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Abstract
Aspects of a draft version of the Aeronautical Telecommunications Network
(ATN) Standards and Recommended Practices (SARPs) under development by
ISO-compliant committees of the International Civil Aviation Organization
(ICAO) have been mathematically modelled using a formal description technique.
The ATN SARPs are a specification for a global telecommunications network for
air traffic control systems.   A version of Harel’s statecharts formalism embedded
within a machine readable typed predicate logic has been used as a formal
description technique to construct this mathematical model. Our model has been
‘typechecked’ to partially validate the internal consistency of the



specification. The work described in this paper has already uncovered some
problems in the draft SARPs, and will provide a basis for follow-on efforts to
apply formal analysis methods such as model-checking and symbolic execution to
aspects of the ATN SARPs. The success of this approach suggests that typed
predicate logic is useful as a syntactic and semantic foundation for specialized
Formal Description Techniques (FDTs).
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1 INTRODUCTION

This paper describes the modelling of aspects of the Aeronautical
Telecommunications Network (ATN) using the formalism known as ‘statecharts’
(Harel, 1987) and predicate logic.  This effort was performed by workers at Hughes
Aircraft of Canada Limited (HACL), the University of British Columbia (UBC)
and the University of Victoria (UVic).  It is part of the FormalWare project, jointly
funded by the BC Advanced Systems Institute, HACL,  and MacDonald Dettwiler.

The ATN is a global system under development which will allow aircraft and
ground stations to exchange data for the purpose of air traffic control.  The various
software components of the ATN reside in aircraft or ground station computers,
and interact with human users and with each other to perform this data exchange.
The communications protocols used by the software components are defined in
ICAO documents referred to as Standards and Recommended Practices (SARPs)
(SARP, 1996).

This modelling effort consisted of writing textual descriptions of components of
the ATN using a formal description technique. There were two goals for this effort:
first, to help validate that the SARPs protocols are safe (do not lead to deadlocks or
livelocks, for instance); and second, to provide a formal description of the SARPs
which can potentially act as a basis for validating implementations of the ATN.
The first phase of the effort consisted of writing and typechecking an extensive
draft of the model, and doing some informal validation; some problems in the draft
SARPs were identified as a result of this work. This paper reports on the first
phase, which was done in November and December 1996.

Among the more novel aspects of this work is the use of typed, predicate logic
as a foundation for a more specialized formal description technique, namely a
version of Harel’s statecharts formalism.    Although the ‘semantic embedding’ of
specialized notations within typed, predicate logic is reasonably well-known by
formal methods researchers, the effort reported in this paper provides some
evidence of the practical benefits of this approach in addition to the more
theoretical benefits such as clarifying the semantics of specialized notations. By



placing statecharts within a general-purpose environment, we were also able to
integrate parts of the specification written in predicate logic itself.

This paper is organized as follows.  Section 2 gives background on the tools
and methodologies used. Section 3 explains the overall strategy for the modelling
effort.  Section 4 describes the simplifying assumptions that were made in creating
the model to ‘abstract out’ implementation details.  Section 5 discusses the
assumptions that had to be made in order to deal with problems identified in the
draft SARPs.  Section 6 presents the results of the effort. Section 7 discusses the
effort planned for future phases of the project.  Finally, in Section 8 we review
some lessons learned from this effort with respect to the use of formal description
techniques.

2 TOOLS AND METHODOLOGIES USED

This section describes the tools and methodologies used in the modelling effort.
The statecharts formalism (Harel, 1987) was used to describe the system in terms
of parallel state decomposition and state-transition diagrams.  ‘S’ (Joyce, 1994) is a
formal description notation which we used to express statechart  descriptions as
well as other parts of the specification that are more suitably described in predicate
logic.  ‘Fuss’ is a typechecking tool for S specifications.

