
Department of Computer Science

University of British Columbia

2366 Main Mall

Vancouver, B.C. Canada V6T 1Z4

e-mail: gilmore@cs.ubc.ca

An Impredicative Simple Theory of Types*

by

Paul C Gilmore

A Paper Prepared for Presentation to the Fourteenth Workshop on

Mathematical Foundations for Programming Systems, May 1998

ABSTRACT

By the theory TT is meant the higher order predicate logic with the following recursively
defined types:

1. 1 is the type of individuals;
2. [τ1, ... , τn] is the type of the predicates with arguments of the types τ1, ... , τn, n≥0.

The type [] defined by (2) when n=0 is the type of the truth values.
TT is a version of the simple theory of types. The theory ITT described in this paper

is an impredicative version of TT. The types of ITT are the same as the types of TT, but
the membership of the type 1 of individuals in ITT is an extension of the membership of
the same type in TT. The extension consists of allowing any higher order term, in which
only variables of type 1 have a free occurrence, to be a term of type 1. This impredicative
feature of ITT is motivated by a nominalist view of universals.

A nominalist understands a predicate of a universal to be a predicate of a name of the
universal. For example, a nominalist interprets "Yellow is a colour" as "Yellow is a
colour-word"; the sentence is understood as a description of the use of the word 'Yellow'
in English. Since computers are consumate nominalists, nominalist interpretations of
computer languages should be considered. But this does require a careful distinction
between the use and mention of predicate names, especially when treating abstraction and
quantification. For example, in "Yellow is a colour-word" the predicate name 'Yellow' is
being mentioned while the predicate name 'colour-word' is being used.

The types of TT prevent impredicative definitions; as a consequence the logic must be
supplemented with non-logical axioms. The impredicative types of ITT, on the other
hand, permit both wellfounded and non-wellfounded recursive predicates to be defined as
abstraction terms from which all the properties of the predicates can be derived without
the use of axioms. The technique is demonstrated using higher order Horn sequent
definitions. "Computations" by iteration are also defined for these predicates.

The consistency proof for TT can be adapted for ITT, as can also Prawitz's semantic
proof of completeness and cut-elimination.

* The paper is available at: http://www.cs.ubc.ca/spider/gilmore

ITT, April 23, 1998 Page 2

1. INTRODUCTION

This paper is in part a correction to the papers [12, 13] in which a logic NaDSet and two

applications of it were described. NaDSet was an attempt to generalize the logics

described in [6, 7, 8], but was subsequently shown to be inconsistent [14]. Here a

consistent logic ITT, that has evolved from the logics of [6,7, 8, 10], is described and the

applications of NaDSet are revisited and extended. Apart from an outline of the contents

of this paper, the remainder of this introduction sketches the motivation for ITT.

The syntax for the logic is defined in §2, its semantics in §3, and its proof theory in

§4. The logic ITT combines features from set theory and from a lambda calculus based

logic. This is illustrated in §4 with definitions in the style of set theory of the zero and

successor of a theory of natural numbers, and a definition of ordered pair in the style of

the lambda calculus. All of Peano's axioms are then derivable without an axiom of

infinity, and all the desired properties of ordered pair are derivable using features from

both set theory and the lambda calculus. It is for this reason that ITT may meet the

requirements of a logic sketched in [15] that combines some features of set theory and of

higher order logic. In §5 a foundation for recursions in ITT is sketched based on terms

called recursion generators; the technique is demonstrated using higher order Horn

sequent definitions. Using these definitions the results of [13] can be repeated in ITT.

The results of [12] that can be rescued are sketched in §6, along with an extension to ITT

in which such impredicative sets as Russell's can be consistently defined.

1.1. Nominalism, Extensionality, and Computer Languages

By the theory TT is meant the higher order predicate logic with the following types:

1. 1 is the type of individuals;
2. [τ1, ... , τn] is the type of the predicates with arguments of the types τ1, ... , τn, n≥0.

The type [], introduced in (2) when n=0, is the type of the truth values.

TT is the simple theory of types as described in [20], but without functions from

individuals to individuals as in that paper. The theory ITT described in this paper is an

impredicative version of TT. Functions of individuals have been dropped since they

introduce unnecessary complications and are more than compensated for in ITT The

types of ITT are the same as the types of TT, but the membership of the type 1 of

individuals in ITT is an extension of the membership of the same type in TT. The

extension consists in adding to 1 any higher order term in which only variables of type 1

have a free occurrence. The motivation for this impredicative feature of ITT, as it was for

the predecessors of ITT, is a nominalist view of universals.

ITT, April 23, 1998 Page 3

A nominalist understands a predicate of a universal to be a predicate of a name of the

universal. For example, a nominalist interprets "Yellow is a colour" as "Yellow is a

colour-word"; the sentence is understood as a description of the use of the word 'Yellow'

in English. The discussion in [16] of a nominalist interpretation of the Church version of

TT may be of interest.

Since computers are consumate nominalists, nominalist interpretations of computer

languages should be explored. But this does require a careful distinction between the use

and mention of predicate names, especially when treating abstraction and quantification.

For example, in "Yellow is a colour-word" the predicate name 'Yellow' is being

mentioned while the predicate name 'colour-word' is being used.

The distinction between the use and mention of predicate names is also emphasized in

[17]: Used occurrences of predicate variables are said to be in "extensional" positions

while mentioned occurrences are said to be in "intensional" positions.

Mentioning the name of a predicate means that the name is implicitly quoted. This is

the reason why higher order terms that are also of type 1 must be restricted to those in

which only variables of type 1 have free occurrences. For only such terms can be given a

Herbrand interpretation when quoted. For example, let C be a constant of type [1] and x

a variable of type 1. Then C(x) is of type [], and also of type 1. As a type 1 term, C(x) is

to be interpreted as the function with domain and range the type 1 terms in which no

variable has a free occurrence: The value of the function C(x) for a term t in its domain is

the term C(t) in its range. Such an interpretation doesn't work for higher order terms not

satisfying the restriction. For example, if X is a variable of type [1] and c a constant of

type 1, then X(c) is of type [] but not also of type 1, since X(c) cannot be given a

Herbrand interpretation as a first order term.

It is necessary to distinguish between the intension and extension of predicates in

computer languages. Although the intensions of predicates used in mathematical logic

can be defined and the extensions determined from them, in many computer languages

this is not possible. Rather the intension of a predicate is known only informally and the

extension of the predicate provided by data entry. For example, the extension of an

Employee predicate in a company database is maintained in this manner along with

usually a Sex predicate. From these two predicates the intension of a predicate

MaleEmployee can be defined, and its extension retrieved and printed. [9] By an

accident of hiring, however, the two predicates Employee and MaleEmployee may have

the same extension; but clearly their intensions must be distinguished. For this reason an

extensionality axiom concluding the intensional identity of predicates from their

extensional identity is inappropriate for a logic intended for computer applications.

ITT, April 23, 1998 Page 4

1.2. Acknowlegements

I am grateful to J.Y. Girard whose letter describing a contradiction in NaDSet initiated

the development of its successors. [14] Conversations with George Tsiknis, Eric Borm,

and Jamie Andrews, and correspondance with Hendrik Boom were helpful in the

development of NaDSyl. [10] Correspondance with Henk Barendregt was helpful during

the last stage of the development of ITT. The financial support of the Natural Science

and Engineering Research Council of Canada is gratefully acknowledged.

