

of formal speci�cation, based, for instance, on predicate logic with quanti�ers.

The ability to quantify universally, i.e., \for all," or existentially, i.e., \there

exists," over a set of values often allows the expression of requirements in the formal

representation to more closely correspond to their expression in natural language.

This is often a matter of being able to express what functionality is required, rather

than how the function is to be realized. Quanti�ers are also useful when specifying

62

global constraints that in
uence the interpretation of other requirement statements.

For this reason, quanti�cation is also a fundamental challenge which must

be addressed by any practical approach to generating test frames from formalized

requirements. Obviously, existing techniques for generating test frames from code

are not equipped to accept input containing quanti�ers, since programming lan-

guages do not include general quanti�ers as operators.

4.6 The Delta Problem

The Delta Problem, which is the integration of existing tests with new ones, requires

analysis and is di�erent from structural independence. Structural independence

provides a degree of latitude that allows the test generator to produce tests to �t

certain criteria. This also allows the test generator to integrate existing tests with

new ones.

When speci�cation changes occur, it is necessary to minimize their impact

on existing test sets previously constructed. Although generating a completely new

test set is possible, this is undesirable if testing has already begun. Assuming that

the requirements changes do not require any implementation changes, it is less ex-

pensive to perform a few new tests to augment positive results already obtained than

to dismiss previous positive results and perform a larger number of di�erent tests.

For example, if a portion of the requirements is re-worded for clarity or contractual

reasons, but no implementation changes are necessary and the test generator pro-

duced di�erent tests based on the re-wording, then unnecessary and perhaps costly

testing would be performed. Thus, existing tests must be integrated with any new

tests by the test generator.

This capability is not necessary in the context of code-based testing. A rear-

63

rangement of conditions within coded decisions rarely results in a situation where the

implementation does not need to be re-tested. This is because such a change usually

results in a change to the implementation. For example, in a C program, simply

changing if (a || b) to if (b || a) changes the order of evaluation. Since the

implementation has changed, it must be re-tested; therefore, generating new tests

is not wasteful.

In order to minimize test set impact due to speci�cation changes, a test frame

generator should accept two inputs: the speci�cation for which test frames are to be

derived, and the previous set of test frames. To the extent possible, the test frame

generator should attempt to use the previously generated test frames as a starting

point for constructing a test set that satis�es the given coverage criterion. This

should be the case whether the speci�cation or the coverage criterion is changed.

Extending this idea, it is desirable to allow test engineers to specify the \previous

tests." This would provide a means of allowing test engineers to mandate certain

tests, and to use the test frame generator to complete the test set according to a

chosen coverage scheme.

4.7 Summary

This chapter has examined the possibility of writing requirements like program code

to take advantage of well-known, existing code-based techniques. This has led to the

identi�cation of certain challenges to be overcome by a technique that can be applied

to requirements-based testing. The challenges, structural independence, condition

dependence, quanti�cation, and the Delta Problem, distinguish requirements-based

testing from code-based testing.

The �rst challenge is that requirements-based tests should be structurally

64

independent of the way in which the requirements are written. This is not required

of code-based test generation techniques which produce tests that are structurally

dependent. Unfortunately, complete structural independence cannot be achieved for

all speci�cation languages.

The second challenge is to capture condition dependencies amongst condi-

tions that may not be de�ned in terms of primitives, as is the case in code. These

dependencies are necessary in order to avoid generating infeasible tests and to sim-

plify those that are feasible.

Quanti�cation provides an expressiveness that is useful for describing require-

ments at the system level. This challenge does not exist in the domain of code-based

techniques, but must be addressed in a discipline of requirements-based testing.

The fourth challenge is the Delta Problem. Wasteful rework can be avoided

with the ability to integrate existing tests into new test sets when requirements

changes occur. This challenge is speci�c to requirements-based testing, because a

substantial re-wording of the requirements does not necessitate the obsolescence of

all existing tests.

65

Chapter 5

A Foundation for the Discipline

This chapter presents a discipline of test derivation which includes algorithms for

generating test frames from formal speci�cations containing universal and existential

quanti�cation. A nomenclature for de�ning speci�cation-based coverage criteria is

based on the parameters of these algorithms. The foundation of this technique on

formal rules of logical derivation ensures that the test frames produced are logical

consequences of the speci�cation. Since this technique deals with quanti�cation, it

can be applied to more expressive speci�cations than previous approaches. This also

makes the technique applicable to speci�cations written at the system requirements

level.

5.1 Introduction

It is well recognized that there is an important distinction between specifying what a

system should do, and how this goal is to be achieved. In particular, when specifying

system-level requirements it is important to focus on \what," while specifying as

little \how" as possible. Mathematical logic provides a means of describing \what"

66

without describing \how." Conversely, code is well suited to describing \how," but is

more di�cult to use when trying to describe \what" without \how." For this reason,

along with the issues raised in the previous chapter, logic-based approaches seem

to be better suited as a foundation for automating system-level requirements-based

testing.

The most appropriate existing test-generation technique for the type of spec-

i�cations addressed by this thesis is the DNF approach, which arose from the work

of Dick and Faivre [17]. However, this approach has certain limitations. An alter-

native to the DNF approach forms the basis of the discipline of speci�cation-based

test derivation presented in this dissertation.

There are three fundamental entities that highlight the intermediate stages

to generating test frames: test classes, frame stimuli, and test frames. These entities

form the basis of the nomenclature which will be used in Chapter 6 to de�ne coverage

criteria. During the production of test classes, certain forms of speci�cations can be

agged as possible speci�cation errors. Test class normal form is the key mechanism

by which system behaviours are grouped. The production of test frames introduces

the notion of speci�cation coverage. The terms test class, test frame, and frame

stimuli form the foundation for the nomenclature that will be used to de�ne coverage

criteria. The basic coverage concepts introduced in this chapter are extended further

in Chapter 6.

Section 5.2 begins this chapter by detailing some of the limitations of test

generation techniques based on the work of Dick and Faivre [17]. Section 5.3 intro-

duces the notation and fundamental terminology for the discipline. This is followed

by Section 5.4, which de�nes test classes, test frames, and test steps and provides an

overview of the relationships between them. Section 5.5 presents one of the funda-

67

mental ideas of this thesis: Test Class Normal Form. Section 5.6 deals with coverage

schemes and the actual generation of test frames from test classes.

5.2 A Place to Start

The DNF approach is based on a procedure for transforming a formal speci�cation

into a disjunctive normal form that represents the possible states of the system.

Test steps are inferred from the disjuncts by determining the pre-condition for the

corresponding state. Speci�cations are transformed using logical manipulations such

as

A) B = :A _ (A^ B), and

A _ B = (A ^ :B) _ (:A ^ B)_ (A ^ B).

An example from Dick and Faivre's original paper [17] illustrates their pro-

cess. The speci�cation (max = a _max = b) ^max > a ^max > b is transformed

and simpli�ed into the set of state descriptions:

fmax = a ^max = b;max = a ^max > b;max = b ^max > ag.

Each element of the above set represents a possible state of the system.

A limitation of this approach is that disjunction and implication are treated

di�erently. This implies that if an author wrote B _ :A or :B) :A rather than

A) B , di�erent tests would result. The limitations of this type of structural

dependence were presented in Section 4.3.

Care must be taken when dealing with non-determinism in the context of

the DNF approach. This thesis does not consider the merits or problems associated

with non-deterministic speci�cations, but acknowledges their existence. Hayes and

68

Jones [30] describe situations where non-deterministic speci�cations are particularly

useful. The non-deterministic speci�cation S ^ (R1 _ R2) leads to three possible

states:

S ^ :R1 ^ R2, S ^ R1 ^ :R2, and S ^ R1 ^ R2.

However, these three states do not directly correspond to three valid tests, i.e., tests

that will not reject a correct program. This is di�erent from the �rst example,

where each state corresponds to a valid test. Clearly, it would be more appropriate

not to split the original disjunction in this case. This problem hints that there is a

fundamental di�erence between stimuli and responses, which needs to be addressed

when generating tests.

A further limitation of this approach is that it does not explicitly address

the presence of universal and existential quanti�ers within the speci�cation. Along

with addressing quanti�cation issues, the discipline presented in this dissertation

takes a slightly di�erent approach to test derivation. Rather than producing a

disjunction of all possible states, a conjunction of the stimulus-response behaviours

of the system is produced. In the speci�cation of possible states produced by the

DNF approach, stimuli, responses, and non-determinism are not obvious. Tests can

be more readily derived from stimulus-response descriptions, since the stimuli and

responses are explicitly separated.

5.3 Notation and Terminology

The technique presented in this dissertation is based on the logical relationships

between elements within the speci�cation. Since it is not tied to a particular speci-

�cation language such as S [39] or Z [61], standard logical expressions shall be used

69

in the text below. The technique is composed of two algorithms, which are founded

on the following de�nitions:

1. A predicate represents a parameterised truth value.1 The symbols > and ?

represent the Boolean values true and false.

2. An atom is either a predicate or a negated predicate.

3. A stimulus is an atom that only refers to the state of the system before an

operation is performed.

4. A stimulus expression is a predicate logic expression where each atom is a

stimulus.

5. A frame stimulus is a restricted form of stimulus expression. The exact de�ni-

tion of a frame stimulus for a particular test class is provided algorithmically

in Section 5.6.1. A frame stimulus has one of the following forms:

(a) an atom,

(b) a universally quanti�ed atom,

(c) a universally quanti�ed disjunction of stimulus expressions, or

(d) a universally quanti�ed stimulus expression which is itself existentially

quanti�ed, e.g., 8 x : 9 y :E(x ; y), where E is a stimulus expression.

6. A response is an atom that contains at least one reference to the state of the

system after the operation has completed, and may also refer to the previous

state, i.e., any atom which is not a stimulus is a response.

1In this dissertation, the term predicate refers to the predicate symbol and its parameters.

70

7. A response expression is a predicate logic expression where each atom is a

response.

A speci�cation of a system is a logical expression relating the state of the

system at the time a stimulus occurs, to the state of the system at the time the

response is produced. The expression is constructed from predicates, the logical

connectives conjunction, disjunction, implication, and negation, along with universal

and existential quanti�cation (the standard logic symbols are _;^;);:; 8, and 9,

respectively). A system speci�cation may be of the form:

(S1) R1) ^ (S2) R2) ^ : : : (5.1)

where the Si are stimulus expressions and the Ri are response expressions. This

speci�es a system that will satisfy Ri when given the stimulus Si . In this spec-

i�cation, each implication describes a class of behaviour to be exhibited by the

system. However, a speci�cation is not restricted to this form. The restrictions on

speci�cation form are given in Sections 5.5.3 and 5.5.4.

The following example illustrates the above de�nitions. The speci�cation

used in this example is a Z adaptation of a portion of the VDM-SL style RSL solution

by Schinagl [58] to Abrial's steam boiler speci�cation problem [1]. Modi�cations

were made to construct a concise example, but these changes do not a�ect its logical

complexity. Test frames generated from a larger portion of Schinagl's speci�cation

are given in Appendix B.

Abrial's speci�cation problem is to formally specify requirements for a control

system responsible for maintaining the correct level of water in a boiler attached

to a steam, driven turbine. One of the requirements of this system is to identify

whether or not any inconsistencies exist in the sensor readings.

71

: OutOfOrder 0 ,

(9!n : N � Level n) ^

(9!n : N � Steam n) ^

(8 i : PUMP � PumpState(i ;>), : (PumpState(i ;?))) ^

(8 i : PUMP � 9 b : bool � PumpCtrState(i ; b))

A, B is de�ned as (A) B) ^ (B) A). Exists unique, 9!, is de�ned as,

9!x :S x = 9 x :S x ^ (8 x ; y :S x ^ S y) (x = y))

This speci�cation requires that the \out of order" indicator, OutOfOrder, is

true if and only if there is a detected malfunction. The predicates Level, Steam,

PumpState, and PumpCtrState represent the presence of various messages just re-

ceived from the sensors. Level indicates the quantity of water in the boiler, Steam

indicates the quantity of steam coming from the boiler, PumpState indicates whether

the given pump, i , is turned on (>) or o� (?), PumpCtrState indicates whether or

not water is circulating from the pump, i , to the boiler. Primed variables are ref-

erences to the after state, thus :OutOfOrder 0 is a response. All the other atoms,

such as PumpState(i ;>), are stimuli.

This speci�cation is a relationship between the response and various stimuli.

Although it is not written directly in the form of (5.1), it can be translated into that

form as part of test frame generation.

5.4 Overview

Requirements speci�cations are written to be understood at particular levels of

abstraction. For this reason, many details are hidden within de�nitions of more

72

abstract concepts. Issues of clarity are left to the discretion of the speci�cation

authors. Hence, it must be assumed that the speci�cation is an arbitrary logical

expression and there is some means of distinguishing stimuli from responses.

Test classes are the intermediate step between the speci�cation and test

frames. The derivation of test classes requires a means of distinguishing stimuli

from responses. A test class isolates one behaviour from the speci�cation. The test

class can be considered as a standard format for writing requirements. However, for

practical reasons, it is unlikely that all speci�cations would be written as a simple

conjunction of test classes as in (5.1).

B RA

RA RB

Specification

Test Steps

Test Frames

Test Classes

...

...

Figure 5.1: Entity Relationships

Figure 5.1 illustrates the relationships between the speci�cation, test classes,

73

test frames, and test steps.

De�nition 1 A test class is an implication S) R, which may be quanti�ed, where

S is a stimulus expression and R is a response expression. Quanti�ers may appear

anywhere in the test class, and may also bind variables occurring in both S and R.

The purpose of the test class is to isolate a class of behaviour based on the response.

The �rst step of the test frame generation process is to transform the speci�cation

into its test class normal form such as (5.1). Details of this transformation are

presented in Section 5.5.

A set of test frames is produced from each test class.

De�nition 2 A test frame is an implication A) R, which may be quanti�ed,

where A is a conjunction of frame stimuli and R is the response expression from the

corresponding test class. Quanti�ers may also bind variables occurring in both A

and R. A test frame A) R generated from the test class S) R has the property

that A) S.

The generation of test frames is presented in Section 5.6.

De�nition 3 A test step is an implication t) R, where t is a conjunction of

atoms and R is a response expression. Quanti�ers can only occur in R.

Although it is desirable to derive test steps, these cannot, in general, be gener-

ated automatically from the type of speci�cations considered in this dissertation.

However, much of the e�ort required to generate a test step can be performed au-

tomatically by producing a test frame. As stated in Section 1.2, the instantiation

of test frames into test steps is beyond the scope of this thesis.

74

The computation of test frames from a speci�cation can be performed within

any logic consistent with the manipulations used in this chapter. The algorithms

do not diverge, due to the use of convergent subsets of logical inferences when

transforming portions of the speci�cation.

5.5 Test Class Normal Form

This section presents the underlying algorithm for producing test classes. Variations

of this algorithm are presented later in Section 6.4. This algorithm has the following

important properties:

1. For non-demonic2 formal speci�cations, test class normal form can be com-

puted in O(n log n) time in the size of the speci�cation.

2. It is founded on rules of mathematical logic, which ensures that the algorithm

is logically sound.

De�nition 4 Test class normal form is a conjunction of test classes with distinct

responses.

It can be achieved by applying the test class algorithm to a speci�cation which is

a logical relation with restrictions (Sections 5.5.3, 5.5.4). Test class normal form is

not canonical.

5.5.1 The Test Class Algorithm

The test class algorithm can be described as a function on logical expressions. The

result of applying this function to an expression, E , is a conjunction of test classes

2Demonic speci�cations are described in Section 5.5.4.

75

which is logically equivalent to E . The test class algorithm rewrites the speci�cation

into its test class normal form. This does not alter its logical content.

Assuming R is a response and S is a stimulus, a de�nition for the recursive

test class algorithm, TC , is:

TC (A^ B) = RewriteAnd(TC (A)^ TC (B)) conjunction

TC (A_ B) = RewriteOr(TC (A)_ TC (B)) disjunction

TC (8 x :P) = ForallIn(8x :TC (P)) quanti�cation

TC (9 x :P) = ExistsIn(9x :TC (P)) quanti�cation

TC (A) B) = TC (:A_ B) implication

TC (R) = >) R response

TC (S) = :S) ? stimulus

S and R can refer to negated predicates. Negated expressions are dealt with by

applying DeMorgan's laws and double negation to move the negation inwards and

proceeding.

:(A _ B) = :A ^ :B

:(A ^ B) = :A _ :B

: :A = A

In the descriptions below, it is assumed that the TC algorithm is operating

on an expression that has a test class normal form. Expressions that do not have a

test class normal form are addressed in Sections 5.5.3 and 5.5.4, below.

The algorithm RewriteAnd operates on a conjunction of test classes and

combines any like antecedents and consequents using the equivalences:

(A) B)^ (A) C) = A) (B ^ C)

(A) C)^ (B) C) = (A _ B)) C

76

Combining response expressions is preferred over combing stimuli expressions. Ap-

plications of these equivalences may require a rearrangement of the two implications

to be combined. For example, a conjunction such as,

(Steam x) ?) ^ C ^ (Level y) ?)

would be rewritten to:

((Steam x _ Level y)) ?) ^ C

The algorithm RewriteOr operates on a disjunction of two conjunctions of

test classes and �rst reduces any AND/OR connectives above these test classes to

conjunctive normal form. Next, any universal and existential quanti�ers are moved

outside the disjunctions. This is done using the equivalences:

(8 x :Q) _ P = 8 x :Q _ P

P _ (8 x :Q) = 8 x :P _ Q

(9 x :Q) _ P = 9 x :Q _ P

P _ (9 x :Q) = 9 x :P _ Q

where x is alpha converted if necessary to avoid capturing any free occurrence of x

in P . Finally, the test classes are OR'd together using the equivalence

(S1) R1) _ (S2) R2) = S1 ^ S2) R1 _ R2 (5.2)

The RewriteOr algorithm is illustrated with the following example. When

manipulating the expression,

((Steam x) :OutOfOrder 0) ^ (>) OutOfOrder 0))_ (8 x :Level x) ?)

77

the �rst step is to produce the conjunctive normal form:

((Steam x) :OutOfOrder 0) _ (8 x :Level x) ?))^

((>) OutOfOrder 0) _ (8 x :Level x) ?))

Next, the universal quanti�ers are moved outside the disjunctions. Here, the variable

x1 is introduced to avoid capturing the x of Steam x .

(8 x1:(Steam x) :OutOfOrder 0) _ (Level x1) ?)) ^

(8 x :(>) OutOfOrder 0) _ (Level x) ?))

The last step in the RewriteOr algorithm is to use Equation (5.2) to remove the

disjunctions between the implications.

(8 x1:(Steam x ^ Level x1)) :OutOfOrder 0) ^ (8 x :Level x) OutOfOrder 0)

For non-demonic speci�cations, the RewriteOr algorithm is O(n log n) since

at least one of TC (A) and TC (B) in RewriteOr(TC (A)_TC (B)) produces a single

intermediate test class.3

The algorithm ForallIn operates on a conjunction of test classes and moves

the universal quanti�er into the conjunction, if possible, using the equivalences:

(8 x :P ^ Q) = (8 x :P)^Q

(8 x :Q ^ P) = Q ^ (8 x :P)

(8 x :M ^ P) = (8 x :M) ^ (8 x :P)

(8 x :P) Q) = (9 x :P)) Q

(8 x :Q) P) = Q) (8 x :P)

3Implications formed during the production of test classes are referred to as intermediate test

classes.

78

where x is free in P and M , and x is not free in Q .

The algorithm ExistsIn operates on a conjunction of test classes and moves

the existential quanti�er, if possible, into the test class using the equivalences:

(9 x :P ^Q) = (9 x :P) ^Q

(9 x :Q ^ P) = Q ^ (9 x :P)

(9 x :P) Q) = (8 x :P)) Q

(9 x :Q) P) = Q) (9 x :P)

(9 x :M) P) = (8 x :M)) (9 x :P)

where x is free in P and M , and x is not free in Q .

Some expressions do not have a test class normal form due to the arrangement

of quanti�ers. It is also possible for the conjunctive normal form produced by

RewriteOr to be combinatorially large. These types of speci�cations are examined

in Sections 5.5.3 and 5.5.4.

