
Formalization and Analysis of the Separation Minima for Aircraft
in the North Atlantic Region

Nancy A. Day
day@cs.ubc.ca

Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC, Canada V6T 1Z4

Jeffrey J. Joyce, Gerry Pelletier
{jjoyce,gpelletier}@ccgate.hac.com

Hughes International Airspace Management Systems
13951 Bridgeport Rd,

Richmond, BC, Canada V6V 1J6

Abstract
The formalization and analysis of an air traffic control
separation minima serves in this paper as an
illustration of an approach that uses formal
operational semantics to drive the automated analysis
of specifications. This contrasts with the approach of
translating one notation into the input format for an
analysis tool, or hard-coding the semantics of a
particular notation into the implementation of an
analysis technique.

The semantic functions capture the structure of the
specification and can be directly evaluated to map a
notation to a rigourous mathematical foundation. This
work contributes to a greater appreciation of how the
structure of a specification (e.g., the organization of a
table), not just the semantics, is an important input to
many analysis functions. Building upon a common
mathematical foundation, different notations can be
combined to support an integrated approach to the
analysis of a formal specification. A related issue is
the importance of being able to reverse the effect of the
semantic functions so that analysis results are
provided to users at the same level of abstraction used
in the input specifications.

The formalization of the separation minima combines
the use of a tabular style of specification with predicate
logic. This paper discusses how automated analysis
functions were applied to the specification to check for
the properties of consistency, completeness and
symmetry. The benefit of doing this analysis is
demonstrated by the discovery of an ambiguity in the
separation minima.

1. Introduction
This paper describes work carried out at the University
of British Columbia in collaboration with Hughes
International Airspace Management Systems to
formalize and validate a specification of the separation

minima for aircraft in the North Atlantic (NAT)
region. Our formalization is based on a description
provided in a source document published by Transport
Canada on behalf of ICAO1. This document describes
the official North Atlantic Separation Minima as
published by ICAO. This description provides
guidance to air traffic controllers managing the region
of oceanic airspace between Europe and North
America. It is also used as the basis for the
development of software based systems that support
the management of the NAT region. For example, it
would be used during the planning of a flight from
New York to London to check whether the route is
free from separation conflicts with other aircraft
expected to be in the NAT region at the same time.

This collaboration has directly involved domain
experts (not just formal methods experts) in the
process of developing and analyzing a formal
representation of a complex “real” description. The
source document is an informal specification that has
been scrutinized by the NATSPG (NAT Systems
Planning Group) members who are ATC specialists
from the NAT countries, and most of them maintain
and use automated systems that implement these rules.

Our formal representation of these separation minima
is given in a mixture of a tabular style of specification
and a variant of higher order logic called “S” [11].

1This document, “Application of Separation Minima
for the NAT Region” (3rd edition, effective December
1992), was published by Transport Canada on behalf
the ICAO North Atlantic Systems Planning Group.
ICAO is the International Civil Aviation Organization
with headquarters in Montreal, Canada. This
separation minima document was developed by the
COMAG (Communications and ATM Automation
Group), now called the CADAG (Communication,
Automation and Data Link Applications Group).

Combining multiple notations makes it possible to
choose the notation best suited to the various parts of
the specification. The tabular style was chosen
because the rules consist of complex decision logic
describing predicates and functions. To unite the
various parts, including environmental assumptions,
in a common framework for analysis, the tables are
considered a “style” of specification in the S notation.
A “style” of specification includes associated semantic
functions for the constructs that are introduced, which
makes it possible to capture the structure of the
specification and give meaning to the notation.

Once in a common environment, the specification can
then be analyzed for various properties. These range
from “style” independent properties, such as
typechecking and symmetry, to properties particular to
the notation being used. This paper describes the
analysis of the completeness and consistency of the
tabular specifications. Symmetry is a particularly
desirable property of the separation minima, so we
also describe how the same analysis mechanisms used
for completeness and consistency are used to do this
check. The most significant result of the analysis was
the discovery of two tables in the specification with
inconsistencies, where, for the same scenario, the
specification indicated two different amounts of
aircraft separation.

The formal specification and related analysis results
can be found on-line at
http://www.cs.ubc.ca/spider/day/Research/
SeparationMinima/SeparationMinima.html .

This work tests the doctoral thesis hypothesis of the
first author, Day. This hypothesis is that explicit
definitions of the operational semantics of a notation
can be used directly in the analysis and that this
method retains the domain knowledge captured by the
structure of the specification, which can be exploited
in analysis. This structure can be used to help convert
the specification to a finite model and to determine
the correct level of abstraction for presentation of the
results of analysis. This paper outlines the framework
for using operational semantics for analysis. We have
implemented this framework, including the analysis
techniques described in this paper in a tool called
Fusion. The overall goal of this work is to make it
possible to perform fast, automatic, lightweight checks
to streamline the validation of specifications. The
automated checks do not provide absolute assurance,
but they isolate details that can be reviewed
independently. The individual analysis checks
described here usually took about 1 second of

execution time on a Pentium-120 with 16 MB running
Linux.

2. Related Work

2.1 Notation
Since the separation minima is a specification of
combinations of conditions that produce different
outcomes, a tabular style of specification seemed
suitable. Previous successful efforts of using tables
provide a good precedent for the readability of a
tabular style of specification. These efforts include the
AND/OR tables of the TCAS II project[12] and the
Software Cost Reduction (SCR) notation used in the
A-7 aircraft Operational Flight Program[9]. Initially,
we considered using either AND/OR tables, or the
style of tables presented by Parnas [16]. SCR tables
are typically for system specifications that involve
“modes” of operation and the separation minima does
not have this characteristic.

An AND/OR table consists of a series of rows labeled
by predicates. The columns to the right of the label
contain “T” for true, “F” for false, or “.” for “don’t
care”. The cell is meant to represent the case where
the condition given by the label is true or false. A
“don’t care” value means that the cell could contain
either true or false. The table represents a predicate
that is true if the conjunction of the cells in any
column results in true.

