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Abstract

We consider proof systems with sequents of the form U + & for
proving validity of a propositional modal p-calculus formula ® over a
set U of states in a given model. Such proof systems usually handle
fixed-point formulae through unfolding, thus allowing such formulae
to reappear in a proof. Tagging is a technique originated by Winskel
for annotating fixed-point formulae with information about the proof
states at which these are unfolded. This information is used later in
the proof to avoid unnecessary unfolding, without having to investi-
gate the history of the proof. Depending on whether tags are used for
acceptance or for rejection of a branch in the proof tree, we refer to
“positive” or “negative” tagging, respectively. In their simplest form,
tags consist of the sets U at which fixed-point formulae are unfolded.
In this paper, we generalise results of earlier work by Andersen, Stir-
ling and Winskel which, in the case of least fixed-point formulae, are
applicable to singleton U sets only.

1 Introduction

The propositional modal p-calculus is a particularly expressive logic for rea-
soning about branching-time properties of communicating systems. Many
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other logics, like dynamic logic and CTL, have uniform encodings in this
logic [Koz83, Dam94]. Over the last decade, many proof systems for check-
ing validity of p-calculus formulae over given states in a model have been
proposed, e.g. in [SW91, Bra92, And93, GBK96, Dam98| among others.
The main difficulty in devising such proof systems lies in the handling of
I'xed-point formulae. These are usually unfolded during proof construction,
thus allowing them to reappear in a proof. One therefore needs conditions
for terminating the proof search process based on identifying certain “loops”
in a proof. Important techniques for dealing with |xed-point formulae are
the subformula condition of Streett and Emerson [SE89], the constants of
Stirling and Walker [SW91], the tags of Winskel [Win91], and the ordinal
variables of Dam et al [DFG98]. The tagging approach is appealing in that
it allows all reasoning to be performed using local rules only, and also in that
it has a simple semantic justil cation.

Of the two kinds of |'xed-point formulae, the least |xed-point ones are
more difficult to handle in general, usually requiring some sort of Noethe-
rian induction over some well-founded set [Bra92, And93, GBK96]. When
model checking | nite-state systems, however, it is sufficient to perform sim-
ple unfolding. In this case, inductive reasoning can reduce the size of a proof
signil cantly, but makes proof search far more complicated. Even if no in-
duction is employed, it still makes sense to record the states at which a least
I'xed-point formula has been unfolded, since this information can be used to
reject a branch. For example, the proof system presented in [ASW94] has a
rule of the shape:

s B O[us{s, L}.®/7]
(1) 5 l—M/LZ{L}.CD s¢ L

which prevents least |xed-point formulae from being unfolded more than
once at the same state. Such a rule can be justiled semantically by delning
tags L to denote sets of states, and by del'ning the denotation of tagged least
I'xed-point formulae as follows:

A
lpz{L}.@ll, = pX.(I1®]lyzmx) — L)

Rule (p) is sound and reversible due to the following equivalence, known as

the Reduction Lemma (Kozen [Koz83], Winskel [Win91]):
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s € puX.f(X) = s € f(pX.(f(X) = {s})) (1)
which holds for any monotone mapping f : p(5) — ¢(5). We refer to tagging
used in this way as negative tagging, since tags are in some sense negative
assumptions: we assume that the states in the tag do not belong to the de-
notation of the tagged least | xed-point formula.

Unfortunately, equivalence (1) holds only for single states, and not for
sets of states in general [And93]. Rule (x) would in general be unsound in a
proof system with sequents of the shape U F pZ{L}.® where U is a set of
states, and where validity of sequents is understood as set inclusion.

In this paper, we investigate for what semantics of tags and tagged for-
mulae, and for what relationship X between a set of states U and a tag L,
one could justify a rule of the shape

Ut & [pZ{U, L}.0/7]

! X
() UFVF uz{L}.0 UL

The paper is organised as follows. First, we present the syntax and se-
mantics of the propositional modal p-calculus. In the following section we
motivate a way of tagging least | xed-point formulae, and propose a suitable
semantics for tagged least | xed-point formulae, giving rise to a sound and re-
versible inference rule. Section 4 presents a proof system in which this proof
rule I'ts naturally. Finally, some conclusions are drawn in the last section.

2 Propositional Modal pu-Calculus

This section presents briefly the usual notions and notation for the modal
p-calculus used in the sequel.

2.1 Syntax

Formulae ® of the logic are generated by the grammar:

O = 7| OAND|DPVO| [aP| ()| vZ.D | uZ.®



where Z ranges over a set of propositional variables, and a ranges over a
non-empty set £ of labels.

