
Testing Generic Ada Packages with APE

Daniel Ho�man� Jayakrishnan Nairy Paul Strooperz

April 30, 1998

Abstract

Despite substantial research on methods and tools for testing reusable modules,
little help is available for the tester in the �eld. Commercial tools for system testing
are widely available, but tools for module testing are hard to �nd. This paper presents
a practical approach to testing Ada packages using the Ada Package Exerciser (APE).
The APE tool generates test drivers for Ada packages from test scripts written by the
tester. The generated test drivers provide test inputs and check output correctness
automatically, so that it is practical to rerun the tests after every change to the pack-
age implementation or its environment. The testing approach and the APE tool are
described in detail, and illustrated with a simple example and a commercially devel-
oped package. Specialized techniques for testing generic packages and for performing
random testing are presented.

1 Introduction

The fundamental goal of our research is to improve system quality and reduce maintenance
costs through systematic module testing. While system testing is usually emphasized,
module testing is also important. It is typically di�cult to thoroughly test a reusable
module M while it is linked into a given application. M 's subprograms are often not
directly accessible, some of its subprograms may not be called at all, and errors in other
modules may appear to be errors in M . Conversely, errors in M may be masked by errors
in other modules.

Using test drivers, a module may be tested in isolation from any particular application.
Although implementing test drivers manually is straightforward, it is also time-consuming,
repetitive, and error-prone, and it produces code that is costly to maintain. As a result,
test driver generation is a good candidate for automated support.

In this paper, we present the Ada Package Exerciser (APE), which generates batch test
drivers for Ada packages from test scripts written in a simple test language. The test scripts
are developed manually by the tester, but the generated drivers run fully automatically.

�Dept. of Computer Science, Univ. of Victoria, P.O. Box 3055 MS7209, Victoria, B.C., V8W 3P6

Canada, dho�man@csr.uvic.ca
yDept. of Computer Science, Univ. of Victoria, P.O. Box 3055 MS7209, Victoria, B.C., V8W 3P6

Canada, jk@csr.uvic.ca
zDept. of Computer Science and Electrical Engineering, The Univ. of Queensland, Brisbane, 4072 Aus-

tralia, pstroop@csee.uq.edu.au

1



APE is an Ada version of the PGMGEN testing tool [8, 10], which generates test drivers
for the testing of C modules. The language support for reusable modules in Ada in the
form of packages means that a tool such as APE is more widely applicable than a tool such
as PGMGEN, which depends on customized \modules." For example, the mechanism for
signaling and handling exceptions in PGMGEN is non-standard.

After reviewing the literature in Section 2, we introduce a generic stack package that
is used as an example in Section 3. We present the APE script language in Section 4, and
explain how batch drivers are generated from test scripts. In Section 5, we discuss how
we typically develop an APE script by using the stack package as an example, and also
explain how we test generic packages with di�erent data types. Section 6 discusses the
application of APE to a commercially developed and tested package.

2 Related work

Early work on unit testing has focused on testing software modules. For example, Panzl
[15] discusses the regression testing of Fortran subroutines. The DAISTS [7], PGMGEN
[8, 10], and Protest [9] systems all automate the testing of modules using test cases based
on sequences of calls.

More recently, work on unit-level testing has focused on class testing in object-oriented
languages [3]. Fiedler [4] describes a small case study on testing C++ objects. Frankl [5]
has developed a scheme for class testing using algebraic speci�cations. The ACE tool [14]
(like APE, ACE is an enhancement of PGMGEN) supports the testing of Ei�el and C++
classes and has seen substantial industrial use. In the ClassBench methodology [11, 12], a
class is tested using a testgraph, which partially models the states and transitions of the
class under test state/transition graph, and a customized test oracle, which veri�es the
behavior of the class under test.

In previous work on testing Ada programs, Gallagher and Narasimhan [6] describe a
system for generating test data for Ada programs based on numerical optimization tech-
niques. Barbey and Buchs [2] discuss the generation of a test set for an Ada abstract data
types (ADT) from a formal speci�cation of that ADT. Their method was devised for the
testing of ADTs implemented in Ada 83, and Barbey [1] discusses how the object-oriented
features of Ada 95 impact on this method. Similarly, Waterman [16] discusses the impact
of Ada 95 on the testability of safety-related systems, with an emphasis on unit testing.