5.5.2 Example

This example illustrates the derivation of the test class normal form of the speci�-

cation given in Section 5.3 above. The derivation is the evaluation of

TC (:OutOfOrder 0 ,

(9!n:Level n) ^

(9!n:Steam n) ^

(8 i :PumpState(i ;>), :(PumpState(i ;?))) ^

(8 i : 9b:PumpCtrState(i ; b))

79

As a preliminary step in the derivation, the de�nition of 9! is expanded to obtain:

TC (:OutOfOrder 0 , E)

where E is:

((9n:Level n) ^

(8 n;m:(Level n) ^ (Level m)) (n = m)) ^

(9 n:Steam n) ^

(8 n;m:(Steam n) ^ (Steam m)) (n = m)) ^

(8 i :PumpState(i ;>), :PumpState(i ;?))^

(8 i : 9b:PumpCtrState(i ; b))))

Next, the de�nition of , is used to derive:

TC ((:OutOfOrder 0) E) ^ (E) :OutOfOrder 0))

Following this, the application of the TC algorithm's conjunction rule yields:

= RewriteAnd(TC (:OutOfOrder 0) E) ^ TC (E) :OutOfOrder 0))

The next operation is to rewrite the implication of the �rst TC term and then use

the rule for disjunction (the : : : represent una�ected subexpressions):

= RewriteAnd(RewriteOr(TC (::OutOfOrder 0) _ TC (: : :)) ^ TC (: : :))

The double negation is removed and the response rule is then applied:

= RewriteAnd(RewriteOr((>) OutOfOrder 0)_ TC (: : :)) ^ TC (: : :))

80

Using the rule for conjunction on the next TC term produces:

= RewriteAnd(RewriteOr((>) OutOfOrder 0) _

RewriteAnd(TC (9n:Level n) ^ TC (: : :))^ TC (: : :)))

The quanti�cation rule followed by the stimulus rule gives:

= RewriteAnd(RewriteOr((>) OutOfOrder 0) _

RewriteAnd(ExistsIn(9n::(Level n 2 inmess)) ?) ^ TC (: : :))

^ TC (: : :)))

Applying ExistsIn yields:

= RewriteAnd(RewriteOr((>) OutOfOrder 0)_

RewriteAnd(((8n::(Level n))) ?) ^ TC (: : :)) ^ TC (: : :)))

A full application of the algorithm to the next TC term produces:

= RewriteAnd(RewriteOr((>) OutOfOrder 0) _

RewriteAnd(((8n::(Level n))) ?) ^

(((9n;m:(Level n) ^ (Level n) ^ :(n = m)) _

(8 n::(Steam n))_

(9 n;m:(Steam n) ^ (Steam n)^ :(n = m)) _

(9 i :(PumpState(i ;>)^ PumpState(i ;?))_

(:(PumpState(i ;>))^ :(PumpState(i ;?))))_

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

) ?))^

TC (: : :)))

81

Since the consequents of the two inner-most implications are identical (?), applying

the inner-most RewriteAnd produces:

= RewriteAnd(RewriteOr((>) OutOfOrder 0) _

(((8n::(Level n))_

(9n;m:(Level n) ^ (Level n 2 inmess)^ :(n = m)) _

(8n::(Steam n)) _

(9n;m:(Steam n) ^ (Steam n 2 inmess)^ :(n = m)) _

(9 i :(PumpState(i ;>)^ PumpState(i ;?))_

(:(PumpState(i ;>))^ :(PumpState(i ;?))))_

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

) ?) ^

TC (: : :)))

Applying RewriteOr combines the response and stimuli to produce the �rst test

class:

= RewriteAnd(

(((8n::(Level n))_

(9n;m:(Level n) ^ (Level n 2 inmess)^ :(n = m)) _

(8n::(Steam n)) _

(9n;m:(Steam n) ^ (Steam n 2 inmess)^ :(n = m)) _

(9 i :(PumpState(i ;>)^ PumpState(i ;?))_

(:(PumpState(i ;>))^ :(PumpState(i ;?))))_

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

82

) OutOfOrder 0)^

TC (: : :)))

Continuing with the remaining TC term produces the second test class:

(9n:Level n) ^

(8n;m::(Level n) _ :(Level m 2 inmess)_ (n = m)) ^

(9n:Steam n) ^

(8n;m::(Steam n) _ :(Steam m 2 inmess)_ (n = m)) ^

(8 i :(:(PumpState(i ;>))_ :(PumpState(i ;?)))^

(PumpState(i ;>)_ PumpState(i ;?))^

(8 i : 9 b:PumpCtrState(i ; b))

) :OutOfOrder 0

5.5.3 Existential Quanti�cation

Speci�cations employing certain uses of existential quanti�cation impose limitations

on the test class algorithm, TC . Even so, such speci�cations can be converted

algorithmically into speci�cations from which the TC algorithm can produce a test

class normal form.

The limitations are manifested in the quanti�cation rules of the TC algorithm

as follows. ForallIn will not be successful in moving the universal quanti�er into the

conjunction if there is an existential quanti�er in the way,

e.g., 8 x : 9 y :(S1) R1) ^ (S2) R2); (5.3)

where y is free in at least one of S1 and R1, and also in at least one of S2 and R2.

This occurs when an existential quanti�er straddles two intermediate test classes.

83

An example of a speci�cation similar to Equation (5.3) is:

The system shall ensure that there is at least one printer satisfying the

following:

1. if a job is printing on the printer, it will be completed within ten

minutes; and

2. if there is a job about to be printed on the printer, it will commence

printing within 15 minutes.

The intermediate expression encountered by the TC algorithm would be:

9 printer :(8 job:job PrintingOn printer) CompletedWithinTenMinutes job)^

(8 job:job FirstToPrintFor printer) StartsWithin15Minutes job)

In a speci�cation, one would expect that the individual, printer , would be

named explicitly, rather than implicitly by using an existential. Speci�cations such

as these can be
agged by the TC algorithm. Alternatively, the existential variable

can be replaced by a Skolem constant, e.g., in the case of Equation (5.3), f , a

function of x , where f was not previously a free variable of the speci�cation.

If desired, the existential quanti�er in Equation (5.3) can be pushed inwards

using the theorem

(9 x :P(x) ^ Q(x))) ((9 x :P(x)) ^ (9 x :Q(x)))

However, the use of this theorem produces a set of test classes that are implied by

the original speci�cation, rather than a set whose conjunction is logically equivalent

to the original speci�cation. Thus, this theorem cannot be used to produce a test

class normal form of a speci�cation.

84

It is possible that this existential quanti�cation issue can also be addressed

by other means.

5.5.4 Demonic Choice

Some forms of non-determinism, e.g., S) (R1 _ R2), are of no consequence to the

test class algorithm. Demonic choice is a form of non-determinism which allows the

implementation to behave according to more than one speci�cation, arbitrarily. The

demonic speci�cation

(S1) R1) _ (S2) R2)

does not force an implementation to produce R1 in response to S1, since it has the

option of behaving like S2) R2 and ignoring S1. An implementation of this spec-

i�cation is not required to produce a response unless confronted with the stimulus

S1^S2. In this case, it may elect to produce either R1, R2, or both, and still perform

according to the speci�cation.

The following example illustrates consequences of the demonic speci�cation:

The system shall arbitrarily perform at least one of the following actions:

1. Call the �re department, if there is a �re.

2. Call the police, if there is an explosion.

A formal version of this speci�cation is:

(�re) Call �re dept) _ (explosion) Call police):

The speci�cation requires the system to respond only when there is both a �re

and an explosion. When the system responds, it is allowed to call either the �re

85

department or the police. The speci�cation would be satis�ed by a system that

never called the �re department, even when there was a �re.

The test class algorithm can be applied to a demonic speci�cation. However,

this type of speci�cation can cause a combinatorially large test class normal form

due to the de�nition of RewriteOr. For example, the intermediate expression (C1 ^

C2)_ (C3 ^C4) is converted to (C1_C3)^ (C1 _C4)^ (C2_C3)^ (C2 _C4) before

the disjunctions of test classes are combined using (5.2).

The author's experience suggests that this type of speci�cation does not

typically arise in system-level speci�cations. Each time a speci�cation has been

agged as demonic by the TC algorithm, it has turned out to be a speci�cation

error rather than an intended behaviour.

5.6 Generating Test Frames

As de�ned in Section 5.4, a test frame from a given test class S) R is an implication

A) R, where A) S , A is a conjunction of frame stimuli, and R is a response

expression. Quanti�ers may also bind variables occurring in both A and R.

A variety of di�erent test frame sets can be constructed from a test class.

One possible set of test frames is the one derived from a disjunctive normal form

(DNF) of the test class antecedent. However, the test class antecedent may have

more than one DNF, e.g., the function (a^:c)_ (:b^c)_ (:a^b) and its alter ego

(a ^ :b) _ (:a ^ c)_ (b ^ :c). In the context of the Delta Problem of Section 4.6,

this raises an issue. If an existing test set contains a valid test frame which does not

correspond to a term in the DNF of the antecedent of the test class, it will not be

recognized as valid and will be replaced. This is not desirable, since tests should be

replaced only when necessary.

86

Assuming that the frame stimuli in the existing test frame set form a subset

of the frame stimuli in the test class antecedent, the problem of determining a set

of test frames that satisfy a given criteria is NP-hard. A solution to this problem

would also solve what Garey and Johnson [25] refer to as \[LO7] SATISFIABILITY

OF BOOLEAN EXPRESSIONS." The solution would be to use the given Boolean

expression as a test class antecedent and a criteria that requires at least one test

frame, if any exist, the expression is satis�able if and only if the set of test frames is

non-empty. The binary decision diagram (BDD) [8] is a convenient tool for address-

ing this type of problem. The technique described here uses BDDs to perform test

frame construction and selection. The strategy for generating test frame antecedents

is:

1. Assign BDD variables to each frame stimulus.

2. Generate the set of prime implicants4 for the antecedent of the test class.

3. Using the heuristic to be described in Appendix C, attempt to identify any

existing or mandated valid test frames that can contribute to the coverage of

the current test class. This forms the initial set of test frames.

4. Augment this set with other elements from the set of prime implicants to

construct a set satisfying the desired coverage criterion.

5.6.1 Frame Stimuli

BDDs encode unquanti�ed Boolean expressions. Quanti�ers within the test class

place a limit on the granularity of the terms which appear in test frames. To

4An implicant of a formula is a conjunction of variables or negated variables which imply the
formula. An implicant is prime if it implies no other implicant. For example, A and :B are prime
implicants of A_:B . A^:B is an implicant, but is not prime because it implies at least one other
implicant, e.g., :B .

87

obtain an unquanti�ed expression from the test class antecedent, quanti�ers are

pushed inwards to be grouped as tightly as possible to the stimuli that they quantify.

Existential quanti�ers which are not blocked by universal quanti�ers are then moved

outside the implication, where they become universal quanti�ers. This minimizes

the number of quanti�ers in the test class antecedent.

The theorems used for determining frame stimuli are:

8 x :P _Q = (8 x :P) _Q

8 x :Q _ P = Q _ (8 x :P)

8 x :P ^Q = (8 x :P) ^Q

8 x :Q ^ P = Q ^ (8 x :P)

8 x :P ^M = (8 x :P) ^ (8 x :M)

8 x : 8 y :P(x ; y) = 8 y : 8 x :P(x ; y)

9 x :P ^Q = (9 x :P) ^Q

9 x :Q ^ P = Q ^ (9 x :P)

9 x :P _Q = (9 x :P) _Q

9 x :Q _ P = Q _ (9 x :P)

9 x :P _M = (9 x :P) _ (9 x :M)

9 x : 9 y :P = 9 y : 9 x :P

(9 x :P)) Q = 8 x :P) Q

where x is free in M , x and y are free in P , and x is not free in Q . Although the

rules for swapping quanti�ers could cause a rewrite system to diverge, they are only

applied in a controlled manner. These rules are used to move quanti�ers of speci�c

variables to positions within the expression where they can be pushed inwards.

An illustration of this process is as follows:

(8 x : 9 y :A(x) ^ (B _ C (y)))) R

= ((8 x :A(x)) ^ (B _ 9 y :C (y)))) R

= (9 y :(8 x :A(x)) ^ (B _ C (y)))) R

= 8 y :((8 x :A(x)) ^ (B _ C (y)))) R:

88

Applying this process to the steam boiler test classes results in:

8 n;m; i :

(8 n::(Level n))_

(Level n ^ Level m ^ :(n = m)) _

(8 n::(Steam n))_

(Steam n ^ Steam m ^ :(n = m)) _

((PumpState(i ;>)^ PumpState(i ;?))_

(:(PumpState(i ;>))^ :(PumpState(i ;?))))_

(8 b::(PumpCtrState(i ; b)))

) OutOfOrder 0 (5.4)

and

8 n1; n2:

(Level n1) ^

(8n;m::(Level n) _ :(Level m) _ (n = m)) ^

(Steam n2) ^

(8n;m::(Steam n) _ :(Steam m) _ (n = m)) ^

(8 i ::(PumpState(i ;>))_ :(PumpState(i ;?)))^

(8 i :PumpState(i ;>)_ PumpState(i ;?))^

(8 i : 9 b:PumpCtrState(i ; b))

) :OutOfOrder 0:

A BDD representation is constructed by substituting a variable for each

quanti�ed subexpression and unquanti�ed stimulus. The quanti�ed subexpressions

89

and unquanti�ed stimuli represented by BDD variables are referred to as frame

stimuli.

The antecedent of Equation (5.4) can be represented with the unquanti�ed

expression:

V1 _ (V2 ^ V3 ^ :E) _W1 _ (W2 ^W3 ^ :E) _ ((X ^ Y) _ (:X ^ :Y))_ Z

where

V1 = 8 n::(Level n)

V2 = Level n

V3 = Level m

W1 = 8n::(Steam n)

W2 = Steam n

W3 = Steam m

X = PumpState(i ;>)

Y = PumpState(i ;?)

Z = 8 b::(PumpCtrState(i ; b))

E = (n = m)

The set of prime implicants is then generated from the BDD representation

of this expression. For this particular speci�cation, Implicant, DNF, and Term

Coverage, de�ned in Section 5.6.2 below, result in the same test frames. Test frames

are constructed around the prime implicants, which can be seen in the following test

frame antecedents:

90

(8 n::(Level n))

) OutOfOrder 0

(8n::(Steam n))

) OutOfOrder 0

8 n;m:Level n ^

Level m ^ :(n = m)

) OutOfOrder 0

8 n;m:Steam n ^

Steam m ^ :(n = m)

) OutOfOrder 0

8 i :PumpState(i ;>)^

PumpState(i ;?)

) OutOfOrder 0

8 i ::(PumpState(i ;>))^

:(PumpState(i ;?))

) OutOfOrder 0

8 i :(8 b::(PumpCtrState(i ; b)))

) OutOfOrder 0

Although quanti�ers were used liberally throughout the speci�cation, rea-

sonable test frames could still be generated automatically. It is less tedious and

less error-prone to manually derive test steps from these test frames than from the

original speci�cation.

5.6.2 Coverage Schemes

This section introduces the basics of coverage schemes which are algorithms for

selecting test frames to satisfy the corresponding coverage criteria. The topic of

coverage is examined in greater detail in Chapter 6.

A major concept of this thesis is that coverage of a test class by its test

frames is described by relating the test frame antecedents to the antecedent of the

test class.

91

A test frame is uniquely identi�ed within a test class by its antecedent. In

general, a coverage scheme is a function, C , from a set of possible test frame an-

tecedents, I , to a subset, F , of I chosen by the coverage scheme, and a
ag, r , which

indicates whether F satis�es the coverage criterion. The coverage scheme builds F

by repeatedly selecting test frame antecedents from the given set of possibilities, I ,

until this set of selections, F , satis�es the corresponding coverage criterion, or no

more selections from I can make a further contribution to satisfying the coverage

criterion.

A coverage scheme can be used to evaluate a given test frame set, T , by

evaluating C (Ant(T)) = (F ; r), where Ant provides the set of antecedents of the

given set of test frames. The redundant test frames are those represented in T but

not in F . The completeness of T is given by r .

The author proposes the following terms for some fundamental coverage

schemes:

1. All points: This is similar to the DNF of Dick and Faivre, where each test

frame speci�es the truth or falsehood of each of the frame stimuli from the

test class stimulus expression.

2. Implicant: Test frames are produced for each prime implicant.

3. DNF: Test frames are produced for a subset of prime implicants. The disjunc-

tion of this subset corresponds to a DNF of the test class stimulus expression.

4. Partition: A subset of prime implicants is used to determine an implicant

set which is similar to DNF coverage, but the implicants are pair-wise contra-

dictory. There is no test step that will satisfy any two test frames.

92

5. Term: Test frames are produced for a subset of prime implicants such that

each frame stimuli from the test class stimulus expression is present in at least

one of the selected prime implicants. A precise mathematical de�nition of

Term Coverage is given in Section 6.8.

The di�erences between these coverage schemes can be illustrated by consid-

ering the number of terms produced when applied to the expression in Figure 5.2.

This �gure shows the points where the expression is true (black dots), and compares

the Karnaugh maps [40] corresponding to the coverage schemes de�ned above. Each

bubble represents the antecedent of a test frame. One antecedent may cover several

points. This occurs when the truth value of some variables is not speci�ed. The

coverage schemes produce 8, 5, 4, 4, and 3 test frames, respectively.

Comparison of coverage schemes applied to
(:W ^ :X ^ :Y)_ (:W ^ :Y ^ Z) _ (X ^Y) _ (W ^ Y ^ :Z)

Term:

WX
YZ 00 01 11 10

00
01
11
10

All Points:

Implicant:

Partition:

DNF:

Figure 5.2: Coverage Schemes

Term coverage is of interest, since the size of the corresponding test frame

set is linear with respect to the size of the test class rather than combinatorial, as

93

are the other coverage schemes. Term coverage does not produce test frames that

cover two of the eight all-points cases, W ^ X ^ Y ^ Z and :W ^ X ^ Y ^ :Z .

This is the compromise made in order to produce fewer tests in situations where it

is appropriate to do so.

The steam boiler example used in this chapter focuses on issues of determin-

ing frame stimuli. In this example, there are several frame stimuli but few combi-

nations of logical conjunction and disjunction (AND and OR). Hence, this example

produces the same number of tests for either Term Coverage or DNF Coverage. Sec-

tion 7.8.1 notes that for a more complex version of the steam boiler example, there

are 22 test frames for Term Coverage, 47 for DNF Coverage, and 84 for Implicant

Coverage.

5.7 Conclusion

This chapter has presented the fundamental algorithms that form the foundation

of the discipline presented in this dissertation. This foundation is based on math-

ematical rules of logical manipulation which ensure that the algorithms are sound.

The de�nitions of test classes, frame stimuli, and test frames form the basis of a

nomenclature for naming coverage criteria. This nomenclature is extended in the

next chapter.

Although rewrite rules are used in various contexts to produce test frames,

the entire set of these rewrite rules is not con
uent5. This implies that test frame

production is more complex than blindly rewriting the speci�cation using a con
uent

set of rewrite rules.

5A con
uent set of rewrite rules is also Church-Rosser [9].

94

Chapter 6

Coverage Criteria

This chapter de�nes a nomenclature for naming coverage criteria with tuples of ar-

guments to a test frame generation process. This process is an extension of the basic

algorithms of Chapter 5. The parameters of the process establish the nomenclature

for de�ning a wide range of speci�cation-based coverage criteria.

6.1 Introduction

In this discipline of speci�cation-based testing, a coverage criterion is named by

specifying arguments to the test frame generation process. Although the coverage

scheme is the fundamental component of a coverage criterion, there are additional

parameters to test frame generation. These parameters are based on logically sound

extensions to the algorithms presented in Chapter 5.

The �rst group of extensions focuses on aspects of the test class normal form.

Derivation of the test class normal form can be produced in any of three variations.

Each of these can be achieved with minor adjustments to a portion of the TC

algorithm. In certain situations, it is possible to specialize a test class to eliminate

95

non-determinism caused by disjunctions in the response expression. This is referred

to as response-response resolution. One parameter a�ecting test classes indicates

whether a \closed world" should be assumed or not. This is a common assumption

made in speci�cations, and can signi�cantly reduce the size of a speci�cation.

Once the set of test classes has been determined, the granularity of frame

stimuli can be addressed. In special circumstances, universally quanti�ed frame

stimuli can be broken down into unquanti�ed components. Frame stimuli are the

common components of both test classes and test frames. Coverage schemes, the

algorithms for selecting test frames, are de�ned based on frame stimuli relationships.

As examples, mathematical de�nitions of two variations of Term Coverage are given.

According to the basic algorithms, test frames are produced in their most

general forms. However, they can also be specialized in order to di�erentiate when

responses are due to particular stimuli.

An objective coverage criterion is de�ned in terms of arguments to this ex-

tended process. Comparisons of the e�ectiveness of these criteria are based on a

partial order of coverage criteria.

Section 6.2 gives a de�nition of objective coverage criteria and some ex-

amples. The relative e�ectiveness of coverage criteria is examined in Section 6.3.

Section 6.4 presents the test class variations. Response-response resolution is de-

scribed in Section 6.5. Section 6.6 examines the e�ects of assuming a closed world.

Section 6.7 describes the simpli�cation of quanti�ed frame stimuli. Two examples

of mathematical de�nitions of coverage criteria are given in Section 6.8. Test frame

di�erentiation is examined in Section 6.9.

96

6.2 Objective De�nitions of Coverage Criteria

The extensions to the test frame generation process that support the nomenclature

are described in later sections. Using the nomenclature, several parameters need to

be speci�ed to identify a particular speci�cation-based coverage criteria:

1. Test class type: pure, detailed, or focused.

2. Response-response resolution: none, embellish, or eliminate.

3. Closed world or not.

4. Frame stimuli simpli�cation: none, single, all, pairs, power set.

5. Selection scheme: All points, Implicant, DNF, Term.

6. Test frame style: base, di�erentiated.

It is likely that the above list will grow with the evolution of the discipline presented

in this dissertation. Although the selection scheme generally has the most dramatic

impact on test selection, each of these elements must be speci�ed in order to de�ne

a particular coverage criteria.

This nomenclature can be used to speci�cally name a large number of dif-

ferent criteria. For example, using this nomenclature, a relatively small set of test

frames can be speci�ed using the criteria (focused, eliminate, not closed, no simpli-

�cation, Term, base). A much more extensive notion of coverage which corresponds

to a much larger set of test frames, depending on the speci�cation, is named by

(pure, embellish, closed, power set, all points, di�erentiated).

97

6.3 Relative E�ectiveness

The e�ectiveness of a speci�cation-based coverage criterion refers to its ability to

produce a test set which uncovers discrepancies between the requirements and the

implementation. Containment provides a simple means of comparing coverage crite-

ria e�ectiveness. By considering coverage criteria as relations between speci�cation

expressions and sets of test frames, criterion A is more e�ective than criterion B

when test frames produced by A imply those produced by B , i.e.,

8S ; t1; t2:(A(S ; t1) ^ B(S ; t2))) (
V
t1)

V
t2),

where A(S ; t) means that the set of test frames t satis�es criterion A for speci�cation

S . The sets of test frames that satisfy criteria A and B are represented by t1 and

t2, respectively.

Using this means of comparison, the Implicant, All-points, and DNF Cov-

erage criteria are equally e�ective, and each is more e�ective than Term Coverage.