2.2 Semantics

Modal p-calculus formulae are usually interpreted as sets of states in transi-
tion systems.

Definition 2.1 (Transition System) A transition system is a pair 7 =
(S,{-= |a € L}) where S is a non-empty set of states, L is a non-empty
set of labels, and for each a € L, —-C S x S.

Definition 2.2 (Model) A model for a (possibly open) modal p-calculus
formula is a pair M = (T,V), where T is a transition system, and V is a
valuation taking propositional variables to subsets of states of T .

The semantics of a modal g-calculus formula @ in a model M = (7,V)
is given by its denotation H@Hg (we shall sometimes omit the superscript).

Definition 2.3 (Denotation) The denotation HCI)Hg of @ modal p-calculus
formula ® is defined inductively as follows:

1Zlly, = V(2)
12y A @55 2 (@] 0 [l
1@y v @5 2 (@] U [l
lla @y, = [llal” @]y
lay@lly, = [{a)]” @]
lvz.o|5 f v X105 x

T T
|12y, pX. Hq)”v[ZHX]

where we refer to the praedicate transformers

I[a]l”
I{a)lI”

M {seS|Vs:s 5.5 € X}
M {seS8|3s' s 8.5 € X}
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This delnition uses the fact that the logic is in a positive form, and hence
the praedicate transformers AX. H(I)Hg[z._uf] are monotone w.r.t. set inclu-
sion and are guaranteed to have greatest and least lxed points, denoted
vX. HCI)Hg[Z,_)X] and pX. HCI)Hg[Z,_)X], respectively.

We shall also need the notion of Knaster-Tarski | xed-point approximants
of monotone mappings over p(S).

Definition 2.4 (Fixed-Point Approximants) Let f : p(S) — p(S) be
monotone, let Ord denote the class of all ordinals, and let v and A range
over ordinals and limit ordinals, respectively. Fixed-point approximants are
defined inductively as follows:

Wof 20 Lf 28
pWHf 2 ff) V2 ff)
R U f R N

3 Negative Tagging for Sets of States

Let us start by analysing why it is that the equivalence (1) fails for sets
of states. If we adopt the notation uX{U}.f(X) for pX.(f(X) — U), this

equivalence could be rewritten as:
SEUXF(X) = s € F(uX{s}.F(X))
Consider the following LTS:
S3 —— S5 — §1 — Sg

and the formula pZ. [a] Z, the denotation of which is the least 1 xed-point uf

of the state transformer f £ AX. I[a]|| X. We have uX{s2}.f(X) = {s0, 51}
and hence f(pX{s2}.f(X)) = f({s0,51}) = {s0, 51, $2} includes s,. In terms
of I'xed-point approximants, pX{s}.f(X) contains p®f for the greatest or-
dinal « such that p®f does not include s, since this is the Irst point in the
iterative construction of the lxed-point where s comes into play!'. In this

1Or dually, o + 1 is the least ordinal such that x+!f includes s.



example a equals two. Since f is monotone, s € pf implies:

s€ ™) =[5 ) C f(uX{s}.J(X)

and therefore s € f(pX{s}.f(X)). This is exactly the point where we cannot
extend this reasoning to an arbitrary set of states U: if « is the greatest
ordinal® for which p®f does not intersect U, then U C p®*! f is guaranteed
only when U is a singleton set. For example, for U = {s1,s,} we have
pX{U}.f(X) = {so} and hence f(pX{U}.f(X)) = {s0,s1} which includes
s1 but does not include s3. On the other hand, the following observation can
be made: a relationship of the shape

UCp*™f = f(u*f) € f(nX{U}.F(X))

would still hold if we redel ned:

e a to be the greatest ordinal (if there is such) so that p®f does not
contain (rather than “does not intersect”) U/. Then U C p*t!.

e tags to be sets of states U/ denoting not themselves, but rather those

elements of U only which are not in p®f. Then p*f C pX{U}.f(X)
and therefore f(p®f) C f(pX{U}.f(X)).

We now proceed to formalise the above intuitive ideas. Let W be a set (of
states), and let f: p(®) — o(¥) be monotone.

Definition 3.1 Let U C ¥ be a set of states. The closure ordinal cosU and
closure elements ce;U of U w.r.t. f are defined as follows:

cosU 2 the least ordinal o such that U N pf Cusf
A
Cer = U - Uﬁ<c0fU /’Lﬁf

Note 3.2 In the latter defining equation, the term Us<co,u P f equals p™f
whenever cogU 1is the successor ordinal of «.