A number of commercial tools exist to support the testing of Ada programs. The one
that most closely resembles APE is AdaTEST from IPL [13]. This tool is more general than
APE in that it supports test execution, as well as coverage analysis and static analysis. It
is more limited, however, in its support for test driver generation. It does provide a test
harness for test execution, and a language for expressing test cases. However, the script
language for APE is much simpler; APE derives its power by allowing the tester to include
arbitrary Ada fragments inside APE scripts. Thus, APE leverages the tester's knowledge
of Ada.

2



generic

maxsize: integer;

type item is private;

package stack is

empty, full : exception;

procedure init;

procedure push (i : in item);

procedure pop;

function top return item;

function depth return integer;

private

stack : array (1 .. maxsize) of item;

siz : integer;

end stack;

Figure 1: stack package speci�cation

3 A simple example

In this paper, we assume that a module is implemented as an Ada package, which can be
accessed only through its subprograms. The package speci�cation declares the names of
the subprograms, their parameters and return value types, and the names of the exceptions
that the package may generate. Any constants and types provided by the package are also
declared. We illustrate these ideas on a simple stack package, shown in Figure 1. stack is
a generic package with two parameters: maxsize speci�es the maximum size of the stack,
and item speci�es the type of the items stored in the stack. The subprograms of stack are:

� init initializes the stack to the empty stack.

� push(i) pushes i onto the stack. Exception full is raised if there are already
maxsize elements in the stack.

� pop removes the top element from the stack. Exception empty is raised if the stack
is empty.

� top returns the top element of the stack without deleting it. Exception empty is
raised if the stack is empty.

� depth returns the number of elements in the stack.

4 Test program generation with APE

4.1 Test script language

The APE test script language is based on traces, where a trace is a sequence of subprogram
calls. For example, consider the following traces for stack (when writing traces, we separate

3



adjacent calls with a period).

init.push(10)

init.pop

The �rst trace initializes the package and pushes the value 10 onto the stack. In the second
trace, the pop call should generate the empty exception because init reinitializes the stack
to empty.

Our test cases are described by providing a trace and associating it with some aspect
of the required behavior of the package in response to that trace. We represent a test case
as a �ve-tuple

h trace, expexc, actval, expval, type i

with the following meanings:

trace: a sequence of subprogram calls used to exercise a package.

expexc: the name of the exception that trace is expected to generate or noexc if no excep-
tion is expected.

actval: an expression, typically a function call, to be evaluated after the trace, and whose
value is taken to be the actual value of the trace.

expval: the value that actval is expected to have.

type: the data type of actval and expval.

Below are two test cases, based on the traces described above. In test cases developed
solely for exception checking, the actval, expval, and type �elds contain dc (don't care).

<init.push(10), noexc, top, 10, integer>

<init.pop, empty, dc, dc, dc>

The �rst test case pushes 10 onto the stack and then checks that top returns the correct
value. The second test case checks that pop correctly signals the empty exception for an
empty stack.

To provide a test language powerful enough to describe the test cases, but which is
easy to learn, Ada code may be freely embedded in test scripts. Code delimited by {% and
%} can be placed in a variety of places in the test script, e.g., in the trace, actual value, or
expected value position of a test case, or between test cases. Thus, there is no need in the
script language for functions and iteration constructs|these are available in Ada and are
presumably understood by the test programmer.

For example, the following test script fragment executes the test case inside the loop
100 times.

{% for i in 1..100 loop %}

<init.push(i), noexc, top, i, integer>

{% end loop; %}

4



PackagePrefix

"st"

ExceptionPrefix

"st"

Subprograms

<init,push,pop,top,depth>

Exceptions

<empty,full>

GlobalCode

{% %}

LocalCode

{% package st is new stack(100,integer); %}

Cases

<init.push(10), noexc, top, 10, integer>

<init.pop, empty, dc, dc, dc>

Figure 2: Simple stack test script

In each iteration, the value of the loop index is pushed onto the stack, and then the element
returned by top is checked. Clearly this test script fragment is not that useful in practice
and was only used to illustrate the use of embedded code. As such, it will not appear in
the full stack test script in Section 5.

