Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C. Canada V6T 1724
e-mail: gilmore@cs.ubc.ca

An Impredicative Simple Theory of Types*
by
Paul C Gilmore
A Paper Prepared for Presentation to the Fourteenth Workshop on
Mathematical Foundations for Programming Systems, May 1998

ABSTRACT

By the theory TT is meant the higher order predicate logic with the following recursively
defined types:

1. listhetypeof individuals,
2. [t1, ..., 1] isthe type of the predicates with arguments of the typesty, ..., T, N=0.

Thetype[] defined by (2) when n=0 is the type of the truth values.

TT isaversion of the ssmple theory of types. Thetheory ITT described in this paper
isan impredicative version of TT. Thetypesof ITT arethe same asthetypesof TT, but
the membership of thetype 1 of individualsin ITT is an extension of the membership of
the sametypein TT. The extension consists of allowing any higher order term, in which
only variables of type 1 have afree occurrence, to be aterm of type 1. Thisimpredicative
feature of ITT ismotivated by a nominalist view of universals.

A nominalist understands a predicate of a universal to be a predicate of a name of the
universal. For example, anominalist interprets"Yellow isacolour” as"Yellow isa
colour-word"; the sentence is understood as a description of the use of the word 'Y ellow'
in English. Since computers are consumate nominalists, nominalist interpretations of
computer languages should be considered. But this does require a careful distinction
between the use and mention of predicate names, especially when treating abstraction and
guantification. For example, in"Yellow is acolour-word" the predicate name'Yellow' is
being mentioned while the predicate name ‘colour-word' is being used.

Thetypesof TT prevent impredicative definitions; as a consequence the logic must be
supplemented with non-logical axioms. The impredicative types of ITT, on the other
hand, permit both wellfounded and non-wellfounded recursive predicates to be defined as
abstraction terms from which all the properties of the predicates can be derived without
the use of axioms. The technique is demonstrated using higher order Horn sequent
definitions. "Computations” by iteration are also defined for these predicates.

The consistency proof for TT can be adapted for ITT, as can also Prawitz's semantic
proof of completeness and cut-elimination.

* The paper isavailable at: http://www.cs.ubc.ca/spider/gilmore

ITT, April 23, 1998 Page 2

1. INTRODUCTION
This paper isin part a correction to the papers[12, 13] in which alogic NaDSet and two
applications of it were described. NaDSet was an attempt to generalize the logics
described in [6, 7, 8], but was subsequently shown to be inconsistent [14]. Herea
consistent logic ITT, that has evolved from the logics of [6,7, 8, 10], is described and the
applications of NaDSet are revisited and extended. Apart from an outline of the contents
of this paper, the remainder of this introduction sketches the motivation for ITT.

The syntax for the logic is defined in 82, its semanticsin 83, and its proof theory in
84. Thelogic ITT combines features from set theory and from alambda cal culus based
logic. Thisisillustrated in 84 with definitionsin the style of set theory of the zero and
successor of atheory of natural numbers, and a definition of ordered pair in the style of
the lambda calculus. All of Peano's axioms are then derivable without an axiom of
infinity, and all the desired properties of ordered pair are derivable using features from
both set theory and the lambda calculus. It isfor thisreason that ITT may meet the
requirements of alogic sketched in [15] that combines some features of set theory and of
higher order logic. In 85 afoundation for recursionsin ITT is sketched based on terms
called recursion generators; the technique is demonstrated using higher order Horn
sequent definitions. Using these definitions the results of [13] can be repeated in ITT.
The results of [12] that can be rescued are sketched in 86, along with an extensionto ITT
in which such impredicative sets as Russell's can be consistently defined.

1.1. Nominalism, Extensionality, and Computer L anguages
By the theory TT is meant the higher order predicate logic with the following types:

1. listhetypeof individuals,
2. [rt1, ..., 1] isthe type of the predicates with arguments of the typesty, ..., T, N=0.

Thetype[], introduced in (2) when n=0, is the type of the truth values.

TT isthe simple theory of types as described in [20], but without functions from
individualsto individuals as in that paper. Thetheory ITT described in this paper isan
impredicative version of TT. Functions of individuals have been dropped since they
introduce unnecessary complications and are more than compensated for inITT The
typesof ITT are the same asthe types of TT, but the membership of the type 1 of
individualsin ITT isan extension of the membership of the sametypein TT. The
extension consists in adding to 1 any higher order term in which only variables of type 1
have afree occurrence. The motivation for thisimpredicative feature of ITT, asit was for
the predecessors of ITT, isanominalist view of universals.

ITT, April 23, 1998 Page 3

A nominalist understands a predicate of a universal to be a predicate of a name of the
universal. For example, anominalist interprets"Yellow isacolour" as"Yellow isa
colour-word"; the sentence is understood as a description of the use of the word 'Y ellow'
in English. The discussion in [16] of anominalist interpretation of the Church version of
TT may be of interest.

Since computers are consumate nominalists, nominalist interpretations of computer
languages should be explored. But this does require a careful distinction between the use
and mention of predicate names, especially when treating abstraction and quantification.
For example, in "Y ellow is a colour-word" the predicate name 'Y ellow' is being
mentioned while the predicate name ‘colour-word' is being used.

The distinction between the use and mention of predicate namesis also emphasized in
[17]: Used occurrences of predicate variables are said to be in "extensional” positions
while mentioned occurrences are said to bein "intensional” positions.

Mentioning the name of a predicate means that the name isimplicitly quoted. Thisis
the reason why higher order terms that are also of type 1 must be restricted to those in
which only variables of type 1 have free occurrences. For only such terms can be given a
Herbrand interpretation when quoted. For example, let C be a constant of type [1] and X
avariable of type 1. Then C(x) isof type[], and also of type 1. Asatype1term, C(X) is
to be interpreted as the function with domain and range the type 1 termsin which no
variable has afree occurrence: The value of the function C(x) for atermtinitsdomainis
the term C(t) initsrange. Such an interpretation doesn't work for higher order terms not
satisfying the restriction. For example, if X isavariable of type [1] and ¢ a constant of
type 1, then X(c) isof type[] but not also of type 1, since X(c) cannot be given a
Herbrand interpretation as afirst order term.

It is necessary to distinguish between the intension and extension of predicatesin
computer languages. Although the intensions of predicates used in mathematical logic
can be defined and the extensions determined from them, in many computer languages
thisisnot possible. Rather the intension of a predicate is known only informally and the
extension of the predicate provided by dataentry. For example, the extension of an
Employee predicate in a company database is maintained in this manner along with
usually a Sex predicate. From these two predicates the intension of a predicate
MaleEmployee can be defined, and its extension retrieved and printed. [9] By an
accident of hiring, however, the two predicates Employee and Ma eEmployee may have
the same extension; but clearly their intensions must be distinguished. For this reason an
extensionality axiom concluding the intensional identity of predicates from their
extensional identity isinappropriate for alogic intended for computer applications.