2Tt should also be noted here, that such a greatest ordinal is guaranteed to exist only
when U is finite.



Property 3.3 Let U C S be a set of states. Then:

(i) (U0 uf) € peortf.

(i1) cesU N pf is non-empty if and only if cosU is a successor ordinal.
(tii) If U is finite, then cosU is not a limit ordinal.

(v) If s € S, then ces{s} = {s}.

Proof: These properties are established as follows.

(i) Follows directly from the delnition of cosU.

(ii) We have:

cesUNpuf #0

Cer N ,LLf Z Uﬁ<COfU Hﬁf {Def Cer, Maf C Mf}
UNpf#0 N Uscco,u °f # pr%f {From (i)}

cosU # 0 A cosU is not a limit ordinal {Def. I'xp. approximant}
da € Ord. cofU = a+1 {Def. ordinal}

~—

(iii) From the delnition of I'xed-point approximants follows immediately
that the closure ordinal for singleton sets is not a limit ordinal. If U is 1-
nite, the closure ordinals of the singletons formed by the elements of U have
a greatest element o which is not a limit ordinal. This ordinal is also the
closure ordinal of U.

(iv) This is a direct consequence of (iii). O
Definition 3.4 Let U CS. We define tagged mappings as follows:
A
froy = AX(f(X) — cesU)
and use the notation fuyv,, . v.y for (fiv,..vai){w)-

Note 3.5 In the chosen notation pfin equals pX{cesU}.f(X). Because of
Property 3.3 (iv), this semantics of tags coincides with the one already given
in the Introduction for the case of singleton sets.

Property 3.6 Let U C S be a set of states. Then:



(i) pfan € uf
(ii) if cosU is the successor of some ordinal o, then p® f = p® fury.

Proof: These properties are established as follows.

(i) Follows directly from the well-known equation:

pf=UX|f(X) € X}

(ii)) Let cofU = a + 1. Then ce;U N p®f = @ by Delnition 3.1 and
Note 3.2. Consequently ce;U N p” f = § holds for all ordinals 3 < a. Then
the result holds by a simple inductive argument. O

The following property will be used to justify the side condition of the
new proof rule (x').

Property 3.7 For any finite non-empty set U,

U SZ Mf{vl,...,U,...,vn}

Proof: By induction on n. The base case (i.e., empty tag) holds vacuously.
The induction hypothesis assumes the property for an arbitrary k. Assume
U is a I'nite non-empty set. If U = V; for some 7 such that 2 < < k+1 then
the property holds, since pf(v, .vi,.} € wf(viVva,..vey) by Property 3.6 (i)
and U € pfiv,,.v,..vis,) Dy the induction hypothesis. The case that re-
mains to be considered is U = V;. Let g denote pfy,  v,,,;- We have
to show that U Z pgqy. According to Property 3.3 (iii), since U is Inite,
cosU is not a limit ordinal. Since U is not empty, either there are elements in
U which are not in g f, or ce;U is not empty, and in either case U Z pgry. O

The following lemma plays the same role as Kozen’s Reduction Lemma.

Lemma 3.8 (Reduction Lemma) For any set U C S the following equiv-
alence holds:

UCuf =UC fufuy)



Proof: The two directions are established as follows:
(«) This direction holds simply because f(ufn) C f(pf) = pf.

(=) If ce;U N pf is empty, then the implication holds trivially since in

this case pf = pfroy = f(pf) = f(pfoy). I cesU N pf is not empty, then
by Property 3.3 (ii) cosU is the successor of some ordinal «. Then:

UCuf U C perVf {Property 3.3 (i)}

UCpttf {cofU = a+ 1}

UC f(p™f) {Def. I'xed-point approximants}
U C f(u*fry) {Property 3.6 (i)}

UC flufy)  Awp®fuy € pfayto

We are now ready to give a suitable semantics to formulae tagged with
lists of sets of states.

N | 1 1Y

Definition 3.9 The denotation of negatively tagged formulae is defined as
follows:

T A T
[nZ{Vi,... . Vab@lly = puf,. vy, where [ =X @[5 x

Due to Note 3.5 this semantics is equivalent to the one already given in the
Introduction for the case when the tag sets are singletons, and is hence a
proper generalisation of the latter. It gives rise to the following inference
rule:

U F ®pz{U L}.®/7)
() U v pZ{L}.®

U finite = YV € L.V ZU

In general, a proof rule is called sound if it preserves validity, i.e., whenever
the premises to the rule are valid and the side-condition holds, then the
conclusion is also valid. If the opposite holds, the rule is called reversible.
In the rule above, the purpose of the side-condition is somewhat unusual,
since it is not needed to ensure soundness, but rather to avoid unnecessary
application of the rule in case the conclusion is invalid. Reversibility of the
rule ensures that validity of the conclusion implies the side-condition; in fact
we use, and prove, the counterpositive statement.