2. THE SYNTAX

Type membership for ITT is defined in §2.1, providing the basic syntax for the logic.

The lambda reduction relation between terms of ITT is defined in §2.2. In §2.3 some

more usual notations for predicate logics are introduced by definitions, and a second

equivalent definition of formula in the style of [20] is given.

2.1. Type Membership

The logic ITT is assumed to have denumerably many constants and variables of each

type. The type of a constant or variable is not displayed but must be either declared or

inferred from context. For a constant or variable cx, τ[cx] denotes its type; this is

expressed in the usual fashion as cx:τ[cx].

In the style of the Church version of the simple theory of types [4], special constants

introduce the logical connectives and the quantifiers. The binary logical connective of

joint denial, denoted by ↓ , is a special constant of type [[],[]]; that is, it is predicate of two

arguments of type []. The more usual logical connectives, ¬ , →, ∧ , ∨ , and ↔, will be

defined in terms of it; these are used in examples while ↓ is used in some definitions and

proofs to reduce the number of cases needing consideration. Similarly a special constant

∀ of type [[τ]] is introduced for each type τ; it is the universal quantifier for a type τ

variable. The type of each ∀ is not displayed but must be inferred from context. The

existential quantifier ∃ is defined in terms of ∀ in the usual way. Again the single

quantifier ∀ will be used in definitions and proofs to reduce the number of required cases

As in the lambda calculus, the abstractor λx in (λx.M) binds the variable x in the

scope M of the abstractor. A free occurrence of a variable in an expression is defined in

the usual way.

Definition of Type Membership

1. cx:τ[cx], for each constant or variable cx; ↓ :[[],[]]; and ∀ :[[τ]] for each type τ.
2. M:[τ1, ... , τn] => (λx.M):[τ[x], τ1, ... , τn], n≥0.
3. M:[τ, τ1, ... , τn] & N:τ => (MN):[τ1, ... , τn], n≥0.
4. M:τ => M:1, provided no variable of a type other than 1 has a free occurrence in M.

ITT, April 23, 1998 Page 5

 The unusual clause (4) results from the nominalist interpretation discussed in §1. By

a term is meant a member of a type.

The count ct[M] of a term is defined by induction as follows:

1. ct[M]=0 if M is a constant or variable, or ↓ , or ∀ , or is of type 1 by clause (4).
2. ct[MN]=ct[M]+ct[N]+1; and ct[λx.M]= ct[M]+1.

Let N:τ[x]. The substitution notation [N/x]M denotes the result of replacing each free

occurrence of x in a term M by N. The notation can result in changes of bound variables

within M; a change is necessary if a free occurrence of x in M is within the scope of an

abstractor λy for which y has a free occurrence in N.

Theorem (Substitution)

Let N:τ[x]. Then M:τ => [N/x]M:τ.

Proof

The proof is by induction on ct[M], with the base case ct[M]=0 being the only one
requiring special care. It may be assumed that x has a free occurrence in M. If ct[M]=0
then either M is x or M:1 by clause (4). The conclusion is immediate if M is x. First
ignore the second case and prove the result for all types other than 1. Then the result for
M:1 by clause (4) follows since τ[x] is 1 and [N/x]M:1 since N:1.

End of proof

2.2. Lambda Reductions

The relation > of immediate lambda reduction between terms is defined in the usual

way.

1. M > M' if one of the following conditions holds
.1. M is (λx.P)Q and M' is [Q/x]P, where Q:τ[x].
.2. M is (λx.P) and M' is (λy.[y/x]P), where y:τ[x].
.3. M is (λx.Px) and M' is P, where x has no free occurrence in P.

2. Let M > M'. Then
.1. NM > NM' and MN > M'N.
.2. (λx.M) > (λx.M'), for any variable x.

A reduction path is a sequence Mi, 0 ≤ i ≤ n, of terms for which Mi > Mi+1. M0 is the

head of the path and n the length. The relation >> holds between terms M and N if there

is a reduction path of length n, n ≥ 0, for which M is the head and N is Mn. Thus >> is

the reflexive and transitive closure of >.

Many proofs are available for the following theorem of the pure lambda calculus

Theorem (Church-Rosser)

If M >> N and M >> P, then there exists a Q for which N >> Q and P >> Q.

Clause (4) in the definition of type membership does not affect the proofs provided in

[1] for the theorem.

ITT, April 23, 1998 Page 6

Define the relation ≈ between terms M and N to hold if there is a P for which M >> P

and N >> P. That ≈ is an equivalence relation on terms is a corollary to the Church-

Rosser theorem.

Define c1 to be the set of closed terms of type 1; that is the terms in which no variable

has a free occurrence. Since c1 is closed under the reduction relation >>, ≈ is an

equivalence relation on c1. The equivalence classes of ≈ on c1 will be used in the

definition of the semantics of ITT given in §3.

2.3. Formula Notations

A formula of ITT is a term of type []. Formulas are the basis for the proof theory for ITT

described in §4. But first the sparse notation of the lambda calculus is extended by

definitions that introduce notations more common to predicate logics. The application

notation is "sugared" by the definitions:

M(N) <df> MN
M(N1, ... , Nm, N) <df> M(N1, ... , Nm)(N), m ≥ 1.

The prefix notation for ↓ is replaced by an infix notation

[M↓N] <df> ↓MN, for M, N:[].

All of the usual logical connectives can be defined from ¬ and ∨ which are defined

¬M <df> [M↓M]
[M∨ N] <df> [[M↓N]↓[M↓N]]

The notation for universal quantification is simplified and existential quantification

defined in terms of it.

(∀ x.M) <df> ∀ (λx.M)
(∃ x.M) <df> ¬ (∀ x.¬M)

Parenthesis will be dropped when there is no risk of confusion.

Another Definition of Formula

Here is a definition of formula in the style of [20]:

1. cx(S1, ... , Sn) is a prime formula and a formula if τ[cx] is [τ1, ... , τn] and Si:τi, 0≤i≤n.
2. [F↓G] is a formula if F and G are formulas.
3. (∀ x.F) is a formula if F is a formula and x is a variable.
4. (λx.T)(S, S1, ... , Sn) is a formula if ([S/x]T)(S1, ... , Sn) is a formula, where

T:[τ1, ... , τn], Si:τi, 0≤i≤n, and S:τ[x].

That an expression defined in this way is a term of type [] follows from the definition of

type membership. That a term of type [] can be defined as a formula in Schütte's style

follows from the fact that all terms of a typed lambda calculus have a normal form. [1]

3. SEMANTICS

Here the semantics for ITT is described. An n-ary predicate is interpeted by its extension;

ITT, April 23, 1998 Page 7

that is the set of n-tuples of arguments for which the predicate is true. Models of ITT are

defined in §3.1 and a semantic version of the substitution theorem proved in §3.2. Results

that motivate the proof theory of ITT are proved in §3.3 and §3.4.

3.1. Domains, Assignments, and Models

A domain for a model of ITT is a function D defined for each type τ for which:

D.1. D([]) is the set of truth values {true, false}.
D.2. D(1) is the set of equivalence classes on c1 defined by ≈.
D.3. D([τ1, ... , τn]) is a nonempty set of subsets of the Cartsian product

D(τ1)× ... ×D(τn), n≥1.