There were a number of factors which contributed to our not using more
commonly-known tools such as the Concurrency Workbench (Cleaveland, 1989) or
those available for Estelle, LOTOS and SDL (Turner, 1993).  First, the
specification that we were working from is a combination of text in paragraphs and
an informal state transition model given in tables, with explicitly-named states,
making the statecharts notation particularly suitable.  Second, we wanted to do
model checking, rather than simply discrete event simulation, to demonstrate
properties of our formal models. Third, many of the available tools for model
checking  work from the system as a single finite state machine.  The nature of the
ATN means that the system expressed as a flat finite state machine would have
millions of states.  We did not want to exclude the possibility that the structure of a
hierarchical specification can be exploited to reduce the size of the state space in
analysis.  Finally, the conditions under which state changes take place in the ATN
are relatively complex, and we needed a general logical notation to allow us to
express them naturally and accurately.  This is where it was advantageous to use
predicate logic itself.

Since we did not find this particular constellation of needs to be met by any one
tool, we felt that it was most advantageous to us to use and extend a set of tools and
methodologies with which members of the team had expertise.  Analysis methods
such as model checking are under development within this framework.

2.1 Statecharts



Statecharts are described by their inventor, David Harel, as a ‘visual formalism’
(Harel, 1987). There is precedent in the air traffic control industry for using such
formalisms; TCAS II (Traffic Alert and Collision Avoidance System) was formally
specified using the Requirements State Machine Language, a notation which is
closely related to statecharts (Leveson, 1994).

In the statecharts formalism, a system is described in terms of states and
transitions between those states.  In this sense, it is like the ‘state transition
diagram’ formalism.  However, a statechart state can be more than a state in a state
transition diagram.

A statechart state is either a ‘basic state’, an ‘AND-state’, or an ‘OR-state’.
Basic states correspond to the states of a state transition diagram.  AND-states
represent parallel composition and OR-states represent hierarchical state transition
diagrams.

Although there are advantages to graphical representations of statecharts,
especially for presentation, we decided to produce the initial model in a textual
form, for reasons including portability and ease of integration.

Unfortunately, a number of semantically different versions of statecharts have
emerged since the original informal description of the semantics of statecharts
given by Harel.  For this work, we have used a particular version of this formalism
which has a formal semantics defined in a machine-readable format (Day, 1993).
Whereas the behaviour of some statechart based tools are not clearly specified,
these explicit semantics are used to directly initialize general-purpose analysis
tools.

2.2 S - a machine readable notation based on typed, predicate logic

We used the formal description notation called S to represent statecharts textually.
This made it possible to integrate the statechart parts of the model easily with
predicate logic, as a means of specifying the details of complex state transitions,
and with the text-based approach to requirements management followed at HACL.
Through the use of parameterization, we were able to reduce the size of the
specification and make it easily extensible without  complicating the semantics of
statecharts.

S allows us to declare elements such as types, constants, functions and
predicates that are left ‘uninterpreted’.  This contrasts with software (as well as
some ‘simulation-oriented’ formal description techniques) where ultimately
everything must be refined, either manually or by means of a compiler, into bits
and executable machine code.

Like several other formal description notations, S is based on typed predicate
logic.  However, in contrast to such notations as Z (which requires the use of an
intermediate mark-up notation or other means of handling the specialized symbols
and graphical presentation format of Z), it uses a more readable syntax for non-
formal methods experts, which emphasizes letters and punctuation characters rather



than symbolic characters.  It also tends to use common English words (like
‘function’ and ‘select’) as keywords, rather than the technical terms (like ‘lambda’
and ‘epsilon’) used in other specification languages.  Furthermore, the ASCII based
syntax of S simplifies the mechanics of integrating formal descriptions into
engineering documentation in contrast to notations which involve specialized
symbols or graphical presentation formats.

2.3 Fuss

Fuss is a typechecking program for S, roughly corresponding to ‘lint’ for C.  S
is a strongly typed specification language, in the sense that the formal and actual
parameters of a function call must be of exactly the same type, with no
‘typecasting’ allowed.  In addition, functions can take other functions as
parameters, types can be declared in terms of other types, and functions can be
declared as taking different patterns of types.  This expressiveness makes a rich
hierarchy of types available to the user.  The Fuss tool checks that the user’s
specification is well-typed, and also implements a ‘type inference’ algorithm in the
style of the programming language ML, which infers (wherever possible) a precise
type for any object for which we have not given an explicit type.