A difficulty with AND/OR tables is that they only
represent predicates. In the separation rules, sets of
conditions are used to describe cases for different
return values of functions.

The other approach considered was the tabular style
presented by Parnas [16] which allows for the
grouping of related conditions along a row. Grouping
is achieved by allowing each different argument of the
predicate (or function) represented by the table to have
its own dimension. Hence, this style is best suited for
capturing functions of a small number of dimensions
which is not the case for the tables we expected to
construct in our formal representation of the NAT
separation minima.

2.2 Analysis
In the TCAS II specification, a table can be used to
describe the condition for taking a transition in a state
machine. In the completeness and consistency
analysis carried out by Heimdahl and Leveson[6], the

specification is considered complete if a transition is
always enabled from a state. It is consistent if the
specification is deterministic, i.e., if no two transitions
can be enabled at the same time.

In the TCAS II AND/OR tables the cells in the rows
can contain only true, false, or “don’t care”. In the
analysis, a Boolean variable is associated with each
row label. The meaning of each cell in the row is the
condition of whether this Boolean variable is true or
false. This allows for an efficient implementation
using Binary Decision Diagrams (BDDs) [2].
Completeness analysis checks that the disjunction of
the columns of all the tables used to describe
transitions from a given state is a tautology.
Consistency analysis checks that there is no overlap in
the conditions between multiple tables describing
transitions from the same state, i.e., the conjunction of
the meaning of two tables is a contradiction.
Checking if the BDD representation of an expression
is a tautology or a contradiction takes constant time.

A difficulty with AND/OR tables is that related
conditions such as “x < 280” and “x > 450” are listed
on separate rows and therefore the structure of the
table does not capture the relationship between these
terms. Related conditions are associated with different
Boolean variables. This can result in the analysis
producing false negatives. For example, it might
return a bogus result indicating that no table covers
the case where both the conditions “x<280” and
“x>450” are true. The tool created by Heimdahl and
Leveson catches false negatives with respect to
enumerated types, but not those arising from the use of
mathematical functions. They are investigating
linking their analysis with a theorem prover [6].

Although SCR tables are not applicable to the
separation minima, their analysis techniques are
relevant. Heitmeyer, Jeffords and Labaw [7,8]
describe work on checking the completeness and
consistency of condition tables given in the SCR
notation. They also define completeness as a coverage
property - that the disjunction of the conditions in a
row is a tautology. Currently, they limit themselves to
conditions ranging over Boolean values or those that
have been converted by hand to Boolean variables.
Expressions involving relations are also converted
manually into Boolean variables. They are working on
techniques to reason about conditions involving
mathematical functions. Their analysis of the
condition tables for the Operational Flight Program of
the US Navy’s A-7 aircraft found 17 legitimate errors
in 36 tables with a total of 98 rows. Two false errors

were found due to their strictly Boolean interpretation
of the specification. Given the manual encoding to
Boolean variables, these results must have been
mapped by hand back to the correct level of
abstraction for interpretation.

Both of these previous examples are control-oriented
systems. In systems that contain a great deal of data
complexity, such as these separation minima, it
becomes more important to capture and utilize the
relationships among data values.

Our work is similar to that carried out by Owre,
Rushby, and Shankar where they have added a table
construct to the PVS theorem prover[14,15]. The
theorem prover is used to address some of the
deficiencies of a strictly BDD-based approach. They
follow the same approach as us of semantically
embedding decision tables within higher order logic.
The checks for completeness and consistency are
carried out by proving type correctness conditions for
the tables. This requires minimal theorem proving
effort when the tables are complete and consistent but
it appears that some effort is required to extract the
cases not covered or the inconsistent cases.

Our effort documented here also attempts to address
the difficulties of a strictly BDD-based approach while
staying within the realm of lightweight, fully
automatic techniques. In particular, we show how the
structure of the table often can be utilized to eliminate
the need for a more heavyweight tool such as a
theorem prover. Our approach to executing the
semantic definitions using symbolic functional
evaluation as is done in functional programming
languages also differentiates this work. Finally we
demonstrate the value of including environmental
constraints in the analysis process and present a
simple approach for dealing with quantification to
make this possible.

3. Specification Notation
At the beginning of this project, the first author was
presented with an interpretation of the separation
minima expressed as pseudo code (a draft documented
dated 20 Sept 95). This interpretation was created by a
third party to provide software developers with an
algorithmic interpretation of the English text and
diagrams contained in the NAT region separation
minima specification. This pseudo code imposed an
order of evaluation on the conditions as well as other
implementation details. The imperative
programming style of specification used involves

assignments of default values to variables followed by
if-then-else statements to modify these variables, as
well as procedure calls. Most of the conditions of the
if-then-else statements were expressed in terms of
English phrases.

Our goal became to formalize the separation minima
using a notation that did not impose implementation
constraints and that was amenable to analysis so we
could determine which cases were being covered by
the default values. This effort also required sorting
out the variety of English phrases used to describe
various conditions to yield a “dictionary” of primitives
that were then introduced in the formal representation
as uninterpreted functions and predicates.

Our review of previous work using tabular
specifications led to the use of a variation of AND/OR
tables. This variation allows related conditions to be
captured within a row in a style closer to the idea of
decision tables given in the structured analysis
methodology of DeMarco [3]. A row isolates one
dimension of the decision and the columns relate the
different dimensions to produce a case. A table can
also represent functions through the addition of a row
of return values.

Figure 1 is an example of our tabular style of
specification; this particular table specifies the
minimum vertical separation (in feet) that must exist
between two aircraft for them to be considered
separated in the NAT region. The name of the
function and the arguments to the function are given
in the last row of the table which gives the return
values of the function. Except for the last row of the
table, the label of a row (the leftmost column) is an
expression. The cells of the row are predicates that
can be applied to this label to produce the condition
that the cell represents. The parameter of the
predicate is given by the “_” in the cell. A “.” means
“don’t care”, i.e., the predicate is always true. Then, as
with AND/OR tables, the conjunction of the cells in

any column is the case where the function returns the
value in the last row for that column.