ITT, April 23, 1998 Page 4

1.2. Acknowlegements

| am grateful to J.Y. Girard whose letter describing a contradiction in NaDSet initiated
the development of its successors. [14] Conversations with George Tsiknis, Eric Borm,
and Jamie Andrews, and correspondance with Hendrik Boom were helpful in the
development of NaDSyl. [10] Correspondance with Henk Barendregt was helpful during
the last stage of the development of ITT. The financial support of the Natural Science
and Engineering Research Council of Canadais gratefully acknowledged.

2. THE SYNTAX

Type membership for ITT isdefined in §2.1, providing the basic syntax for the logic.
The lambda reduction relation between terms of ITT isdefined in §2.2. In 82.3 some
more usual notations for predicate logics are introduced by definitions, and a second
equivalent definition of formulain the style of [20] is given.

21. TypeMembership

Thelogic ITT isassumed to have denumerably many constants and variables of each
type. Thetype of aconstant or variable is not displayed but must be either declared or
inferred from context. For a constant or variable cx, t[cx] denotesitstype; thisis
expressed in the usual fashion as cx:t[cx].

In the style of the Church version of the simple theory of types[4], special constants
introduce the logical connectives and the quantifiers. The binary logical connective of
joint denial, denoted by 1, isaspecial constant of type [[],[]]; that is, it is predicate of two
arguments of type[]. The more usual logical connectives, -, -, 0, 0, and -, will be
defined in terms of it; these are used in examples while 1 isused in some definitions and
proofs to reduce the number of cases needing consideration. Similarly a special constant
0 of type [[t]] isintroduced for each type; it isthe universal quantifier for atypet
variable. Thetype of each 0 is not displayed but must be inferred from context. The
existential quantifier Dis defined in terms of O in the usual way. Again the single
quantifier O will be used in definitions and proofs to reduce the number of required cases

Asin the lambda calculus, the abstractor Ax in (AX.M) binds the variable x in the
scope M of the abstractor. A free occurrence of avariable in an expression is defined in
the usual way.

Definition of Type Membership

cx:t[cx], for each constant or variable cx; 1:[[],[]]; and O:[[]] for each typer.
M:[t1, ..., Tn] = WX.M):[1[X], 11, ... , Tn], N=0.

M:[t, 11, ... , Tn] & Nit => (MN):[11, ..., Tn], N=0.

M:t => M:1, provided no variable of atype other than 1 has afree occurrencein M.

ApwWNhE

ITT, April 23, 1998 Page 5

The unusual clause (4) results from the nominalist interpretation discussed in 81. By
aterm is meant a member of atype.
The count ct[M] of aterm is defined by induction as follows:

1. ct[M]=0if M isaconstant or variable, or 1, or O, or is of type 1 by clause (4).
2. ct{MN]=ct[M]+ct[N]+1; and ct[AXx.M]= ct[M]+1.

Let N:t[x]. The substitution notation [N/x]M denotes the result of replacing each free
occurrence of x inaterm M by N. The notation can result in changes of bound variables
within M; achangeis necessary if afree occurrence of x in M iswithin the scope of an
abstractor Ay for which y has afree occurrencein N.

Theorem (Substitution)

Let N:t[x]. Then M:t =>[N/X]M:t.
Proof

The proof is by induction on ct[M], with the base case ct[M]=0 being the only one
requiring special care. It may be assumed that x has afree occurrencein M. If ctf{M]=0
then either M isx or M:1 by clause (4). The conclusionisimmediateif M isx. First
ignore the second case and prove the result for al types other than 1. Then the result for
M:1 by clause (4) follows since 1[x] is 1 and [N/x]M:1 since N:1.

End of proof

2.2. Lambda Reductions
Therelation > of immediate lambda reduction between termsis defined in the usual
way.

1. M >M'if one of the following conditions holds
1. Mis(Ax.P)Q and M"is[Q/X]P, where Q:t[X].
2. M is(Ax.P) and M"is (Ay.[y/X]P), wherey:1[X].
3. M is(ax.Px) and M" is P, where x has no free occurrence in P.

2. LeeM>M'" Then
.1.NM >NM"and MN > M'N.
2. (A.M) > (Ax.M"), for any variable x.

A reduction path is a sequence Mj, 0 < i < n, of terms for which M > Mj+1. Mg isthe
head of the path and n the length. The relation >> holds between terms M and N if there
isareduction path of length n, n= 0, for which M isthe head and N isMp. Thus>>is
the reflexive and transitive closure of >.

Many proofs are available for the following theorem of the pure lambda calculus

Theorem (Church-Rosser)

If M >> N and M >> P, then there existsa Q for which N >>Q and P>> Q.

Clause (4) in the definition of type membership does not affect the proofs provided in

[1] for the theorem.

ITT, April 23, 1998 Page 6

Define the relation = between terms M and N to hold if thereisa P for which M >> P
and N >> P. That =isan equivalence relation on termsis acorollary to the Church-
Rosser theorem.

Define cl to be the set of closed terms of type 1; that is the termsin which no variable
has afree occurrence. Sincecl is closed under the reduction relation >>, = isan
equivalencerelation on c1. The equivalence classes of = on c1 will be used in the
definition of the semanticsof ITT givenin §3.

2.3. Formula Notations

A formula of ITT isaterm of type[]. Formulas are the basis for the proof theory for ITT
described in 84. But first the sparse notation of the lambda calculus is extended by
definitions that introduce notations more common to predicate logics. The application
notation is"sugared" by the definitions:

M(N) <df> MN
M(N1, ..., Nm, N) <df>M(Ngq, ..., Nm)(N), m=> 1.

The prefix notation for 1 isreplaced by an infix notation
[M1N] <df> 1 MN, for M, N:[].
All of the usual logical connectives can be defined from - and O which are defined

-M <df> [M1M]
[MON] <df>[[M:N]:[M:N]]

The notation for universal quantification is simplified and existential quantification
defined in terms of it.

(Ox.M) <df> O(Ax.M)
(X.M) <df> - (Ox.-M)

Parenthesis will be dropped when there is no risk of confusion.
Another Definition of Formula
Hereis adefinition of formulain the style of [20]:

1. cxX(Sy, ..., Sp) isaprimeformulaand aformulaif t[cx] is[1y, ..., Tn] @nd S:1j, O<i<n.
2. [FiG]isaformulaif F and G are formulas.
3. (Ox.F)isaformulaif Fisaformulaand x isavariable.
4. (W.T)(S, Sy, ..., Sp) isaformulaif ([SIX]T)(Sy, ..., Sn) isaformula, where
T:[t1, ..., Tn], ST, O<ign, and Sit[x].

That an expression defined in thisway is aterm of type [] follows from the definition of
type membership. That aterm of type[] can be defined as aformulain Schiitte's style
follows from the fact that all terms of atyped lambda cal culus have anormal form. [1]

3. SEMANTICS
Here the semanticsfor ITT isdescribed. An n-ary predicate isinterpeted by its extension;

ITT, April 23, 1998 Page 7

that isthe set of n-tuples of arguments for which the predicateistrue. Modelsof ITT are
defined in §83.1 and a semantic version of the substitution theorem proved in §3.2. Results
that motivate the proof theory of ITT are proved in §3.3 and §3.4.