3 MODELLING STRATEGY

The overall strategy used was to model each software entity within the ATN,
and each module and ‘status’ state within an entity, as a statechart state.  This
section first describes the structure of the ATN as presented in the SARPs, and then
discusses how the various aspects of that structure were modelled using statecharts
and S.

3.1 Structure of the ATN

The ATN is specified in the SARPs as a set of components interacting via
messages.  The components are not required to be implemented as separate
processes or even as separate objects at the code level, but their behaviour must be
consistent with the message-passing model.

Each component we modelled is further specified as a state transition system.
Each transition between states is associated with a triggering event and a condition
which  must be true if the transition is to be followed when the event occurs.  Each
transition also has an associated action which is performed when the transition is
followed.  Typically, the trigger has to do with the message received and/or current
variable settings, and the action is to send a message and/or change the variable
settings.



The top-level components of the ATN that human users interact with are
referred to simply as the applications or user applications.  These do not
communicate directly with each other; rather, they use a number of Application
Entities (AEs) found in the OSI application layer to provide them with
communication services.  The four types of AEs modelled in the present effort are
the ADS (Automated Dependent Surveillance), CM (Context Manager), CPDLC
(Controller Pilot Data Link Communication), and FIS (Flight Information Service).
There are two versions of each type of AE, a ground version which resides in
ground stations and an air version which resides in aircraft.  The AEs communicate
with each other via the supporting service.

As shown in Figure 1, each AE in turn consists of three entities.  The
Application Service Element (ASE) performs the duty of receiving messages from
the application and translating them into OSI-standard messages.  The Association
Control Service Element (ACSE) allows its AE to form associations with other
(‘peer’) AEs.  The Control Function (CF) mediates all communication amongst the
ASE, the ACSE, the application and the supporting service.  Each type of AE
contains a unique type of ASE, but the CF and the ACSE are the same across all
types of AEs.

The SARPs consist of on the order of 1000 pages of text, containing detailed
specifications of the four types of ASEs and the CF, along with requirements on the
lower OSI layers and various less formal guidelines documents.  The ACSE is
described in a separate 40-page document, ISO 8650 (ISO, 1994).

3.2 Entities and Status States

Application
Service Element (ASE)

Association Control
Service Element (ACSE)

Control
Function

(CF)

Application Entity (AE)

Application

Supporting Service

Figure 1: Internal structure of  Application Entity



The entities modelled were the CF, the ACSE, the CM and ADS ASEs, and the
supporting service.  The CF and the ASEs are all specified in the SARPs in terms
of tables which informally describe a state transition system, as is the ACSE in its
specification.  The supporting service can also be expressed as a simple state
transition system.  Each entity was therefore modelled as a statechart OR state, and
the resulting models were put together as an AND-state.  The decomposition of the
task into one state per entity also allowed the work to be distributed to workers and
integrated more smoothly.

The CF, the ACSE, the CM ASE, and each module of the ground ADS ASE
can be in one of several ‘status’ states (idle, associated, awaiting response, etc.) as
defined in the SARPs.  Each of these status states was modelled by a basic
statechart state, and these basic states were put together in an OR-state to define the
overall module or entity.

Figure 2 illustrates this top-level state decomposition with an example system.
Dashed boxes within the large box represent the substates of the overall AND-state;
the internal state transition structure of these substates has not been illustrated.  The
example consists of an air and ground CM AEs, the supporting service over which
they communicate, and an ‘environment’ state Env which will be used to stand in
for the applications using the AEs.

Most of the components have parameterized names to eliminate duplicate
specifications of the same behaviour.  This is similar to the use of procedure calls
in a programming language.  Thus, (CF 1) is the name of the CF state belonging to
the first AE, and (SuppSvc 1 2) is the name of a supporting service connecting the
first and second AEs.  The text just gives a specification for (CF i) and refers to
(CF 1), (CF 2), etc. without requiring new text to be written.

Env

(SuppSvc 1 2)

(CM_air 1)

(ACSE 1)

(CF 1)

(CM_ground 2)

(ACSE 2)

(CF 2)

CM_AE_1 CM_AE_2

Figure 2: Statechart structure of example system



3.3 Transitions

Each module or entity in the SARPs is in one particular status state at any given
time.  It makes transitions between one status state and another depending on
messages it has received, which are modelled as events,  and on the results of tests
that it makes.  Each of these transitions was modelled by a transition in the
statechart of the module or entity.