The standard domain for models of ITT is the domain for which D([τ1, ... , τn]) is the

set of all subsets of D(τ1)× ... ×D(τn), n≥1.

An assignment to a given domain D is a function Φ for which

A.1. Φ(τ[cx], cx) ∈ D(τ[cx]), for each constant or variable cx.
A.2. Φ([[],[]], ↓) is the singleton set {〈false, false〉} that defines the joint denial

predicate.
A.3. Φ([[τ]], ∀) is the singleton set {D(τ)} that defines the universal quantification

predicate ∀ for type τ variables.

An assignment Φy is a y-variant of an assignment Φ if Φ and Φy are to the same

domain and Φy(τ, x) differs from Φ(τ, x) at most when x is y and τ is τ[y].

The function Φ is defined for every term as follows:

A.4. Φ(1, M) is the equivalence class of which the term [N1/x1] ... [Nm/xm]M is a
member, where x1, ... , xm are all the variables with a free occurrence in M, and
Ni is a member of Φ(1, xi) for 1≤i≤m.

A.5. Let Φx([τ1, ... , τn], M) be defined for each x-variant Φx of Φ, n≥0.
Φ([τ[x], τ1, ... , τn], λx.M) is defined to be the set of n+1-tuples
〈Φx(τ[x], x), d1, ... , dn〉 for which 〈d1, ... , dn〉 is in Φx([τ1, ... , τn], M) for each
x-variant Φx of Φ.

A.6. Let both Φ([τ, τ1, ... , τn], M) and Φ(τ, N) be defined, n≥0.
Φ([τ1, ... , τn], MN) is defined to be the set of n-tuples 〈d1, ... , dn〉 for which
〈Φ(τ, N), d1, ... , dn〉 is in Φ([τ, τ1, ... , τn], M).

An assignment Φ to a domain D is a model for ITT if Φ(τ, M) ∈ D(τ) for each type τ

and term M of type τ. Models do exist since for the standard domain a model is defined

by any assignment to it; this is the basis for the consistency proof of ITT as it is for TT.

The basis for the completeness proof of TT without cut in [19] is the construction of

models with domains that are not standard; this proof can be adapted for ITT.

3.2. Semantic Substitution

The following theorem is a semantic version of the substitution theorem of §2.1. Note

that neither its statement nor its proof is dependent upon the standard domain.

ITT, April 23, 1998 Page 8

Theorem

Let Φ be an assignment to some domain. Let Q:τ[y], where y has no free occurrence in
Q, and let P:σ. Let Φy be the y-variant of Φ for which Φy(τ[y], y) is Φ(τ[y], Q). Then
Φy(σ, P) is Φ(σ, [Q/y]P).

Proof

It may be assumed that y has a free occurrence in P. The proof is by induction on ct[P].
Let ct[P]=0 so that P is either y, or P:1 by clause (4) of the type membership definition. In
the first case [Q/y]P is Q, so that by definition Φy(τ, P) is Φ(τ, [Q/y]P). The conclusion in
the second case follows from (A.4).

Assume the conclusion of the lemma whenever ct[P] < ct. Let ct[P]=ct and consider
the forms that P may take.

P is λx.M, where it may be assumed that x has no free occurrence in Q. Then if
M:[τ1, ... , τn], σ is [τ[x], τ1, ... , τn]. Since y is assumed to have a free occurrence in P, y
is not x, so that [Q/y](λx.M) is (λx.[Q/y]M). By (A.5), Φy(σ, λx.M) is the set of n+1-
tuples 〈Φx,y(τ[x], x), d1, ... , dn〉 for which 〈d1, ... , dn〉 is in Φx,y([τ1, ... , τn], M) for each
x-variant Φx,y of Φy. But Φx,y is a y-variant of Φx, and since x and y are distinct
Φx,y(τ[x], x) is Φx(τ[x], x). By the induction assumption Φy([τ1, ... , τn], M) is
Φ([τ1, ... , τn], [Q/y]M). Hence Φy(σ, λx.M) is the set of n+1-tuples
〈Φx(τ[x], x), d1, ... , dn〉 for which 〈d1, ... , dn〉 is in Φx([τ1, ... , τn], [Q/y]M) for each x-
variant Φx of Φ. But this is the predicate Φ(σ, λx.[Q/y]M) which is the predicate
Φ(σ,[Q/y](λx.M)).

P is MN. Then M:[τ, τ1, ... , τn] and N:τ, for some τ, τ1, ... , τn, n≥0.
By (A.6), Φy([τ1, ... , τn], MN) is the set of n-tuples 〈d1, ... , dn〉 for which
〈Φy(τ, N), d1, ... , dn〉 ∈ Φ y([τ, τ1, ... , τn], M). But by the induction assumption
Φy([τ, τ1, ... , τn], M) is Φ([τ , τ1, ... , τn], [Q/y]M) and Φy(τ, N) is Φ(τ, [Q/y]N).

End of proof

Corollary

Let M:τ and M > M'. Then M':τ and Φ(τ , M') is Φ(τ, M), for any assignment Φ.

Proof

The proof is by induction on the definition of the relation > in §2.2. The only case of
any difficulty is (1.1) where M is (λx.P)Q, M' is [Q/x]P, and Q:τ[x]. Let P:τ, where τ is
[τ1, ... , τn]. Let σ be [τ[x], τ1, ... , τn], so that (λx.P):σ and (λx.P)Q:τ. By (A.5),
Φ(σ, (λx.P)) is the set of n+1-tuples 〈Φx(τ[x], x), d1, ... , dn〉 for which 〈d1, ... , dn〉 is in
Φx(τ, P). Let Φx(τ[x], x) be Φ(τ[x], Q). Then Φ(τ, (λx.P)Q) is the set of n-tuples
〈d1, ... , dn〉 for which 〈Φ(τ[x], Q), d1, ... , dn〉 is in Φx(τ, P); that is, in Φ(τ , [Q/x]P).

End of proof

3.3. Semantic Inferences

Since Φ is a function, the value Φ(τ, M) for each τ and M is unique. In particular,

therefore, if F:[], then Φ([], F) has as its value exactly one of the truth values. This

observation together with the following theorem provides the justification for the proof

theory described in §4.

ITT, April 23, 1998 Page 9

Theorem

Let F, G:[], and let Φ be an assignment to any domain. Then

1. Φ([], [F↓G])=true => Φ([], F)=false & Φ([], G)=false.
Φ([], [F↓G])=false => Φ([], F)=true or Φ([], G)=true.

2. Let T:τ[x], and let y have no free occurrence in F. Then
Φ([], ∀ x.F)=true => Φ([], [T/x]F)=true
Φ([], ∀ x.F)=false => Φy([], [y/x]F)=false, for some y-variant Φy of Φ.

3. Let F > G. Then
Φ([], F)=true => Φ([], G)=true
Φ([], F)=false => Φ([], G)=false

Proof

(1) follows immediately from the truth table for ↓ , and (3) follows from the corollary.
Consider (2). Φ([], ∀ x.F)=true => Φx([], F)=true for every Φx. Let Φx(τ[x], x) be
Φ(τ[x], T). Hence Φ([], ∀ x.F)=true => Φ([], [T/x]F)=true by semantic substitution.
Further Φ([], ∀ x.F)=false => Φx([], F)=false for some Φx. Let Φy,x be the y-variant of Φx

for which Φy,x(τ[x], y) is Φx(τ[x], x). Hence Φy([],[y/x]F) is Φy,x([],[y/x]F), since x has
no free occurrence in [y/x]F, which is Φx([],[x/y][y/x]F) by semantic substitution, and
therefore Φx([], F).