Another means of comparing coverage criteria is to compare the number of test

frames produced. The principle advantage of Term Coverage is that it is less expen-

sive, since it produces dramatically fewer tests while still including a test involving

each frame stimulus.

Apart from this trivial de�nition of relative e�ectiveness, this thesis does

not address the issue of determining which coverage criteria are more appropriate

for speci�c testing objectives. Without a more satisfactory mathematical notion

of e�ectiveness, the relative merits of coverage criteria will need to be determined

on the basis of empirical study. It is likely that de�nitions of coverage criteria will

include some domain speci�c elements.

98

6.4 Test Class Variations

The TC algorithm of Chapter 5 produces test classes in what is referred to as their

pure form. This pure test class normal form is logically equivalent to the original

speci�cation. This is due to the fact that the TC algorithm is based on equivalences.

There are two additional variations on this algorithm which involve slight changes

to the RewriteAnd function.

6.4.1 Detailed

Some test engineers may require that the responses be as detailed as possible. For

example, the pure test class normal form of the speci�cation,

S1) (R1 ^ (S2) R2)) (6.1)

is:

(S1) R1) ^ (S1 ^ S2) R2):

The test class S1 ^ S2) R2 may be regarded by some as incomplete since S1

will cause the response R1 in addition to the response R2. The desired test class,

S1 ^ S2) R1 ^ R2, is an example of the detailed form of test classes.

Detailed test classes are produced by augmenting the processing of conjunc-

tions in RewriteAnd by using the equivalence:

8P ; S ;R:(>) P)^ (S) R) = (>) P)^ (S) P ^ R): (6.2)

As with pure test classes, the conjunction of detailed test classes derived

from a speci�cation is logically equivalent to the speci�cation.

The detailed test class normal form of (6.1) is

(S1) R1) ^ ((S1 ^ S2)) (R1 ^ R2)):

99

6.4.2 Focused

In some testing situations, tests from the test class S1) R1, above, may be deemed

redundant, since R1 can be observed in the test steps for the test frame S1 ^ S2)

R1 ^ R2. A Focused set of test classes which eliminates this type of test class is

produced by augmenting the processing of conjunctions in RewriteAnd by using the

inference

8P ; S ;R:(>) P)^ (S) R)) (S) P ^ R): (6.3)

The conjunction of focused test classes is implied by the speci�cation, but is

not equivalent to it. This is due to the use of the inference (6.2), rather than the

exclusive use of logical equivalences.

The focused test class normal form of (6.1) is

(S1 ^ S2)) (R1 ^ R2):

6.5 Resolving Non-Deterministic Test Classes

Response-response resolution refers to the process of eliminating certain kinds of

non-determinism from test class response expressions where possible. Test class

combinations of the form

(S1) :R1) ^ (S2) (R1 _ R2))

can be used to derive additional test classes as follows:

(S1) :R1) ^ (S2) (R1 _ R2))

= (S1) :R1) ^ ((S2 ^ :R1)) R2)

= (S1) :R1) ^ (S2) (R1 _ R2))^ (S1 ^ S2) R2)

) (S1) :R1) ^ (S1 ^ S2) R2)

100

As indicated by the last two steps of the derivation above, the additional test

classes can be used to embellish the original set, or the non-deterministic test classes

can be eliminated. The elimination of non-deterministic test classes is similar to the

production of focused test classes in that the resulting test classes are implied by the

speci�cation, rather than equivalent to it. Some test engineers may deem the test

frames derived from the omitted test classes to be of no real value. For example,

some test engineers may require tests that specify deterministic responses. Thus,

there is no signi�cant consequence in the loss of logical equality of the conjunction

of the set of remaining test classes to the original speci�cation.

6.6 Assuming a Closed World

A closed world, or complete knowledge, assumption [51] is common in many speci�-

cations. The assumption is that a given response can be produced only in those cases

prescribed in the speci�cation, and in no others. For example, assuming a closed

world, :A^:B) :R is valid if the speci�cation (A) R)^ (B) R) is valid. This

can be achieved by augmenting the test class normal form of a speci�cation with

the appropriate test classes, prior to test frame generation.

A closed world assumption can have a dramatic e�ect on the number of test

frames produced from a speci�cation. For example, the speci�cation ((A^B)_(C ^

D) _ (E ^ F))) R has three DNF test frames. However, the same speci�cation in

a closed world has 11 DNF test frames.

101

6.7 Simplifying Quanti�ers

The simpli�cation of quanti�ed frame stimuli is performed during the determination

of frame stimuli. Removing quanti�ers produces simpler frame stimuli, which are

easier to instantiate manually into test steps. This simpli�cation assumes that the

domain of the quanti�ed variable is a set, and requires that this set be identi�ed

as either static or dynamic. Any element of the speci�cation is dynamic if it can

be di�erent in di�erent contexts of the speci�cation. Any element is static if it is

not dynamic, e.g., the set of natural numbers is a static element. For example, the

expression 8 x :P x , where x has the type corresponding to the set of aircraft within

an airspace, A, is interpreted as 8 x 2 A:P x . Since there can be di�erent numbers

of aircraft within an airspace at any given time, A is dynamic.

The test class and test frame algorithms process speci�cations which may

include quanti�cation. Quanti�ers in the speci�cation often appear in test frame

stimuli expressions, as illustrated in the example of Section 5.3. Without further

processing, quanti�ed frame stimuli would normally be addressed during the manual

instantiation of test frames into test steps. To reduce the labour required for this

task, it is bene�cial to automatically process quanti�ed frame stimuli where possible.

The following example illustrates where quanti�ers can be simpli�ed. The

expression (9!x :S x) ^ w < 2 , R, where R is the only response, produces the

following term coverage test frames:

8 x :(S x ^ (8 x ; y ::S x _ :S y _ (x = y))^ w < 2) R);

(8 x ::S x)) :R;

w � 2) :R; and

8 x ; y :(S x ^ S y ^ x 6= y) :R):

102

Instantiating a test frame into a test step is the process of determining an

instance of input variables which satis�es each frame stimulus. For an unquanti�ed

frame stimulus, such as w � 2, instantiation is simply a matter of selecting ap-

propriate data values for the variables, e.g., w = 2. However, satisfying quanti�ed

frame stimuli, such as 8 x ; y ::S x _ :S y _ (x = y) and 8 x ::S x above, can be

quite complex, since the stimuli expression can be undecidable.

The test frame generation algorithms guarantee that the �rst quanti�er of a

quanti�ed frame stimulus is universal.1 A quanti�ed variable is associated with a

set of values. This set is either dynamic or static. Thus, there are three categories

of quanti�ed frame stimuli:

1. the quanti�ed variable is associated with a static set and the frame stimulus

contains no free variables that represent the system environment;

2. the quanti�ed variable is associated with a static set and the frame stimulus

contains a free environment variable; or

3. the quanti�ed variable is associated with a dynamic set.

In the �rst category, the environment has no e�ect on the truth value of the

frame stimulus which is either true or false, e.g., 8n:n2 > n. It is suspicious that a

system would be required to produce a response depending on the truth or falsehood

of a stated theorem. In such cases, it is likely that the source of the frame stimulus

is incorrectly speci�ed.

Frame stimuli from the second category express a property of the free vari-

able. This is illustrated by the frame stimulus 8 y :xmody 6= 0_y = 1_y = x , which

expresses the property that x is a prime number. When the static set associated

1If it were existential, it could be moved outside the antecedent of the test class to universally
quantify the test class.

103

with the quanti�ed variable is in�nite, instances of frame stimuli for this category

must be determined manually. When the static set associated with the quanti�ed

variable is �nite, a frame stimulus of the form 8 x 2 fxi j 1 6 i 6 ng:P x can be

simpli�ed using the theorem,

8 x 2 fxi j 1 6 i 6 ng:P x =
V
fPxi j 1 6 i 6 ng,

where
V
(fxg [A) = x ^ (

V
A) and

V
; = >.

The third category is particularly interesting from a coverage point of view.

In this case, the set associated with the quanti�ed variable contains an arbitrary

number of elements. For example, in the frame stimulus 8 x 2 Aircraft:Is Taxiingx_

Is Boarding x , the set Aircraft represents all the aircraft within the operating envi-

ronment of the system. In the context of an air tra�c control system, the contents

of this set are constantly changing. For these frame stimuli, the question is: What

instances of this set, e.g., Aircraft, should be used in test frames to ensure adequate

coverage?

The frame stimulus

8 x 2 X :P1 x _ P2 x _ : : :_ Pn x ,

can be satis�ed by the singleton instance X = fcg, where c has one of the properties

Pi ; 1 6 i 6 n. This is certainly a light notion of coverage. A more reasonable notion

of coverage might be to conduct n tests, each one addressing a di�erent Pi . Another

alternative is to set X = fxi j Pi xi ; 1 � i � ng, a single set of n elements, each of

which satis�es at least one Pi . This would require one test.

The soundness of the above substitutions is assured by the theorems

(X = fxg) ^ P1x _ : : :_ Pnx) 8 x 2 X :P1x _ : : :_ Pnx (6.4)

104

(X = fxi j Pi xi ; 1 � i � ng)^ P1x1 ^ : : :^ Pnxn)

8 x 2 X :P1x _ : : :_ Pnx (6.5)

where x ; x1; : : : ; xn are constants that have not yet been introduced into the speci-

�cation, and re
ect a particular instance of the type of the quanti�ed variable. In

terms of the test frame generation process, quanti�ed frame stimulus simpli�cation

can be performed in at least three modes: none, single, or all, where single and all

refer to the use of inferences (6.4) and (6.5), respectively. Another alternative is to

combine these techniques and conduct (
n

2
) tests where each test involves a pair

of elements that satisfy distinct properties, i.e., the (
n

2
) instances of X such that

X = f(x ; y)g and 9 i ; j :16 i ; j 6 n^i 6= j ^Pi x^Pj y . A further, perhaps extreme,

alternative is to conduct 2n tests based on the power set of the Pi 's.

6.8 Mathematical De�nition of Term Coverage

The de�nition of Term Coverage expresses a relationship between frame stimuli

within test frames and the frame stimuli of a test class normal form of the speci�-

cation. The mathematical de�nition of Term Coverage follows.

The following de�nitions are made:

� Let Ci ; 1 6 i 6 n, represent the n test classes of speci�cation Q, i.e., Q =

C1 ^ :::^ Cn .

� Let ci represent the test class antecedent of Ci .

� Let Conj(E) represent the set of conjuncts in an expression E .

105

Now, let S(E) represent the set of frame stimuli in the test class normal form

of an expression, E , i.e.,

S = fs j 9 i :Ci 2 Conj(TC (E))^ s 2 FS(ci)g,

where TC is the test class algorithm from Section 5.5 and FS(c) represents the set

of frame stimuli obtained from the test class antecedent, c, as determined by the

procedure from Section 5.6.

Let fik represent the antecedent of the kth test frame Fik derived from Ci ,

i.e.,

8 ik :(fik) ci) ^ 8 e:(e) ci)) Conj(e) 6� Conj(fik): (6.6)

Equation (6.6) states that Fik is a valid test frame of test class Ci and fik is a prime

implicant. The Fik test frames satisfy Term Coverage of a speci�cation, E , when:

8 s 2 S(E): 9 ik :s 2 Conj(fik): (6.7)

An alternative variation of Term Coverage is where the coverage of the Fik test

frames is measured relative to each individual test class, rather than to the speci�-

cation as a whole:

8 i :Ci 2 Conj(TC (E))) 8 s 2 S(Ci): 9k :s 2 Conj(fik): (6.8)

6.9 Di�erentiated Test Frames

The test frames generated using the basic algorithm of Chapter 5 are referred to as

base-style test frames. This style of test frame speci�es the most general constraints

on test frame stimulus expressions. For various reasons, it may be desirable to

produce more speci�c test frames, such as the pair below from Section 2.5.

106

1. S and C1 and (not C2)) R

2. S and (not C1) and C2) R

This section examines a method of producing test frames in a di�erent style.

Di�erentiated test frames include additional constraints to ensure that there

does not exist a test step which is an instance of more than one test frame for a test

class. Di�erentiated test frames may be required to ensure that frame stimuli are

tested in isolation.

For example, the test class (A _ B)) R has base test frames A) R and

B) R. The test step (A ^ B)) R is an instance of both test frames, and it may

not be clear which stimulus was actually being tested.

De�nition 5 A set of test frames is di�erentiated when the antecedents of the test

frames, f̂i ; 1 6 i 6 n, are pair-wise contradictory, i.e.,

8 i ; j :16 i ; j 6 n ^ i 6= j) (f̂i ^ f̂j = ?).

Di�erentiation is performed after the coverage scheme has selected a set of

test frames. A di�erentiated test frame, F̂k , can be computed from the corresponding

base test frame, Fk . To correctly compute di�erentiated test frames when quanti�ers

are present requires the use of adjusted test frames. An adjusted test frame is a test

frame where universal quanti�ers exterior to the implication have been pushed into

the antecedent, if possible. The antecedent, f̂k , for the di�erentiated test frame,

Fk , can be computed from the test frame antecedent fk and the n � 1 adjusted test

frame antecedents, fi ; 1 6 i 6 n and i 6= k , using the formula

f̂k = ArbPI(fk ^ :(f1 _ : : :_ fk�1 _ fk+1 _ : : :_ fn)),

107

where ArbPI(e) represents an arbitrary, feasible prime implicant of frame stimuli

from expression e.

While this technique ensures that frame stimuli can be tested in isolation,

there are two disadvantages to di�erentiated test frames. Since this method of dif-

ferentiation involves an arbitrary choice from a set of alternatives, it is possible that

a test frame generator may make a choice other than that desired by a test engi-

neer. In addition, di�erentiation involves computing prime implicants and selecting

a feasible one. Thus, when selecting the representative di�erentiated test frame,

simpli�cation and infeasibility checking will also need to be performed and may be

a prohibitively expensive computation. Simpli�cation and infeasibility are examined

further in Section 7.4.2.

Di�erentiated test frames are similar to Ammann and O�utt's base-choice

coverage [2]. Ammann and O�utt's each-choice-used coverage is similar to Term

Coverage (6.7), with the di�erence that the tests are based on a partitioning of

the input domain alone, rather than on test classes which partition the stimulus-

response behaviours of the system. Base-choice coverage requires specifying a base

input in addition to a system behaviour. Test inputs are selected by negating one

predicate that describes the base input.

A test class approach has the advantage that test classes correspond to base

behaviours associated with the base inputs of Ammann and O�utt. Although dif-

ferentiated test frames are based on a single behaviour, they produce tests similar

to those satisfying base-choice coverage. Thus, a base behaviour does not need to

be speci�ed in order to produce base-choice-like tests.

For example, the di�erentiated test frames of A ^ B ^ C , R are:

A ^ B ^ C) R

108

:A ^ B ^ C) :R

A ^ :B ^ C) :R

A ^ B ^ :C) :R

The test frames with response :R correspond to those obtained by base-choice

coverage that uses the antecedent A^B ^C as the base input. With di�erentiated

test frames, however, the latter three test frames follow directly from the test class

:A _ :B _ :C) R, and are not based on any other behaviour.

The di�erentiated version of the test frame

8 i :PumpState(i ;>) ^ PumpState(i ;?)) OutOfOrder 0

from Section 5.6.1 is:

8 i ; n1; n2:

PumpState(i ;>) ^ PumpState(i ;?)^

Steam n2 ^

(8 p: 9 b:PumpCtrState(p; b))^

(8 p:PumpState(p;>) _ PumpState(p;?))^

(8 x ::(Level x) _ 8 y ::(Level y) _ (x = y))^

(8 x : 8 y :(x = y)_ :(Steam x) _ :(Steam y)) ^

Level n1

) OutOfOrder 0

6.10 Summary

This chapter has de�ned extensions to the test class and test frame algorithms

of Chapter 5. Parameters to these extensions form the nomenclature for naming

coverage criteria for sets of test frames.

109

Chapter 7

Formal Speci�cation-Based

Testing

This chapter describes an application of the discipline of Chapters 5 and 6 to general

formal speci�cation-based testing. It de�nes a general test frame generation process

that can be applied to a wide range of formal speci�cations. It also provides details

of the design of a particular implementation of this process.

7.1 Introduction

Although the discipline presented in this dissertation is designed to be applied to

system-level requirements speci�cations, the generality of this discipline allows it to

be applied to a wide variety of formal speci�cations. Applying this discipline to a

formal speci�cation assumes:

� that stimuli can be distinguished from responses by some means, and

� the speci�cation language can be founded on a logic that is consistent with

110

the logical inferences used in the algorithms of Chapter 5.

The general test frame generation process is based on a test frame generator

that implements the algorithms of Chapters 5 and 6. The test frame generator takes

a formal speci�cation, a coverage criterion as de�ned in Chapter 6, user-mandated

tests, existing test frames, and speci�ed domain knowledge, and produces a set of

test frames that satis�es the given criterion.

Many of the details required to implement such a test frame generator were

given in Chapters 5 and 6. This chapter provides process details for:

� the iterative application of the general test frame generation process which

allows test frames to be generated for a speci�cation that cannot be processed

within available memory or time limits, and

� the types of domain knowledge applicable to this process, how domain knowl-

edge can be formalized, and a general decision procedure for applying this

knowledge.

This chapter also provides the following details of one possible implementation:

� a rewrite system used in order to increase the assurance that logical manipu-

lations carried out by the the test frame generator are sound,

� techniques for distinguishing between stimuli and responses, and

� algorithms for three of the coverage schemes de�ned in Section 5.6.2.

Section 7.2 provides an overview of the general test frame generation process.

A method for processing large and logically complex speci�cations is described in

Section 7.3. Section 7.4 describes how this process makes use of domain knowledge.

111

The remainder of this chapter focuses on aspects of one possible implementation of

a test frame generator. The rewrite system is described in Section 7.5. Techniques

for distinguishing stimuli from responses are described in Section 7.6. Section 7.7

outlines three algorithms for implementing coverage schemes. Examples of the ap-

plication of a general test frame generation tool to a portion of a formal speci�cation

from the literature [58] and to another speci�cation with a complex logical structure

are examined in Section 7.8.

7.2 Process Overview

Test Frames
New

Generator
Test Frame

Specification
Formal

Knowledge
Domain Coverage

Criteria
User Mandated

Tests Test Frames
Existing

Test Steps

Optional inputs

Beyond the scope
of this thesis

Figure 7.1: Automated Test Frame Generation

Figure 7.1 illustrates a process based on the discipline of speci�cation-based

test frame derivation presented in this dissertation. This process automatically

generates test frames from a formal speci�cation. The required inputs are the formal

speci�cation and the coverage criteria. Optional inputs are domain knowledge, user

112

mandated tests, and existing test frames. As stated in Section 1.2, the selection of

test data to derive test steps from test frames is outside the scope of this thesis.

The formal speci�cation is assumed to be a logical expression relating stimuli

and responses. Uses of existential quanti�cation in the form of Equation (5.3) and

demonic speci�cations are
agged and rejected during test class generation. These

must be corrected by the speci�cation author. The selected coverage criterion de-

termines the precise relationship between the test frames to be produced and the

given speci�cation.

The input labeled \Domain Knowledge" in Figure 7.1 describes logical rela-

tionships amongst stimuli and amongst responses separately. This domain knowl-

edge can be selectively provided by the user to control three aspects of test frame

production:

1. the level of abstraction expressed in the test frames;

2. the elimination of infeasible test frames; and

3. the simpli�cation of those test frames that are feasible.

\User Mandated Tests" provide the test engineer with the option of directly

specifying some of the test frames to be included in the output. User-mandated

tests are speci�ed as test frames that are either fully or partially instantiated. User-

mandated tests are not simply appended to the automatically generated test frames.

Rather, the test frame generator integrates the user-mandated tests to reduce the

generation of redundant, or partially redundant, test frames.

Software requirements often change during the development of a system.

When requirements change, it is highly desirable to limit the impact of the changes

on existing sets of test frames. For this reason, the user may optionally provide the

113

set of \existing test frames" as input to the test frame generator. The test frame

generator attempts to limit the number of arbitrary di�erences between the new and

existing sets of test frames. It will also
ag test frames in the previous set which

are no longer implied by the speci�cation.

The integration of user mandated tests and existing test frames is an in-

stance of the Delta Problem presented in Section 4.6. This capability has not been

implemented, but a heuristic algorithm for this intractable problem is given in Ap-

pendix C.

7.3 Tackling Complex Speci�cations

Automatically generating test frames for large speci�cations can be impractical,

typically due to the amount of time required for the computation. In situations

where limits on time and memory resources are exceeded, the speci�cation can be

processed iteratively as follows:

1. Limit the amount of detail in the speci�cation in order to provide a more

abstract view of the speci�cation. This can be accomplished by instructing

the test frame generator not to expand speci�c terms in the speci�cation by

their de�nitions during the derivation of test classes. In some situations, it may

be necessary to limit detail by de�ning complex portions of the requirements

as abstract terms, then suppressing the expansion of these abstract terms.

2. Generate test frames from the abstract view of the speci�cation.

3. Use each test frame containing an abstract term combined with the de�nition

of the abstract term as the speci�cation for the next input to the test frame

114

generator. When using the Term Coverage scheme, only a single test frame

for each abstract term is required.

4. Repeat steps 1 to 3 until test frames no longer contain abstract terms.

5. During data selection, when instantiating an abstract term, choose one in-

stance for that term.

This iterative approach was used in preparing the examples presented in

Sections 7.8.2, 8.5.1, and 8.5.2.

In many situations it may be desirable to use the iterative approach above,

but use di�erent coverage criteria at the various levels of abstraction. This provides

test engineers with another means of control.