A large number of transitions is given in the SARPs for each entity, so most of
the modelling effort went into formally defining these transitions.

3.4 Shared declarations
A file, called ‘sc.s’ and found in Figure 3, of shared declarations and definitions

supports the modelling of statecharts in general.  In sc.s, types are defined for
statecharts, state names, transitions, and transition names. State names are declared
separately from the state specifications.  Messages are modelled as events.  sc.s
also defines term constructors which can be used to build up a statechart definition
from basic states and transitions.

To support the task of modelling the SARPs, another S file named
‘atncommon.s’ was developed to contain declarations for the state names of the
top-level ATN entities, and also for the ISO-standardized message types (e.g., ‘A-
ASSOCIATE request’) used by all modules.

These two S files are ‘included’ by the S files containing the statecharts models
in much the same way that a ‘.h’ file may be included by a software module written
in C.  They provided a common foundation for the half dozen individuals directly
involved in the authoring of statechart models, allowing them to work with
considerable independence during the initial phase of this project.

4 SIMPLIFYING ASSUMPTIONS MADE

One of the primary benefits of creating a formal model of a software/hardware
system is that we can focus on high-level aspects of the system that we are
interested in studying, and ‘abstract out’ implementation details.  This process of
abstraction consists largely of making simplifying assumptions about the system in
order to clearly isolate the aspects we are modelling.



In our case, we were primarily interested in studying issues to do with the
sequences of messages sent between the various ATN entities.  We wanted to
examine whether the message protocol as defined in the SARPs is safe (that it does
not lead to deadlocks or livelocks, that it is complete and consistent, and so on).
We also wanted to provide a formal definition of the high-level structure of the
ATN and its protocols, which could be used as a basis for developing and testing
the actual software.  The simplifying assumptions we made reflect this focus:

• We assumed that the supported service was stable and error-free.

• We assumed that the translation of the data by the various entities did not affect
the safety properties of interest to us, and therefore did not need to be modelled.

• Timers are often specified in the SARPs for such purposes as timing out
dropped connections.  We modelled timeouts of timers as messages sent from
the environment, which could be sent at any time, rather than actually modelling
time.  For instance, a statement in the SARPs which specifies that a timeout will

%% Type declarations

%% Basic types
: stateName;
: event;
: simpleEvent;  %% Used for "messages"
: action;
: transName;

%% Transition type
: trans == transName # stateName # event # action # stateName;

%% Statechart type
: sc := OrState :stateName :stateName :(sc)list :(trans)list
      | AndState :stateName :(sc)list
      | BasicState :stateName;

%% Constructor declarations

%% Expressions
InState: stateName -> bool;

%% Events
En: stateName -> event;         %% Entering a state
Ex: stateName -> event;         %% Exiting a state
Ev: simpleEvent;                %% Atomic event name
EvCond: event -> bool -> event; %% Event and condition
(_ And_e _): event -> event -> event;   %% Both events
(_ Or_e _): event -> event -> event;    %% One or the other event
Tm: event -> num -> event;      %% Event at given time
%% Receipt of message with data from stateName
(:A) Receive: stateName -> simpleEvent -> A -> event;

%% Actions
No_action: action;              %% Null action
Gen: simpleEvent -> action;     %% Generate message
(:A) (_ Asn _): A -> A -> action;       %% Assign var a value
Both : action -> action -> action;      %% Do both actions
%% Broadcast of message with data to all substates of stateName
(:A) Send: stateName -> simpleEvent -> A -> action;

Figure 3: ‘sc.s’ declarations for statecharts in S



occur 30 seconds after a particular event will be modelled more generally as a
timeout that could occur at any time.

Note that the simplifying assumptions were made not because we felt unable to
manage the extra details; rather, they were made because in our judgement the extra
details were not relevant to the properties we are trying to validate. We may
discover that we cannot validate some property because some necessary detail is
missing.  If this does happen, we will then add the missing detail to the model.
However, as long as our simplifying assumptions hold, then any property derivable
from the formal description should also be true for the SARPs.