A semantically equivalent representation in S of the
function given in Figure 1 is:

VerticalSeparationRequired(A:flight, B:flight) :=
if (A.FlightLevel <= 280) then 1000
else if (B.FlightLevel <= 280) then 1000
else if ((A.FlightLevel > 450) AND
 (B.FlightLevel > 450) AND
 (IsSupersonic (A) = T)) then 4000
else if ((A.FlightLevel > 450) AND
 (B.FlightLevel > 450) AND
 (IsSupersonic (B) = T)) then 4000
else 2000;

The arguments A and B represent flights. In S, the
“dot” notation as used in the expression
“A.FlightLevel” is merely syntactic sugar for function
application. “A.FlightLevel” is interpreted by an S
parser as “FlightLevel (A)” to allow for the
representation of static information about an item in
the familiar “record” type of notation.

In addition to standard, “built-in” predicates such as
“<=” and “>”, the formalization also involved the
introduction of uninterpreted types and constants. An
uninterpreted constant has a type but no definition.
For example, the following S declarations introduce an
uninterpreted type2 (“flight”), an uninterpreted
function (“FlightLevel”) and an uninterpreted
predicate (“IsSupersonic”):

:flight;
FlightLevel : flight -> num;
IsSupersonic : flight -> bool;

2 Uninterpreted types are analogous to “basic types” in
a Z specification[17].

Default

A.FlightLevel _ <= 280 . _ > 450 _ > 450

B.FlightLevel . _ <= 280 _ > 450 _ > 450

IsSupersonic (A) . . _ = T .

IsSupersonic (B) . . . _ = T

VerticalSeparationRequired (A,B) 1000 1000 4000 4000 2000

Figure 1: Vertical Separation

The use of uninterpreted terms allowed us to phrase
the specification in domain terminology and to match
the level of abstraction appropriate for this
specification.

The table for vertical separation in Figure 1 specifies a
function. In the case of a predicate (i.e., a function
that returns a Boolean value) the bottom row of return
values can be omitted and the cases designated by the
columns are assumed to return true for the predicate.
Any other cases are assumed to return false.

These tables also allowed us to match the modular
nature of the decomposition of the separation minima.
For example, longitudinal separation between two
aircraft that are both turbojet depends on the current
airspace (MNPS or WATRS3) of the aircraft. These
cases are given in separate tables.

Since we were working within the S environment, we
were also able to use definitions of functions in
predicate logic rather than tables in some cases. These
function could reference tables and tables could
reference functions defined in S. This illustrated the
benefits of being able to combine multiple notations.

4. Formalization Process
Figure 2 illustrates our formalization and analysis
process. An important element in gaining industry
acceptance of any formal method is the form in which
the specification is presented for review to non formal
methods experts. We chose to use HTML so that
changes to the specification could be quickly viewed
by all authors and so that cross references in the
document between the use and definition of terms
could be given using hyperlinks. This made it possible
to give supplementary text to describe the formal
tables. The top-down presentation given by this
document also has advantages over the bottom-up
order (i.e. declaring or defining terms before they are
used) which is expected by analysis tools. However, it
was also necessary to have a version of the
specification that could be input to the analysis tools.
To eliminate the difficulty of having to maintain
versions of the specification existing in different
forms, we created one document that is a mixture of
HTML and formal notation. We used a preprocessor
that produces the specification in pure HTML (using
HTML tables for the formal tables) and automatically

3 MNPS is Mininum Navigational Performance
Specification. WATRS is West Atlantic Route
System.

generates links from references to the declarations and
definitions of terms4. It also produces a separate file
containing only the representation in formal notation
in the correct order which is used as input to the
analysis tool.

The first draft of the formal specification was created
by the first author based on a pseudo code
representation of the separation minima. The first step
in the formalization process was to determine the
primitives of the specification and introduce these as
uninterpreted functions and predicates in S. The
pseudo code is modular so parts of it can be matched
to individual tables. For each table, the relevant
“inputs” were determined and used as the labels for
the table rows. Columns in each table were then
created as given by the logical combinations of these
inputs. Typechecking was used to validate the first
draft of our formal representation of the separation
minima.

The first draft of the specification was handed off to
the third author who is the domain expert. The only
explanation of the tables that he was given was one
paragraph of text with an example at the beginning of
the document. From this, he edited the HTML version
of the document and supplied the first author with a
revised draft of the specification. This included
smaller changes, such as terminology, and more
meaningful changes, such as clarification of
ambiguous phrases identified by the first author, such
as, “a portion of the routes of both aircraft are within
OR above OR below MNPS airspace”. The correct
interpretation of this phrase is that each aircraft is
considered independently with respect to MNPS
airspace, as opposed to both aircraft having to be
within MNPS airspace or both having to be above
MNPS airspace, etc. Relationships between various
primitive terms were also identified.

4 This preprocesser was developed in the course of this
work but is a separate tool that could be used for
various specification notations. Information is
available at http://www.cs.ubc.ca/spider/day/
Research/hpp.html .

The most notable absence from the pseudo code was
the top level requirement stating what separation
means. Two aircraft are separated if they satisfy the
separation minima for at least one dimension, i.e.
vertical, lateral, or longitudinal. The criteria for each
of these is given in different units. The top level
requirement as stated in S is given in Figure 3. In this
requirement, “ABS” takes the absolute value of its

argument. Vertical separation is measured in feet.
Lateral separation is measured in miles (or
equivalently in degrees of latitude). Longitudinal
separation is measured in minutes. Two aircraft on
opposing tracks cannot be considered longitudinally
separated during a certain range of time when the
aircraft are close to crossing. Vertical or lateral
separation must exist during that time.