7.4 Formalizing Domain Knowledge

Domain knowledge encompasses a number of facts that can be used for di�erent pur-

poses in the test frame derivation process. Some of this domain knowledge expresses

the interaction between the environment and the system by de�ning translations be-

tween the conditions used to describe the environment, and those used to specify

the system requirements. In this dissertation, this type of domain knowledge can be

expressed via elaboration. Elaboration can be used to ensure that test frames are

composed of terms at the appropriate level of abstraction for testing purposes.

Other domain knowledge expresses condition dependencies that must be

taken into account to disregard infeasible test frames and simplify those feasible

test frames that are selected by the coverage scheme. This domain knowledge is

expressed as theorems about mutually exclusive conditions, those forming partial

orders, and those that represent states.

115

7.4.1 Elaboration

In this dissertation, elaboration refers to a mechanism for expanding stimuli and

responses in the requirements into other combinations of stimuli and responses, re-

spectively. This addresses some of the speci�cation forms introduced in Section 2.5.

These relationships may be part of the domain knowledge supplementing the re-

quirements speci�cation. They may also be parts of the requirements that express

relationships between di�erent levels of abstraction of the stimuli and responses.

Elaboration allows test engineers to use a more detailed level of abstraction to de-

scribe tests, if necessary.

For example, tests may need to be expressed in terms of the Computer-

Human Interface, which may be speci�ed separately from the system requirements.

The advantage of this type of elaboration is that it uses a supplement to the require-

ments speci�cation. This ensures that constraints on the terminology used in testing

do not a�ect the level of abstraction expressed in the system requirements.

There are two mechanisms for elaboration: de�nition and implication. De�-

nitions correspond to rewrite axioms of the form:

8 x :A(x) = E(x),

where A is either a stimulus or response predicate, and E is any predicate logic

expression. As the TC algorithm computes test classes, de�ned terms are expanded

according to their de�nitions.

Implication relationships amongst stimuli that do not involve a response, and

similar relationships amongst responses that do not involve stimuli, are expressed

as axioms of the following forms:

8 x :ES (x)) S(x)

116

8 x :R(x)) ER(x)

where S(x) is a stimulus, ES (x) is a stimulus expression, R(x) is a response, and

ER(x) is a response expression.

Implications formed during the production of test classes are referred to as

intermediate test classes. When a stimulus is �rst formed into an intermediate

test class by the test class algorithm, it has the form S(a)) ?, as described in

Section 5.5. When this intermediate test class is formed, any relevant elaboration

axioms are used to form the equivalent intermediate test class, S(a) _ ES (a)) ?.

The original stimulus, S(a), is retained in the antecedent to ensure that the test

class normal form is logically equivalent to the original speci�cation. Similarly, an

intermediate test class for a response, >) R(a), is replaced with the equivalent

intermediate test class, >) R(a) ^ ER(a).

7.4.2 Simpli�cation and Infeasibility

Domain knowledge involving condition dependencies can be provided as a supple-

ment to the requirements. These are used during test frame selection to disregard

infeasible test frames, and to simplify the antecedents of selected test frames. For

the purpose of identifying infeasible test frames, it is necessary to identify the logic

dependencies between conditions. The system-level speci�cations examined during

the research for this thesis contain relatively few dependencies of this sort between

conditions. It is likely that this is due to the system-level descriptions of stim-

uli, which are more abstract than the detailed descriptions that might be found in

unit-level speci�cations. This motivates the use of axiom schemata to de�ne de-

pendencies, rather than requiring some underlying formal model to support these

117

schemata as theorems.

In the general test frame generation process, known dependencies between

conditions are speci�ed using any of three axiom schemata:

1. 8 x :G) MutEx[P1 x ; P2 x ; : : :Pn x],

2. 8 x :G) Subsm[P1 x ; P2 x ; : : :Pn x], and

3. 8 x :G) States[P1 x ; P2 x ; : : :Pn x].

These provide a means of de�ning condition dependencies. The MutEx form is

used to de�ne dependencies between mutually exclusive conditions. Conditions that

form partial orders can be de�ned using Subsm. The States form de�nes conditions

that represent a set of system states. The symbol G represents an optional guard

which can refer to any of the quanti�ed variables from the vector x . The guard

provides a means of converting the dependency into a standard domain for which

the test frame generator has a decision procedure. As an example of de�ning a

partial order, assuming a decision procedure for simple arithmetic, theorem schema

8 x ; y :x > y) Subsm[P x ; P y] allows the test frame generator to simplify P 1^P 2

to P 1.

The axioms de�ned by these schemata are given below:

8 x :G) MutEx[P1 x ; P2 x ; : : :Pn x] `

8 x ; i ; j :16 i 6 n ^ 1 6 j 6 n ^ i 6= j ^G)

(Pi x ^ Pj x = ?) ^

(Pi x) :Pj x)

118

8 x :G) Subsm[P1 x ; P2 x ; : : :Pn x] `

8 x ; i ; j :16 i < j 6 n ^G)

(Pj x) Pi x) ^

(: Pi x) : Pj x)

8 x :G) States[P1 x ; P2 x ; : : :Pn x] `

8 x ; i ; j :16 i 6 n ^ 1 6 j 6 n ^ i 6= j ^G)

(Pi x ^ Pj x = ?) ^

(Pi x) :Pj x) ^

(:P1 x ^ : : :^ :Pn x = ?)

Dependencies between predicates, such as \Is In Canada," can be speci�ed as

8 x :MutEx[Is In Canada x ; Is In USA x ; Is In Mexico x];

8 x :Subsm[Is In Canada x ; Is In BC x ; Is Over Vancouver x];

and

8 x :States[Is In Canada x ; Is Outside Canada x]:

The theorems are applied to the conjunctions of frame stimuli found in prime im-

plicants corresponding to potential test frames.

In addition to condition dependencies, a con
uent set of rewrite rules can

also be speci�ed as axioms. As an example of these techniques, reasoning about

conjunctions of linear inequalities can be speci�ed using the following rewrite rules:

8 a; b::(a < b) = b 6 a

8 a; b::(a > b) = a 6 b

119

8 a; b::(a 6 b) = b < a

8 a; b::(a > b) = a < b

8 a; b:a > b = b < a

8 a; b:a > b = b 6 a

8 a; b:a 6 a = >

8 a; b:a < a = ?

together with the following dependencies:

8 x ; y :Subsm[x 6 y ; x < y] (7.1)

8 x ; y ; z :(y < z)) Subsm[x 6 z ; x < z ; x 6 y ; x < y] (7.2)

8 x ; y ; z :(z < y)) Subsm[z 6 x ; z < x ; y 6 x ; y < x] (7.3)

8 x ; y ; z :(y 6 z)) MutEx[x < y ; z < x] (7.4)

8 x ; y ; z :(y < z)) MutEx[x 6 y ; z 6 x] (7.5)

8 x ; y ; z :(y 6 z)) MutEx[x 6 y ; z < x] (7.6)

8 x ; y ; z :(y > z)) MutEx[y 6 x ; x < z] (7.7)

As a simple example, the conjunction x 6 0^x > 1 is found to be infeasible as

follows. Since rewrite axioms are applied during the determination of the test class

normal form, x > 1 will be rewritten to 1 < x before a coverage scheme subjects the

conjunction to feasibility analysis. Theorem schema (7.6) produces a match where

the instantiation of the guard is 0 6 1, which is resolved to > by a built-in decision

procedure for simple arithmetic. Thus, it can be concluded that x 6 0 ^ x > 1 = ?

and the corresponding test frame is infeasible. Similarly, x < 3 ^ x 6 4 produces

a match in theorem schema (7.2) in the �rst and fourth positions of the list with

guard 3 < 4. Matches at other list positions do not allow the guard to be reduced

120

to > by the decision procedure. Thus, this conjunction is simpli�ed to x < 3.

This approach has certain limitations. To handle situations where the con-

dition dependencies within test frames can be complex, it may be more e�cient to

provide a domain-speci�c decision procedure similar to the built-in decision proce-

dure for arithmetic. For example, although the complex contradiction a < b ^ b <

c ^ c < a could be deduced by matching the guard of theorem schema (7.4) with

c < a in theorem schema (7.1), this type of reasoning is expensive to compute within

the framework presented here. However, this research suggests that condition de-

pendencies at the system-level typically involve pairs of conditions, rather than an

interaction between three or more conditions.

In situations where there are relatively few dependencies between conditions,

such as system-level requirements, condition dependencies can be addressed by spec-

ifying the theorems that an underlying model should support. The theorem schema

forms MutEx, Subsm, and States allow a reasonably concise means of specifying

these theorems. This approach tends to work well in the context of the system-level

requirements speci�cations addressed by this thesis, since the dependencies between

conditions can be expressed with relatively few axiom schemata. It is not necessary

to document dependencies between every pair of conditions within the speci�cation.

It is necessary only to document those dependencies for frame stimuli which appear

within the same test class antecedent.

7.5 Rewrite System

To increase the reliability of the test frame generator, a rewrite system is used to

perform logical manipulations. The rewrite system described in this section di�ers

from some well-known rewrite systems, such as the one found in HOL [28]. For

121

performance reasons, the prototype test frame generator does not use the rewrite

system during portions of simpli�cation and infeasibility processing. The rewrite

system assumes the correctness of each of the rewrite rules provided. To increase

the assurance of correctness of the rewrite rules used in this dissertation, a HOL

version of each rule was proved to be a theorem using the HOL system.

Rewrite rules are stated as universally quanti�ed equalities, e.g., 8 x :E1(x) =

E2(x), where x is a vector of variables. For rules specifying rewrites involving

quanti�ers, the system assumes the following rules:

1. variable capture is avoided using alpha conversion; and

2. if variable release occurs, the rewrite fails.

The concept of variable release is the opposite of variable capture. During rewriting,

if a variable is quanti�ed in an expression matching the left-hand side of the rewrite

rule and is unquanti�ed in the corresponding instance of the right-hand side, variable

release has occurred. For example, applying 8P ;Q :(8x :P _ Q) = ((8 x :P) _Q) to

8 x :f x _y is valid. However, applying the same rule to 8 x :f x _g x is invalid because

the x of g x is released, i.e., x has become unquanti�ed because it was free in Q .

Rewrite rules requiring conditions on free variables can often be stated in terms of

variable release.

By failing rewrites in which variable release occurs, the rewrite system allows

the speci�cation of rewrite rules such as:

8P ;Q :(8x :P _ Q) = (8 x :P)_ Q

8P ;Q :(8x :P _ Q) = P _ (8 x :Q)

8P ;Q :(8x :P ^ Q) = (8 x :P)^ Q

8P ;Q :(8x :P ^ Q) = P ^ (8 x :Q)

122

8P ;Q :(8x :P ^ Q) = (8 x :P)^ (8 x :Q)

8P :(8x :P) = P

The last rule speci�es that a universal quanti�er can be removed if the quanti�ed

variable is not free in the expression, P .

This type of quanti�er manipulation is not performed in HOL by general

theorems used as rewrite rules, as above. Instead, it is performed using functions

called conversions, which produce a theorem for the speci�c context only if such a

theorem exists. The rewrite system described in this section is a simpler approach

to rewriting, which does not require the speci�cation of converters.

The rewrite system also recognizes alpha equivalence, e.g., (�x :E(x)) =

� a:E(a). These capabilities allow most of the logical manipulation done by the test

frame generator to be performed by the rewrite system.

7.6 Distinguishing Stimuli and Responses

The algorithms in Chapter 5 rely on the distinction of stimuli from responses, but

precisely how this is done has not yet been presented. There are two primary means

of distinguishing stimuli and responses. The �rst is through the literal used to name

the predicate. The prototype test frame generator described in this dissertation uses

this approach, and assumes that a literal beginning with a lower case letter indicates

a response predicate, unless a directive speci�cally labels a literal as referring to

either a stimulus or a response. This technique has been found to be adequate

for system-level requirements-based testing, because the vocabulary used to specify

responses is usually di�erent from that of specifying stimuli.

An alternative is to base the distinction on whether variables within predicate

123

arguments refer to the state of the system at the time the stimulus occurs, or whether

they refer to the state at the time the system responds. For example, in Z a prime

(') is used to distinguish post-operation values from pre-operation values. Thus,

the speci�cation (z 6= g(x ; 5)) _ (z 0 = g(x ; 10)) has the test class normal form

(z = g(x ; 5))) (z 0 = g(x ; 10)). In this example, z = g(x ; 5) is a stimulus because it

does not refer to the state of the system at the time of the response. The presence of

z 0 indicates that z 0 = g(x ; 10) is a response. In this system of distinguishing stimuli

and responses, the same predicate can appear as either a stimulus or a response,

e.g., the predicate � a; b; c:c = g(a; b).

This latter approach may prove quite useful in situations where the same

predicate is used to express di�erent relationships within a speci�cation. For exam-

ple, assuming CorrectForm is de�ned, the speci�cation

CorrectForm(i ; f 0)

can be used to generate test frames for �lling out a form correctly, while

:CorrectForm(i ; f), FlagError 0

can be used to generate test frames for
agging errors when a given form is �lled

out incorrectly.

7.7 Algorithms for Coverage Schemes

This section describes algorithms to implement the Implicant, DNF, and Term cov-

erage test frame selection schemes and examines the e�ect of infeasible test frames

on these algorithms. Each of these algorithms selects members of a set of prime

implicants which correspond to the antecedents of test frames. A test frame is

124

constructed from a prime implicant and its corresponding test class. Thus, it is

su�cient to describe coverage scheme algorithms in terms of selecting certain prime

implicants of a Boolean expression. The problem of �nding a minimal set of prime

implicants that satis�es the given coverage is NP-hard in each case. A solution to

this problem would also solve what Garey and Johnson refer to as \[SP5] MINIMUM

COVER" [25]. To select a set of test frames with the desired coverage in polynomial

time, each algorithm abandons the minimal set but attempts to keep the selected

set as small as possible.

A set of prime implicants can be generated by constructing a disjunctive

normal form of the Boolean expression and using Strzemecki's algorithm [63] for

producing the prime implicants.

7.7.1 Implicant Coverage

One algorithm for an implicant coverage scheme simply uses the general decision

procedure of Section 7.4.2 to eliminate any infeasible test frames, then simpli�es

those that remain.

Although infeasible test frames are theorems of the speci�cation, they have

no value as descriptions of tests because the stimulus can never be achieved. For

example, one test frame of the test class x 2 f1; 2g^x < 2) r is (x = 2)^x < 2) r .

This is an infeasible test frame; it does not describe a test where the speci�ed system

can be forced to produce r to be consistent with its speci�cation. Infeasible test

frames are common in non-trivial speci�cations, and do not necessarily indicate the

presence of speci�cation errors.

125

7.7.2 DNF Coverage

This selection scheme selects a set of prime implicants that represents a disjunctive

normal form of the original logical expression. Since it is possible for a logical

expression to have more than one disjunctive normal form, the algorithm for this

selection scheme attempts to minimize the set by avoiding disjuncts that overlap

where possible.

The algorithm proceeds as follows:

1. Select a most general prime implicant that does not overlap the set already

selected, i.e.,
W
S ^ p = ? for a set S of already selected prime implicants and

unselected prime implicant p. A most general prime implicant is one with the

fewest frame stimuli, i.e., the shortest conjunction.

2. The selected prime implicant is tested to ensure that it is feasible in the con-

text of speci�ed condition dependencies. Any infeasible prime implicants are

discarded from the selected set.

3. Repeat steps 1 and 2 until the disjunction represented by the set is logically

equivalent to the original logical expression, or no more prime implicants are

available that �t the description in step 1.

4. To �ll in any gaps, repeatedly select feasible most general prime implicants

not implied by those already selected, i.e., :(
W
S) p), until logical equality

with the original expression is achieved, or no other such prime implicant, p,

remains.

5. Simplify the selected set of prime implicants. This step involves the use of

decision procedures, such as one for simple arithmetic, together with de�ned

126

condition dependencies.

7.7.3 Term Coverage

The algorithm for Term Coverage selects prime implicants that cover as many frame

stimuli as possible. The algorithm is as follows:

1. Select a prime implicant that contains the most frame stimuli that are not yet

represented in the selection set.

2. The selected prime implicant is tested to ensure that it is feasible. Any infea-

sible prime implicants are discarded from the selected set.

3. Repeat steps 1 and 2 until no other prime implicants contain frame stimuli

that are not represented in the selected set, or no unselected prime implicants

remain.

4. Simplify the selected set of prime implicants.

7.7.4 Infeasible Test Frames and Coverage Schemes

The determination of an infeasible prime implicant raises an interesting issue. Should

the fact that a prime implicant is infeasible be incorporated into the original logical

expression? In other words, when an infeasible prime implicant, p, is found in a

logical expression, E , should the selection algorithm be restarted with the new set

of prime implicants of the logical expression E 0 = E ^ :p?

This would ensure that, based on the given condition dependencies, no in-

feasible test steps could be derived from the test frames produced. This is certainly

a desirable property. However, prime implicants are costly to compute, hence this

127

is not generally a feasible approach. Furthermore, it is assumed that the given do-

main knowledge expresses the common sense of the test engineers. If an infeasible

instance of a test frame did exist, the test engineer would not choose this instance

by using their common sense. Thus, it is not critical for the test frame generator to

do more with infeasible prime implicants than discard them.

It is also possible that a selection algorithm cannot satisfy the correspond-

ing coverage scheme due to discarded infeasible prime implicants. This is a valid

situation, and does not imply that the selected set is de�cient.

7.8 Examples

This section presents examples of applying the general process described in this

chapter to speci�cations written by other authors. The speci�cation notation and

the test frame generator described in this section are merely examples of a parseable

notation and a particular implementation, respectively.

7.8.1 Steam Boiler

The following example is a more detailed S [39] translation of a portion of Schinagl's

VDM [37] style RSL [27] steam boiler control speci�cation [58]. This example illus-

trates the application of the general test frame generation process to a speci�cation

from the literature. The speci�cation problem is to formally specify requirements

for a control system responsible for maintaining the correct level of water in a boiler

attached to a steam-driven turbine. One of the requirements of the system is to

identify whether or not any inconsistencies exist in the sensor readings.

The speci�cation below is interleaved with descriptions of points of inter-

est. Since S is an ASCII-based speci�cation language, the words Exists unique,

128

exists, forall, and In replace the symbols 9 !; 9; 8, and 2, respectively. The S

expression nx.E is the ASCII version of the lambda calculus abstraction � x :E .

%include startup.s

(:t) Exists_unique (P:t -> bool) :=

(exists v.P v)

/\ (forall v1.forall v2.P v1 /\ P v2 ==> (v1 = v2));

inmess_ok : bool;

The variable inmess ok is the message consistency indicator. Since predicate

names beginning with a lower case letter indicate responses, this is the only response

predicate in this speci�cation.

:PUMP;

:STATE;

:message :=

PumpState :(PUMP # STATE)

| PumpCtrState :(PUMP # STATE)

| Level :num

| Steam :num

| SteamBoilerWaiting

| PhysicalUnitsReady

| PumpRep :PUMP

| PumpCtrRep :PUMP

| PumpFlrAck :PUMP

| PumpCtrFlrAck :PUMP

| LevelRep

129

| SteamRep

| LevelFlrAck

| SteamFlrAck;

InMess : (message)set;

The type message represents the various messages that can be received by

the boiler control unit. InMess represents the set of messages received.

Waiting,Ready : bool;

States [Waiting; Ready];

:MODE;

Working,Repairing,Broken : MODE;

forall P.States [P Working; P Repairing; P Broken];

The above portion of the speci�cation de�nes domain knowledge for the

states Waiting and Reading along with Working, Broken, and Repairing.

Mst,Pst : PUMP -> MODE -> bool;

Qst,Vst : MODE -> bool;

Mst p m indicates that the boiler control believes that the control unit for

pump p is in mode m. Pst p m indicates that the boiler control believes that pump

p is in mode m.1 Qst m indicates that the boiler control believes that the water level

indicator is in mode m. Vst m indicates that the boiler control believes that the

steam indicator is in mode m.
1The original speci�cation used the condition Pump.pst(p) = Pump.repairing to express the

same semantics as Pst p Repairing. This translation was performed to demonstrate the use of
state information.

130

MaxWater : num;

MaxSteam : num;

SetInMessOK :=

inmess_ok <=>

(forall p.

(Exists_unique (\s.PumpState(p, s) In InMess)) /\

(Exists_unique (\s.PumpCtrState(p, s) In InMess))) /\

(Exists_unique (\l.Level l In InMess)) /\

(select l.Level l In InMess) <= MaxWater /\

(Exists_unique (\l.Steam l In InMess)) /\

(select l.Steam l In InMess) <= MaxSteam /\

(SteamBoilerWaiting In InMess ==> Waiting) /\

(PhysicalUnitsReady In InMess ==> Ready) /\

(forall p.

(PumpRep p In InMess ==> Pst p Repairing) /\

(PumpCtrRep p In InMess ==> Mst p Repairing) /\

(PumpFlrAck p In InMess ==> Pst p Broken) /\

(PumpCtrFlrAck p In InMess ==> Mst p Broken)) /\

(LevelRep In InMess ==> Qst Repairing) /\

(SteamRep In InMess ==> Vst Repairing) /\

(LevelFlrAck In InMess ==> Qst Broken) /\

(SteamFlrAck In InMess ==> Vst Broken);

%no_expand In

%tcg -t -S SetInMessOk

SetInMessOK speci�es how the input message consistency
ag is set. The

speci�cation for SetInMessOk is not in test class normal form, but is still a relation-

131

ship between stimuli and responses.

The directive %no expand In suppresses the expansion of the de�nition of

In. The directive %tcg -t -S SetInMessOk directs the prototype test frame gen-

erator to produce test frames using the criterion (pure test classes, no response-

response resolution, not a closed world, no frame stimuli simpli�cation, Term Cov-

erage, base test frames). The -t
ag indicates that Term Coverage is to be used

rather than the default DNF Coverage. The -S
ag indicates that the output should

be in the form of S expressions.