5 DISAMBIGUATING ASSUMPTIONS AND PROBLEMS WITH THE
SARPS

In contrast to simplifying assumptions as just discussed, we also found it
necessary to make additional assumptions which we have called ‘disambiguating
assumptions’.   From a logical point of view, these assumptions are less ‘safe’ than
simplifying assumptions in that we are not merely shaving away irrelevant detail.
With disambiguating assumptions, we are adding necessary detail to the model that
may or may not have been intended by the authors of the SARPs.

The effort reported here has revealed some ambiguities and lack of clarity
concerning the handling of error conditions (for instance, when messages are
received out of sequence) in the draft SARPs. The SARPs give somewhat
ambiguous recommendations about what to do in a given error situation.  For
example, in the specification of the CF, the only substantial passage concerning the
behaviour of the CF when a message is received out of sequence is the following:
‘The error handling shall result in the association being aborted, if one exists, and a
notification being given to the Application user.’  This passage makes no mention
of the fact that the CF must inform three different entities (the ASE, the ACSE, and
the peer AE) of the abort of the connection, it does not describe the sequence or
format for these messages, and it does not specify how notification of the abort is to
be given to the Application user.

Because the SARPs were ambiguous, the people writing the formal
specifications were not able to come up with a model which corresponded
unambiguously to the SARPs.  Implementations would have the same difficulty. It
is observed by experts in software safety that software intensive systems often
perform well when operating under normal conditions, but not when operating
under unusual or error conditions.  There is the potential in the SARPs that
protocol errors which go undetected during validation will cause silent aborts of
connections, error cascades, or similar problems.  For instance, when the ACSE
detects a malformed message, it is supposed to send an abort request both to its
user and to its peer; but as soon as the CF passes on the first abort message, it goes
into a state in which all subsequent abort messages from the ACSE are treated as



protocol errors.  Because of this, there is the possibility of a further error report
from the CF, and the possibility that the peer will not know about the abort of the
association.  This in turn will at least cause other error conditions, and may have
more serious consequences such as error cascades.

Hence we have had to make some disambiguating assumptions about what the
SARPs mean. Our group developed an interim strategy for dealing with error
conditions to allow the development of the formal model to continue. Since the
modelling effort was done, a new version of the SARPs was released around
December, 1996.  The particular problem noted in the last paragraph remains in the
latest version; we have communicated our concerns to the ICAO committee
responsible for the development of the SARPs. When these problems are resolved,
it should be reasonably straightforward to modify our model based on the
resolutions provided.

6 RESULTS OF EFFORT

Component # of
states

# of
trans

# of
vars

Prior
worker

knowledge

Worker
hours

Lines
of S
text

CF 5 96 2 Very high 24 680
ACSE 7 123 2 High 20 400
CM 13 201 2 High 44 1790
Ground ADS 22 232 1 Moderate 60 2850
SuppSvc 1 10 0 High 5 50
Misc Support 32 150
Total 48 662 7 185 5920

Figure 4: Results of effort

Figure 4 shows the results of the effort, in terms of the number of hours spent
and number of lines of S text produced, according to the number of states,
transitions and variables in the given component and the prior worker knowledge of
the S formalism.  The ‘# of states’ in the column is the number of statechart states.
It is not a measure of the complexity of the state space for analysis, but rather a
rough measure of the inherent complexity of the specification.  The number of
hours also includes the time taken to perform static checks for completeness and
consistency and integration.  All workers were graduate students or faculty; ‘very
high’ prior knowledge means knowledge of S in particular, ‘high’ means
knowledge of typed logic but not S in particular, and ‘moderate’ means only
knowledge about first order logic.