Figure 2: Process Overview

extract Sgenerate pure
HTML

pure HTML format
(for viewing by a browser)

output of analysis
(e.g., completeness checking)

input for other tools
(e.g., PVS, HOL, …)

S
(i.e., typed predicate logic)

core process

pseudo code interpretation

mixed HTML/S format

NAT Separation Minima
(English and diagrams)

manual translation

Fusion
(analysis functions)

The addition of the top level requirement pointed out
that the proper distinction had not made between
minima for aircraft on opposing tracks and those on
same direction tracks. The requirement on aircraft
flying the same direction is a minimum number of
minutes of separation. The requirement for aircraft
flying in opposing directions is that some other form
of separation must exist during the time period when
the aircraft cross. This change mainly affected the
statement of the top level requirement.

The resulting specification consisted of 15 tables, 16
definitions in S, and 47 uninterpreted constants. The
largest table consisted of 8 rows and 6 columns.

5. Analysis
Our goal was to analyze the completeness,
consistency, and symmetry of the tables in the
separation minima specification. Completeness
checking automatically determines the cases that are
covered by the default column, or if no default is
given, the cases that are not covered in the table.
Consistency analysis returns pairs of columns with
different return values that both include a set of
conditions that can be true at the same time.
Symmetry analysis determines if the table has the
same meaning when its arguments (the pair of flights)
are given in the opposite order.

All of these forms of analysis are based on the possible
combinations of entries in the rows of the table. They
cannot determine if some aspect of the decision given
by the table has been omitted.

The framework for specification and analysis proposed
in the thesis work of the first author is illustrated in
Figure 4. Requirements specifications, possibly given
in multiple notations are placed within a common
logical framework using an embedding that closely
matches the original notation and does not lose the
structure of the specification. Semantic functions
define the meaning of the embedded notation in logic.
The semantic functions also indicate explicit join
points for how multiple notations fit together, such as
a predicate table being used to describe the condition
on a transition in a statechart [5] similar to what is
done in RSML (Requirements State Machine
Language) [12].The keywords used in the embedding
and their associated semantic functions are called a
“style” of specification in S.

These semantic functions are executable in the sense
that they map a structured specification, such as a
table, into an expression in logic. The expression in
logic is called the semantic representation in the
diagram. One method of executing these semantics is
to use rewrite rules within a theorem prover.
However, this is a more general mechanism than is
needed for functions known to be executable.
Drawing on techniques from functional programming
language implementations, Fusion includes a symbolic

AreSeparated(A:flight,B:flight,t:time) :=
 /* A and B are vertically separated based on flight level */
 (ABS(A.FlightLevel- B.FlightLevel) > VerticalSeparationRequired(A,B))
 OR
 /* A and B are laterally separated based on either position in degrees of latitude or position in miles */
 (if (LatitudeEquivalent(A,B)) then
 (ABS(A.LateralPositionInDegrees - B.LateralPositionInDegrees) >LateralSeparationRequiredInDegrees
(A,B))
 else
 (ABS(A.LateralPositionInMiles - B.LateralPositionInMiles) > LateralSeparationRequiredInMiles (A,B)))
 OR
 /* A and B are longitudinally separated based on time, depending on whether the two flights are in the
 approximate same or opposite direction */
 (if (AngularDifferenceGreaterThan90Degrees(A.RouteSegment,B.RouteSegment)) then
 /* opposite direction */
 NOT (WithinOppDirNoLongSepPeriod(A,B,t))
 else /* same direction */
 ABS(A.TimeAtPosition - B.TimeAtPosition) >LongSameDirSepRequired(A,B));

Figure 3: Top level Specification of Separation

functional evaluator which can execute statements in
S, stopping when it reaches uninterpreted constants.
This engine carries out evaluation in place for
efficiency, as is done in the implementation of a
functional programming language.

Separately, clues given in the structure of the
specification can be used to help determine
simplifications to map the semantic representation
into a finite model that can be efficiently represented
using BDDs and analyzed using automatic means.
Sometimes the simplification implied by the structure
is not a valid abstraction. If the tool can not determine
the validity of the simplifications these are stated to
the user as “assumptions”. This serves to the reduce
the review process to one of evaluating isolated
assumptions.

The results of the analysis map the simplifications
back into the terms of the specification for the user to
examine.

We regard tables to be a “style” of specification in the

S language where the textual specification of the table
in S is structurally close to the tabular presentation.
Figure 5 shows the S representation of the table for
“VerticalSeparationRequired” given in Figure 1. Our
preprocessor turns this representation into an HTML
table.

The keyword “Row” is a semantic definition that
substitutes the label of each row into the list of
predicates. The “_” describing the parameter of the
predicate in the HTML version is given by a lambda
variable. “DC” is a predicate that always returns the
value true. This takes the place of the “.” in cells in
the HTML representation. “TRUE” is a predicate that
states that its parameter must have the value “true”.
The result of applying the “Row” function is a list of
elements with Boolean values.

The keyword “Table” gives meaning to the table,
matching the conjunctions of values in the columns
with return values. These semantic functions are
defined in S and given in Appendix A.

Requirements Spec

Automated State Space Exploration Analysis
(Finite State Machines; BDDs)

Symbolic Functional
EvaluationSimplification

Convert to Finite

Semantics

Semantic
Representation

Finite Semantic Representation

Simplifying
Assumptions

Output

Figure 4: Specification and Analysis Framework

VerticalSeparationRequired (A,B) := Table
[Row (A.FlightLevel) [(\x.x <= 280); DC; (\x. x > 450); (\x.x > 450)];

 Row (B.FlightLevel) [DC; (\x.x <= 280); (\x. x > 450); (\x.x > 450)];
 Row (IsSupersonic (A)) [DC; DC; TRUE; DC];
 Row (IsSupersonic (B)) [DC; DC; DC; TRUE]]
 [1000;1000;4000;4000;2000];

Figure 5: VerticalSeparationRequired Table in S

Having related conditions in a row uses the structure
of the table to show how the user views the possible
values of the row label. For example, in the table
found in Figure 1 for vertical separation, the flight
level of each aircraft is only important in how it
compares to flight levels 280 and 450 for the purposes
of the function given by the table. Therefore the
analysis can assume that the specifier would like the
analysis results given in these terms as well. This is in
keeping with our goal of returning results at the same
level of abstraction as the specification.