The condition dependency information regarding the states of the system,

e.g. Repairing, Broken, is valuable. Without this information, it is possible that

a test frame could include

...^ Pst p Repairing ^ Pst p Broken ^...

within a test frame. If the Term Coverage scheme were to select such a prime im-

plicant, the decision procedure would determine a match with P = (Pst p). Thus,

such infeasible test frames are avoided.

The test classes and associated test frames produced from this speci�cation

are listed in Appendix B. The number of test classes, prime implicants, and test

frames for DNF and Term Coverage for this example are detailed in Table 7.1.

Test Class Prime Implicants DNF Coverage Term Coverage

1 20 20 20
2 64 27 2

Table 7.1: Numbers of Prime Implicants and Test Frames

132

7.8.2 North Atlantic Separation Minima

This example, described in a separate technical report [20], demonstrates the semi-

automatic generation of a set of 169 test frames from a formal speci�cation of aircraft

separation minima for the North Atlantic. The test frames were automatically gener-

ated by the prototype test frame generator from an S speci�cation of the separation

minima. Figure 7.2 provides a sample of the S speci�cation. The speci�cation is ap-

proximately 650 lines of S. Figure 7.3 provides a sample of one of the automatically

generated test frames. The combined set of 169 test frames provides complete cov-

erage of all conditions contained in the separation minima speci�cation. 125 of the

169 test frames are instances of the \separation exists" condition. The remaining

44 test frames are instances of the \separation does not exist" condition.

LongitudinallySeparated(A,B) :=

if (AngularDifferenceGreaterThan90Degrees

(RouteSegment A, RouteSegment B))

then /* opposite direction */

NOT (WithinOppDirNoLongSepPeriod(A,B))

else /* same direction */

ABS(TimeAtPosition A - TimeAtPosition B)

> LongSameDirSepRequired(A,B);

Figure 7.2: NATS S Speci�cation Fragment.

This example demonstrates the capability of this test generation approach

to produce test frames for a logically complex speci�cation. It is expected that the

169 test frames could be used directly by test engineers in the development of test

procedures for systems that monitor air tra�c over the North Atlantic.

The separation minima were originally written in a formal table notation [14].

This speci�cation was not authored with the intention of generating test frames. The

formal speci�cation of this separation minima is based on a description provided in

133

Stimuli Response

1. AngularDi�erenceGreaterThan90Degrees
(RouteSegment A , RouteSegment B)

2. : (IsSupersonic B)

3. IsTurbojet A

4. IsTurbojet B

5. : (IsWestOf60W B)

6. : (InWATRSAirspace B)

7. ReportedOverCommonPoint (A , B)

8. ept (A , B) + 10 < \separation check
time"

1. \are separated"
(A , B)

Figure 7.3: A NATS Test Frame.

a source document entitled \Application of Separation Minima for the NAT Region"

(3rd edition, e�ective December 1992), published by Transport Canada on behalf of

the ICAO North Atlantic Systems Planning Group. The table-based speci�cation

was algorithmically converted into an S speci�cation by N. Day.

Although the S speci�cation simply stated the conditions for separation

and did not specify requirements for a system, it was easily transformed into the

stimulus-response style system requirements speci�cation

forall A B.AreSeparated (A,B) , "are separated" (A,B)

for the purpose of generating test frames. This speci�cation requires that the system

indicate that two aircraft are separated precisely when they are separated according

to the requirements speci�ed by AreSeparated(A,B).

The following example provides a comparison between base and di�erentiated

test frames. One of the base test frames is:

134

Stimuli Response

1. AngularDi�erenceGreaterThan90Degrees

(RouteSegment A , RouteSegment B)

2. : (IsSupersonic B)

3. IsTurbojet A

4. IsTurbojet B

5. : (IsWestOf60W B)

6. : (InWATRSAirspace B)

7. ReportedOverCommonPoint (A , B)

8. ept (A , B) + 10 < \separation check time"

1. \are separated" (A ,

B)

The di�erentiated version of the same test frame is:

135

Stimuli Response

1. AngularDi�erenceGreaterThan90Degrees

(RouteSegment A , RouteSegment B)

2. : (IsSupersonic B)

3. IsTurbojet A

4. IsTurbojet B

5. : (IsWestOf60W B)

6. : (InWATRSAirspace B)

7. ReportedOverCommonPoint (A , B)

8. ept (A , B) + 10 < \separation check time"

9. : (VerticallySeparated (A , B))

10. : (LaterallySeparated (A , B))

11. EnterWATRSAirspaceAtSomeTime A

12. EnterWATRSAirspaceAtSomeTime B

13. IsWestOf60W A

14. MachTechniqueUsed A

15. MachTechniqueUsed B

16. OnPublishedRoute A

17. OnPublishedRoute B

18. \SameOr Diverging Tracks" (A , B)

19. ept (A , B) + 10 < EndTime (\WATRSOp-

pDir NoLongSepPeriod" (A , B))

1. \are separated" (A ,

B)

136

Using an iterative approach, computing the base test frames required a total

of three hours2 on an Ultra-Sparc 60. Computing the di�erentiated test frames

required �ve and a half hours on the same machine. Constructing an initial set of

scripts for generating test frames took approximately one hour.

Since the S speci�cation is large and complex, the particular test frame gen-

erator used in this example, TCG, does not have the capacity to process it in full

detail. An iterative approach was used to overcome this problem.

In the �rst iteration, only the predicate AreSeparated was expanded. All

other predicates and functions within the speci�cation were treated as primitives.

This resulted in the following expanded speci�cation:

forall A.

forall B.

(~

(VerticallySeparated (A , B) \/

LaterallySeparated (A , B) \/

LongitudinallySeparated (A , B)) \/

"are separated" (A , B)) /\

(~ ("are separated" (A , B)) \/

VerticallySeparated (A , B) \/

LaterallySeparated (A , B) \/

LongitudinallySeparated (A , B))

From this expansion, two test classes were generated: one for each of the re-

sponses "are separated" (A , B) and : ("are separated" (A , B)). An ini-

tial set of test frames was generated along with the test classes.

Additional condition dependencies were added when infeasible test frames

2The times given are the elapsed time reported by the unix time utility.

137

were found in the TCG output, or when the TCG tool found no feasible test frames

in a particular iteration. (Finding no feasible test frames implies that the input

speci�cation for that iteration was also infeasible.) This added a few days to the

time required for the construction of scripts for generating feasible test frames. This

was due to condition dependencies which exist between di�erent levels of abstraction

within the speci�cation. This suggests that, although this iterative approach is

capable of processing large, complex formal speci�cations, more work is required

to allow this particular type of condition dependencies to be determined with less

e�ort.

For this speci�cation, the di�erentiated test frames are only slightly di�erent

from the base test frames. This is due to the table structure from which the S

speci�cation was generated.

In some iterations, some of the test frames were found to be redundant. This

occurs when the stimuli for two or more test frames subsume the stimuli of another.

There are 161 di�erentiated test frames compared with 169 base test frames. This

demonstrates the value of di�erentiation in eliminating redundant test frames.

7.9 Conclusion

This chapter has de�ned the general test frame generation process, and has presented

aspects of one possible implementation of a test frame generator for this process.

Although this chapter presents examples using a speci�c notation, S, and a particular

implementation of a test frame generator, TCG, these are only examples of the

possible notations and tools. The generality of this process allows it to be applied

to speci�cations based on logics that are consistent with the logical manipulations

described in Chapter 5. The next chapter presents a re�nement of this general test

138

frame generation process that can be applied to system-level requirements-based

testing.

139

Chapter 8

System-Level

Requirements-Based Testing

This chapter illustrates how the discipline of speci�cation-based test derivation pre-

sented in this dissertation can be applied to system-level requirements-based testing.

A practical approach to automating portions of system-level requirements-based

testing requires special attention to issues of process integration. A primary issue

is the choice of language to be used by requirements authors. Other issues include

support for traceability, requirements validation, and measurements. This chapter

examines these issues and presents a re�nement of the general test frame genera-

tion process described in Chapter 7, which accounts for these issues. The resulting

process provides a solution to the problems described in chapters 2 and 4.

8.1 Introduction

In the �eld of system-level requirements-based testing, a distinction is often made

between those stimuli and responses that are externally visible, and those that only

140

refer to the internal state of the system. In this chapter, pre-conditions are stimuli

that either:

� are not externally visible, i.e., they refer to the internal state of the system

and not the environment, or

� specify conditions on parameters to externally visible stimuli.

Similarly, post-conditions are responses that refer either to:

� the internal state of the system, or

� to parameters of externally visible responses.

In the remainder of this chapter, the terms stimulus and response refer to atoms

that are not pre- or post-conditions.

The general test frame generation process of Chapter 7 requires an amount of

formal structure in the speci�cation. Integrating an automated test frame generator

into a current system-level requirements-based test derivation process requires the

use of a formal language for requirements speci�cation that is readable by non-

specialists. Speci�cation language features were developed as part of this research in

order to enhance readability by non-specialists, while providing the formal structure

required for automated test frame generation. The Q speci�cation language is the

author's collection of these features.

An automated approach to test frame generation does not eliminate the need

for traceability. For auditing purposes, it is necessary to be able to determine which

requirements are represented in each of the test frames. This capability is provided

by augmenting the rewrite system of Section 7.5.

In addition to generating test frames, this partially automated process pro-

vides additional bene�ts to software development processes. Test frames can be used

141

by requirements authors for validating the requirements they have written. Also,

the nomenclature from this thesis can be used for detailing how much system-level

requirements-based testing is required, and how much has been completed.

Section 8.2 provides an overview of the test frame generation process re�ned

for system-level requirements-based testing. Section 8.3 describes the Q require-

ments speci�cation language. Section 8.4 describes how traceability is achieved.

Section 8.5 describes examples of the application of this process to real world spec-

i�cations. Section 8.6 describes additional bene�ts of this testing discipline.

8.2 Process Overview

Figure 8.1 illustrates a re�nement of the general test frame generation process ap-

plicable to system-level requirements-based testing. The requirements are written

in Q by requirements authors. It is likely that the resulting Q speci�cation is eas-

ily read by other individuals for various other requirements-based processes. These

other individuals can include other requirements authors and test engineers, domain

experts, software designers, customers, and government regulators. Test engineers

de�ne the coverage criterion and any user mandated tests. Domain knowledge can

come from several sources, such as the requirements authors, domain experts, and

test engineers. Once the test frames have been generated, test engineers select the

appropriate data to produce test steps. Requirements authors can also use the test

frame generator to validate their requirements in a manner similar to that recom-

mended by Somerville and Sawyer [59].

While the general test frame process accepts a formal speci�cation in a gen-

eral form, requirements authors and those who would typically read system-level

requirements speci�cations are insu�ciently familiar with the notation. The Q

142

Test Frames
New

Generator
Test Frame

Knowledge
Domain Coverage

Criteria
User Mandated

Tests Test Frames
Existing

Test Steps

Optional inputs

Beyond the scope
of this thesis

Test Engineers

Test Engineers
Domain Experts
Requirements Authors

Requirements Authors

in Q
Requirements

other processes

Test Engineers

Validation

Domain Experts
Requirements Authors

Test Engineers
Software Designers
Customers
Certification Authorities

Figure 8.1: Integrating Automated Test Frame Generation

143

speci�cation language is an attempt at solving this problem. Q provides a means of

annotating requirements text so that the logical relationships relevant to test frame

generation are made explicit and precise, while preserving readability.

The following process accomplishes system-level requirements-based testing.

1. The testable requirements, i.e., those that can be veri�ed through testing, are

speci�ed in Q.

2. Any domain knowledge and user-de�ned tests are speci�ed.

3. An appropriate coverage criterion is selected. Since most documents on system-

level requirements-based testing specify that \there is at least one test for each

requirement," this criterion will most commonly include a Term Coverage se-

lection scheme.

4. Test frames are generated automatically from the Q speci�cation.

5. Test engineers perform manual data selection to produce test steps and test

procedures.

The use of a test frame generator for requirements validation is described in

Section 8.6.

8.3 The Q Speci�cation Language

This section describes the motivation for Q and de�nes the Q speci�cation language.

8.3.1 Overview

The successful integration of an automated test frame generation process requires

that the formal language for specifying requirements be accepted by the require-

144

ments authors. Traditional formal speci�cation languages such as Z [61] and VDM-

SL [37] impose formality, together with an amount of symbology that creates a

language very foreign to requirements authors. In contrast, Q imposes as little

symbology as possible, and allows the authors to use phrases of their own design.

The formal aspect of the Q language is required by the test frame generator.

A formal speci�cation that is also readable relieves the need for maintaining two

speci�cations; one formal for input to the test frame generator, and another for

non-specialists.

A speci�cation written in a traditional formal language, in this case S [39],

may appear as:

:flight;

leader, follower : flight;

Supersonic : flight -> bool;

Spec := Supersonic leader \/ Supersonic follower;

In Q, the speci�cation may appear as:

:flight;

"the leading aircraft", "the following aircraft" : flight;

" * is supersonic" : flight -> bool;

" * or * " x y := x \/ y;

BEGIN_Q

{Spec} is true iff

{{{the leading aircraft} is supersonic} or

{{the following aircraft} is supersonic}}.

145

END_Q

In the Q speci�cation, it is likely that the de�nition of Spec is more readable by

non-specialists.1 The pre-amble above the keyword BEGIN Q would normally be

contained in the infrastructure for supporting a Q speci�cation of the requirements.

The Q speci�cation language provides a syntax for concisely denoting the

logical relationships and alternatives within the requirements, while also providing

a natural language style. For example, the requirement fragment,

Either the leading aircraft or the trailing aircraft is supersonic

is speci�ed as

fany of fthe leading aircraft, the trailing aircraftgg is supersonic.

The braces impose a parseable structure on the requirements. The semantics

of the language constructs, such as \any of," allows the test frame generator to

calculate the logically equivalent expression, which in this case is:

ffthe leading aircraftg is supersonicg or ffthe trailing aircraftg

is supersonicg.

Once these constructs are expanded into their logical equivalents, test frames can

be calculated as in Chapter 7.

Q is implemented as an extension of the S speci�cation language, and is

used to formalize natural language stimulus-response style speci�cations for the

purpose of requirements-based testing. Q can be used to de�ne predicates within a

requirements speci�cation, but relies on S syntax for de�ning constants, types, and

functions. Q statements are contained within the keywords BEGIN Q and END Q.

1Although multi-word variable names are supported by S, this style is rarely used in speci�cation
styles similar to S, Z, or VDM-SL. However, the use of multi-word variables is encouraged and is
more natural in Q due to the
ex-�x notation.

146

The lightweight simplicity of the Q language helps to preserve the readability

and conciseness of the speci�cation. The mathematical semantics of Q ensure that

each statement has an unambiguous meaning. With these qualities, Q provides the

mathematical link between a requirements speci�cation and the test frame genera-

tion tool introduced in the previous chapter.

There are three essential features of Q. The �rst is the use of braces, fg, which

delimit phrases and parameters within the speci�cation. Injecting these braces into

the speci�cation e�ectively transforms the phrases of natural language into formal

functions and arguments. This technique was �rst used by Joyce in his Test Case

Element Language (TCEL) [38].

When formalizing the natural language phrase

the leading aircraft is supersonic or the following aircraft is supersonic

for the purpose of system-level requirements-based testing, only the choices need

to be made explicit. Thus, the appropriate formalization for testing is to choose

\or," as the predicate and the two adjoining phrases are conditions. The resulting

Q version of the above phrase is:

fthe leading aircraft is supersonicg or fthe following aircraft

is supersonicg.

In this Q expression, \ * or * " is the function, and \the leading aircraft is

supersonic" and \the following aircraft is supersonic" are its arguments.

The predicate logic equivalent, where function application is expressed by the jux-

taposition of literals, is:

\ * or * " \the leading aircraft is supersonic" \the following aircraft

is supersonic"

147

The predicate \ * or * " has the type bool ! bool ! bool, as expected.

The *" in the function name denotes positions in the text where arguments

are placed. This type of notation is referred to as a
ex-�x notation [13]. Flex-�x,

the second Q feature, allows arguments to be distributed within a function name.

This helps preserve readability. For example, the Q expression

faircraft Ag and faircraft Bg are separated by at least f1000 feetg

corresponds to the following predicate logic representation:

\ * and * are separated by at least * " \aircraft A" \aircraft B" \1000

feet."

The Q expression is more readable to requirements speci�cation authors than, say,

an, S, Z or VDM-SL expression, such as

ABS(Altitude(aircraft A)�Altitude(aircraft B)) > feet(1000):

The third feature of Q, due to the author, is the use of keywords that de�ne

multiple arguments for a function's parameter. These keywords are motivated by

natural language phraseology such as \both aircraft are," and \either A or B is."

For example, the requirement

either the leading aircraft or the following aircraft is supersonic

can be formalized in Q as

fany of fthe leading aircraft, the following aircraftgg is supersonic.

A predicate containing an \any of" argument is equivalent to a disjunction of that

predicate evaluated at each of the values in the \any of" set. In this case, the

equivalent expression is

148

ffthe leading aircraftg is supersonicg or ffthe following aircraftg

is supersonicg.

This example contains more formal detail than the expression

fthe leading aircraft is supersonicg or fthe following aircraft is

supersonicg.

In the former expression, there are formal references to two aircraft. In the latter

expression, there are only two conditions. The fact that these conditions were based

on two aircraft was not made explicit in the latter expression. This latest example

is referred to as a deeper speci�cation, because it contains more formal detail. Test

engineers decide how deep a speci�cation should be by determining the conditions

they wish to reveal to the test frame generator.

Another parameter mechanism is the \distinct choices" keyword. This key-

word is used in encoding phrase structures such as:

all of the following are true:

1. aircraft A is dumping fuel,

2. aircraft B is using standard altimeter setting,

3. if one aircraft is supersonic and the other is not then further con-

ditions

In this example, \one aircraft" and \the other" refer to either \aircraft A" or \air-

craft B," interchangeably. They represent distinct choices of the two aircraft. The

Q version is:

fall of f

149

1. faircraft Ag is dumping fuel,

2. faircraft Bg is using standard altimeter setting,

3. if ffone aircraft, the otherg are any distinct choices of faircraft

A, aircraft Bg in

fffone aircraftg is supersonicg and fit is not the case that ffthe

otherg is supersonicgggg then ffurther conditionsg

The \distinct choices" phrase in this example is necessary in order to formally de�ne

the references \one aircraft" and \the other." However, this construction is still more

concise and more readable than the full expansion of the distinct choice, which is:

fffaircraft Ag is supersonicg and

fit is not the case that ffaircraft Bg is supersonicggg or

fffaircraft Bg is supersonicg and

fit is not the case that ffaircraft Ag is supersonicggg

The formal semantics of \any of," its counterpart, \each of," and other

parameter mechanisms are de�ned more precisely in later sections.

8.3.2 Expressions

A Q expression is a string of at least one word and any number of arguments

separated by white-space characters. Arguments are expressions contained within

a comma-delimited list surrounded by braces. In the following grammar, * and +

refer to zero or more and one or more of the preceding symbol, respectively.

150

expression := word+ \." primitive expression

j primitive expression

primitive expression := (\f" expression (\," expression)* \g")+ primitive expression+

j primitive expression+ (\f" expression (\," expression)* \g")+

j word+

The optional pre�x, word+ \.", for each expression allows speci�cation au-

thors to tag expressions for traceability purposes. These tags have no semantic value

with respect to the logical meaning of the speci�cation.

8.3.3 Predicate De�nitions

A Q speci�cation is a collection of predicate de�nitions. Predicates are de�ned using

the * is true iff * " statement.

de�nition := \f" parm expression \g" is true i� \f" expression \g" \."

parm expression := (\f" word+ (\," word+)* \g")+ parm expression+

j parm expression+ (\f" word+ (\," word+)* \g")+

j word+

8.3.4 Conjunctive and Disjunctive Lists

Requirements speci�cations often provide lists of conditions which represent logical

conjunction, e.g., \all of the following," or disjunction, e.g., \at least one of the

following." Such a list format is provided by the predicates \all of" and \any

of." The Q expression all of fSg, where S is a comma-separated list of predicates,

is semantically equivalent to
V
S, where

V
(fxg [A) = x ^ (

V
A), and

V
fg = >.

151

Similarly, any of fSg is semantically equivalent to
W
S, where

W
(fxg [A) = x _

(
V
A), and

W
fg = ?.

8.3.5 Argument-Based Conjunctions and Disjunctions

The keywords \each of * " and \any of * " are used to construct conjunctions

and disjunctions, respectively, of a predicate over di�erent arguments. These key-

words both appear as functions having the type (t)list ! t . The semantics of these

functions is de�ned in terms of predicates, i.e., predicate logic expressions that do

not contain logical connectives (see Section 5.3). The equivalent logic expression is

determined by evaluating the predicate logic expression AE Ua P for \any of" or

AE Ue P for \each of" using the rules of Appendix A. These two functions map

the application of a predicate to a list of arguments into a disjunction or conjunction,

respectively, of the predicate applied to each argument of the list, separately.

Although multiple uses of one of these keywords can be used within a pred-

icate, mixtures of \any of" and \each of" within arguments to a single reference

of a predicate are problematic. This is because it is unclear whether the expres-

sion containing argument keywords represents a conjunction of disjunctions, or vice

versa.

For example, the expression

fthe feach of fapple, tomatogg is a fany of fvegetable, fruitggg

may have been intended to mean either

fffthe fappleg is a fvegetablegg or fthe ftomatog is a fvegetableggg

and ffthe fappleg is a ffruitgg or fthe ftomatog is a ffruitgggg

or, alternatively,

152

fffthe fappleg is a fvegetablegg and fthe ftomatog is a fvegetableggg

or ffthe fappleg is a ffruitgg and fthe ftomatog is a ffruitgggg.