Figures 5 and 6 show some sample text from the resultant specification.
Figure 5 shows a typical ‘customizing’ declaration in S; like a declaration of an
auxiliary function in a programming language, this declaration allows the rest of the
specification to be more compact. The function ‘ACSE_TRANS’ maps five
parameters, ‘i’, ‘sourceState’, ‘outMessage’, ‘destState’ and ‘inMessage’ to an
instance of a transition denoted by a 5-tuple of the form (transition label, source
state, event/condition, action, destination state). Figure 6 shows a typical section of
the specification of the ACSE which lists the transitions from a particular state. In
the definition of ‘Transitions_From_Awaiting_AARE’, ‘ACSE_TRANS’ is used
within a let-definition to introduce a local name for a function called
‘TRANS_CELL’.   In the let-definition of ‘TRANS_CELL’, the function
‘ACSE_TRANS’ is partially evaluated when it is applied to two values, ‘i’ and
‘Awaiting_AARE’, as arguments for the first two of the five parameters of

% A normal transition for the ACSE (no conditions).
% Normally called as "inMessage.(ACSE_TRANS ...)" in
% order to emphasize message.
ACSE_TRANS i sourceState outMessage
           (destState: stateName -> stateName)
           inMessage :=
  ( (PTrans ((ACSE i).sourceState) inMessage),
    ((ACSE i).sourceState),
    (Receive (CF i) inMessage (ACSEData i)),
    (Send (CF i) outMessage (ACSEData i)),
    ((ACSE i).destState)
  );

Figure 5: A customizing declaration in S (from ACSE model)

Transitions_From_Awaiting_AARE i :=
    /* From Awaiting_AARE state (STA1) */
    let Error_Cell := (ACSE_error i Awaiting_AARE) in
    let TRANS_CELL := (ACSE_TRANS i Awaiting_AARE) in

    [ /* Making connection */
      A_ASSOCIATE_req     . Error_Cell;
      A_ASSOCIATE_rsp_pos . Error_Cell;
      A_ASSOCIATE_rsp_neg . Error_Cell;
      P_CONNECT_ind       . Error_Cell;
      P_CONNECT_cnf_pos   .
          (TRANS_CELL A_ASSOCIATE_cnf_pos Associated);
      P_CONNECT_cnf_neg   .
          (TRANS_CELL A_ASSOCIATE_cnf_neg Idle);
      /* Releasing connection normally */
      A_RELEASE_req       . Error_Cell;
      A_RELEASE_rsp_pos   . Error_Cell;
      A_RELEASE_rsp_neg   . Error_Cell;
      P_RELEASE_ind       . Error_Cell;
      P_RELEASE_cnf_pos   . Error_Cell;
      P_RELEASE_cnf_neg   . Error_Cell;
      /* Releasing connection abnormally */
      A_ABORT_req         . (TRANS_CELL P_U_ABORT_req   Idle);
      P_U_ABORT_ind       . (TRANS_CELL A_ABORT_ind     Idle);
      P_P_ABORT_ind       . (TRANS_CELL A_P_ABORT_ind   Idle)
    ];

Figure 6: Typical section of ACSE model



‘ACSE_TRANS’.  This yields a local function, ‘TRANS_CELL’ which is used to
denote transitions that always originate from the state ‘Awaiting_AARE’.
‘TRANS_CELL’ is parameterized by the remaining three parameters of
‘ACSE_TRANS’, namely, ‘outMessage’, ‘destState’ and ‘inMessage’. This use of
functions results in a more concise, and potentially easier to understand description.
Our use of the S notation provides much the same expressiveness as a general-
purpose functional programming language.

Models have been completed for the CF, the ACSE, the air and ground CM
ASEs, the supporting service, and part of the ground ADS ASE, incorporating five
out of the seven ADS modules defined in the SARPs. The amount of effort required
to integrate any new ASEs into the model should be minimal.

We have successfully integrated the CM ASE models with the CF, ACSE, and
supporting service, to the level of typechecking.  The resulting statechart
specification models an air CM AE (consisting of an air CM ASE, a CF, and an
ACSE) talking to a ground CM AE (consisting of a ground CM ASE, a CF, and an
ACSE) via the supporting service (see Figure 2).  When later ASE models are
developed, they should be able to be easily added to the specification and re-use
much of the existing specification through parameterization.

The integrated system has passed the typechecking of the Fuss tool.  This
indicates that most interface errors have been eliminated, although it does not allow
us to conclude that the models are completely correct.