The simplification engine uses the entries in a row to
partition the state space for the aspect of the problem
given by the label of that row. This partition can then
be encoded in Boolean variables just as an enumerated
type can be encoded for automatic verification (as seen
in [1,10]). For example, if a row contained the entries
found in Figure 6, there are three conditions given by
the cells in this row:

A.FlightLevel <= 280
(280 < A.FlightLevel) AND (A.FlightLevel <=450)
450 < A. FlightLevel

The flight levels of A have been divided into three
ranges. To represent these ranges, we need two
Boolean variables, say a1 and a2. We can use the
encoding given in Figure 7. The use of structure
eliminates the need for the more heavyweight
reasoning of a theorem prover in this instance.

This encoding results in one leftover possible encoding
for the Boolean variables of a1=true and a2=true.
Since this does not correspond to any possible real
case, we add this to the final expression to check in
the analysis to ensure that this artifact does produce an
extraneous result.

This technique does make the assumption that the

partition the user provides is complete and consistent.
This is not always the case. Some readers may have
noticed that for the table
“VerticalSeparationRequired” in Figure 1, using only
the elements in the first row leaves out the case for
when the flight level is between 280 and 450. An
earlier version of the tool stated these assumptions
about the partition to the user. This approach isolated
details of the specification to review separately. The
conditions given by the partition could also be
evaluated by an automated decision procedure in a
theorem prover such as PVS [13].

After noting that these assumptions are incorrect (i.e.,
a range is missing), one possible remedy is to modify
the table. However, in all cases for the tables in this
specification, the predicates over numeric values
consist of a comparison to a concrete value. To
improve the accuracy of the analysis results, we added
a simple interval checker which checks the partition of
the range given by the elements of the row and adds
any ranges not mentioned explicitly in the row. After
this addition, one table remained with overlapping
ranges in the elements of the row. The interval
checker identified this case and we modified the table
to separate the ranges into multiple rows and used
environmental assumptions to relate the rows.

There are many times when the possible values given
by the element labeling the row are known. An
example is a Boolean condition such as “IsSupersonic”
found in the “VerticalSeparationRequired” table. This
element can take on the values true and false even
though the row for it in this particular table never has
a false case. The checker automatically recognizes
these situations and considers both true and false as
possible values in the analysis. This is applicable for
any values of finite types. Enumerated types can be
declared using S declarations.

A.FlightLevel _<=280 (280 < __) AND (_ <= 450) 450 < __

Figure 6: Example Row

A.FlightLevel <= 280 NOT(a1) AND NOT(a2)
(280 < A.FlightLevel) AND (A.FlightLevel <=450) a1 AND NOT(a2)
450 < A. FlightLevel NOT(a1) AND a2

Figure 7: Example Encoding

5.1 Completeness Checking
Checking the completeness of a table means
determining if all possible cases are covered by the
specification. The meaning of a column is the
conjunction of the predicates in the row cells. For the
tables, completeness checking involves checking
whether the expression denoting the disjunction of the
columns is a tautology. By applying the semantic
function for the meaning of a predicate table and using
the Boolean encodings identified by the simplification
engine described above, we can evaluate this check
efficiently.

Figure 8 shows a Fusion session in which the
completeness analysis function “comp” is applied to
the table “VerticalSeparationRequired”. Every line
shown in Figure 2 is generated by Fusion except for
the two user commands which appear on the lines that
begin with the user prompt, “>”. The first command
“%include minima.s” causes the S representation of
the separation minima to be parsed and typechecked.
The second command “%comp
VerticalSeparationRequired” causes the completeness
analysis function to be applied to the table
“VerticalSeparationRequired”.

The completeness analysis function first invokes the
interval checker for the first two rows. It correctly
determines the missing range for the possible values of
the “FlightLevel” of the aircraft.

The completeness analysis function then generates a
list of the cases covered by the default column. The
analysis reveals four of these cases. In order to
minimize the amount of output generated by the
checker, the results are given in an approximation of
minimal sum-of-products form. This can be seen in
the use of “don’t care” (“DC”) values for some of the
rows. It was important that these results were given in
terms of the unexpanded row label in cases where the
row label was an application of a function defined
elsewhere. This meant the reviewer could easily
match the cases given in the results to the original
table in HTML after substituting the row label into the
blank.

In reviewing this session output, the domain expert
would decide whether the default value, 2000, is
appropriate for the listed cases. The maximum
number of default cases revealed by the completeness
analysis for this specification was 50 - for a table of
eight rows and six columns. A table is not necessarily
flawed because it has default cases — but it is

>%include minima.s
Including rules.s
>%comp VerticalSeparationRequired
VerticalSeparationRequired is:
(
 (Table
 [
 ((Row (FlightLevel A))
 [(\x.(x <= 280));DC;(\x.(x > 450));(\x.(x > 450))]);
 ((Row (FlightLevel B))
 [DC;(\x.(x <= 280));(\x.(x > 450));(\x.(x > 450))])
 ;((Row (IsSupersonic A)) [DC;DC;TRUE;DC]);
 ((Row (IsSupersonic B)) [DC;DC;DC;TRUE])])
 [1000;1000;4000;4000;2000])

Invoking interval checker...

Interval checker partitions the range into:
((FlightLevel A) > 450)
((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
((FlightLevel A) <= 280)

Invoking interval checker...