3.1. Domains, Assignments, and Models
A domain for amodel of ITT isafunction D defined for each type t for which:

D.1. D([]) isthe set of truth values {true, false}.

D.2. D(1) isthe set of equivalence classes on cl defined by =.

D.3. D([ty, ..., ™)) isanonempty set of subsets of the Cartsian product
D(t1)x ... xD(tp), n=1.

The standard domain for models of ITT isthe domain for which D([tq, ..., tn]) isthe
set of al subsets of D(11)x ... xD(tp), n=1.
An assignment to agiven domain D isafunction o for which

A.l. o(t[cx], cx) O D(t[cx]), for each constant or variable cx.

A.2. o([].[], +) isthe singleton set { false, false} that defines the joint denial
predicate.

A.3. o([[1]], O) isthesingleton set { D(1)} that definesthe universal quantification
predicate O for type t variables.

An assignment oY isay-variant of an assignment @ if ® and oY are to the same
domain and o¥(t, X) differsfrom &(t, X) a most when x isy and tist[y].
The function ¢ is defined for every term as follows:

A.4. (1, M) isthe equivalence class of which the term [N1/X1] ... [Nm/Xm]M isa
member, where xy, ... , Xxm are all the variables with afree occurrencein M, and
Nj isamember of (1, x;) for 1<i<m.

A5, Let oX([ty, ..., tn], M) be defined for each x-variant ®* of o, n=0.
o([t[X], 11, ..., Tn], AX.M) is defined to be the set of n+1-tuples
@X(t[x], X), dq, ... , dqOfor which @y, ..., dydisin ®X([ty, ..., Tn], M) for each
X-variant ®X of ®.

A.6. Letboth o([t, 11, ..., Tn], M) and &(t, N) be defined, n=0.
®([11, ..., Tn], MN) is defined to be the set of n-tuplestdy, ... , dnOfor which
@(t, N), dq, ..., dpdisin @([t, 11, ..., Tn], M).

An assignment @ to adomain D isamodel for ITT if o(t, M) O D(r) for each type t
and term M of type 1. Models do exist since for the standard domain amodel is defined
by any assignment to it; thisis the basis for the consistency proof of ITT asitisfor TT.
The basis for the completeness proof of TT without cut in [19] is the construction of
models with domains that are not standard; this proof can be adapted for ITT.

3.2. Semantic Substitution
The following theorem is a semantic version of the substitution theorem of 82.1. Note
that neither its statement nor its proof is dependent upon the standard domain.

ITT, April 23, 1998 Page 8

Theorem

Let o be an assignment to some domain. Let Q:t[y], wherey has no free occurrencein
Q, and let P.o. Let oY be the y-variant of ® for which o¥(t[y], y) is®(t[y], Q). Then
®Y(o, P) is o(a, [QlY]P).

Proof

It may be assumed that y has a free occurrence in P. The proof is by induction on ct[P].
Let ct[P]=0 so that Piseither y, or P:1 by clause (4) of the type membership definition. In
thefirst case [Q/y]Pis Q, so that by definition ®¥(t, P) iso(t, [Q/y]P). Theconclusionin
the second case follows from (A.4).

Assume the conclusion of the lemma whenever ct[P] < ct. Let ct[P]=ct and consider
the forms that P may take.

Pisax.M, where it may be assumed that x has no free occurrencein Q. Then if
M:[t1, ... , tn], 0 iS[1[X], 11, ... , Tn]. Sincey isassumed to have afree occurrencein P,y

isnot x, so that [Q/y](Ax.M) is (Ax.[Q/y]M). By (A.5), ®¥(o, AX.M) isthe set of n+1-
tuples @%Y(t[x], X), dy, ..., dyOfor which jy, ..., dydisin ®XY([ty, ..., tn], M) for each
X-variant ®%¥ of ®Y. But XY isay-variant of ®X, and since x and y are distinct

%Y (1[X], X) is®X(1[X], X). By the induction assumption ®¥([t1, ..., Tn], M) iS

o([t1, ..., Tn], [Q/Y]M). Hence a¥(o, AX.M) isthe set of n+1-tuples

@X(t[x], X), d1, ... , dafor which @y, ..., dadisin ®X([ty, ..., 1n], [Q/Y]M) for each x-
variant ©X of ®. But thisisthe predicate ®(o, AX.[Q/y]M) which is the predicate

®(o, [Q/y] (AX.M)).
PisMN. Then M:[1, 11, ..., t1n] and N:t, for somer, 11, ..., Tn, N=0.

By (A.6), ®¥([t1, ... , Tn], MN) isthe set of n-tuplesl;, ..., dnOfor which
@Y(t, N), dq, ..., anErD Y([t, 11, ... , T], M). But by the induction assumption
oY([t, 11, ... , Tn], M) is ([, 11, ... , Tn], [Q/Y]M) and @Y (t, N) is o(t, [Q/Y]N).

End of proof

Corollary
LetM:randM > M'. Then M.t and &(t, M") is ®(t, M), for any assignment .
Proof

The proof is by induction on the definition of the relation > in 82.2. The only case of
any difficulty is (1.1) where M is (AX.P)Q, M"is[Q/X]P, and Q:1[x]. Let P:t, wheretis
[t1, ..., 1n]. Leto be[t[X], 11, ..., Tn], SO that (\Xx.P):c and (Ax.P)Q:t. By (A.5),

®(o, (AX.P)) isthe set of n+1-tuples @X(t[X], X), d1, ..., dnCfor which [j, ..., dyCisin
oX(1, P). Let oX(1[x], X) be @(t[X], Q). Then &(t, (AX.P)Q) isthe set of n-tuples

[y, ..., dpOfor which @ (t[x], Q), dy, ..., dpdisin ®X(t, P); that is, in o(t, [Q/X]P).

End of proof

3.3. Semantic Inferences

Since @ isafunction, the value o(t, M) for each t and M isunique. In particular,
therefore, if F:[], then o([], F) has asits value exactly one of the truth values. This
observation together with the following theorem provides the justification for the proof
theory described in §4.

ITT, April 23, 1998 Page 9

Theorem
Let F, G:[], and let & be an assignment to any domain. Then

1. o([], [FLG])=true=>o([], F)=fase & o([], G)=false.

o([], [Fr G])=fdse => o([], F)=true or o([], G)=true.
2. Let T:1[x], and let y have no free occurrencein F. Then

o([], Ox.F)=true => o([], [T/x]F)=true

o([], Ox.F)=fase => o¥([], [y/x]F)=false, for some y-variant ®Y of ®.
3. LetF>G. Then

o([], F)=true => o([], G)=true

o([], F)=fase=> o([], G)=fase

Proof

(1) follows immediately from the truth table for , and (3) follows from the corollary.
Consider (2). o([], Ox.F)=true => oX([], F)=true for every ®X. Let ®X(1[X], X) be

o(t[x], T). Henceo([], Ox.F)=true => o([], [T/X]F)=true by semantic substitution.
Further o([], Ox.F)=false => oX([], F)=false for some ®X. Let ®Y:X be the y-variant of ®X
for which o¥X(t[x], y) is®X(t[X], X). Hence ®Y([],[y/X]F) is ®¥YX([],[y/X]F), since x has
no free occurrence in [y/x]F, which is ®X([],[x/y][y/X]F) by semantic substitution, and
therefore ®X([], F).