End of proof

3.4. Sequents and Counter-Examples

A sequent is an expression Γ |– Θ where Γ, the antecedent of the sequent, and Θ, the

succedent of the sequent, are finite possibly empty sets of formulas. A sequent Γ |– Θ is

satisfied by an assignment Φ, if Φ([], F) is false for some F in the antecedent or is true for

some F in the succedent. A sequent is valid if it is satisfied by every assignment that is a

model. An assignment Φ is a counter-example for a sequent if Φ([], F) is true for every F

in the antecedent and false for every F in the succedent.

The proof theory of §4 provides a systematic search procedure for a counter-example

for a given sequent Γ |– Θ. Should the procedure fail to find such an assignment, and if it

does fail it will fail in a finite number of steps, then Γ |– Θ can be shown to be valid. The

finite number of steps resulting in a failure is recorded as a derivation. Thus a derivation

for a sequent is constructed under the assumption that a counter-example Φ exists for the

sequent. Signed formulas are introduced to abbreviate assertions about the truth value

assigned to a formula by Φ. Thus +F is to be understood as an abbreviation for

Φ([], F)=true and –F for Φ([], F)=false, for some conjectured counter-example Φ. Note

that Γ |– Θ has no counter-example if Γ' |– Θ' has no counter-example, where Γ '⊆ Γ ,

Θ'⊆ Θ , and Γ' ∪ Θ ' is not empty.

4. PROOF THEORY

The proof theory is presented as a logic of sequents using a semantic tree form of the

ITT, April 23, 1998 Page 10

sequent calculus that has evolved from the semantic tableaux derivations of [3]. Semantic

rules, in terms of which semantic trees are defined, are described in §4.1; these rules are

motivated by the theorem of §3.3. A derivation of a sequent is a closed semantic tree

based on the sequent, as these terms are defined in §4.2. Some derivations of sequents

are provided in §4.3. These derivations illustrate the point made in §1 that ITT combines

advantages of a set theory with those of a lambda calculus based predicate logic.

4.1. The Semantic Rules

There are + and – rules for the propositional connective ↓ , for each quantifier ∀ , and for

λ. These rules are

+↓ +[F↓G] +[F↓G] –↓ –[F↓G]
−−−−−−−− −−−−−−−− −−−−−−−−−

–F –G +F +G

+∀ +∀ x.F –∀ –∀ x.F
--------- --------
+[T/x]F –[y/x]F

where T:τ[x] where y:τ[x].

+λ +F –λ –F
----- ----
+G –G

where for each rule F > G, as defined in §2.2.

The last rule has a character different from these logical rules. It has no premiss and two

conclusions:

Cut --------------
+F –F

Cut will be seen to be a redundant but nevertheless useful rule.

4.2. Semantic Trees and Derivations

 A semantic tree is a binary tree with nodes that are signed formulas. A semantic tree

based on a given sequent is defined as follows:

1. A tree with a single branch consisting of one or more nodes +F and –G, where F is
from the antecedent and G is from the succedent of the sequent, is a semantic tree
based on the sequent.

2. Given a semantic tree based on a sequent, a tree obtained from it in any of the
following ways is a semantic tree based on the sequent:
.1. By attaching the conclusion of a single conclusion rule to the leaf of a branch

a node of which is the premiss of the rule; provided that if the rule is –∀ then y
does not have a free occurrence in the premiss of the rule nor in any node above it.

.2. By attaching the two conclusions of the +↓ rule on separate branches to the leaf of
a branch a node of which is the premiss of the rule.

.3. By attaching +F and –F on separate branches to the leaf of a branch.

ITT, April 23, 1998 Page 11

A branch of a semantic tree is closed if there is a closing pair of nodes F and –F on

the branch. A semantic tree is closed if each of its branches is closed. A derivation of a

sequent is a closed semantic tree based on the sequent.

The cut rule is redundant in the sense that a derivation of a sequent in which it is used

can be replaced by a derivation in which it is not used. This is a corollary to the

completeness theorem for TT of [19] that can be adapted for ITT. Nevertheless, the rule

is useful since it allows for the reuse of previously given derivations. This is illustrated in

one of the example derivations given in §4.3.

4.3. Example Derivations

The example derivations make use of definitions of the usual logical connectives defined

in §2.3 and of the semantic rules that can be derived for them. These will be left to the

reader to state and justify.

The following notational conventions will be followed. Strings of lower and upper

case Latin letters and numerals beginning with the letters u, v, w, x, y, and z are variables.

When a term is known to be a formula, the types of constants and variables occurring it it

can often be inferred and in these cases will not be declared. Strings which are not

variables may be used, along with special symbols such as = and <, as names of

predicates introduced by definition. Such a string may often be assumed to be

polymorhic since the type of a predicate and the relationship between the types of its

arguments can often be determined from its definition.

The following type and type declaration notation will be used here and in the

remainder of the paper. The notation –τ denotes a sequence of n types τ1, ... , τn, for some

n≥1; thus [–τ] is the type [τ1, ... , τn]. A type declaration –z:–τ is to be understood as

declaring that –z is a sequence z1, … , zn of distinct variables of types τ1, ... , τn

respectively, and a declaration –s :–τ that –s is a sequence s1, … , sn of terms of types τ1, ... ,

τn respectively for some n≥1.

4.3.1. Intensional and Extensional Identity

As stressed in §1 it is essential to distinguish between intensional = and extensional =e

identity. They are defined

= <df> (λu,v.∀ Z.[Z(u) → Z(v)])
=e <df> (λu,v.∀ –z.[u(–z) ↔ v(–z)])

The type of = is determined from the type of its arguments; if u, v:τ, then Z:[τ] and =:[τ,τ].

Similarly, if –z:–τ then u,v:[–τ] and =e:[[–τ],[–τ]]. The usual infix notation will be used for the

identities.

ITT, April 23, 1998 Page 12

In TT and in ITT, the sequent |– ∀ x,y.[x=y → x=ey] is derivable when x,y:[–τ], but not

when x,y:1 since then x=ey is not wellformed. In ITT, on the other hand, each instance

of the sequent scheme

IdEId) T1=T2 |– T1=eT2

is derivable, when T1,T2:[–τ]∩1; that is, if T1 and T2 are each of type [–τ] and also of type

1 by clause (4) of type membership, so that in each of T1 and T2 only variables of type 1

have a free occurrence. Here is a full annotated derivation.

+T1=T2 initial node
–T1=eT2 initial node
+(λu,v.∀ Z.[Z(u) → Z(v)])(T1,T2) defn of =
+(λu.∀ Z.[Z(T1) → Z(v)])(T2) +λ
+∀ Z.[Z(T1) → Z(T2)] +λ
+[S(T1) → S(T2)] +∀ with S <df> λw. T1=ew
--
L R
–S(T1) +→
–(λw. T1=ew)(T1) defn S
–T1=eT1 –λ
–∀ –z.[T1(–z) ↔ T1(–z)] defn =e
–[T1(–z) ↔ T1(–z)] –∀
–[[T1(–z) → T1(–z)] ∧ [T1(–z) → T1(–z)]] defn ↔
--
LL LR
–[T1(–z) → T1(–z)] –∧
+T1(–z) –→
–T1(–z) –→
======
LR
repeat LL

R
+S(T2) +→
+(λw. T1=ew)(T2) defn S
+T1=eT2 +λ
=======

This derivation could be shortened by using the following derivable rules of

deduction for =:

+= +s=t –= –s=t
--------------------- -----------
–T(s) +T(t) +Z(s)

–Z(t)

where if s,t:τ, then T:[τ], and Z:[τ], with Z not free in a node above the conclusion of –=.