Interval checker partitions the range into:
((FlightLevel B) > 450)
((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
((FlightLevel B) <= 280)

The following cases
yield the default value of 2000
Case 1
Row 1 : ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
Row 2 : ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
Row 3 : DC
Row 4 : DC

Case 2
Row 1 : ((FlightLevel A) > 450)
Row 2 : ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
Row 3 : DC
Row 4 : DC

Case 3
Row 1 : ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
Row 2 : ((FlightLevel B) > 450)
Row 3 : DC
Row 4 : DC

Case 4
Row 1 : ((FlightLevel A) > 450)
Row 2 : ((FlightLevel B) > 450)
Row 3 : ((IsSupersonic A) = F)
Row 4 : ((IsSupersonic B) = F)

Stats for VerticalSeparationRequired completeness checking:
Number of cases identified: 4
Total time: 1 sec
 --
>

Figure 8: Completeness Checker Output

important for the default cases to be enumerated and
reviewed by a domain expert. This kind of analysis
would be performed by some means in a disciplined
system development process. However, the use of an
automated completeness analysis function, as
illustrated here, streamlines and systematizes the
review process by enumerating the default cases
explicitly. A possible method of evaluating these
would be to iteratively examine a single case,
determine whether it is an error or not, and then add
it, likely in a generalized format (i.e., with “don’t
care” values in some of the cells) to the table. This
approach would mean that the default cases would
gradually be fully specified. Thus, the use of Fusion
for this purpose can also be seen as a way to measure
the quality of a specification.

In Heimdahl and Leveson’s work [6], they are able to
draw conclusions about the overall completeness of a
specification by referring to a functional definition of
the semantics. For this specification, we can ask
whether the completeness of individual tables ensures
the completeness of the overall specification. Given
that the tables represent functions, if the other parts of
the specification (including the uninterpreted
functions) represent total functions then we can
conclude that the specification is complete, assuming
the scope of each table is complete.

5.2 Environmental Assumptions
In reviewing the output of the completeness checker,
our domain expert pointed out that some of the cases
produced were impossible. These were situations
where the rows within a table were related to each
other. For example, an aircraft cannot satisfy both of
the constraints “InCruiseClimb” and “IsLevel” at the
same moment.

These constraints are information about the physical
limitations of the items involved in the specification.
They can be considered assumptions about the
environment. We documented these in S using
expressions such as:

forall (F:flight).
 mutually_exclusive(InCruiseClimb F, IsLevel F)

where “mutually_exclusive” is defined to mean only
one of its arguments can be true.

These expressions are evaluated using the symbolic
functional evaluator as for the tables. However in

order to reduce these expressions to the terms used in
the tables, we substituted any existing items of the
correct type as the parameter in the “forall”
expression. Most of the tables involve two flights, A
and B. The above environmental assumption would
evaluate to:

mutually_exclusive(InCruiseClimb A, IsLevel A)
AND
mutually_exclusive(InCruiseClimb B, IsLevel B)

Substitutions determined by the simplification engine
for the table, along with some additional Boolean
variables (since all environmental assumptions are not
relevant to every table) are used to encode the
environmental assumption.

The addition of environmental constraints slightly
changed the method of evaluating the completeness of
a table. Instead of checking whether the meaning of
the table was a tautology, we had to check whether the
environment conjoined with the negation of the
meaning of the table was a contradiction.

In the output, the environmental assumptions are not
listed. They are existentially quantified out of the
results.

5.3 Consistency Checking
Consistency checking involves comparing each
column of a table to all other columns within the table
that have a different return value to see if the cases
denoted by the columns overlap. The same evaluation

>cons otherSameDirLongSep env
otherSameDirLongSep is:
(
 (Table
 [((Row (ReportedOverCommonPoint (A , B))) [TRUE;DC]);
 ((Row (SameOrDivergingTracks (A , B))) [TRUE;DC]);
 ((Row ((AllOf [A;B]) (\x.((IsOnRoute Routes3) x))))
 [DC;TRUE])]) [15;20;30])

Columns 1 and 2 conflict in the following:
Case 1
Row 1 : ((ReportedOverCommonPoint (A , B)) = T)
Row 2 : ((SameOrDivergingTracks (A , B)) = T)
Row 3 : (((AllOf [A;B]) (\x.((IsOnRoute Routes3) x))) = T)

Stats for otherSameDirLongSep consistency checking:
Number of cases identified: 1
Total time: 0 sec
 --
>

Figure 9: Output of Consistency Checker

and simplification process used for completeness
checking is used for this analysis. However, here we
check whether the conjunction of the meaning of the
two columns is a contradiction. If the result is a
contradiction, the checker indicates the two columns
involved and lists the case(s) where they overlap in the
same form as the output for completeness checking.

The results of analyzing the separation minima
revealed that two tables are inconsistent. After
consulting the official specification (i.e. not the pseudo
code representation), our domain expert concluded
that these are cases where the specification is
ambiguous.

Figure 9 shows the result of analyzing one of the
tables that is inconsistent. The table
“otherSameDirLongSep” specifies the number of
minutes of time that must exist between two aircraft
(that are not both turbojet or both supersonic) flying in
the same direction for them to be considered
longitudinally separated. The checker identified that,
for the case where two aircraft have reported over a
common navigation point, are on the same or
diverging tracks, and are both on a particular set of
routes that have special criteria, the table is ambiguous
as to whether there should be 15 or 20 minutes of
separation between them.

The second table with inconsistencies describes
requirements for lateral separation5. This table has
eight rows and four columns. This case again involves
special provisions for particular routes that overlap
with the more general criteria. The results clearly
reveal cases in the official specification that are
ambiguous as to the amount of lateral separation
required between aircraft .

5.4 Symmetry Checking
Symmetry is a desirable property of this specification.
It is important that the separation criteria are the same
regardless of the order of the parameters (i.e., the two
flights) given to the functions and predicates that the
tables describe.

5 There were actually two other tables with
inconsistencies but these two tables
“LateralSeparationRequiredInMiles” and
“LateralSeparationRequiredInDegrees” represent the
same sets of conditions, but have different return
values for the functions.

To carry out symmetry checking, two versions of the
table are created — one with each ordering of the
parameters. The meaning of the disjunction of all
columns within each table that return the same result
is compared to the other table.

If these expressions are not equivalent, the symmetry
checker returns constraints, that if satisfied, would
mean the table is symmetrical. Figure 10 shows an
example of the output of the symmetry checker applied
to a simple table.