End of proof

34. Sequentsand Counter-Examples

A sequent isan expression I |- © where I, the antecedent of the sequent, and o, the
succedent of the sequent, are finite possibly empty sets of formulas. A sequent™ |ois
satisfied by an assignment o, if ®([], F) isfalse for some F in the antecedent or is true for
some F in the succedent. A sequent isvalidif it is satisfied by every assignment that isa
model. An assignment @ is a counter-example for asequent if ®([], F) istrue for every F
in the antecedent and false for every F in the succedent.

The proof theory of 84 provides a systematic search procedure for a counter-example
for agiven sequent I |- . Should the procedure fail to find such an assignment, and if it
doesfail it will fail in afinite number of steps, then I |- © can be shown to bevalid. The
finite number of steps resulting in afailure isrecorded as aderivation. Thus aderivation
for a sequent is constructed under the assumption that a counter-example ¢ exists for the
sequent. Signed formulas are introduced to abbreviate assertions about the truth value
assigned to aformulaby ®. Thus +F isto be understood as an abbreviation for
o([], F)=true and —F for &([], F)=false, for some conjectured counter-example . Note
that I |- © has no counter-exampleif ' |- @' has no counter-example, wherer'mr
O'm ,andr' ® 'isnot empty.

4. PROOF THEORY
The proof theory is presented as alogic of sequents using a semantic tree form of the

ITT, April 23, 1998 Page 10

sequent calculus that has evolved from the semantic tableaux derivations of [3]. Semantic
rules, in terms of which semantic trees are defined, are described in 84.1; these rules are
motivated by the theorem of §3.3. A derivation of a sequent is a closed semantic tree
based on the sequent, as these terms are defined in 84.2. Some derivations of sequents
are provided in 84.3. These derivationsillustrate the point made in 81 that ITT combines
advantages of a set theory with those of alambda calculus based predicate logic.

4.1. The Semantic Rules
There are + and — rules for the propositional connective 1, for each quantifier 0, and for
A. Theserulesare

+| +F. G +F. G -l —H{F.1 Q]
- -G +F +G
+0 +0X.F -0 —Ox.F
+[T/X]F —y/X]F
where T:1[X] where y:1[x].
+A +F A —F
+G -G

where for each rule F > G, asdefined in §2.2.
Thelast rule has a character different from these logical rules. It has no premiss and two
conclusions:
Cut -

Cut will be seen to be aredundant but nevertheless useful rule.

4.2. Semantic Treesand Derivations
A semantic tree is a binary tree with nodes that are signed formulas. A semantic tree
based on a given sequent is defined as follows:

1. A treewith asingle branch consisting of one or more nodes +F and -G, where F is
from the antecedent and G is from the succedent of the sequent, is a semantic tree
based on the sequent.

2. Given asemantic tree based on a sequent, a tree obtained from it in any of the
following ways is a semantic tree based on the sequent:

1. By attaching the conclusion of a single conclusion rule to the leaf of abranch
anode of which isthe premiss of the rule; provided that if the ruleis—1 theny
does not have a free occurrence in the premiss of the rule nor in any node aboveit.

.2. By attaching the two conclusions of the +1 rule on separate branches to the leaf of
abranch anode of which isthe premiss of therule.

.3. By attaching +F and —F on separate branches to the leaf of abranch.

ITT, April 23, 1998 Page 11

A branch of asemantic treeis closed if thereisaclosing pair of nodes F and — on
the branch. A semantic treeis closed if each of its branchesisclosed. A derivation of a
sequent is a closed semantic tree based on the sequent.

The cut rule is redundant in the sense that a derivation of a sequent in which it is used
can be replaced by a derivation in which it isnot used. Thisisacorollary to the
completeness theorem for TT of [19] that can be adapted for ITT. Nevertheless, the rule
isuseful sinceit allows for the reuse of previously given derivations. Thisisillustrated in
one of the example derivations given in 84.3.

4.3. Example Derivations

The example derivations make use of definitions of the usual logical connectives defined
in §2.3 and of the semantic rules that can be derived for them. These will be left to the
reader to state and justify.

The following notational conventions will be followed. Strings of lower and upper
case L atin letters and numerals beginning with the letters u, v, w, X, y, and z are variables.
When aterm is known to be a formula, the types of constants and variables occurring it it
can often be inferred and in these cases will not be declared. Strings which are not
variables may be used, along with special symbols such as = and <, as names of
predicates introduced by definition. Such a string may often be assumed to be
polymorhic since the type of a predicate and the relationship between the types of its
arguments can often be determined from its definition.

The following type and type declaration notation will be used here and in the
remainder of the paper. The notation T denotes a sequence of ntypesty, ..., T, for some
n>1; thus[T] isthetype|[ty, ..., tn]. A typedeclaration Z:T isto be understood as
declaring that Z isasequencezy, ..., z, of distinct variables of typesty, ..., tn
respectively, and adeclaration S:Tthat Sisasequencesy, ... , S of terms of typesty, ...,
T respectively for some n>1.

4.3.1. Intensional and Extensional | dentity
Asstressed in 81 it is essentia to distinguish between intensional = and extensional =¢
identity. They are defined

= <df> (Au,v.0Z.[Z(u) - Z(V)])

=e <df> (A\u,v.0Z.[u(Z) - V(Z)])
The type of = is determined from the type of its arguments; if u, v:t, then Z:[t] and =:[1,1].
Similarly, if Z:T then u,v:[T] and =¢:[[T],[T]]. The usual infix notation will be used for the
identities.

ITT, April 23, 1998 Page 12

INTT andinITT, the sequent |- 0Ox,y.[x=y - Xx=gy] isderivable when x,y:[T], but not
when x,y:1 since then x=gy is not wellformed. InITT, on the other hand, each instance
of the sequent scheme
|dEId) T1=T2 T1=eT2
isderivable, when T1,T2:[T]n 1, that is, if T1 and T2 are each of type [T] and also of type
1 by clause (4) of type membership, so that in each of T1 and T2 only variables of type 1
have afree occurrence. Hereisafull annotated derivation.

+T1=T2 initial node
—T1=¢T2 initial node
+(Au,v.0Z.[Z(u) - Z(V)])(TL,T2) defn of =
+(AU.0Z.[Z(T1) - Z(V)])(T2) +A
+0Z.[Z2(T1) - Z(T2)] +A

+HS(T1) -~ S(T2)] +0 with S<df> aw. T1=gw
L R

-S(T1) +.