Theorem 3.10 Rule (i') is sound and reversible.

Proof: As a straightforward consequence of Delnition 3.9 and the Reduc-
tion Lemma, validity of the premise implies validity of the conclusion, and
vice versa. Now assume the side condition does not hold, i.e., U is I'nite and
some set V; in the tag is a subset of /. Then V; is also Inite, and hence, due
to Property 3.7, the sequent V; + puZ{V;,...,V,}.® is invalid, and hence
Ut wZ{Vi,...,V,}.® is invalid as well. O

Rule (') is easily seen to be a proper generalisation of rule (u) presented
in the Introduction. The most interesting question that offers itself immedi-
ately is whether I'niteness of U is really relevant for rejecting a branch in a
proof tree. This turns out to be the case, as Example 4.2 in the next section
shows.

4 Applications

The proof rule (x') can be plugged into any standard proof system for es-
tablishing satisfaction between a set of states U/ in a model and a modal
p-calculus formula. In Figure 1 below we present one such proof system,
borrowed from Andersen [And93], in which rule (u') replaces the rules for
least 1xed-point formulae of the original proof system. In these rules the
following notation is used:

(LU)2{se8|3s' elU.s - s}
(US)2{seS |3 e U. s - s}

Example 4.1 Consider a LTS with two states sy and sy and two labelled
transitions s — s1 and s — s5. State s; can engage in an infinite
a-sequence, and therefore the attempt of proving the opposite fails:

{s1,82} F pZ{s1}.la] Z (
{s1} F [dJpZ{s1}.[a] Z (
{s1} F pZ.[a) Z a

)
)

One can backtrack since an invalid sequent was reached. O
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D Frs

Ut &, UFr &, U, F @ Uz F @
(A) UkF &, A O, (V) UyulU;, F &V §y
UF owvz{UUuV}.0/7]

Ut vZ{V}.®

(+0)

Ugv

Trozae VSV D

U F ®[pz{U L}.®/7)
() U b pZ{L}.9

U finite = YV € L.V ZU

Figure 1: An Example Proof System.

Example 4.2 Consider the infinite state LTS with states S:
'L>53L>82L)81L)80
and the formula pZ.[a] Z. Consider the following derivation:

St pzZ{S}.[al Z ()
St la]uz{S}.[a] Z ()
Stk uZladZ K

While it still makes sense to backtrack at the leaf sequent since there is nothing
to be gained from repeating the above steps, it is unsound to conclude that
this sequent is tnvalid. O

This proof system is complete for Inite-state systems and tag-free closed
formulae (i.e., tags only emerge during proof construction). To see this, st
observe that the only rules which do not increase the size of formulae are the
tagging rules (i.e., the rules for unfolding |'xed-point formulae), and that tags
can only be of I'nite length with the chosen tagging discipline enforced by the
side-conditions. Proof tableaux are hence of Inite size only. On the other
hand, it can easily be shown that every valid sequent can be derived from
some (possibly empty) set of valid sequents. Together, these two observations
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imply that for every valid sequent there is a Inished tableau, i.e. a Inite
tableau with axiom leaves only. A formal proof of completeness can easily
be obtained along the lines of the completeness proof for the original proof

system [And93].

5 Conclusion

In this paper we present a way of tagging, together with a suitable semantics,
for least |I'xed-point formulae of the propositional modal p-calculus. These
are used to justify a proof rule for unfolding, combined with tagging, of such
formulae in proof systems with sequents of the shape U = ® where U is a set
of states, and ® is a formula. The proof rule is plugged into a standard proof
system for model checking, yielding a complete proot system for I'nite-state
systems.

The result is an extension of previous results on negative tagging to the
case of sets of states. This suggests that it can be used for devising similar
proof rules in other settings. For example, formulae can be understood as
sets of states, and so can parametrised processes, and consequently, proof
systems with sequents of the shape ® - W or P(z) F W can benelt from
the proposed negative tagging technique to provide additional termination
conditions, thus aiding both proof search and the theoretical investigation of
these proof systems.
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