The initial results of this analysis (as seen in Figure
10) pointed out that the symmetry of a table is often
dependent on the symmetry of the primitive terms
used in the table. Environmental assumptions of the
form,

forall A B.
 ReportedOverCommonPoint (A,B) =
 ReportedOverCommonPoint(B,A)

were added to make this analysis more accurate.

While this analysis did not reveal any errors in the
specification, it did point out information about the
primitive terms which might not be known by an
implementor of the separation minima in software.

>%sym ssOppDirNoLongSepPeriod

ssOppDirNoLongSepPeriod is:
(
 (Table [((Row (ReportedOverCommonPoint (A , B)))
[TRUE;FALSE])]
)
 [((ept (A , B)) , ((ept (A , B)) + 10));
 (((ept (A , B)) - 15) , ((ept (A , B)) + 15))])

The table is symmetric if the following condition(s) hold
(some conditions may overlap):

(
 ((ReportedOverCommonPoint ((FST (A , B)) , (SND (A , B)))) = T)
 =
 ((ReportedOverCommonPoint ((FST (B , A)) , (SND (B , A)))) = T)
)

(
 ((ReportedOverCommonPoint ((FST (A , B)) , (SND (A , B)))) = F)
 =
 ((ReportedOverCommonPoint ((FST (B , A)) , (SND (B , A)))) = F)
)

Total time: 1 sec
 --
>

Figure 10: Output of Symmetry Checker

6. Future Work
This work is the first attempt to validate the thesis
ideas of the first author. The operational semantics
integrate the “style” of specification with the predicate
logic environment, and are used directly in analysis to
map the specification (possibly in multiple notations)
into a form that can be automatically analyzed using
state space exploration analysis techniques. The use
of the explicit semantic definitions retains the
structure of the specification for analysis so that
structure can be used to help create a finite model for
analysis. This was illustrated here in the use of
predicate logic along with a tabular notation, and
using the structure given in the rows to partition the
state space. The continuation of this thesis work will
look at how the techniques used in this example can be
generalized for other notations and other state space
exploration analysis techniques, such as model
checking.

A particular issue in this work is the use of constants
with semantic definitions as the keywords that capture
the structure of the table, such as “Row” and “Table”.
This means that the notation associated with the
semantics no longer has to be “lifted” from the base S
notation. If the more traditional path of defining
keywords like “Row” and “Table” as constructors had
been chosen, any place one table references another
table, the reference would need to be “wrapped” with
its semantic function to refer to the meaning of the
table. However, the execution of the semantic
functions expands the definitions used in the
specification. For the most efficient execution,
evaluation must be done in place, which eliminates the
original expression. This makes it difficult to return
the appropriate level of abstraction in the results. In
the case of the tables, the output had to be given in
terms of the labels of the rows to be useful to the
reviewer. We have already implemented a method of
maintaining the original expression that works for the
results given here. We are working on formally
defining this method generally so that it is possible to
retain the appropriate original expression while still
taking advantage of evaluation in place.

Another important point in this work is the use of the
general purpose interface language, predicate logic.
State space exploration analysis techniques are geared
toward model-oriented specification methods. While
the form of the specification used in this example is
functional, we have illustrated how data aspects of the
problem can aid in the analysis. Having a general-

purpose interface made it possible to integrate the
functional and data aspects of the specification for
analysis. Rather than taking the approach of only
allowing specifications that definitely can be analyzed
using finite means, we have started from general-
purpose logic interface and applied particular
techniques when the specification fit a particular form.
This opens a door to the possibility of using formal
specifications created primarily by domain experts as
input to more specialized analysis techniques such as
theorem proving performed by formal methods
experts. It would be straightforward to convert the S
representation of our tabular style of specification into
input for other analysis tools such as PVS [13] and
HOL [4].

Recently, a 4th edition of the document “Application
of Separation Minima for the NAT Region” has been
produced. This document has some significant
additions including reduced vertical separation
minima. It would be interesting to see if this
document corrects the ambiguities found in this work
through consistency checking.

7. Conclusion
This paper is perhaps most notable for the example of
applying formal methods to the ICAO standard for
separation between aircraft over the North Atlantic.
The ease with which a domain expert was able to
review and edit the specification and analysis results is
a favourable data point in the struggle to make formal
methods acceptable to industry. Beyond documenting
this collaborative effort as an instance of the industrial
use of formal methods, this work illustrates:
• the integration of the tabular style into a general-

purpose predicate logic environment which
allowed the specification of uninterpreted
functions, and environmental assumptions;

• a framework for analysis which uses the explicit
operational semantics directly, allowing different
notations to be combined, and making it possible to
exploit the structure of a given notation in analysis
and to return results at the correct level of
abstraction;

• the advantages of using a presentation format in
HTML and how it is possible to integrate this with
a format that can be used as input to analysis tools.

Although it rests upon a solid mathematical
foundation, we believe that the approach illustrated in
this paper could be fully integrated into an industrial
system/software engineering process without causing
the domain experts to be excluded or extensively re-

trained in formal methods. The automated analysis
provided by Fusion streamlines the manual review
process by automating some of the processing that
would otherwise need to be done manually.

Acknowledgments
The authors would like to thank Richard Yates of
MacDonald Dettwiler for comments on an early draft
of the specification. The first author would also like to
acknowledge the input of her thesis committee in
focusing these ideas. Reviewers for this workshop
made helpful comments. The university based
component of this collaborative research is supported
by funding from Hughes International Airspace
Management Systems, MacDonald Dettwiler, and the
BC Advanced Systems Institute.

 References
[1] Joanne Marie Atlee. Automated analysis of

software requirements. PhD thesis, University of
Maryland, 1992.

[2] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions
on Computers, C-25(8):677-691, August 1986.

[3] Tom DeMarco. Structured analysis and system
specification. Yourdon Press, Englewood Cliffs,
New Jersey, 1979.

[4] M.J.C. Gordon and T.F. Melham. Introduction to
HOL. Cambridge University Press, Cambridge,
1993.