—(Aw. T1=aw)(T1) defn S
—T1=eT1 A
—0Z.[T1(Z) -~ T1(Z)] defn =¢
—T1(32) - T12)] —0
—H[T1(Z) - TA(Z)] O[TL(Z) - TL(Z)]] defn -
—HT1(Z) - TL(2)] -0

+T1(2) —

-T1(2) -
LR

repeat LL

R

+S(T2) +.

+(Aw. T1=agw)(T2) defn S
+T1=eT2 +A

This derivation could be shortened by using the following derivable rules of
deduction for =:

+= 45t = st
T +T(R) 29
—Z(t)

whereif st:t, then T:[1], and Z:[1], with Z not free in a node above the conclusion of —=.

Derivations of these rules are |eft to the reader. Comparable rules for =¢ can be derived.
For those familiar with a Gentzen sequent cal culus presentation of logic such as

appearsin [12, 13], this derivation can be converted asfollows. For any node n that is

ITT, April 23, 1998 Page 13

either the last of the initial nodes or a node below the last, define r'[n] and ©[n] to be the
set of formulas for which +F, respectively —F, isthe node n or anode aboven. Whenn is
the last of the initial nodes, then r'[n] | ©[n] isthe sequent I |- © on which the derivation
isbased. The given derivation isthen an upside down transparent translation of a
Gentzen derivation of the sequent ' |- ©, without structural rules, with a node

r[n] F©[n] for each node n below theinitial nodes.

4.3.2. Zero and Successor
Two definitions that make use of = when it is assumed to have type[1,1] are:

0 <df> (Au.~u=u)
S<df> (Au,v.u=v).

Here u:1 and 0:[1], but also 0:1, since no variable has afree occurrencein 0. Thus
0:[1]n1. Similarly, S:[1,1]n1, so that S(x):[1]n1. Thisdual typing of S(x) isexploitedin
derivations of the following two sequents related to axioms of Peano:

Sl FOXy.[S(X)= S(y) - X=Y]
S2. FDOx.-~S(x)=0

These two sequents ensure that the termsin the sequence 0, S(0), S(S(0)), ... can be
provento bedistinct. InTT thisisaccomplished by adding an axiom of infinity.

A derivation of (S.1) that isnot aderivationin TT follows. It illustrates the use of the
cut rule for the reuse of derivations by making use of the derivation of (IdEld). The
derivation is abbreviated somewhat by omitting some obvious nodes.

—OX,Y.[SX)=S(y) - x=Y]
—S(X)=S(y) - x=y]

+S(X)=S(y)

—X=y

--- Cut
+S(X)=eS(y) —S(x)=eS(y)
+02[S(X)(2) - SY)(2)] =========|dEId

HSX)(Y) - Sy)(Y)]
+HSW)(Y) - SX)Y)]

=S)(y) +S()(y)
Y=y =y

The following derivation of (S.2) isalso not aderivationin TT since it makes use of the
dual typing of S(x) and of 0.

—0x.~§(X)=0

—S(x)=0

+5(x)=0
-- Cut
+5(x)=¢0 —S(x)=e0
+0z[S(X)(2) - 0(2)] ========|dEld

+HSX)(X) - 0(x)]

ITT, April 23, 1998 Page 14

+HSX)(x) - 0(x)]

—S(X)(x) +0(x)
—X=X +-X=X
—===== —X=X

4.3.3. Ordered Pair
The definition of ordered pair comes from [5].
m<df> (Au,v,w.w(u,v))
If u:o and v:t, then w:[o,1] and m:[o,t,[0,1]]. However hereit will be assumed that u,v:1.
The usual infix notation for ordered pairs will be used. Derivable sequents are

OP.1. | 0Ox1,y1,x2,y2.[X1,yl= X2,y200- X1=X2 0y1=y?2]
OP.2. FOxy.-X,yr=0

Note the similarity to (S.1) and (S.2) and note that (OP.2) combines a definition of
ordered pair from the lambda cal culus with a definition of O from set theory. An
important consequence of the pairs (S.1) and (S.2) and (OP.1) and (OP.2) of sequents
being derivable will become apparent in §5.

The definitions of projection functions that select respectively the first and second
members of apair are aso from [5].

Hd <df> (Aw.w(\u,v.u))
Tl <df> (Aw.w(ru,v.v))

That these definitions of ordered pair, head, and tail are appropriate is confirmed by the
following derivable sequents.

Hd.1. | oOx,y.Hd(x,yD = x
TLL. FoOxy.TH(xy)=y

Hereisaderivation of (Hd.1) that illustrates the use of the +A rule for the A-reduction to
normal form of afirst order term.

—0x,y.Hd(x,yD = x

—Hd(x,yD = x

+Z(Hd(x,y0) —=

—Z(X) —_
+Z((Aw.w(ru,v.u))(x,yD) defn of Hd
+Z((Aw.w(u,v.u)((Au,v,w.w(u,v))(x,y)) defn of mm
+Z((Aw.w(au,v.u))(Aw.w(x,y)))) +A rule
+Z((Aw.w(X,y))(Au,v.u)) +Arule
+Z((Au,v.u)(X,y)) +Arule
+Z(X) +Arule

Derivations of (OP.1) and (OP.2) will be left to the reader.

5. FOUNDATIONSfor RECURSIONS
The purpose of this section is to provide some fundamental results upon which the many

ITT, April 23, 1998 Page 15

applications of recursive definitions can be based. The recursive definitions most
commonly used in mathematics and computer science are least predicate definitions and
more rarely greatest predicate definitions. I1n 85.1 a general method is described for
providing these definitions; it makes use of terms called recursion generators. The first
order definition of Horn sequent is generalized in 85.2, and finite sets of Horn sequents
defining a single constant are shown to provide a "sugared” definition of arecursion
generator in terms of which the constant can be defined to be the name of a predicate.
These results are generalized in 85.3 for simultaneous recursions.

All of the results proved in [13] can be established in ITT using the foundations
sketched in these first three subsections. A new topic is broached in 85.4, namely the
"computation” of arecursively defined predicate through iterations of the recursion
generator defining the predicate.

5.1. Recursion Generators
A term of type[[T], T] isarecursion generator for a predicate of type [T]. Here some
fundamental properties of recursion generators for unary predicates are described; these
properties can be easily generalized for recursion generators for n-ary predicates, n > 1.
Derivations of the properties are not given; these can be found in [11].