Derivations of these rules are left to the reader. Comparable rules for =e can be derived.

For those familiar with a Gentzen sequent calculus presentation of logic such as

appears in [12, 13], this derivation can be converted as follows. For any node η that is

ITT, April 23, 1998 Page 13

either the last of the initial nodes or a node below the last, define Γ[η] and Θ[η] to be the

set of formulas for which +F, respectively –F, is the node η or a node above η. When η is

the last of the initial nodes, then Γ[η] |– Θ[η] is the sequent Γ |– Θ on which the derivation

is based. The given derivation is then an upside down transparent translation of a

Gentzen derivation of the sequent Γ |– Θ, without structural rules, with a node

Γ[η] |– Θ[η] for each node η below the initial nodes.

4.3.2. Zero and Successor

Two definitions that make use of = when it is assumed to have type [1,1] are:

0 <df> (λu.¬u=u)
S <df> (λu,v.u=v).

Here u:1 and 0:[1], but also 0:1, since no variable has a free occurrence in 0. Thus

0:[1]∩1. Similarly, S:[1,1]∩1, so that S(x):[1]∩1. This dual typing of S(x) is exploited in

derivations of the following two sequents related to axioms of Peano:

S.1. |– ∀ x,y.[S(x)=S(y) → x=y]
S.2. |– ∀ x.¬S(x)=0

These two sequents ensure that the terms in the sequence 0, S(0), S(S(0)), ... can be

proven to be distinct. In TT this is accomplished by adding an axiom of infinity.

A derivation of (S.1) that is not a derivation in TT follows. It illustrates the use of the

cut rule for the reuse of derivations by making use of the derivation of (IdEId). The

derivation is abbreviated somewhat by omitting some obvious nodes.

–∀ x,y.[S(x)=S(y) → x=y]
–[S(x)=S(y) → x=y]
+S(x)=S(y)
–x=y
--- Cut
+S(x)=eS(y) –S(x)=eS(y)
+∀ z.[S(x)(z) ↔ S(y)(z)] ========= IdEId
+[S(x)(y) ↔ S(y)(y)]
+[S(y)(y) → S(x)(y)]

–S(y)(y) +S(x)(y)
–y=y +x=y
==== ====

The following derivation of (S.2) is also not a derivation in TT since it makes use of the

dual typing of S(x) and of 0.

–∀ x.¬S(x)=0
–¬S(x)=0
+S(x)=0
-- Cut
+S(x)=e0 –S(x)=e0
+∀ z.[S(x)(z) ↔ 0(z)] ======== IdEId
+[S(x)(x) ↔ 0(x)]

ITT, April 23, 1998 Page 14

+[S(x)(x) → 0(x)]

–S(x)(x) +0(x)
–x=x +¬x=x
====== –x=x

=====

4.3.3. Ordered Pair

The definition of ordered pair comes from [5].

〈〉 <df> (λu,v,w.w(u,v))

If u:σ and v:τ, then w:[σ,τ] and 〈〉 :[σ,τ,[σ,τ]]. However here it will be assumed that u,v:1.

The usual infix notation for ordered pairs will be used. Derivable sequents are

OP.1. |– ∀ x1,y1,x2,y2.[〈x1,y1〉 = 〈x2,y2〉 → x1=x2 ∧ y1=y2]
OP.2. |– ∀ x,y.¬〈 x,y〉 = 0

Note the similarity to (S.1) and (S.2) and note that (OP.2) combines a definition of

ordered pair from the lambda calculus with a definition of 0 from set theory. An

important consequence of the pairs (S.1) and (S.2) and (OP.1) and (OP.2) of sequents

being derivable will become apparent in §5.

The definitions of projection functions that select respectively the first and second

members of a pair are also from [5].

Hd <df> (λw.w(λu,v.u))
Tl <df> (λw.w(λu,v.v))

That these definitions of ordered pair, head, and tail are appropriate is confirmed by the

following derivable sequents.

Hd.1. |– ∀ x,y.Hd(〈x,y〉) = x
Tl.1. |– ∀ x,y.Tl(〈x,y〉) = y

Here is a derivation of (Hd.1) that illustrates the use of the +λ rule for the λ-reduction to

normal form of a first order term.

–∀ x,y.Hd(〈x,y〉) = x
–Hd(〈x,y〉) = x
+Z(Hd(〈x,y〉)) –=
–Z(x) –=
+Z((λw.w(λu,v.u))(〈 x,y〉)) defn of Hd
+Z((λw.w(λu,v.u))((λu,v,w.w(u,v))(x,y))) defn of 〈〉
+Z((λw.w(λu,v.u))((λw.w(x,y)))) +λ rule
+Z((λw.w(x,y))(λu,v.u)) +λ rule
+Z((λu,v.u)(x,y)) +λ rule
+Z(x) +λ rule
====

Derivations of (OP.1) and (OP.2) will be left to the reader.

5. FOUNDATIONS for RECURSIONS

The purpose of this section is to provide some fundamental results upon which the many

ITT, April 23, 1998 Page 15

applications of recursive definitions can be based. The recursive definitions most

commonly used in mathematics and computer science are least predicate definitions and

more rarely greatest predicate definitions. In §5.1 a general method is described for

providing these definitions; it makes use of terms called recursion generators. The first

order definition of Horn sequent is generalized in §5.2, and finite sets of Horn sequents

defining a single constant are shown to provide a "sugared" definition of a recursion

generator in terms of which the constant can be defined to be the name of a predicate.

These results are generalized in §5.3 for simultaneous recursions.

All of the results proved in [13] can be established in ITT using the foundations

sketched in these first three subsections. A new topic is broached in §5.4, namely the

"computation" of a recursively defined predicate through iterations of the recursion

generator defining the predicate.

5.1. Recursion Generators

A term of type [[–τ], –τ] is a recursion generator for a predicate of type [–τ]. Here some

fundamental properties of recursion generators for unary predicates are described; these

properties can be easily generalized for recursion generators for n-ary predicates, n > 1.

Derivations of the properties are not given; these can be found in [11].