Some static checks have been performed for the ACSE and CF. These are of
two types: completeness checks and consistency checks. The completeness checks
are intended to ensure that for each message received by a component of the model,
there is at least one transition that will be followed regardless of global variable
settings. The consistency checks are intended to ensure that not more than one
transition can be followed for each combination of messages received and global
variable settings.  These checks were carried out by visual inspection.  It would be
useful to have a tool to do this analysis.   Previous efforts at checking the
completeness and consistency of state-based models (Heimdahl, 1996; Heitmeyer,
1996) rely on a tabular specification of the transition triggers.

7 FUTURE EFFORT

Two additional phases of the project are planned for the future.  Phase 2
consists primarily of effort to adapt/develop a model checking tool as necessary to
demonstrate properties of the statechart model.  Phase 3 consists of effort by the
team as a whole to do the more extensive validation.  We also expect our model to
be maintained in order to track changes in the SARPs.

At the present time, the only tool available to support the modelling effort is the
Fuss typechecker.  The second author’s PhD thesis research examines how to
analyze specifications consisting of integrated components in different notations
(such as statecharts and predicate logic), and how to automatically analyze



specifications at a high level of abstraction. The SARPs statechart model serves as
test data for this effort; the other workers will interact with her to clear up any
problems that may arise from the models.

As part of a research collaboration involving two universities and two industrial
organizations,  the work described in this paper is being used as the basis for a
variety of research oriented investigations. Members of the FormalWare project are
using, or are expected to use, this example as a case study for the development of
methods and software tools for purposes such as automatic test case generation,
symbolic execution and possibly code generation.   In many cases, the parsing and
typechecking functionality of Fuss is used as a front-end for the implementation of
software tools which use S as input.   This is easily achieved since Fuss is designed
specifically to support user developed extensions which access the internal
representation of an S specification created by Fuss.

8 LESSONS LEARNED

The work described in this paper represents the results of using an integrated
approach to specifying a model.  Using a general-purpose formal description
notation (S) as the basis of the entire project, we built models of the components of
the ATN based on the statecharts formalism, and laid the groundwork for  building
analysis tools using S as input.  We conclude that this integrated approach has
indeed been useful.

8.1 Usefulness of a general-purpose formal description notation

Using a general-purpose formal description notation has been valuable.  The
alternative would be to use a specialized notation for state-based applications, such
as pure statecharts.  Our approach allowed us to integrate a state-based formalism
with predicate logic to express the complex conditions on transitions.  We were
also able to use uninterpreted constants to maintain a level of abstraction, and
parameterization to reduce duplication.

A future goal of the project is to extend the range of current analysis methods to
integrated requirements specifications given in multiple notations and at a high
level of abstraction, such as those containing uninterpreted constants. In this paper
we have demonstrated that a general-purpose notation can serve as a foundation for
expressing specialized notations and integrating notations. Future analysis work
will take advantage of the fact the semantics of the specialized notation can also be
expressed in the same framework (Day, 1993). This means that we are not locked
into a specialized notation for specification and analysis.

8.2 Usefulness of S in particular



S has been particularly appropriate as a general-purpose formal description
notation because (a) it is strongly typed and has an associated typechecker, Fuss;
(b) it is machine readable; (c) it is more human-readable than many more symbolic
notations; and (d) its power and generality allow a good deal of flexibility in how
the model components are expressed.

Another important benefit of using typed, predicate logic was the ability to
build a layer of infrastructure (i.e., the S file ‘atncommon.s’ mentioned earlier) on
top of the specialized FDT which tailors our use of statecharts specifically to the
purpose of modelling aspects of the SARPs.

Finally, our choice of S as the foundation for our approach made it possible to
use Fuss ‘off the shelf ’ for this integration task.

8.3 Classification of assumptions

This work also led to a better appreciation of the distinction between the role of
‘simplifying assumptions’ and other kinds of assumptions made in the development
of a formal representation, such as the ‘disambiguating assumptions’ made to
address aspects of the SARPs which were found to be ambiguous or unclear.
There is a natural tendency to regard any kind of  modelling simplification as
something that may undermine the validity of results derived from the model.   But
we have used the term ‘simplifying assumptions’ to describe aspects of our formal
representation which, in effect, increase the generality of these results rather than
undermining their validity.
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