Clearly, these two semantic evaluations are logically di�erent.

Although the rules of Appendix A disambiguate such a construction, this

rule would need to be learned and would not be obvious to a non-specialist from

the text alone. Since this is counter to the objective of Q, mixtures of \any of"

and \each of" are not allowed within arguments to the same predicate. The order

of semantic evaluation in these situations can be made more clear using expression

aliasing.

8.3.6 Expression Aliasing

An expression alias is the same as the let statement found in functional programming

languages such as ML [49]. The purpose of the alias is to assign a short name to a

complex expression in order to make a portion of text more readable.

The Q expression ffxg is fyg in fEgg is semantically equivalent to fEg,

with y substituted for x. To encourage simpler speci�cations, the expression E must

be a predicate logic expression rather than an arbitrary expression that might rep-

resent a non-Boolean value. The predicate ffxg is fyg in fEgg is syntactic sugar

for the lambda calculus expression (�x:E)y. Similarly, the tuple form ffx,yg are

fa,bg in fEgg is syntactic sugar for the lambda calculus expression (�x; y:E)(a; b).

Using expression aliasing, the earlier \any of" / \each of" example can be

disambiguated as

ffitemg is feach of fapple, tomatogg in

fthe fitemg is a fany of fvegetable, fruitgggg

which results in a conjunction of disjunctions.

153

8.3.7 Argument Permutation

The predicates * are all distinct choices of * in * " and * are any distinct

choices of * in * " are used to construct conjunctions and disjunctions involv-

ing permutations of arguments. An example of the use of this keyword was given

earlier in Section 8.3.

ffzg are all distinct choices of fAg in fEgg

is semantically equivalent to

ffzg are feach of fP(A)gg in fEgg,

where z is a tuple and P(A) is a list of all the permutations of tuples the same size

as z uses elements of A. Similarly,

ffzg are any distinct choices of fAg in fEgg

is semantically equivalent to

ffzg are fany of fP(A)gg in fEgg.

8.3.8 Quanti�cation

Universal and existential quanti�cation are provided by the syntax ffor any fxg

fEgg, which is equivalent to 8 x:E, and fthere exists fxg such that fEgg, which

is equivalent to 9 x:E. Higher-order quanti�cation is allowed. An example is:

ffor any fseparation of * and * rulesg fseparation of ftargetg and

fintruderg rulesgg.

154

8.4 Traceability

As described in Section 2.6, traceability provides a means of mapping requirements

to the tests that verify those requirements [16]. The traceability of test frames to

requirements is automated in the following way by an augmented rewrite system.

Authors tag the requirements in the Q speci�cation with an identi�er. When the Q

speci�cation is parsed, these tags are embedded in the atoms and arguments in the

corresponding logical expressions. During test frame generation, the rewrite system

maintains these tags. As logical expressions are rewritten, atoms and arguments

from various places in the speci�cation are brought together while the tags identify

their origin.

Although this traceability mapping is generated in a test-frames-to-requirements

manner, the desired inverse mapping can be easily computed.

8.5 Examples

This section describes examples of the application of the process described in this

chapter.

8.5.1 CAATS SRS

To assess the practical usefulness of this process, the partially automated pro-

cess described in this chapter was experimentally applied to a portion of the Soft-

ware Requirements Speci�cation for the Canadian Automated Air Tra�c System

(CAATS) being developed by Raytheon Systems of Canada Ltd. This example,

presented in a conference paper [21], is taken from a portion of the CAATS software

requirements which refers to separation rules. The separation rules form a set of

155

complex conditions under which certain responses occur. The speci�cation of the

separation rules is composed of several subsections dealing with di�erent aspects

of separation. The portion of the speci�cation used in this example contained 177

requirements designated as testable requirements2.

When evaluating this process, it was decided that a test set with DNF Cov-

erage would not be produced for this speci�cation due to the large number of test

frames which would have resulted. The speci�cation refers to the separation rules

in both a negative (the aircraft are not separated), and a positive (the aircraft are

separated), context. This results in two corresponding test classes. The numbers of

test frames constituting DNF Coverage are estimated to be approximately 1,000 for

the positive case, and roughly 1024 for the negative case.

Test frames were generated using a Term Coverage scheme. This resulted

in approximately 130 test frames for the positive case and approximately 230 test

frames for the negative case.

Table 8.1 gives one of the test frames generated by our automated process.

ROIDs are requirement object identi�ers used to tag requirements statements.

It is important to note that the success of this example was due to the

following essential qualities:

1. The consistency of the test frames, the assurance of proper coverage, and the

accuracy of the tracing information are due to the mathematical underpinnings

of the algorithms used.

2. The formal version of the software requirements fragment contained enough

mathematical structure to facilitate test frame generation while still being

2In addition to requirements that can be veri�ed through testing, requirements speci�cations
often contain requirements that cannot be veri�ed through a test program and must be addressed
by other means, which are beyond the scope of this dissertation.

156

Stimulus Conditions Responses ROIDs

fACC
operatorg
requests

planned

clearance

1. fplanned clearanceg exists

for the flight

2. the source of the fplanned
clearanceg is an aerodrome

control tower with a tower

method of operation of

complex

3. the aircraft state is not

AIRBORNE

4. fintruderg is using

faltimeter settingg

5. fplanned clearanceg is using

faltimeter settingg

6. the lowest altitude in the

protected altitude band for

fintruderg is at or below fFL
290g

7. the lowest altitude in the

protected altitude band for

fplanned clearanceg is at or

below fFL 290g

8. the protected altitude band

for fintruderg is vertically

separated from the protected

altitude band for fplanned
clearanceg by f1000g feet or

more

9. (NOT fplanned clearanceg is

dumping fuel)

10. (NOT fintruderg is dumping

fuel)

1. fATAg
shall

commit

fplanned
clearanceg

84672

224215

226547

226549

226550

NOTE: This is only an example. This test frame was generated from a representation of only
a portion of the CAATS software requirements which was used to evaluate the usefulness
of this process. Any errors or omissions in this test frame are due to the way in which this
portion was extracted by the author.

Table 8.1: An Automatically Generated Test Frame

157

readable.

3. Conditions were relatively independent, which allowed for a simple encoding

of the existing condition dependencies.

8.5.2 ICAO Flight Plan

This example, described in a separate technical report [19], involved the semi-

automatic generation of a set of 252 test frames from a portion of the ICAO in-

structions for �lling out a
ight plan as speci�ed in Appendix 2, Subsection 2 of

ICAO's Rules of the Air and Air Tra�c Services [36]. The 252 test frames were

automatically generated by the QTCG prototype tool from a Q representation of

testable requirements. Figure 8.2 presents a portion of the 526 line Q speci�cation.

Figure 8.3 provides a sample of one of these automatically generated test frames.

Two distinct sets of test frames were generated through di�erent uses of the same

requirements speci�cation. Each set of test frames provides complete coverage of

all the testable requirements relative to the context in which the requirements were

used. 122 of the test frames are schemas for testing a system that automatically �lls

out a
ight plan. The remaining 130 test frames are schemas for testing a system

that validates a given
ight plan.

It is expected that the 252 test frames could be used directly by test engineers

in the development of test procedures for software that produces a �lled-out
ight

plan and for software validating �lled-out
ight plans.

The ten pages of testable requirements were manually translated into a

parseable representation of similar size. To produce the formal speci�cation, text

was translated directly from the ICAO
ight plan instructions into a Q speci�cation.

Computing the base test frames for �lling out a
ight plan required a total

158

I19ES4.

if {not {Dinghies are carried}} then {

cross out {Item 19 D} - {each of {D, C}}}

else {all of {

insert {Item 19 D} - {number of dinghies carried},

insert {Item 19 D} -

{total capacity in persons of all dinghies carried},

if {not {Dinghies are covered}} then {

cross out {Item 19 D} - {C}},

insert {Item 19 D} - {colour of dinghies}

}}

Figure 8.2: ICAO Flight Plan Speci�cation Fragment.

ROIDs: I19ES4

Stimuli Response

1. Dinghies are

carried
1. insert fItem 19 Dg -

fnumber of dinghies

carriedg

2. insert fItem 19 Dg -

ftotal capacity in persons

of all dinghies carriedg

3. insert fItem 19 Dg -

fcolour of dinghiesg

Figure 8.3: An ICAO Flight Plan Test Frame.

159

of one minute and 42 seconds3 on an Ultra-Sparc 60. The base test frames for

checking a �lled-out
ight plan required a total of two minutes and 39 seconds.

Computing the di�erentiated versions of this latter set of test frames had to be

done in pieces, and required approximately �fty minutes. Constructing the set of

scripts for generating test frames took approximately half an hour.

From the author's exposure to industry practice, a very conservative estimate

of the e�ort required to derive, review, and document a traceability map for a

single test frame, on average, would be one hour.4 By this estimate, the base test

frames that were automatically generated in under three minutes would require

approximately three person-weeks to prepare manually. This comparison does not

include the translation time, since it is expected that requirements authors would

produce original speci�cations in Q.

During the construction of the test class normal form, two potential speci�-

cation anomalies were reported by the QTCG tool. Two of the test classes express

facts implied by the speci�cation.

Test class 59 is analogous to the test frame:

Stimuli Response

1. NOT The flight is along a designated ATS

route

2. ATS flight track points are required by

the appropriate ATS authority

3. NOT Use ATS style track points

false

Since the response is false, this implies that the speci�cation asserts that the stimuli

can never occur. This poses a question to be answered by the requirements author,

3The times given are the elapsed time reported by the unix time utility.
4In many cases, a more conservative, and realistic estimate, is one day.

160

e.g., is it true that this combination of stimuli can never occur? An inconsistency

would indicate an error in the speci�cation.

Test class 87 is analogous to the test frame:

Stimuli Response

true
1. insert fItem 19 Eg - fthe four digit fuel

endurance in hours and minutesg

2. insert fItem 19 Ag - fcolour of aircraft

and significant markingsg

3. insert fItem 19 Cg - fname of pilot in

commandg

This test frame indicates that the response will always occur. Thus, these response

conditions can be appended to each of the other test frames, if desired. Again, this

seems consistent with the importance of the information in these �elds of the
ight

plan.

8.6 Additional Bene�ts

This section describes the use of test frames for requirements validation, and the

use of the nomenclature of this discipline for describing measurements of complexity

and progress of system-level requirements-based testing.

8.6.1 Validation

The process presented in Section 8.2 has the potential to improve requirements val-

idation. The purpose of validation is to ensure that the requirements re
ect what

is actually intended. Although reviews are commonly used in software development

161

processes to ensure that requirements are valid, a certain amount of requirements

validation occurs during test development. This is because the activity of construct-

ing tests from speci�cations provides an alternative perspective of the implications

of the speci�cation.

Unfortunately, test construction is performed after requirements authoring,

and is typically performed by di�erent individuals. Sommerville and Sawyer [59]

recommend that requirements authors derive test steps as a means of validating

the requirements they write. A test frame generator provides an automated means

for requirements authors to leverage the gain of this testing perspective while they

are writing the speci�cation. Any anomalous test frames found during a review of

those produced by the test frame generator, can be traced back to the o�ending

requirements. This occurred during reviews of test frames produced for both the

CAATS and ICAO Flight Plan examples.

Another bene�t is that other non-specialists, such as domain experts, can

participate in validating a formal requirements speci�cation. This is di�cult to

achieve with traditional formal speci�cation languages, which typically require a

high degree of training to attain pro�ciency, such as with Z or VDM-SL.

The participation of a domain expert was illustrated during the authoring

of a Q speci�cation for Notices To Airmen [23]. A review of the Q speci�cation by

an individual with no training in Q realized that there were many assumptions held

by the industry that were not made explicit in the speci�cation. The ability of this

individual to identify this problem shows that he was able to read and comprehend

signi�cant portions of the Q speci�cation.

162

8.6.2 Complexity and Progress Measurement

The nomenclature of the discipline presented in this dissertation can be used as the

basis for measurements. These measurements can provide an accurate picture of

the progress of system-level requirements-based testing.

An upper bound on the number of test frames for Term Coverage can be

computed in O(n log n) time. This is because test classes and frame stimuli can be

determined in an amount of time that is O(n log n) in the length of the speci�cation,

and a Term Coverage scheme produces no more test frames than the number of frame

stimuli in a test class.

A crude measure of the complexity of the system can be obtained from an

approximation of the number of test frames. The number of test classes provides a

measure of the number of operations required of a system, while the number of test

frames per test class provides a crude measure of the complexity of each operation.

A possible re�nement is to assign weights to each frame stimulus, indicating the

expected relative complexity of its detection.

The bound on the number of test frames can be used to estimate the progress

of system-level requirements-based testing. As test frames and test steps are pro-

duced and their corresponding test procedures executed, the relationship between

those completed and those not yet produced helps provide an assessment of progress.

8.7 Summary

This chapter has illustrated the application of the discipline of speci�cation-based

test derivation to system-level requirements-based testing. A particular re�nement

of the general test frame generation process from Chapter 7 was presented that

163

addresses speci�c issues of system-level requirements-based testing. Other possible

bene�ts of the discipline were also presented.

164

Chapter 9

Conclusions

This chapter reviews the results of this research, and outlines some possible avenues

for further research.

9.1 Research Results

This dissertation has identi�ed two major problems in the �eld of system-level

requirements-based testing:

1. the lack of objective de�nitions of coverage criteria; and

2. the lack of automation.

This dissertation has also identi�ed four challenges in automating the generation of

test frames:

1. the structural independence of test frames from the speci�cation;

2. dependencies between conditions within test frames;

3. existential and universal quanti�cation within the speci�cation; and

165

4. the delta problem.

This dissertation has presented a discipline of speci�cation-based test deriva-

tion. It has also demonstrated that this discipline provides a scienti�c founda-

tion for improving portions of software development processes, such as system-

level requirements-based testing. This dissertation has de�ned a nomenclature for

speci�cation-based testing that forms a basis for objective speci�cation-based cov-

erage criteria de�nitions and test frame generation algorithms. These contributions

satisfy the goals of this research.

Furthermore, the use of this discipline has several bene�ts. The discipline

strongly encourages the development of a testable requirements speci�cation. At the

same time, the automation of test frame generation increases the value of producing

a formal speci�cation. Perhaps most importantly, the nomenclature can be used

in future revisions of standards documents such as DO178B, DOD-STD-2167A,

ANSI/IEEE 829-1983, and MIL-STD-498, to state objective testing requirements

at the system level.

Moreover, system-level requirements-based testing is not the only application

of the discipline of speci�cation-based test derivation. For the purposes of test

frame generation, this discipline can be applied to any stimulus-response style formal

speci�cation founded on a logic consistent with the algorithms given in Chapter 5.

As illustrated in Section 8.6, automated test frame generation can contribute to the

validation of the speci�cation. This discipline can also be used for other purposes,

such as complexity and progress measurements.

The application of this discipline to a broad range of speci�cations has been

illustrated in four examples: one from the literature, one authored for purposes

other than testing, one translated from an international public domain air tra�c

166

control authority, and one translated from a proprietary speci�cation owned by a

prominent company in the air tra�c control industry.

Section 2.8 lists �ve characteristics for any solution to the problems of system-

level requirements-based testing addressed by this thesis. The discipline presented

in this dissertation satis�es each of these characteristics:

1. objective de�nitions of coverage criteria are based on the nomenclature;

2. test frame derivation is partially1 automated;

3. test engineers have the control they require to exercise engineering judgement;

4. traceability is supported; and

5. the Delta Problem has been shown to be intractable (Appendix C), but heuris-

tic solutions appear to be possible.

The algorithms presented in this dissertation produce test frames with the following

properties.

1. Conservative: Each test frame is a logical consequence of the requirements.

2. Tractable: Test engineers have the control to exercise engineering judgement.

3. Complete: The set of test frames is produced according to a speci�ed coverage

criterion.

4. Traceable: The original elements can be determined from which a selected test

frame was derived.
1The formalization of the requirements cannot be automated, in general.

167

Demonic speci�cations and those that do not have a test class normal form can be

identi�ed by the algorithms. These speci�cation forms are suspect, and typically

indicate speci�cation errors.

9.2 Foundations for Future Work

The work presented in this dissertation can be extended in several areas. This

research includes improvements to the test frame generation process; heuristics for

the Delta Problem; incorporating the general test frame generation process into a

testing methodology; a more mature language exploiting the main Q features; and

the projection of test frames onto a design speci�cation.

9.2.1 Test Frame Generation Process Improvements

There are opportunities for research in re�ning the process itself. An iterative ap-

plication of a test frame generator allows the processing of large speci�cations. The

application of this technique in situations where infeasible test frames are numerous

requires further research.

Other research would focus on coverage criteria. While de�ning coverage

criteria, Chapter 6 introduced several variations of test frame generation based on

test classes, test frames, and frame stimuli. Although these terms form the core

of the nomenclature for de�ning coverage criteria, it would be naive to expect that

the criteria of Chapter 6 form an exhaustive list. In particular, the range between

DNF and Term Coverages should be explored. It is quite probable that certain

situations will require test engineers to develop other variations to suit their needs.

However, these new variations will, in all likelihood, be described in terms of the

basic nomenclature laid forth by this thesis.

168

9.2.2 Delta Heuristics

Although the Delta Problem is undecidable, in general, a process capable of inte-

grating existing test frames with new test frames could potentially avoid wasteful

rework. Appendix C shows that the Delta Problem is undecidable and outlines one

possible heuristic solution to this problem.

9.2.3 Methodology

This section describes the extent to which the discipline of speci�cation-based testing

presented in this dissertation de�nes a methodology for system-level requirements-

based testing. The following is a description of the basic contents of such a method-

ology. The methodology would specify:

1. the required properties of the speci�cation language used to state the require-

ments;

2. precise de�nitions of test procedure and the contents of a test procedure, e.g.

test steps;

3. what amount of detail is required in each test step;

4. algorithms for deriving and sequencing the contents of test procedures from

the speci�ed requirements;

5. how traceability is achieved;

6. what requirements coverage means and how to satisfy given coverage criteria;

7. under what circumstances particular coverage criteria should and should not

be used; and

169

8. procedures to be performed when requirements changes occur after a set of

test procedures has already been derived.

The discipline presented in this dissertation provides a basis for most of the

above aspects of a methodology. The minimal required properties of the speci�cation

language, for the purpose of test frame generation, are given in Chapter 5. This

discipline de�nes test procedures in terms of test frames and test steps. While it

provides a formal de�nition of a test frame and a test step, this discipline does not

prescribe precisely how to choose data values for test steps. Nor does it prescribe

how to methodically sequence test frames within a test procedure. The discipline

does provide some alternatives as to the amount of detail to be found in test frames,

e.g., base vs. di�erentiated.

This discipline provides a precise mathematical de�nition of requirements

coverage, and of how coverage criteria relate test frames to requirements. Algorithms

that support traceability are provided for deriving a set of test frames to satisfy

speci�c coverage criteria. However, no details are given as to when one coverage

criterion should be used over another.

Regarding the e�ects of requirements changes, this dissertation has identi�ed

the Delta Problem and has shown that it is, in the worst case, undecidable. Although

a heuristic partial solution is described, there is no evidence as to the applicability

of this solution.

To summarize, the discipline presented in this dissertation provides a math-

ematical basis for a methodology for system-level requirements-based testing, and

provides research opportunities for further development of a methodology.

170

9.2.4 Next Step for Q

The examples in Chapter 8 demonstrate that certain features of Q have been useful

for formalizing natural language, stimulus-response requirements speci�cations for

the purpose of system-level requirements-based testing. However, establishing that

these features result in a language that can be easily learned and read by non-

specialists will require further and controlled study.

The current implementation of Q, its reliance on S for underlying capabilities

such as the de�nition of types, constraints, and functions other than predicates,

makes it usable, but not terribly appealing, for general speci�cation. Automating the

declaration of predicates would improve the usefulness of this type of speci�cation

language. However, there must also be some mechanism to warn of situations where

an author may have mis-spelled or mis-worded a predicate name. Future work

should incorporate the concepts demonstrated in Q into a more generally applicable

language.

9.2.5 Speci�cation Projection

Watanabe and Sakamura [66] describe a manual test case generation strategy based

on Z speci�cations that incorporates information about the implementation through

a structure graph provided by programmers. Work such as this combines information

from a speci�cation, with information from the implementation. This is valuable for

testing, since the combination allows the determination of additional input domain

partitions. (The antecedent of a test frame is an example of such a partition.)

A similar idea is to project test frames from a formal requirements speci�-

cation onto a formal design speci�cation. This could serve to validate the design

from a requirements perspective. Any test frames that did not �t onto the design

171

indicate a de�ciency in the design or an invalid test frame, which indicates an error

in the requirements. Traceability would also provide a means of measuring progress

during the design phase.

9.3 Epilogue

In an article published in the April 1996 issue of IEEE Computer, Hall [29] proposed

the question: \What can formal methods contribute to improve the quality and

decrease the cost of our systems?" This dissertation contributes part of an answer

to this question. The discipline presented in this dissertation, which draws heavily

from many aspects of formal methods, can improve the quality of our systems by

ensuring that test procedures are developed according to objectively de�ned coverage

criteria. The cost of developing our systems can be reduced in a variety of ways

described in this dissertation including, but not limited to, the automation of some

aspects of the task of deriving test procedures from requirements.

172

Bibliography

[1] Jean-Raymond Abrial. Steam boiler control speci�cation problem. In Jean-

Raymond Abrial, Egon B�orger, and Hans Langmaack, editors, Formal Methods

for Industrial Applications: Specifying and Programming the Steam Boiler Con-

trol, volume 1165 of Lecture Notes in Computer Science, pages 500{509, Octo-

ber 1996. http://www.informatik.uni-kiel.de/~procos/dag9523/dag9523.html.