The basis for least and greatest set definitions of predicates of type [t] are the
predicates Lt and Gt defined as follows:

Lt <df> (\wg,u.0Z.[O0x.[wg(Z,X) - Z(X)] - Z(u)])
Gt <df> (\wg,u.Z.[Ox.[Z(X) - wg(Z,x)] O Z(u)])

Hereu, x:t, Z:[1], and wg:[[1], 1]. A recursion generator is so called because of the
following two derivable sequents that express generalizations of mathematical induction
for the unary predicates Lt(wg) and Gt(wg):

Lt.l. FoOwg,Y.[Ox[wg(Y,X) - Y(X)] - Ox.[Lt(wg)(X) - Y (X)]]
Gt.l. FowgY.[Ox[Y(X) - wg(Y,x)] - Ox.[Y(X) - Gt(wg)(X)]],

where Y:[t]. For example, define the recursion generator RN of type[[1],1] asfollows:
RN <df>AZ,y.[y=0 mx.[Z(X) Oy=S(X)]
where =, 0, and S are defined in 84.3, and define N
N <df> Lt(RN)
Then (Lt.1) isthe Peano axiom expressing mathematical induction. Two other of Peano's
axioms follow immediately from (S.1) and (S.2) of 84.3. Theremaining two are

N.1I. FN(0)
N.2. FOX[NX) = N(SX))]

These follow from a sequent that can be derived for positive recursion generators.

ITT, April 23, 1998 Page 16

5.1.1. Positive Recursion Generators

Let wg be arecursion generator. Few useful properties of Lt(wg) and Gt(wg), beyond the
instantiations of (Lt.1) and (Gt.1), can be derived without an additional assumption on
wg, namely that the occurrence of Z in wg(Z,X) is positive. Positive occurrences of Z:[T]
in aformula are defined inductively on the alternative definition of formulagivenin 82.3.

1. Theinitia occurrence of Z in Z(S) is positive, where S:T.

2. A positive occurrencein F or G isapositive occurrence in [FOG] and [FOG].

3. A positive occurrence in F is a positive occurrence in IX.F, where x is any variable
other than Z, of any type.

4. A posititve occurrence in [S/U] T(S) is a positive occurrence in
(Au.T)(s3), where S may be of any length including O.

Following is the fundamental theorem on positive occurrences. It is stated for Z:[1]
but isimmediately generalizable for Z:[T]. The theorem makes use of the predicate UB
expressing the existence of an upper bound for abinary predicate w:[ao, 1], where ¢ may
be any type.

UB <df> (Aw.0Ox1,x2.0x.0y.[[w(x1,y) Ow(x2,y)] - w(x,y)])

Theorem

Let all free occurrences of Z:[1] in the formulaF be positive. Then the following
sequents are derivable, wherein (M), X,Y:[t] are without free occurrencesin F, and in
(C), X:[o, 1] and x:c are without free occurrencesin F.

M. FOXY.[0x[X(X) - Y = [[X/Z]F - [Y/Z]F]
C. F[OX:UBL[OWV.DxX(XV))/Z]F - DX.[(W.X(X,V))/Z]F]]

Two fundamental consequences of the theorem for recursion generators are expressed
in terms of two predicates of recursion generators Mon, monotonic, and Con, continuous

Mon <df> (Awg.OX,Y.[OX.[X(X) - Y(X)] - Ox.[Jwg(X,x) - wg(Y,x)]])
Con <df> (Awg.[OX:UB].0y.[wg((Av.X.X(X,V)), Y) - DX.wg((Av.X(X,V)), V)] 1)

Corollary

A positive recursion generator wg is monotonic and continuous; that is |- Mon(wg) and
I Con(wg) are derivable.

The definition of Con has been suggested by Scott's theory of computable functions;
see for example [18]. The definition makes use of the existential quantifier, but it could
equally well have been defined in terms of the universal quantifier. For define the
predicate LB

LB <df> (Aw.0Ox1,x2.0x.0y.[w(X,y) - [w(x1,y) Ow(x2¥)]])
Then the following sequent is derivable
Con | [Owg:Con].[oX:LB].Oy.[Ox.wg((Av.X(X,V)), V)] - wg((Av.OX.X(X,V)), ¥)]
Conversdly, if Con isdefined in terms of the universal quantifier, then a sequent (ConD)
obtained from (Conv) by appropriate changesis derivable.

ITT, April 23, 1998 Page 17

5.1.2. Properties of Lt(wg) and Gt(wg) for Monotone Recursion Generators
The following sequents are derivable:

Lt.2. | [owg:Mon].Ox.[wg(Lt(wg),x) - Lt(wg)(x)]
Lt.3. F[owg:Mon].Ox.[Lt(wg)(X) - wg(Lt(wg),x)]

Gt.2. F[Owg:Mon].0x.[Gt(wg)(x) - wg(Gt(wg),x)]
Gt.3. [[Owg:Mon].0x.Jwg(Gt(wg),x) - Gt(wg)(x)]

LtGt. | [owg:Mon].Ox.[Lt(wg)(x) - Gt(wg)(X)]

The sequents (N.1) and (N.2) given earlier follow directly from (Lt.2). The sequents

(Lt.2) and (Lt.3), respectively (Gt.2) and (Gt.3), can be understood to express that Lt(wg),

respectively Gt(wg), isafixed point of an extensional identity. The sequent LtGt asserts

that Lt(wg) isthe least and Gt(wg) the greatest fixed point. The definition needed is
FixPt <df> awg,v.wg(v)=ev

The derivable sequents expressing the fixed point results are

FixLt. F FixPt(wg, Lt(wg))
FixGt. - FixPt(wg, Gt(wg))

These fixed point equations express properties of Lt(wg) and Gt(wg) for positive
recursion generators wg. The properties have been obtained strictly from the definitions
of the predicates alone, in contrast to the role of fixed point equationsin LCF. [18]

The following sequents are also derivable.

RGO F [Owg:Mon].OX,y.[DX.wg((AV.X(X,V)), ¥) - wg((Av.DX.X(X,V)), ¥)]
RGO. F [Owg:Mon].OX,y.[wg((Av.O0X.X(X,V)),) - OX.wg((Av.X(X,V)), ¥)]

Note their relationship to the definition of Con. Properties of Lt(wg) and Gt(wg) for
continuous recursion generators wg will be described in 85.4.

5.2 Horn Sequentsas Sugared Definitions of Recursion Generators
A sequent is said to be a Horn sequent if it hasthe form [C/Z]F |- C(S) where Cisa
constant of type [T] that has no occurrence in the formulaF, 5:T, and all free occurrences
of Z in F are positive. Cissaid to be the defined constant of the Horn sequent. A sequent
I C(3) with an empty antecedent is understood to be the Horn sequent True |- C(3S),
where True <df> Ox.x=X. A sequent [C/Z]F1, ..., [C/Z]Fk t C(5) with more than one
formula of the form [C/Z]F in the antecedent is understood to be the sequent
[CIZ][F1D ... OF] FC(3).
Let A be afinite set of Horn sequents all with the same defined constant C:
HCi. [C/Z]F }C(si1, ..., Si,n), 1<sism.
From A arecursion generator R(A) can be defined as follows
R(a) <df>2Z, z3, ..., Zn.[OX1.[F1 021=51,1 0... 0Zn=S1 0] O... O
OXm-[Fm 021=Sm,1 O... 0Zn=Sm,nl]

ITT, April 23, 1998 Page 18

Here X isasequence of all the variables other than Z with afree occurrencein Fj or in
any one of § j, and Z:T, where no z has afree occurrencein Fj or inany oneof sjj. Let
the constant C be defined:

C <df> Lt(R(a))
Then it is not difficult to establish the following result from (Lt.2):

Theorem 1
Each of the sequents (HC;) isderivable.