The basis for least and greatest set definitions of predicates of type [τ] are the

predicates Lt and Gt defined as follows:

Lt <df> (λwg,u.∀ Z.[∀ x.[wg(Z,x) → Z(x)] → Z(u)])
Gt <df> (λwg,u.∃ Z.[∀ x.[Z(x) → wg(Z,x)] ∧ Z(u)])

Here u, x:τ, Z:[τ], and wg:[[τ], τ]. A recursion generator is so called because of the

following two derivable sequents that express generalizations of mathematical induction

for the unary predicates Lt(wg) and Gt(wg):

Lt.1. |– ∀ wg,Y.[∀ x.[wg(Y,x) → Y(x)] → ∀ x.[Lt(wg)(x) → Y(x)]]
Gt.1. |– ∀ wg,Y.[∀ x.[Y(x) → wg(Y,x)] → ∀ x.[Y(x) → Gt(wg)(x)]],

where Y:[τ]. For example, define the recursion generator RN of type [[1],1] as follows:

RN <df> λZ,y.[y=0 ∨ ∃ x.[Z(x) ∧ y=S(x)]

where =, 0, and S are defined in §4.3, and define N

N <df> Lt(RN)

Then (Lt.1) is the Peano axiom expressing mathematical induction. Two other of Peano's

axioms follow immediately from (S.1) and (S.2) of §4.3. The remaining two are

N.1. |– N(0)
N.2. |– ∀ x.[N(x) → N(S(x))]

These follow from a sequent that can be derived for positive recursion generators.

ITT, April 23, 1998 Page 16

5.1.1. Positive Recursion Generators

Let wg be a recursion generator. Few useful properties of Lt(wg) and Gt(wg), beyond the

instantiations of (Lt.1) and (Gt.1), can be derived without an additional assumption on

wg, namely that the occurrence of Z in wg(Z,x) is positive. Positive occurrences of Z:[–τ]

in a formula are defined inductively on the alternative definition of formula given in §2.3.

1. The initial occurrence of Z in Z(–s) is positive, where –s :–τ .
2. A positive occurrence in F or G is a positive occurrence in [F∧ G] and [F∨ G].
3. A positive occurrence in F is a positive occurrence in ∃ x.F, where x is any variable

other than Z, of any type.
4. A posititve occurrence in [s/u]T(–s) is a positive occurrence in

(λu.T)(s,–s), where –s may be of any length including 0.

Following is the fundamental theorem on positive occurrences. It is stated for Z:[τ]

but is immediately generalizable for Z:[–τ]. The theorem makes use of the predicate UB

expressing the existence of an upper bound for a binary predicate w:[σ, τ], where σ may

be any type.

UB <df> (λw.∀ x1,x2.∃ x.∀ y.[[w(x1,y) ∨ w(x2,y)] → w(x,y)])

 Theorem

Let all free occurrences of Z:[τ] in the formula F be positive. Then the following
sequents are derivable, where in (M), X,Y:[τ] are without free occurrences in F, and in
(C), X:[σ, τ] and x:σ are without free occurrences in F.

M. |– ∀ X,Y.[∀ x.[X(x) → Y(x)] → [[X/Z]F → [Y/Z]F]]
C. |– [∀ X:UB].[[(λv.∃ x.X(x,v))/Z]F → ∃ x.[(λv.X(x,v))/Z]F]]

Two fundamental consequences of the theorem for recursion generators are expressed

in terms of two predicates of recursion generators Mon, monotonic, and Con, continuous

Mon <df> (λwg.∀ X,Y.[∀ x.[X(x) → Y(x)] → ∀ x.[wg(X,x) → wg(Y,x)]])
Con <df> (λwg.[∀ X:UB].∀ y.[wg((λv.∃ x.X(x,v)), y) → ∃ x.wg((λv.X(x,v)), y)]])

Corollary

A positive recursion generator wg is monotonic and continuous; that is |– Mon(wg) and
|– Con(wg) are derivable.

The definition of Con has been suggested by Scott's theory of computable functions;

see for example [18]. The definition makes use of the existential quantifier, but it could

equally well have been defined in terms of the universal quantifier. For define the

predicate LB

LB <df> (λw.∀ x1,x2.∃ x.∀ y.[w(x,y) → [w(x1,y) ∧ w(x2,y)]])

Then the following sequent is derivable

Con∀. |– [∀ wg:Con].[∀ X:LB].∀ y.[∀ x.wg((λv.X(x,v)), y)] → wg((λv.∀ x.X(x,v)), y)]

Conversely, if Con is defined in terms of the universal quantifier, then a sequent (Con∃)

obtained from (Conv∀) by appropriate changes is derivable.

ITT, April 23, 1998 Page 17

5.1.2. Properties of Lt(wg) and Gt(wg) for Monotone Recursion Generators

The following sequents are derivable:

Lt.2. |– [∀ wg:Mon].∀ x.[wg(Lt(wg),x) → Lt(wg)(x)]
Lt.3. |– [∀ wg:Mon].∀ x.[Lt(wg)(x) → wg(Lt(wg),x)]

Gt.2. |– [∀ wg:Mon].∀ x.[Gt(wg)(x) → wg(Gt(wg),x)]
Gt.3. |– [∀ wg:Mon].∀ x.[wg(Gt(wg),x) → Gt(wg)(x)]

LtGt. |– [∀ wg:Mon].∀ x.[Lt(wg)(x) → Gt(wg)(x)]

The sequents (N.1) and (N.2) given earlier follow directly from (Lt.2). The sequents

(Lt.2) and (Lt.3), respectively (Gt.2) and (Gt.3), can be understood to express that Lt(wg),

respectively Gt(wg), is a fixed point of an extensional identity. The sequent LtGt asserts

that Lt(wg) is the least and Gt(wg) the greatest fixed point. The definition needed is

FixPt <df> λwg,v.wg(v)=ev

The derivable sequents expressing the fixed point results are

FixLt. |– FixPt(wg, Lt(wg))
FixGt. |– FixPt(wg, Gt(wg))

These fixed point equations express properties of Lt(wg) and Gt(wg) for positive

recursion generators wg. The properties have been obtained strictly from the definitions

of the predicates alone, in contrast to the role of fixed point equations in LCF. [18]

The following sequents are also derivable.

RG∃ . |– [∀ wg:Mon].∀ X,y.[∃ x.wg((λv.X(x,v)), y) → wg((λv.∃ x.X(x,v)), y)]
RG∀ . |– [∀ wg:Mon].∀ X,y.[wg((λv.∀ x.X(x,v)), y) → ∀ x.wg((λv.X(x,v)), y)]

Note their relationship to the definition of Con. Properties of Lt(wg) and Gt(wg) for

continuous recursion generators wg will be described in §5.4.

5.2 Horn Sequents as Sugared Definitions of Recursion Generators

A sequent is said to be a Horn sequent if it has the form [C/Z]F |– C(–s) where C is a

constant of type [–τ] that has no occurrence in the formula F, –s :–τ , and all free occurrences

of Z in F are positive. C is said to be the defined constant of the Horn sequent. A sequent

|– C(–s) with an empty antecedent is understood to be the Horn sequent True |– C(–s),

where True <df> ∀ x.x=x. A sequent [C/Z]F1, ... , [C/Z]Fk |– C(–s) with more than one

formula of the form [C/Z]F in the antecedent is understood to be the sequent

[C/Z][F1 ∧ ... ∧ Fk] |– C(–s).

Let ∆ be a finite set of Horn sequents all with the same defined constant C:

HCi. [C/Z]Fi |– C(si,1, ..., si,n), 1≤i≤m.

From ∆ a recursion generator R(∆) can be defined as follows

R(∆) <df> λZ, z1, ..., zn.[∃ –x1.[F1 ∧ z1=s1,1 ∧ ... ∧ zn=s1,n] ∨ ... ∨
∃ –xm.[Fm ∧ z1=sm,1 ∧ ... ∧ zn=sm,n]]

ITT, April 23, 1998 Page 18

Here –xi is a sequence of all the variables other than Z with a free occurrence in Fi or in

any one of si,j, and –z:–τ , where no zk has a free occurrence in Fi or in any one of si,j. Let

the constant C be defined:

C <df> Lt(R(∆))

Then it is not difficult to establish the following result from (Lt.2):

Theorem 1

Each of the sequents (HCi) is derivable.