[2] Paul Ammann and Je� O�utt. Using formal methods to derive test frames in

category-partition testing. In Compass'94: 9th Annual Conference on Com-

puter Assurance, pages 69{80, Gaithersburg, MD, 1994. IEEE Computer Soci-

ety Press. National Institute of Standards and Technology.

[3] Aonix. Product Overview: Validator/Req, June 1998.

http://www.aonix.com/Pdfs/SQAS/Validator PBr.ME.pdf (Figure 3).

[4] G. Battani and M. Meloni. Interpreteur du language de programmation PRO-

LOG. Technical report, Groupe d'Intelligence Arti�cielle, Universite d'Aix-

Marseille II, 1973.

[5] Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software

and Systems. John Wiley & Sons, 1995.

[6] G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal

speci�cations. Software Engineering Journal, 6(6), November 1991.

[7] Mark R. Blackburn and Robert D. Busser. T-VEC: A tool for developing critical

systems. In Compass'96: Eleventh Annual Conference on Computer Assurance,

pages 237{249, Gaithersburg, Maryland, 1996. National Institute of Standards

and Technology.

[8] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677{691, August 1986.

173

[9] Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic

Press, 1983.

[10] Juei Chang, Debra J. Richardson, and Sriram Sankar. Structural speci�cation-

based testing with ADL. In Steven J. Zeil, editor, Proceedings of the 1996

International Symposium on Software Testing and analysis, pages 62{70, New

York, January 1996. ACM Press.

[11] T. Cheung and S. Ren. Executable test sequences and operational coverage

for LOTOS speci�cations. In Jim Weeldreyer, editor, Proceedings of the 12th

Annual International Phoenix Conference on Computers and Communications,

pages 245{253, Tempe, AR, March 1993. IEEE Computer Society Press.

[12] John Joseph Chilenski and Philip H. Newcomb. Formal speci�cation tools for

test coverage analysis. KBSE'94 Knowledge-Based Software Engineering, pages

59{68, 1994.

[13] Kendra Cooper. Flex-�x predicates. conversation, June 1997.

[14] Nancy A. Day, Je�rey J. Joyce, and Gerry Pelletier. Formalization and analysis

of the separation minima for aircraft in the north atlantic: Complete speci�-

cation and analysis results. Technical Report 97-12, Department of Computer

Science, University of British Columbia, October 1997.

[15] Department of Defense, Washington D.C. MIL-STD-498 Military Standard,

Software Developement and Documentation, December 1994.

[16] Michael S. Deutsch and Ronald R. Willis. Software Quality Engineering.

Prentice-Hall, 1988.

[17] Jeremy Dick and Alain Faivre. Automating the generation and sequencing

of test cases from model-based speci�cations. In Formal Methods Europe '93,

volume 670 of Lecture Notes in Computer Science, pages 268{284. Springer-

Verlag, 1993.

[18] Michael R. Donat. Automating formal speci�cation-based testing. In Michel

Bidoit and Max Dauchet, editors, TAPSOFT '97:Theory and Practice of Soft-

ware Development, 7th International Joint Conference CAAP/FASE, volume

1214 of Lecture Notes in Computer Science, pages 833{847. Springer-Verlag,

April 1997.

[19] Michael R. Donat. Automatically generated test frames from a Q speci�cation

of ICAO
ight plan form instructions. Technical Report TR-98-05, Department

174

of Computer Science, University of British Columbia, Vancouver, B.C., Canada,

April 1998.

[20] Michael R. Donat. Automatically generated test frames from an S speci�cation

of separation minima for the North Atlantic region. Technical Report TR-98-04,

Department of Computer Science, University of British Columbia, Vancouver,

B.C., Canada, April 1998.

[21] Michael R. Donat and Je�rey J. Joyce. Applying an automated test description

tool to testing based on system level requirements. In 8th Annual Symposium

of the International Council on Systems Engineering, Vancouver, July 1998.

International Council on Systems Engineering. http://www.incose.org.

[22] N. S. Eickelmann and Debra J. Richardson. An evaluation of software test

environment architectures. In 18th International Conference on Software Engi-

neering, pages 353{365, Berlin - Heidelberg - New York, March 1996. Springer.

[23] Eurocontrol. Operating Procedures for AIS Dynamic Data, May 1997.

EATCHIP draft AIS.ET1.ST05.1000-DEL-01.

[24] R. Ferguson and B. Korel. Software test data generation using the chaining

approach. In International Test Conference, pages 703{709, Altoona, Pa., USA,

October 1995. IEEE Computer Society Press.

[25] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W.H.Freeman and Company, San

Francisco, 1979.

[26] Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT: 6th Inter-

national Joint Conference on Theory and Practice of Software Development,

volume 915 of Lecture Notes in Computer Science, pages 82{96, 1995.

[27] C. George, P. Ha�, K. Havelund, A.E. Haxthausen, R. Milne, C. Bendix Niel-

son, S. Prehn, and K.R. Wagner. The Raise Speci�cation Language. Prentice

Hall, New York, 1992.

[28] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: A theorem

proving environment for higher order logic. Cambridge University Press, 1993.

[29] Anthony Hall. Industrial practice: What is the formal methods debate anyway?

IEEE Computer, 29(4):22{23, April 1996.

[30] I. Hayes and C. Jones. Speci�cations are not (necessarily) executable. IEE

Software Engineering Journal, 4(6):330{338, November 1989.

175

[31] Ian Hayes. Speci�cation directed module testing. IEEE Transactions on Soft-

ware Engineering, 12(1):124{133, 1986.

[32] Ste�en Helke, Thomas Neustupny, and Thomas Santen. Automating test

case generation from Z speci�cations with Isabelle. In Jonathan Bowen, Mike

Hinchey, and David Till, editors, ZUM'97: The Z Formal Speci�cation Nota-

tion, 10th International Conference of Z Users, volume 1212 of Lecture Notes

in Computer Science. Springer-Verlag, April 1997.

[33] R. M. Hierons. Extending test sequence overlap by invertibility. The Computer

Journal, 39(4):325{330, 1996.

[34] Hans-Martin H�orcher. Improving software tests using Z speci�cations. In

Jonathan P. Bowen and Michael G. Hinchey, editors, ZUM '95 9th Interna-

tional Conference of Z Users, The Z Formal Speci�cation Notation, volume

967 of Lecture Notes in Computer Science, pages 152{166. Springer-Verlag,

1995.

[35] IEEE Standards Association, Washington D.C. 829-1983 (R1991) IEEE Stan-

dard for Software Test Documentation, 1991.

[36] International Civil Aviation Organization, Montr�eal, Canada. Rules of

the Air and Air Tra�c Services (PANS-RAC Doc 4444), November 1994.

http://www.icao.int.

[37] C. B. Jones. Systematic Software Development Using VDM (2nd edition). Pren-

tice Hall, 1990.

[38] Je�rey J. Joyce. TCEL. Proprietary document, April 1997.

[39] Je�rey J. Joyce, Nancy Day, and Michael R. Donat. S: A machine readable

speci�cation notation based on higher order logic. In Thomas F. Melham and

Juanito Camilleri, editors, Higher Order Logic Theorem Proving and Its Appli-

cations, 7th International Workshop, volume 859 of Lecture Notes in Computer

Science, pages 285{299. Springer-Verlag, 1994.

[40] M. Karnaugh. The map method for synthesis of combinational logic cir-

cuits. AIEE Transactions, Part I Communication and Electronics, 72:593{599,

November 1953.

[41] Gilbert Laycock. Formal speci�cation and testing: A case study. Software

Testing, Veri�cation and Reliability, 2(1):7{23, May 1992.

176

[42] Gilbert Laycock. The Theory and Practice of Speci�cation Based Software

Testing. PhD thesis, University of She�eld, April 1993.

[43] G. Luo, A. Das, and G. v. Bochmann. Software testing based on SDL speci-

�cations with save. IEEE Transactions on Software Engineering, 20(1):72{87,

January 1994.

[44] Ian MacColl, David Carrington, and Philip Stocks. An experiment in

speci�cation-based testing. In K. Ramamohanarao, editor, 19th Australasian

Computer Science Conference Proceedings (ACSC'96), pages 159{168, 1996.

[45] Brian Marick. The Craft of Software Testing. Prentice Hall, Englewood Cli�s,

NJ, 1995.

[46] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying

and generating functional tests. Communications of the ACM, 31(6):676{686,

June 1988.

[47] Lawrence C. Paulson. Designing a theorem prover. Technical Report 192,

University of Cambridge, University of Cambridge, Computer Laboratory, New

Museums Site, Pembroke Street, Cambridge CB2 3QG, England, May 1990.

[48] Lawrence C. Paulson. Designing a theorem prover. In Handbook of Logic in

Computer Science, volume 2. Clarendon, 1992.

[49] Lawrence C. Paulson. ML for the Working Programmer. Cambridge University

Press, second, paperback edition, 1992.

[50] Lawrence C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in

Computer Science, 828, 1994.

[51] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelligence.

Oxford University Press, January 1998.

[52] Debra J. Richardson, S. Leif-Aha, and T. O. OMalley. Speci�cation-based

Test Oracles for Reactive Systems. In Proceedings of the 14th International

Conference on Software Engineering, pages 105{118, May 1992.

[53] Debra J. Richardson, T. O. O'Malley, C. T. Moore, and S. L. Aha. Develop-

ing and Integrating PRODAG in the Arcadia Environment. In Proceedings of

the Fifth ACM SIGSOFT Symposium on Software Development Environments,

pages 109{119, December 1992.

177

[54] Debra J. Richardson and M. C. Thompson. An analysis of test data selection

criteria using the RELAY model of fault detection. IEEE Transactions on

Software Engineering, 19(6):533{553, June 1993.

[55] Debra J. Richardson and Alexander L. Wolf. Software testing at the architec-

tural level. In Joint Proceedings of the SIGSOFT '96 Workshops, Part 1, pages

68{71, New York, October 1996. ACM Press.

[56] RTCA, Inc. and EUROCAE. DO-178B, Software Considerations in Airbourne

Systems and Equipment Certi�cation, 12B edition, December 1992.

[57] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Com-

bining speci�cation, proof checking, and model checking. In Rajeev Alur and

Thomas A. Henzinger, editors, Proceedings of the Eighth International Con-

ference on Computer Aided Veri�cation CAV, volume 1102 of Lecture Notes

in Computer Science, pages 411{414, New Brunswick, NJ, USA, July/August

1996. Springer-Verlag.

[58] Christian P. Schinagl. VDM speci�cation of the steam-boiler control using RSL

notation. In Jean-Raymond Abrial, Egon B�orger, and Hans Langmaack, edi-

tors, Formal Methods for Industrial Applications: Specifying and Programming

the Steam Boiler Control, volume 1165 of Lecture Notes in Computer Science,

pages 428{452, October 1996.

[59] Ian Sommerville and Peter Sawyer. Requirements Engineering. John Wiley &

Sons, Inc., Chichester, 1997.

[60] Space and Naval Warfare Systems Command, Washington D.C. DOD-STD-

2167A Military Standard, Defense System Software Developement, February

1988.

[61] J. Michael Spivey. Understanding Z: A Speci�cation language and its formal

semantics. Cambridge University Press, 1988.

[62] Phil Stocks and David Carrington. A framework for speci�cation-based testing.

IEEE Transactions on Software Engineering, 22(11):777{793, November 1996.

[63] Tadeusz Strzemecki. Polynomial-time algorithms for generation of prime im-

plicants. COMPLEXITY: Journal of Complexity, 8:37{63, 1992.

[64] M. C. Thompson, Debra J. Richardson, and L. Clarke. An information
ow

model of fault detection. In Thomas Ostrand and Elaine Weyuker, editors,

178

Proceedings of the International Symposium on Software Testing and Analysis,

pages 182{192, New York, NY, USA, June 1993. ACM Press.

[65] J. Voas, K. Miller, and J. Payne. Automating test case generation for coverages

required by FAA standard DO-178B. In Computers in Aerospace 9, San Diego,

CA, October 1993. American Institute of Aeronautics and Astronautics.

[66] A. Watanabe and K. Sakamura. A speci�cation-based adaptive test case gen-

eration strategy for open operating system standards. In 18th International

Conference on Software Engineering, pages 81{89, Berlin - Heidelberg - New

York, March 1996. Springer.

[67] Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. Automatically gener-

ating test data from a Boolean speci�cation. IEEE Transactions on Software

Engineering, 20(5):353{363, May 1994.

179

Appendix A

Rules for Argument-Based

Conjunctions and Disjunctions

The axioms below de�ne the semantics of the Q phrases ``each of'' and ``any

of.''

8 x ; l1; l2:Append (CONS x l1) l2 = CONS x (Append l1 l2)

8 l :Append NIL l = l

8 x ; l ; fn:Map (CONS x l) fn = CONS (fn x) (Map l fn)

8 fn:Map NIL fn = NIL

AE Mx : (t1! t2)list ! (t1)list ! (t2)list

8 x ; l1; l2:AE Mx (CONS x l1) l2 = Append (Map l2 x) (AE Mx l1 l2)

8 l :AE Mx NIL l = NIL

180

AE Ue : t ! (t)list

8P ; l :AE Ue (P (EACH OF l)) = AE Mx (AE Ue P) l

8P ;Q :AE Ue (P Q) = AE Mx (AE Ue P) (AE Ue Q)

8P :AE Ue P = [P];where P is an atom

AE Ua : t ! (t)list

8P ; l :AE Ua (P (ANY OF l)) = AE Mx (AE Ua P) l

8P ;Q :AE Ua (P Q) = AE Mx (AE Ua P) (AE Ua Q)

8P :AE Ua P = [P];where P is an atom

181

Appendix B

Automatically Generated Test

Frames for the Steam Boiler

Control

The test frames presented in this appendix were automatically generated from an

S speci�cation of a portion of Schinagl's VDM style RSL speci�cation for Abrial's

steam boiler speci�cation problem.

B.1 S Speci�cation

%include startup.s

(:t) Exists_unique (P:t -> bool) :=

(exists v.P v)

/\ (forall v1.forall v2.P v1 /\ P v2 ==> (v1 = v2));

inmess_ok : bool;

182

:PUMP;

:STATE;

:message :=

PumpState :(PUMP # STATE)

| PumpCtrState :(PUMP # STATE)

| Level :num

| Steam :num

| SteamBoilerWaiting

| PhysicalUnitsReady

| PumpRep :PUMP

| PumpCtrRep :PUMP

| PumpFlrAck :PUMP

| PumpCtrFlrAck :PUMP

| LevelRep

| SteamRep

| LevelFlrAck

| SteamFlrAck;

InMess : (message)set;

Waiting,Ready : bool;

States [Waiting; Ready];

:MODE;

Working,Repairing,Broken : MODE;

forall P.States [P Working; P Repairing; P Broken];

% Mst = software opinion of the state of the control unit

% Pst = software opinion of the state of the pump

183

Mst,Pst : PUMP -> MODE -> bool;

% Qst = software opinion of the state of the water level indicator

% Vst = software opinion of the state of the steam indicator

Qst,Vst : MODE -> bool;

MaxWater : num;

MaxSteam : num;

SetInMessOK :=

inmess_ok <=>

(forall p.

(Exists_unique (\s.PumpState(p, s) In InMess)) /\

(Exists_unique (\s.PumpCtrState(p, s) In InMess))) /\

(Exists_unique (\l.Level l In InMess)) /\

(select l.Level l In InMess) <= MaxWater /\

(Exists_unique (\l.Steam l In InMess)) /\

(select l.Steam l In InMess) <= MaxSteam /\

(SteamBoilerWaiting In InMess ==> Waiting) /\

(PhysicalUnitsReady In InMess ==> Ready) /\

(forall p.

(PumpRep p In InMess ==> Pst p Repairing) /\

(PumpCtrRep p In InMess ==> Mst p Repairing) /\

(PumpFlrAck p In InMess ==> Pst p Broken) /\

(PumpCtrFlrAck p In InMess ==> Mst p Broken)) /\

(LevelRep In InMess ==> Qst Repairing) /\

(SteamRep In InMess ==> Vst Repairing) /\

(LevelFlrAck In InMess ==> Qst Broken) /\

(SteamFlrAck In InMess ==> Vst Broken);

%no_expand In

184

B.2 Base Test Frames

{Test Frame 1.1:

Stimuli Response

1. Level v1 2 InMess

2. Level v2 2 InMess

3. : (v1 = v2)

1. : inmess ok

{Test Frame 1.2:

Stimuli Response

1. PumpState (p , v1') 2 InMess

2. PumpState (p , v2') 2 InMess

3. : (v1' = v2')

1. : inmess ok

{Test Frame 1.3:

Stimuli Response

1. SteamFlrAck 2 InMess

2. : (Vst Broken)

1. : inmess ok

{Test Frame 1.4:

Stimuli Response

1. LevelFlrAck 2 InMess

2. : (Qst Broken)

1. : inmess ok

{Test Frame 1.5:

Stimuli Response

1. SteamRep 2 InMess

2. : (Vst Repairing)

1. : inmess ok

185

{Test Frame 1.6:

Stimuli Response

1. LevelRep 2 InMess

2. : (Qst Repairing)

1. : inmess ok

{Test Frame 1.7:

Stimuli Response

1. PumpCtrFlrAck p' 2 InMess

2. : (Mst p' Broken)

1. : inmess ok

{Test Frame 1.8:

Stimuli Response

1. PumpFlrAck p' 2 InMess

2. : (Pst p' Broken)

1. : inmess ok

{Test Frame 1.9:

Stimuli Response

1. PumpCtrRep p' 2 InMess

2. : (Mst p' Repairing)

1. : inmess ok

{Test Frame 1.10:

Stimuli Response

1. PumpRep p' 2 InMess

2. : (Pst p' Repairing)

1. : inmess ok

{Test Frame 1.11:

Stimuli Response

1. PhysicalUnitsReady 2 InMess

2. : Ready

1. : inmess ok

186

{Test Frame 1.12:

Stimuli Response

1. SteamBoilerWaiting 2 InMess

2. : Waiting

1. : inmess ok

{Test Frame 1.13:

Stimuli Response

1. : (v1 = v2)

2. Steam v1 2 InMess

3. Steam v2 2 InMess

1. : inmess ok

{Test Frame 1.14:

Stimuli Response

1. : (v1' = v2')

2. PumpCtrState (p , v1') 2 InMess

3. PumpCtrState (p , v2') 2 InMess

1. : inmess ok

{Test Frame 1.15:

Stimuli Response

1. 8 v.: (PumpState (p , v) 2 InMess) 1. : inmess ok

{Test Frame 1.16:

Stimuli Response

1. 8 v.: (PumpCtrState (p , v) 2 InMess) 1. : inmess ok

{Test Frame 1.17:

Stimuli Response

1. 8 v.: (Level v 2 InMess) 1. : inmess ok

{Test Frame 1.18:

Stimuli Response

1. 8 v.: (Steam v 2 InMess) 1. : inmess ok

187

{Test Frame 1.19:

Stimuli Response

1. : ((select l.Steam l 2 InMess) 6 MaxSteam) 1. : inmess ok

{Test Frame 1.20:

Stimuli Response

1. : ((select l.Level l 2 InMess) 6 MaxWater) 1. : inmess ok

188

{Test Frame 2.1:

Stimuli Response

1. 8 p.9 v.PumpState (p , v) 2 InMess

2. 8 v1. 8 v2. (8 p. : (PumpState (p , v1) 2 InMess) _ :

(PumpState (p , v2) 2 InMess)) _ (v1 = v2)

3. 8 p.9 v.PumpCtrState (p , v) 2 InMess

4. 8 v1. 8 v2. (8 p. : (PumpCtrState (p , v1) 2 InMess)

_ : (PumpCtrState (p , v2) 2 InMess)) _ (v1 = v2)

5. Level v 2 InMess

6. 8 v1. 8 v2. : (Level v1 2 InMess) _ : (Level v2 2

InMess) _ (v1 = v2)

7. (select l.Level l 2 InMess) 6 MaxWater

8. Steam v' 2 InMess

9. 8 v1. 8 v2. : (Steam v1 2 InMess) _ : (Steam v2 2

InMess) _ (v1 = v2)

10. (select l.Steam l 2 InMess) 6 MaxSteam

11. Waiting

12. : (PhysicalUnitsReady 2 InMess)

13. 8 p.: (PumpRep p 2 InMess) _ Pst p Repairing

14. 8 p.: (PumpCtrRep p 2 InMess) _ Mst p Repairing

15. 8 p.: (PumpFlrAck p 2 InMess) _ Pst p Broken

16. 8 p.: (PumpCtrFlrAck p 2 InMess) _ Mst p Broken

17. Qst Repairing

18. Vst Repairing

19. : (LevelFlrAck 2 InMess)

20. : (SteamFlrAck 2 InMess)

1. inmess ok

189

{Test Frame 2.2:

Stimuli Response

1. 8 p.9 v.PumpState (p , v) 2 InMess

2. 8 v1. 8 v2. (8 p. : (PumpState (p , v1) 2 InMess) _ :

(PumpState (p , v2) 2 InMess)) _ (v1 = v2)

3. 8 p.9 v.PumpCtrState (p , v) 2 InMess

4. 8 v1. 8 v2. (8 p. : (PumpCtrState (p , v1) 2 InMess)

_ : (PumpCtrState (p , v2) 2 InMess)) _ (v1 = v2)

5. Level v 2 InMess

6. 8 v1. 8 v2. : (Level v1 2 InMess) _ : (Level v2 2

InMess) _ (v1 = v2)

7. (select l.Level l 2 InMess) 6 MaxWater

8. Steam v' 2 InMess

9. 8 v1. 8 v2. : (Steam v1 2 InMess) _ : (Steam v2 2

InMess) _ (v1 = v2)

10. (select l.Steam l 2 InMess) 6 MaxSteam

11. : (SteamBoilerWaiting 2 InMess)