[5]David Harel. Statecharts: A visual formalism for
complex systems. Science of Computing, 8:231-
274, 1987.

[6] Mats P.E. Heimdahl and Nancy G. Leveson.
Completeness and consistency in hierarchical state-
based requirements. IEEE Transactions on Software
Engineering, 22(6):363-377, June 1996.

[7] C.L. Heitmeyer and B.G. Labaw. Consistency
checks for SCR-style requirements specifications.
Technical Report NRL/FR/5540-93-9586, United
States Naval Research Laboratory, Washington,
D.C., December, 1993.

[8] Constance L. Heitmeyer, Ralph D. Jeffords, and
Bruce G. Labaw. Automated consistency checking
of requirements specifications. ACM Transactions

on Software Engineering and Methodology, 5(3):
231-261, July, 1996.

[9] K.L. Heninger. Specifying software requirements
for complex systems: New techniques and their
applications. IEEE Transactions on Software
Engineering, 6(1):2-13, 1980.

[10] Alan J. Hu, David L. Dill, Andreas J. Drexler,
and C. Han Yang. Higher-level specification and
verification with BDDs. In Computer-Aided
Verification: Fourth International Workshop, 1992.

[11] J. Joyce, N. Day, and M. Donat. S: A machine
readable specification notation based on higher
order logic. In 7th International Workshop on
Higher Order Logic Theorem Proving and Its
Applications, pages 285-299, Valletta, Malta,
September, 1994.

[12] Nancy G. Leveson, Mats P.E. Heimdahl, Holly
Hildreth, and Jon D. Reese. Requirements
specification for process control-control systems.
IEEE Transactions on Software Engineering,
20(9):684-707, September, 1994.

[13] S. Owre, J.M. Rushby, and N. Shankar. PVS: A
prototype verification system. In 11th International
Conference on Automated Deduction (CADE),
pages 748-752, Saratoga, NY, 1992.

[14] Sam Owre, John Rushby, and Nataranjan
Shankar. Analyzing Tabular and State-Transition
Requirements Specifications in PVS. Technical
Report CSL-95-12, Computer Science Laboratory,
SRI International, Menlo Park, CA, April, 1996.

[15] Sam Owre, John Rushby, and Natarajan Shankar.
Integration in PVS: Tables, Types, and Model
Checking. In Proceedings of the Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp. 336-383,
Enschede, The Netherlands, Springer-Verlag
Lecture Notes in Computer Science, Vol. 1217,
April, 1997.

[16] David Lorge Parnas. Tabular representations of
relations. Technical Report 260, Communications
Research Laboratory, Faculty of Engineering,
McMaster University, October 1992.

[17] J.M. Spivey. Understanding Z. Cambridge
University Press, Cambridge, 1988.

Appendix A
The S notation is very similar to the syntax for the
term language used in the HOL theorem prover [4].
But unlike HOL, S does not involve a meta-language
as part of the specification format for declarations and
definitions. Instead, the syntax for declarations and
definitions is an extension of the syntax used for
logical expressions. (In this respect, S more closely
resembles Z and other similar formal specification
notations.) For example, the symbol “:=” is used in S
for a definition, e.g., “TWO := 2”, in contrast to an
assertion, e.g., “TWO = 2”.

Another difference that will likely be noticed by
readers familiar with HOL is the explicit type
parameterization of constant declarations and
definitions. Type parameters, if any, are given in a
parenthesized list which prefixes the rest of the
declaration or definition. This is illustrated in the
definitions given below by the parameterization of
“EveryAux” by a single type parameter, “ty”.

Many of the definitions shown below are given
recursively based on the recursive definition (not
shown here) of the polymorphic type “list”. These
recursive definitions are given in a pattern matching
style (similar to how recursive functions may be
defined in Standard ML) with one clause for the
“NIL” constructor (i.e., the non-recursive case) and
another clause for the “CONS” constructor (i.e., the
recursive case). Each clause in this style of S
definition is separated by a “|”. The functions “HD”
and “TL” are standard library functions for taking the
head (i.e., the first element) of a list and the tail (i.e.,
the rest) of a list respectively.

Type expressions of the form, “:ty1->ty2”, are used in
the declaration of parameters that are functions from
elements of type “ty1” to elements of type “ty2”.
Similarly, type expressions of the form, “:(ty) list”,
indicate when a parameter is a list of elements of type
“ty”.

Lambda expressions are expressed in S notation as,
“\x.E” (where E is an expression) .

The semantic definitions for the tabular notation given
in the S notation are shown below.

(:ty)
EveryAux (NIL) (p:ty->bool) := T |
EveryAux (CONS e tl) p :=

(p e) AND EveryAux tl p;

(:ty)
Every (p:ty->bool) l := EveryAux l p;

(:ty)
ExistsAux (NIL) (p:ty->bool) := F |
ExistsAux (CONS e tl) p := (p e) OR ExistsAux tl p;

(:ty)
Exists (p:ty->bool) l := ExistsAux l p;

(:ty) UNKNOWN : ty;

(:ty)DC := \(x:ty).T;
TRUE := \x.x=T;
FALSE := \x.x=F;

(:ty1)
RowAux2 (CONS (p:ty1->bool) tl) label :=

CONS (p label) (RowAux2 tl label) |
RowAux2 (NIL) label := NIL;

(:ty)Row label (plist:(A->bool)list) :=
RowAux2 plist label;

Columns t :=
 if ((HD t)=NIL) then NIL
 else CONS
 (Every (HD) t)
 (Columns (Map t (TL)));

(:ty)
TableSemAux2 (NIL) (retVals:(ty)list) :=
 if (retVals=NIL) then UNKNOWN
 else (HD retVals) |
TableSemAux2 (CONS col colList) retVals :=
 if col
 then (HD retVals)
 else TableSemAux2 colList (TL retVals);

(:ty)
Table t (retVals:(ty)list) :=
 TableSemAux2 (Columns t) retVals;

PredicateTable t :=
 Exists (\x.x) (Columns t);