It is for this reason that a set of Horn sequents all with the same defined constant can

be regarded as a "sugared" definition of a recursion generator. Of course a recursion

generator R(∆) defines also a greatest fixed point Gt(R(∆)), but this fact has received little

attention.

It is natural to ask if the converse

CHCi. C(si,1, ..., si,n) |– [C/Z]Fi

of (HCi) is derivable for each i. Theorem 1 is a consequence of (Lt.2). That (CHCi) is

derivable for each i is a consequence of (Lt.3) but only under certain conditions.

The set ∆ of Horn sequents is said to be disjoint if the following sequents are

derivable:

D.1. |– ∀ –x, –y.[[si,1=[–y/–x]si,1 ∧ … ∧ si,n=[–y/–x]si,n] → –x=–y], 1≤i≤m.
D.2. |– ∀ –x, –y.¬ [si,1=[–y/–x]sk,1 ∧ … ∧ si,n=[–y/–x]sk,n], 1≤i,k≤m with i≠k .

where –y is the same length as –x, the variables –y have no free occurrence in any si,j, and
–x=–y is the conjunction of all formulas xk=yk.

Theorem 2

Each of the sequents (CHCi) is derivable if ∆ is a disjoint set of Horn sequents.

The importance of the properties of zero, successor, and ordered pair stated in the

derivable sequents (S.1), (S.2), (OP.1), and (OP.2) of §4.3, arises in part from the need to

derive the sequents (D.1) and (D.2).

5.3. Simultaneous Recursions

The presentation will be for two simultaneous recursions, but can be generalized. Terms

R and S are simultaneous recursion generators of predicates of types [–σ] and [–τ]

respectively, if they are of the types [[–σ], [–τ], –σ] and [[–τ], [–σ], –τ] respectively. The

simultaneous least predicate operators for recursion generators wg1 and wg2 of these

types is defined

SLt1 <df> (λwg1,wg2,–u.∀ X,Y.[[∀ –z1.[wg1(X, Y, –z1) → X(–z1)] ∧
∀ –z2.[wg2(X, Y, –z2)) → Y(–z2))]] → X(–u)]

SLt2 <df> (λwg1,wg2,–v.∀ X,Y.[∀ –z1.[wg1(X, Y, –z1) → X(–z1)] ∧

ITT, April 23, 1998 Page 19

∀ –z2).[wg2(X, Y, –z2)) → Y(–z2))] → Y(–v)]

Here –z1:–σ and –z2:–τ , and –u:–σ and –v:–τ . Corresponding greatest predicate operators SGt1 and

SGt2 can be similarly defined.

The two wellfounded predicates Pr1 and Pr2 and the two non-wellfounded predicates

Qr1 and Qr2 defined by the simultaneous recursion are

Pr1 <df> (λ–u.SLt1(wg1,wg2)(–u))
Pr2 <df> (λ–v.SLt(wg1,wg2)(–v))
Qr1 <df> (λ–u.SGt(wg1,wg2)(–u)
Qr2 <df> (λ–v.SGt(wg1,wg2)(–v))

 Derivable sequents expressing induction principles for Pr1 and Pr2 are

SLt1.1. |– ∀ X.[∃ Y.[∀ –z1).[wg1(X, Y, –z1)) → X(–z1))] ∧ ∀ –z2.[wg2(X, Y, –z2)) → Y(–z2))]]
→ ∀ –z1).[Pr1(–z1) → X(–z1))]]

SLt2.1. |– ∀ Y.[∃ X.[∀ –z1).[wg1(X, Y, –z1)) → X(–z1))] ∧ ∀ –z2.[wg2(X, Y, –z2)) → Y(–z2))]]
→ ∀ –z2).[Pr2(–z2) → Y(–z2))]]

Corresponding sequents for Qr1 and Qr2 can also be derived. Fixed point sequents

similar to (Lt.2) to (Gt.3) can be derived.

Consider now a set ∆ of Horn sequents with members of the following forms

SHC. [C/Z][D/W]F |– C(s1, ..., sm)
[C/Z][D/W]G |– D(t1, ..., tn)

such that there are members for which each of F and G has a free occurrence of Z and a

free occurrence of W. Simultaneous recursion generators can be defined from ∆ that

provide definitions for the constants C and D. Theorems 1 and 2 can be repeated for ∆

with an appropriate update for the definition of "disjoint".

5.4. Iterating Recursion Generators

Given a unary recursion generator wg of type [[τ], τ] and a predicate ws:[τ], consider the

following sequence of type [τ] predicates: ws, (λv.wg(ws,v)), (λv.wg((λv.wg(ws,v),v))),

… . The sequence is the result of iterating wg, beginning with ws. A recursion generator

RIt(wg,ws) for the iteration predicate It(wg,ws) is defined by the following two Horn

sequents

It.1. ws(x) |– It(wg,ws)(0,x)
It.2. wg((λv.It(wg,ws)(xn,v)),x) |– It(wg,ws)(S(xn),x)

A second cumulative iteration of wg from ws results in the sequence ws,

(λv.[ws∨ wg(ws,v)]), (λv.[ws∨ wg(ws,v)]∨ wg((λv.[ws∨ wg(ws,v)]),v)), … . A recursion

generator RCIt(wg,ws) for the cumulative iteration predicate CIt(wg,ws) is defined by the

following two Horn sequents

CIt.1. ws(x) |– CIt(wg,ws)(0,x)
CIt.2. [wg((λv.CIt(wg,ws)(xn,v)),x) ∨ CIt(wg,ws)(xn,x)] |– CIt(wg,ws)(S(xn),x)

ITT, April 23, 1998 Page 20

Since the sequents (It.1) and (It.2), and the sequents (CIt.1) and (CIt.2), satisfy the

conditions (D.1) and (D.2), by theorems 1 and 2 these sequents and their converses are

derivable when It and CIt are defined

It <df> (λ.wg,ws.Lt(RIt(wg,ws)))
CIt <df> (λ.wg,ws.Lt(RCIt(wg,ws)))

That CIt can be used to "compute" the predicate Lt(wg) for any positive recursion

generator wg is expressed in the following two derivable sequents:

CItLt.1. |– [∀ wg:Mon].∀ y.[[∃ xn:N].CIt(wg, ∅)(xn,y) → Lt(wg)(y)]
CItLt.2. |– [∀ wg:Mon∩Con].∀ y.[Lt(wg)(y) → [∃ xn:N].CIt(wg, ∅)(xn,y)]

where ∅ :[τ] is the empty predicate, and Mon∩Con the conjunction of Mon and Con.

An understanding of the relationship between this "computation" of Lt(wg) and that

of [17] requires further study.

Similarly, that It can be used to "compute" the predicate Gt(wg) for any positive

recursion generator wg is expressed in the following two sequents:

ItGt.1. |– [∀ wg:Mon].∀ y.[Gt(wg)(y) → [∀ xn:N].It(wg,V)(xn,y)]
ItGt.2. |– [∀ wg:Mon∩Con].∀ y.[[∀ xn:N].It(wg,V)(xn,y) → Gt(wg)(y)]

where V:[τ] is the universal predicate.