It isfor thisreason that a set of Horn sequents all with the same defined constant can
be regarded as a "sugared" definition of arecursion generator. Of course arecursion
generator R(2) defines also agreatest fixed point Gt(R(a)), but this fact has received little
attention.

It isnatural to ask if the converse
CHC,;. C(si,1, .- Sin) FIC/IZ]F
of (HC;) isderivablefor eachi. Theorem 1 isaconsequence of (Lt.2). That (CHGC;) is
derivable for each i is a consequence of (Lt.3) but only under certain conditions.

The set A of Horn sequentsis said to be digoint if the following sequents are
derivable:

D.1. FOX V.[[si1=[V/X]si10O.. 0 S n=[Y/X]sin] - X=Y], 1<ism.
D.2. }OX V.-[s 1=[V/X]Isk 1 O.. O S n=FX]sknl, 1<i,ksmwithizk .
wherey is the same |length asX, the variables ¥ have no free occurrencein any s j, and
X=Y is the conjunction of all formulas xx=y.

Theorem 2
Each of the sequents (CHC;) isderivableif A isadigoint set of Horn sequents.

The importance of the properties of zero, successor, and ordered pair stated in the
derivable sequents (S.1), (S.2), (OP.1), and (OP.2) of 84.3, arisesin part from the need to
derive the sequents (D.1) and (D.2).

5.3. Simultaneous Recursions

The presentation will be for two simultaneous recursions, but can be generalized. Terms
R and S are simultaneous recursion generators of predicates of types [a] and [T]
respectively, if they are of thetypes|[[a], [T], 6] and [[T], [G], T] respectively. The
simultaneous least predicate operators for recursion generators wgl and wg2 of these
typesis defined

SLtl <df> (A\wgl,wg2,u.0X,Y.[[0Z1.[wgl(X, Y, Z1) - X(Z1)] O
0z2.[lwg2(X, Y, Z2)) - Y(Z2))]] - X(@)]
SLt2 <df> (\wgl,wg2,v.0X,Y.[0Z1.[]wgl(X, Y, Z1) - X(Z1)] O

ITT, April 23, 1998 Page 19

0z2).[wg2(X, Y, 22)) - Y(Z2))] - Y(V)]
HereZz1:c and z2:7, and U:g and V:T. Corresponding greatest predicate operators SGt1 and
SGt2 can be similarly defined.
The two wellfounded predicates Prl and Pr2 and the two non-wellfounded predicates
Qrl and Qr2 defined by the simultaneous recursion are
Prl <df> (A\u.SLt1(wgl,wg2)(T))
Pr2 <df> (A\v.SLt(wgl,wg2)(V))
Qrl <df> (\U.SGt(wgl,wg2)(0)
Qr2 <df> (\v.SGt(wgl,wg2)(V))
Derivable sequents expressing induction principles for Prl and Pr2 are
SLt1.1. F OX.[OY.[0Z1).[wgl(X, Y, Z1)) - X(Z1))] @ Z2.[wg2(X, Y, Z2)) - Y (Z2))]]
- 0Z1).[Prl(Z1) - X(ZV)]]
SLt2.1. FOY.[OX.[0Z1).[wgl(X, Y, Z1)) - X(Z1))] @ z2.]wg2(X, Y, Z2)) - Y (Z2))]]
- 022).[Pr2(Z2) - Y(Z2))]]
Corresponding sequents for Qrl and Qr2 can aso be derived. Fixed point sequents
similar to (Lt.2) to (Gt.3) can be derived.
Consider now a set A of Horn sequents with members of the following forms

SHC. [CIZ][DIW]F }C(s1, ..., Sm)
[C/Z][DIW]G FD(t, ..., tr)

such that there are members for which each of F and G has afree occurrence of Z and a
free occurrence of W. Simultaneous recursion generators can be defined from A that
provide definitions for the constants C and D. Theorems 1 and 2 can be repeated for A
with an appropriate update for the definition of "digoint”.

54. Iterating Recursion Generators

Given a unary recursion generator wg of type [[t], t] and a predicate ws:[t], consider the
following sequence of type [t] predicates. ws, (A\v.wg(ws,v)), Av.wg((Av.wg(ws,v),v))),
... . The sequenceisthe result of iterating wg, beginning with ws. A recursion generator
RIt(wg,ws) for the iteration predicate It(wg,ws) is defined by the following two Horn
sequents

It.1. ws(x) t It(wg,ws)(0,x)
[t.2. wg((Av.It(wg,ws)(xn,v)),x) t It(wg,ws)(S(xn),x)

A second cumulative iteration of wg from ws results in the sequence ws,
(Av.[wsDwg(ws,V)]), (Av.[wsDwg(ws,v)|Dwg((Av.[wsowg(ws,v)]),v)), A recursion
generator RCIt(wg,ws) for the cumulative iteration predicate Clt(wg,ws) is defined by the
following two Horn sequents

Clt.1. ws(x) t Clt(wg,ws)(0,x)
Clt.2. [wg((av.Clt(wg,ws)(xn,v)),x) OClt(wg,ws)(xn,x)] Clt(wg,ws)(S(xn),x)

ITT, April 23, 1998 Page 20

Since the sequents (1t.1) and (It.2), and the sequents (Clt.1) and (CIt.2), satisfy the
conditions (D.1) and (D.2), by theorems 1 and 2 these sequents and their converses are
derivable when It and Clt are defined

It <df> (A\.wg,ws.Lt(RIt(wg,ws)))
Clt <df> (A.wg,ws.Lt(RCIt(wg,ws)))

That Clt can be used to "compute” the predicate Lt(wg) for any positive recursion
generator wg is expressed in the following two derivable sequents:

CltLt.l. F[owg:Mon].0y.[[xn:N].Clt(wg, O)(xny) - Lt(wg)(y)]
CltLt.2. F[owg:MonnCon].0y.[Lt(wg)(y) - [Xxn:N].Clt(wg, O)(xn,y)]

where 0:[1] isthe empty predicate, and Monn Con the conjunction of Mon and Con.
An understanding of the relationship between this "computation™ of Lt(wg) and that
of [17] requires further study.
Similarly, that It can be used to "compute” the predicate Gt(wg) for any positive
recursion generator wg is expressed in the following two sequents:

ItGt.1. }[Owg:Mon].0y.[Gt(wg)(y) - [Oxn:N].It(wg,V)(xn,y)]
ItGt.2. | [Owg:MonnCon].0y.[[Oxn:N].It(wg,V)(xny) - Gt(wg)(y)]

where V:[1] isthe universal predicate.

6. CATEGORY THEORY and an EXTENSIONtoITT

In 86.1 aresult for category theory is described that is a correction to the main result of
[12]. In 86.2 an extension to ITT is described in which impredicative sets, such as
Russell's, can be defined.