12. Ready

13. 8 p.: (PumpRep p 2 InMess) _ Pst p Repairing

14. 8 p.: (PumpCtrRep p 2 InMess) _ Mst p Repairing

15. 8 p.: (PumpFlrAck p 2 InMess) _ Pst p Broken

16. 8 p.: (PumpCtrFlrAck p 2 InMess) _ Mst p Broken

17. : (LevelRep 2 InMess)

18. : (SteamRep 2 InMess)

19. Qst Broken

20. Vst Broken

1. inmess ok

190

B.3 Di�erentiated Test Frames

{Test Frame 1.1:

Stimuli Response

1. Level v0 0
2 InMess

2. Level v0 00
2 InMess

3. : (v00 = v00 0)

4. (select l.Level l 2 InMess) 6 MaxWater

5. (select l.Steam l 2 InMess) 6 MaxSteam

6. Waiting

7. : (PhysicalUnitsReady 2 InMess)

8. Qst Repairing

9. Vst Repairing

10. : (LevelFlrAck 2 InMess)

11. : (SteamFlrAck 2 InMess)

12. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

13. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

14. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

15. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

16. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

17. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

18. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

19. 8 p.9 v.PumpState (p , v) 2 InMess

20. 8 p.9 v.PumpCtrState (p , v) 2 InMess

21. Level v0 000
2 InMess

22. Steam v0
2 InMess

1. : inmess ok

191

{Test Frame 1.2:

Stimuli Response

1. PumpState (p000 , v100) 2 InMess

2. PumpState (p000 , v200) 2 InMess

3. : (v100 = v20 0)

4. (select l.Level l 2 InMess) 6 MaxWater

5. (select l.Steam l 2 InMess) 6 MaxSteam

6. Waiting

7. : (PhysicalUnitsReady 2 InMess)

8. Qst Repairing

9. Vst Repairing

10. : (LevelFlrAck 2 InMess)

11. : (SteamFlrAck 2 InMess)

12. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

13. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

14. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

15. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

16. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

17. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

18. 8 p.9 v.PumpState (p , v) 2 InMess

19. 8 p.9 v.PumpCtrState (p , v) 2 InMess

20. Level v0 000
2 InMess

21. Steam v0
2 InMess

22. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

192

{Test Frame 1.3:

Stimuli Response

1. SteamFlrAck 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (LevelFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

193

{Test Frame 1.4:

Stimuli Response

1. LevelFlrAck 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

194

{Test Frame 1.5:

Stimuli Response

1. SteamRep 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. : (LevelFlrAck 2 InMess)

8. Vst Broken

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

195

{Test Frame 1.6:

Stimuli Response

1. LevelRep 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Vst Repairing

7. Qst Broken

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

196

{Test Frame 1.7:

Stimuli Response

1. PumpCtrFlrAck p000
2 InMess

2. : (Mst p00 0 Broken)

3. (select l.Level l 2 InMess) 6 MaxWater

4. (select l.Steam l 2 InMess) 6 MaxSteam

5. Waiting

6. : (PhysicalUnitsReady 2 InMess)

7. Qst Repairing

8. Vst Repairing

9. : (LevelFlrAck 2 InMess)

10. : (SteamFlrAck 2 InMess)

11. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

12. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. Level v0 0
2 InMess

20. Steam v000
2 InMess

21. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

197

{Test Frame 1.8:

Stimuli Response

1. PumpFlrAck p00 0
2 InMess

2. : (Pst p000 Broken)

3. (select l.Level l 2 InMess) 6 MaxWater

4. (select l.Steam l 2 InMess) 6 MaxSteam

5. Waiting

6. : (PhysicalUnitsReady 2 InMess)

7. Qst Repairing

8. Vst Repairing

9. : (LevelFlrAck 2 InMess)

10. : (SteamFlrAck 2 InMess)

11. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

12. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. Level v0 0
2 InMess

20. Steam v000
2 InMess

21. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

198

{Test Frame 1.9:

Stimuli Response

1. PumpCtrRep p0 00
2 InMess

2. : (Mst p00 0 Repairing)

3. (select l.Level l 2 InMess) 6 MaxWater

4. (select l.Steam l 2 InMess) 6 MaxSteam

5. Waiting

6. : (PhysicalUnitsReady 2 InMess)

7. Qst Repairing

8. Vst Repairing

9. : (LevelFlrAck 2 InMess)

10. : (SteamFlrAck 2 InMess)

11. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

12. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

13. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. Level v0 0
2 InMess

20. Steam v000
2 InMess

21. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

199

{Test Frame 1.10:

Stimuli Response

1. PumpRep p000
2 InMess

2. : (Pst p000 Repairing)

3. (select l.Level l 2 InMess) 6 MaxWater

4. (select l.Steam l 2 InMess) 6 MaxSteam

5. Waiting

6. : (PhysicalUnitsReady 2 InMess)

7. Qst Repairing

8. Vst Repairing

9. : (LevelFlrAck 2 InMess)

10. : (SteamFlrAck 2 InMess)

11. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

12. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

13. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

14. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. Level v0 0
2 InMess

20. Steam v000
2 InMess

21. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

200

{Test Frame 1.11:

Stimuli Response

1. PhysicalUnitsReady 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. Qst Repairing

6. Vst Repairing

7. : (LevelFlrAck 2 InMess)

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

201

{Test Frame 1.12:

Stimuli Response

1. SteamBoilerWaiting 2 InMess

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Ready

5. Qst Repairing

6. Vst Repairing

7. : (LevelFlrAck 2 InMess)

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

202

{Test Frame 1.13:

Stimuli Response

1. : (v00 = v00 0)

2. Steam v00
2 InMess

3. Steam v000
2 InMess

4. (select l.Level l 2 InMess) 6 MaxWater

5. (select l.Steam l 2 InMess) 6 MaxSteam

6. Waiting

7. : (PhysicalUnitsReady 2 InMess)

8. Qst Repairing

9. Vst Repairing

10. : (LevelFlrAck 2 InMess)

11. : (SteamFlrAck 2 InMess)

12. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

13. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

14. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

15. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

16. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

17. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

18. 8 p.9 v.PumpState (p , v) 2 InMess

19. 8 p.9 v.PumpCtrState (p , v) 2 InMess

20. Level v0 000
2 InMess

21. Steam v0
2 InMess

22. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

203

{Test Frame 1.14:

Stimuli Response

1. : (v100 = v20 0)

2. PumpCtrState (p0 0 , v10 0) 2 InMess

3. PumpCtrState (p0 0 , v20 0) 2 InMess

4. (select l.Level l 2 InMess) 6 MaxWater

5. (select l.Steam l 2 InMess) 6 MaxSteam

6. Waiting

7. : (PhysicalUnitsReady 2 InMess)

8. Qst Repairing

9. Vst Repairing

10. : (LevelFlrAck 2 InMess)

11. : (SteamFlrAck 2 InMess)

12. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

13. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

14. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

15. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

16. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

17. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

18. 8 p.9 v.PumpState (p , v) 2 InMess

19. 8 p.9 v.PumpCtrState (p , v) 2 InMess

20. Level v0 000
2 InMess

21. Steam v0
2 InMess

22. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

204

{Test Frame 1.15:

Stimuli Response

1. 8 v.: (PumpState (p00 0 , v) 2 InMess)

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (LevelFlrAck 2 InMess)

9. : (SteamFlrAck 2 InMess)

10. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

11. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

12. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 000
2 InMess

19. Steam v0
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

205

{Test Frame 1.16:

Stimuli Response

1. 8 v.: (PumpCtrState (p000 , v) 2 InMess)

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (LevelFlrAck 2 InMess)

9. : (SteamFlrAck 2 InMess)

10. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

11. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

12. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. Level v0 000
2 InMess

19. Steam v0
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

206

{Test Frame 1.17:

Stimuli Response

1. 8 v.: (Level v 2 InMess)

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (LevelFlrAck 2 InMess)

9. : (SteamFlrAck 2 InMess)

10. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

11. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

12. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

20. Steam v0
2 InMess

1. : inmess ok

207

{Test Frame 1.18:

Stimuli Response

1. 8 v.: (Steam v 2 InMess)

2. (select l.Level l 2 InMess) 6 MaxWater

3. (select l.Steam l 2 InMess) 6 MaxSteam

4. Waiting

5. : (PhysicalUnitsReady 2 InMess)

6. Qst Repairing

7. Vst Repairing

8. : (LevelFlrAck 2 InMess)

9. : (SteamFlrAck 2 InMess)

10. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

11. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

12. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

13. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

14. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

15. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

16. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

17. 8 p.9 v.PumpState (p , v) 2 InMess

18. 8 p.9 v.PumpCtrState (p , v) 2 InMess

19. Level v0
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

208

{Test Frame 1.19:

Stimuli Response

1. : ((select l.Steam l 2 InMess) 6 MaxSteam)

2. (select l.Level l 2 InMess) 6 MaxWater

3. Waiting

4. : (PhysicalUnitsReady 2 InMess)

5. Qst Repairing

6. Vst Repairing

7. : (LevelFlrAck 2 InMess)

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

209

{Test Frame 1.20:

Stimuli Response

1. : ((select l.Level l 2 InMess) 6 MaxWater)

2. (select l.Steam l 2 InMess) 6 MaxSteam

3. Waiting

4. : (PhysicalUnitsReady 2 InMess)

5. Qst Repairing

6. Vst Repairing

7. : (LevelFlrAck 2 InMess)

8. : (SteamFlrAck 2 InMess)

9. 8 p. 8 v10. : (PumpState (p , v10) 2 InMess) _ (8 v20.

: (PumpState (p , v20) 2 InMess) _ (v10 = v20))

10. 8 p0.: (PumpCtrFlrAck p0
2 InMess) _ Mst p0 Broken

11. 8 p0.: (PumpFlrAck p0
2 InMess) _ Pst p0 Broken

12. 8 p0.: (PumpCtrRep p0
2 InMess) _ Mst p0 Repairing

13. 8 p0.: (PumpRep p0
2 InMess) _ Pst p0 Repairing

14. 8 v1. 8 v2. (v1 = v2) _ : (Steam v1 2 InMess) _ :

(Steam v2 2 InMess)

15. 8 v10. 8 v20. (v10 = v20) _ (8 p. : (PumpCtrState (p ,

v10) 2 InMess) _ : (PumpCtrState (p , v20) 2 InMess))

16. 8 p.9 v.PumpState (p , v) 2 InMess

17. 8 p.9 v.PumpCtrState (p , v) 2 InMess

18. Level v0 0
2 InMess

19. Steam v000
2 InMess

20. 8 v1. : (Level v1 2 InMess) _ (8 v2.: (Level v2 2

InMess) _ (v1 = v2))

1. : inmess ok

210

{Test Frame 2.1:

Stimuli Response

1. 8 p.9 v.PumpState (p , v) 2 InMess

2. 8 v1. 8 v2. (8 p. : (PumpState (p , v1) 2 InMess) _ :

(PumpState (p , v2) 2 InMess)) _ (v1 = v2)

3. 8 p.9 v.PumpCtrState (p , v) 2 InMess

4. 8 v1. 8 v2. (8 p. : (PumpCtrState (p , v1) 2 InMess)

_ : (PumpCtrState (p , v2) 2 InMess)) _ (v1 = v2)

5. Level v 2 InMess

6. 8 v1. 8 v2. : (Level v1 2 InMess) _ : (Level v2 2

InMess) _ (v1 = v2)

7. (select l.Level l 2 InMess) 6 MaxWater

8. Steam v0
2 InMess

9. 8 v1. 8 v2. : (Steam v1 2 InMess) _ : (Steam v2 2

InMess) _ (v1 = v2)

10. (select l.Steam l 2 InMess) 6 MaxSteam

11. Waiting

12. : (PhysicalUnitsReady 2 InMess)

13. 8 p.: (PumpRep p 2 InMess) _ Pst p Repairing

14. 8 p.: (PumpCtrRep p 2 InMess) _ Mst p Repairing

15. 8 p.: (PumpFlrAck p 2 InMess) _ Pst p Broken

16. 8 p.: (PumpCtrFlrAck p 2 InMess) _ Mst p Broken

17. Qst Repairing

18. Vst Repairing

19. : (LevelFlrAck 2 InMess)

20. : (SteamFlrAck 2 InMess)

21. SteamBoilerWaiting 2 InMess

1. inmess ok

211

{Test Frame 2.2:

Stimuli Response

1. 8 p.9 v.PumpState (p , v) 2 InMess

2. 8 v1. 8 v2. (8 p. : (PumpState (p , v1) 2 InMess) _ :

(PumpState (p , v2) 2 InMess)) _ (v1 = v2)

3. 8 p.9 v.PumpCtrState (p , v) 2 InMess

4. 8 v1. 8 v2. (8 p. : (PumpCtrState (p , v1) 2 InMess)

_ : (PumpCtrState (p , v2) 2 InMess)) _ (v1 = v2)

5. Level v 2 InMess

6. 8 v1. 8 v2. : (Level v1 2 InMess) _ : (Level v2 2

InMess) _ (v1 = v2)

7. (select l.Level l 2 InMess) 6 MaxWater

8. Steam v0
2 InMess

9. 8 v1. 8 v2. : (Steam v1 2 InMess) _ : (Steam v2 2

InMess) _ (v1 = v2)

10. (select l.Steam l 2 InMess) 6 MaxSteam

11. : (SteamBoilerWaiting 2 InMess)

12. Ready

13. 8 p.: (PumpRep p 2 InMess) _ Pst p Repairing

14. 8 p.: (PumpCtrRep p 2 InMess) _ Mst p Repairing

15. 8 p.: (PumpFlrAck p 2 InMess) _ Pst p Broken

16. 8 p.: (PumpCtrFlrAck p 2 InMess) _ Mst p Broken

17. : (LevelRep 2 InMess)

18. : (SteamRep 2 InMess)

19. Qst Broken

20. Vst Broken

21. PhysicalUnitsReady 2 InMess

1. inmess ok

212

Appendix C

A Heuristic for the Delta

Problem

This appendix presents a mathematical de�nition of the Delta Problem from Sec-

tion 4.6 and outlines a proposed heuristic test frame delta algorithm. The proposed

partial solution to the Delta Problem also allows the test frame generation process

to accept user mandated tests, thereby providing further control by test engineers.

An additional capability of this algorithm is the identi�cation of some test frames

which span multiple test classes while allowing for appropriate coverage.

As described in Section 4.6, the Delta Problem is to integrate test frames

previously generated from a speci�cation with new test frames generated from a

changed version of the same speci�cation while satisfying the speci�ed coverage cri-

terion. The original motivation for this problem is the reuse of existing test frames

after speci�cation changes have occurred. However, if the structural di�erence be-

tween the two versions of the speci�cation is ignored, then whether the existing test

frames were generated automatically or speci�ed manually is of little consequence.

213

Thus, the integration of user mandated test frames with those test frames produced

from a speci�cation is an instance of the Delta Problem.

In the context of test frame generation, the Delta Problem is de�ned as

follows. A prime (0) is used to distinguish new literals resulting from a requirements

change from literals corresponding to the previous version of the requirements.

Let Q :f) R be an existing test frame derived from requirements spec-

i�cation A, and let P 0:S 0) R0 be a test class of A0, where Q and P 0

represent the outer quanti�ers of the test frame and test class, respec-

tively. The antecedent of the existing test frame is represented by f . R

represents the consequent of the existing test frame. S 0 represents the

antecedent of the test class to which the existing test frame might be-

long. R0 represents the consequent of this test class. The Delta Problem

can be expressed as the following two questions:

1. Is Q :f) R still a valid test? i.e., Does A0 imply Q :f) R?

2. Can Q :f) R be incorporated into a new set of test frames? More

precisely, if Q :f) R is implied by the test class P 0:S 0) R0, which

of the prime implicants of S 0 is represented by f ?

Since test class normal form is not canonical, it is possible that the existing

test frame is valid, but is not implied by any one test class. In this situation,

Question 2 above is irrelevant and the existing test frame cannot be incorporated into

the new set of test frames. Thus, although con�rmation of Question 1 is valuable,

it does not assist in integrating an existing test frame with a new test frame set.

The �rst part of Question 2 is represented formally as the conjecture:

(P 0:S 0) R0)) (Q :f) R) (C.1)

214

If Conjecture (C.1) is a theorem, then the test frame is still valid and should be added

to the initial set used by the coverage scheme. This conjecture is undecidable, in

general. However, if a reasonable proportion of the instances of this conjecture that

are true could be proven automatically, then this would provide a partial solution

to the Delta Problem.

The following theorem hints at a partial solution.

` (Q :P̂ 0:(f) S 0) ^ (R0) R))) ((P 0:S 0) R0)) (Q :f) R)) (C.2)

where P and Q are sequences of quanti�ers and P̂ 0 is the logical dual of quanti�cation

P 0. i.e., P̂ 0:X = :(P 0::X).

Thus, a proof of Conjecture (C.1) can be achieved by proving the following

conjecture:

Q :P̂ 0:(f) S 0) ^ (R0) R) (C.3)

A heuristic algorithm for attempting a proof of (C.3) is based on the assump-

tion that most changes are small and that variables quanti�ed by Q are similarly

quanti�ed by P 0. The heuristic is suggested by examining a particular proof by

contradiction of the trivial theorem (8 x : 9 y :E(x ; y))) (8 x : 9 y :E(x ; y)).

:(8 x : 9 y :E(x ; y))) (8 x : 9 y :E(x ; y))

= (8 x : 9 y :E(x ; y))^ :(8 x : 9 y :E(x ; y))

= (8 x : 9 y :E(x ; y))^ (9 x : 8 y ::E(x ; y))

= (8 x : 9 y :E(x ; y))^ (8 y ::E(x ; y))

) (9 y :E(x ; y))^ (8 y ::E(x ; y))

= E(x ; y)^ (8 y ::E(x ; y))

) E(x ; y)^ :E(x ; y)

215

= ?

This illustrates that when the expressions within the quanti�ers, represented by

E above, are similar, an appropriate matching of existentially quanti�ed variables

against universally quanti�ed variables can result in a proof. This matching is

referred to below as an appropriate set of bindings. Assuming the frame stimuli of

S 0 and f are replaced by variables, this heuristic transforms a conjecture involving

quanti�ers into a conjecture in predicate calculus, which is decidable.

This approach is guaranteed to �nd a proof if the antecedent is a test class

and the consequent is a test frame derived from that test class. There are also

situations where small di�erences between the antecedent and consequent which

do not a�ect the validity of the conjecture will still result in the heuristic being

successful. Therefore, this heuristic will provide a partial solution to the Delta

Problem.

The above analysis leads to the following test frame delta algorithm:

1. Find the set of bindings suggested by Q :P̂ 0:r 0) R.

2. Fail if no viable binding results in a proof.

3. Further constrain the set of bindings by comparing the frame stimuli of f to

the frame stimuli within S 0.

4. Fail if no viable bindings remain.

5. Scan the set of prime implicants of S 0 for those which match f .

This heuristic algorithm has the useful property that it will be able to prove

conjectures such as

` (8 x :(A x _ B x)) R)) (A 1) R) (C.4)

216

This means that mandated test frames do not need to be speci�ed in their most

general form for them to be matched to the corresponding test class.

So what does it mean to match f and a prime implicant, s 0, of S 0? As an

example, let s 0 = A ^ B . There are three cases:

1. f = s 0: The test frame matches perfectly.

2. f) s 0: f is more speci�c, e.g. f = A ^ B ^ C .

3. s 0) f : f is too vague, e.g. f = A, and the corresponding existing test frame

is no longer valid.

Case 1) is the normal case. The change in speci�cation A0 has not a�ected

Q :f) R. Case 2): if f is more speci�c than required, the existing test frame is

still valid, but may be too restrictive. This should be reported so test engineers can

adjust the existing test frame as desired. Case 3): if this is the most speci�c match

for f (i.e., for all prime implicants, p 0, from all test classes which have a matching

response, (p0) f)) (s 0) p0)), then s 0 is included in the new test set. This allows

a test engineer to mandate a vague test frame and have the test frame generator

determine the most general test class and \
esh out" the test frame. In all cases,

Q :f) R is tagged as being matched to this test class. Any existing test frames

which are not matched should be reported.

These new test frame sets form the initial selections from the test class.

Once the existing frames have been processed, the selected coverage scheme aug-

ments these sets as necessary, marking any redundant test frames as described in

Section 5.6.2. This allows user mandated tests and existing tests to guide test frame

selection. This approach also allows user mandated and existing test frame sets to

be evaluated according to a selected coverage scheme.

217

Regarding case 2) above, it may be the case that f implies several di�erent

implicants from one or more test classes. In this case, the corresponding test classes

should be used in combination to ensure that the given frame follows logically from

the speci�cation. For example, assuming f) s 011 ^ s 012 ^ s 02, the theorem ` A0)

(Q :f) R) follows from the theorems:

` A0) (P 0

1:S
0

1) R0

1)^ (P 0

2:S
0

2) R0

2) (C.5)

and

` Q :P̂ 0

1:P̂
0

2:(f) s 011)^ (f) s 012)^ (f) s 02) ^ (R0

1 ^ R0

2) R) (C.6)

where s11) S 0

1, s12) S 0

1, s
0

2) S 0

2, Theorem (C.5) is produced by the test class

algorithm, and Theorem (C.6) is produced by the test frame delta algorithm. It also

follows that the use of prime implicants s 011 and s 012 from S 0

1 and implicant s 02 from

S 0

2 are subsumed by using f . This allows one user mandated test frame to account

for partial coverage of more than one test class.

Although the Delta Problem is undecidable, in the worst case, it may be

possible to solve this problem for many of the small changes that are made to a

requirements speci�cation during the course of system development. By treating

these case automatically when it is possible to do so would result in reducing the

amount of involvement required by test engineers to make the necessary adjustments

to existing test infrastructure.

218