6. CATEGORY THEORY and an EXTENSION to ITT

In §6.1 a result for category theory is described that is a correction to the main result of

[12]. In §6.2 an extension to ITT is described in which impredicative sets, such as

Russell's, can be defined.

6.1. Category Theory and ITT

The main result of [12], expressed in theorem 5.4, cannot be duplicated in ITT since the

proof of lemma 5.2 makes use of the feature of NaDSet that leads to its inconsistency;

namely allowing a single type of variable to play the role of both first and second order

variables. Using the notation of the present paper, the main result is expressed in terms

of a predicate Cat defined

C. Cat <df> λAr, =a, Sr, Tg, Cp.Category(Ar, =a, Sr, Tg, Cp)

 where Category(Ar, =a, Sr, Tg, Cp) is the conjunction of the axioms of category theory

with the variables interpreted as follows: Ar is the unary predicate of arrows or

morphisms, =a the binary predicate of identity of arrows, Sr a binary predicate with first

argument an arrow and second argument its source object, Tg a binary predicate with first

argument an arrow and second argument its target object, and Cp a ternary predicate the

third argument of which is the composite of the arrows that are its first two arguments.

ITT, April 23, 1998 Page 21

The terms Ar, =a, Sr, Tg , and Cp are defined to be respectively the unary predicate

Functor of categories, extensional identity between functors, the source and target

predicates for functors, and the composition of functors. Theorem 5.4 asserts that the

sequent

D. |– Cat(Ar, = a, Sr, Tg , Cp)

is derivable, expressing that the category of categories is a category. But in ITT

Cat(Ar, = a, Sr, Tg , Cp) is not wellformed. It is wellformed however if Cat is replaced

by a form Cat* of Cat defined exactly as Cat in (C) except with the understanding that the

types of the variables are raised to accomodate the types of the arguments.

6.2. An Extension to ITT

The variables of ITT have two distinct roles to play, as quantifiable variables and as

abstraction variables. These two roles could be served in formulas by syntactically

distinct variables as is evident from Schütte's definition of formula given in §2.3. As an

abstraction variable, the variable x in clause (4) of the definition is used purely as a

placeholder and need never be interpreted; that is, since Φ([], (λx.T)(S, S1, ... , Sn)) can

be defined to be Φ([], ([S/x]T)(S1, ... , Sn)) it is unnecessary to define Φ(τ[x], x). But

since Φ([], ∀ x.F) is defined in terms of Φx([], F), it is necessary to define Φ(τ[x], x) in this

case. By using distinct variables for these two roles, and interpreting only quantification

variables, a consistent extension of ITT can be constructed in which such impredicative

sets as Russell's can be defined.

The Russell set R is defined to be (λu.¬ u(u)). For u(u) to be wellformed it is

necessary that the two occurrences of u have different types; for example the first

occurrence could have type [1] while the second has type 1; or briefly that u:[1]∩1. Then

u(u):[], ¬u(u):[], and (λu.¬u(u)):[[1]∩1]. Arguments for R are therefore the empty

predicate ∅ defined to be λu.¬u=u. and the universal predicate V defined to be λu.u=u. It

is then not difficult to derive the sequents

 |– ¬R(∅) and |– R(V)

corresponding to the two assertions about R that Russell made when he defined it. It is

essential to note, however, that R(R) is not wellformed since R:[[1]∩1]∩1, so that no

contradiction can be derived from the fact that R is wellformed.

Whether such an extension to ITT has applications in programming semantics

remains to be seen; however, there appears to be no obstacle to reproducing within the

extended ITT all the applications of non-wellfounded sets described in [2].

ITT, April 23, 1998 Page 22

7. REFERENCES

[1] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, Revised
Edition, North-Holland. 1985.

[2] Jon Barwise & Lawrence Moss. Vicious Circles, CSLI Publications, 1996.
[3] E.W. Beth. Semantic Entailment and Formal Derivability, Mededelingen de

Koninklijke Nederlandse Akademie der Wetenschappen, Afdeeling Letterkunde,
Nieuwe Reeks, 18, no.13, 309-342, 1955

[4] Alonzo Church. A Formulation of the Simple Theory of Types, J. Sym. Logic, 5,
56-68, 1940.

[5] Alonzo Church. The Calculi of Lambda Conversion, Princeton U. Press, 1941.
[6] Paul C. Gilmore. A Consistent Naive Set Theory: Foundations for a Formal

Theory of Computation, IBM Research Report RC 3413, June 22,1971.
[7] Paul C. Gilmore. Combining Unrestricted Abstraction with Universal

Quantification, To H.B. Curry: Essays on Combinatorial Logic, Lambda Calculus
and Formalism, Editors J.P. Seldin, J.R. Hindley, Academic Press, 99-123. This
is a revised version of [6], 1980.

[8] Paul C. Gilmore. Natural Deduction Based Set Theories: A New Resolution of
the Old Paradoxes, J.Sym. Logic, 51, 393-411, 1986.

[9] Paul C. Gilmore. A Foundation for the Entity Relationship Approach: How and
Why, Proceedings of the 6th Entity Relationship Conference, S.T. March (Ed.),
North-Holland 95-113, 1988.

[10] Paul C. Gilmore. NaDSyL and some Applications, Computational Logic and
Proof Theory, Georg Gottlob, Alexander Leitsch, & Daniele Mundici (eds.), The
Kurt Gödel Colloquium 97, Lecture Notes in Computer Science 1289. 153-166.
Springer-Verlag, 1997.

[11] Paul C. Gilmore. An Impredicative Symbolic Logic and Some Applications, a
monograph on ITT in preparation.

[12] Paul C. Gilmore & George K. Tsiknis. A Formalization of Category Theory in
NaDSet, Theoretical Computer Science, vol. 111, 211-253, 1993.

[13] Paul C. Gilmore & George K. Tsiknis. Logical Foundations for Programming
Semantics, Theoretical Computer Science, vol. 111, 253-290, 1993.

[14] J.Y. Girard, Letter to author, March 16, 1994.
[15] Michael J.C. Gordon. Set Theory, Higher Order Logic or Both?, Proc. 9'th

International Conference on Theorem Proving in Higher Order Logic, Joakim
von Wright, Jim Grundy, and John Harrison, editors, Turku, Finland 26-30
August 1996, 191-202, 1996.

[16] Leon Henkin. Some Notes on Nominalism, J. Sym. Logic, 18, 19-29, 1953.
[17] Gopalan Nadathur & Dale Miller. Higher-Order Logic Programming, CS-1994-

38, Dept of Computer Science, Duke University. To appear in the Handbook of
Logic in Artificial Intelligence and Logic Programming, D. Gabbay, C. Hogger
and A. Robinson (eds.), Oxford University Press.

[18] L.C. Paulson, Logic and Computation, Interactive proof with Cambridge LCF,
Cambridge Tracts in Theoretical Computer Science 2, Cambridge U. Press, 1990.

[19] Dag Prawitz. Hauptsatz for Higher Order Logic, J. Sym. Logic, 33, 452-457,
1968.

[20] K. Schütte. Syntactical and Semantical Properties of Simple Type Theory, J. Sym.
Logic, 25, 305-326, 1960.