6.1. Category Theoryand ITT

The main result of [12], expressed in theorem 5.4, cannot be duplicated in ITT since the
proof of lemma 5.2 makes use of the feature of NaDSet that |eads to its inconsistency;
namely alowing asingle type of variable to play the role of both first and second order
variables. Using the notation of the present paper, the main result is expressed in terms
of apredicate Cat defined

C. Cat <df> AAr, =5, Sr, Tg, Cp.Category(Ar, =5, Sr, Tg, Cp)

where Category(Ar, =5, S, Tg, Cp) isthe conjunction of the axioms of category theory
with the variables interpreted as follows: Ar isthe unary predicate of arrows or
morphisms, =3 the binary predicate of identity of arrows, Sr abinary predicate with first
argument an arrow and second argument its source object, Tg abinary predicate with first
argument an arrow and second argument its target object, and Cp aternary predicate the
third argument of which is the composite of the arrows that are its first two arguments.

ITT, April 23, 1998 Page 21

Theterms Ar, =4, Sr, Tg, and Cp are defined to be respectively the unary predicate
Functor of categories, extensional identity between functors, the source and target
predicates for functors, and the composition of functors. Theorem 5.4 asserts that the
sequent
D. - Cat(Ar, =45, Sr, Tg , Cp)
isderivable, expressing that the category of categoriesisacategory. But inITT
Cat(Ar, =g Sr, Tg , Cp) isnot wellformed. It iswellformed however if Cat isreplaced
by aform Cat* of Cat defined exactly as Cat in (C) except with the understanding that the
types of the variables are raised to accomodate the types of the arguments.

6.2. AnExtensiontolTT

Thevariablesof ITT have two distinct roles to play, as quantifiable variables and as
abstraction variables. These two roles could be served in formulas by syntactically
distinct variables asis evident from Schitte's definition of formulagivenin 82.3. Asan
abstraction variable, the variable x in clause (4) of the definition is used purely asa
placeholder and need never be interpreted; that is, since o([], WX.T)(S, Sy, ..., Sp)) can
be defined to be o([], ([S/X]T)(Sy, ..., Sp)) it isunnecessary to define o(t[x], X). But
since o([], Ox.F) isdefined in terms of ©X([], F), it is necessary to define ®(t[X], X) in this
case. By using distinct variables for these two roles, and interpreting only quantification
variables, a consistent extension of ITT can be constructed in which such impredicative
sets as Russell's can be defined.

The Russell set R is defined to be (Au.- u(u)). For u(u) to be wellformed it is
necessary that the two occurrences of u have different types; for example the first
occurrence could have type [1] while the second has type 1; or briefly that u:;[1]n1. Then
u(u):[], ~u(u):[], and (Au.=u(w)):[[1]n1]. Argumentsfor R are therefore the empty
predicate O defined to be Au.-~u=u. and the universal predicate V defined to be Au.u=u. It
isthen not difficult to derive the sequents

F-R(@)and FR(V)
corresponding to the two assertions about R that Russell made when he defined it. Itis
essential to note, however, that R(R) is not wellformed since R:[[1]n1]n1, sothat no
contradiction can be derived from the fact that R is wellformed.

Whether such an extension to ITT has applications in programming semantics
remainsto be seen; however, there appears to be no obstacle to reproducing within the
extended ITT all the applications of non-wellfounded sets described in [2].

ITT, April 23, 1998 Page 22

7.

[1]
[2]
[3]
[4]

[3]
[6]

[7]

[8]
[9]

[10]

[11]
[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]
[20]

REFERENCES

H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, Revised
Edition, North-Holland. 1985.

Jon Barwise & Lawrence Moss. Vicious Circles, CSLI Publications, 1996.

E.W. Beth. Semantic Entailment and Formal Derivability, Mededelingen de
Koninklijke Nederlandse Akademie der Wetenschappen, Afdeeling Letterkunde,
Nieuwe Reeks, 18, no.13, 309-342, 1955

Alonzo Church. A Formulation of the Simple Theory of Types, J. Sym. Logic, 5,
56-68, 1940.

Alonzo Church. The Calculi of Lambda Conversion, Princeton U. Press, 1941.
Paul C. Gilmore. A Consistent Naive Set Theory: Foundations for a Formal
Theory of Computation, IBM Research Report RC 3413, June 22,1971.

Paul C. Gilmore. Combining Unrestricted Abstraction with Universal
Quantification, To H.B. Curry: Essays on Combinatorial Logic, Lambda Calculus
and Formalism, Editors J.P. Seldin, J.R. Hindley, Academic Press, 99-123. This
isarevised version of [6], 1980.

Paul C. Gilmore. Natural Deduction Based Set Theories: A New Resolution of
the Old Paradoxes, J.Sym. Logic, 51, 393-411, 1986.

Paul C. Gilmore. A Foundation for the Entity Relationship Approach: How and
Why, Proceedings of the 6th Entity Relationship Conference, S.T. March (Ed.),
North-Holland 95-113, 1988.

Paul C. Gilmore. NaDSyL and some Applications, Computational Logic and
Proof Theory, Georg Gottlob, Alexander Leitsch, & Daniele Mundici (eds.), The
Kurt Godel Colloquium 97, Lecture Notes in Computer Science 1289. 153-166.
Springer-Verlag, 1997.

Paul C. Gilmore. An Impredicative Symbolic Logic and Some Applications, a
monograph on ITT in preparation.

Paul C. Gilmore & George K. Tsiknis. A Formalization of Category Theory in
NaDSet, Theoretical Computer Science, vol. 111, 211-253, 1993.

Paul C. Gilmore & George K. Tsiknis. Logical Foundations for Programming
Semantics, Theoretical Computer Science, vol. 111, 253-290, 1993.

J.Y. Girard, Letter to author, March 16, 1994.

Michael J.C. Gordon. Set Theory, Higher Order Logic or Both?, Proc. 9'th
International Conference on Theorem Proving in Higher Order Logic, Joakim
von Wright, Jim Grundy, and John Harrison, editors, Turku, Finland 26-30
August 1996, 191-202, 1996.

Leon Henkin. Some Notes on Nominalism, J. Sym. Logic, 18, 19-29, 1953.
Gopalan Nadathur & Dale Miller. Higher-Order Logic Programming, CS-1994-
38, Dept of Computer Science, Duke University. To appear in the Handbook of
Logic in Artificial Intelligence and Logic Programming, D. Gabbay, C. Hogger
and A. Robinson (eds.), Oxford University Press.

L.C. Paulson, Logic and Computation, Interactive proof with Cambridge LCF,
Cambridge Tracts in Theoretical Computer Science 2, Cambridge U. Press, 1990.
Dag Prawitz. Hauptsatz for Higher Order Logic, J. Sym. Logic, 33, 452-457,
1968.

K. Schitte. Syntactical and Semantical Properties of Simple Type Theory, J. Sym.
Logic, 25, 305-326, 1960.