Figure 2 shows an APE test script for stack containing the two test cases discussed
above. The PackagePrefix section de�nes the package pre�x, which APE places in front
of every subprogram. The ExceptionPrefix section de�nes the pre�x that APE places
in front of every exception. The SubPrograms and Exceptions sections de�ne the list of
subprograms and the exceptions of the package. The GlobalCode section contains global
Ada code (omitted in this example). APE places this code at the top of the generated test
driver. The LocalCode section contains code that is placed in the driver after the speci�ca-
tion of the driver procedure. The test programmer can use the GlobalCode for with/use
clauses. The LocalCode can be used for stubs, local variables, and utility functions that
are used in the test cases. In this case, the LocalCode de�nes the variable st that holds
an instance of the stack. Finally, the Cases section contains the test cases proper.

4.2 Test Program Generation

Although implementing test drivers manually is straightforward, it is also time-consuming,
repetitive, error-prone, and produces code that is costly to maintain. As a result, test driver
generation is a good candidate for automated support. In this section we briey describe
how APE accomplishes test driver generation.

The APE system owchart is shown in Figure 3|ovals indicate human readable �les
and boxes indicate executable programs. The test script for package P is prepared in a �le

5



�
�

�
�P.script

?

APE

?�
�

�
�Pdriver.ada

?

Ada compiler

?

test program

�
�

�
�package P

Figure 3: APE system owchart

P.script by the test programmer. APE reads that script and generates an Ada driver in
the �le Pdriver.ada. This driver is then compiled and linked with the implementation
of P. When the resulting test program is executed, the test cases in the �le P.script are
run against the implementation and any errors are reported.

To generate the test driver, APE �rst generates code to record exception occurrences.
Then, for each test case of the form:

h c1:c2: � � � :cN , expexc, actval, expval, type i

code is generated to:

invoke c1:c2: � � � :cN
compare the actual occurrences of exceptions to expexc
if there are any di�erences

print a message
else

if actval 6= expval

print a message
if exceptions have occurred since cN was invoked

print a message

6



Assumptions
maxsize > 2

Special values
Module state

size of stack: f0; 2; maxsizeg
Access routine parameters

none
Test cases

for each i 2 f0; 2; maxsizeg
load stack with 10; 20; : : : ; 10� i

call push, pop, top, depth
check return values of top and depth

check exception behavior of push, pop, and top

Figure 4: stack test plan

update summary statistics

Each test case generates a number of Ada statements (typically 15{20) enclosed in a
begin/end pair. As it appears, embedded code is entered into the generated code. Thus,
when a for loop appears above a test case, all of the code generated by the case will be in
the loop body. Following the last case, code is generated to print summary statistics.

5 APE Methodology

Before writing a test script, it pays to develop a test plan, which describes the strategy for
selecting and executing the tests, and any assumptions on which the testing depends. The
test plan allows review of the adequacy and feasibility of the testing before the script is
written and supports maintenance afterwards.

Test selection is done manually, based on the principles of functional testing. For a
module P , critical values for P 's internal state are determined. For each subprogram p,
and parameter x, critical values for x are chosen. Ideally, we would test all calls with
all combinations of critical parameters and internal state values. When this approach
results in too many test cases, we reduce the number of test cases based on intuition and
experience. One of our goals, however, has been to increase the number of test cases that
can be tested economically.

The test plan for the stack is shown in Figure 4. For stack, internal values are easily
controlled by procedures and observed with function calls. Test data selection for stack
focuses on the number of elements pushed onto the stack. Special values are 0 and maxsize,
because they represent an empty and a full stack, and one value in between, for which we
have chosen 2 in this case. For each of these values, we consider normal and exceptional
behavior.

Figure 5 contains a test script implementing the test plan in Figure 4. The PackagePrefix,

7



LocalCode

{%

package st is new stack(100,integer);

i: integer;

procedure load (n: in integer) is begin

st.init;

for i in 1..n loop st.push(i*10); end loop;

end load;

%}

Cases

<load(0).push(10), noexc, top, 10, integer>

<load(0).push(10), noexc, depth, 1, integer>

<load(0).pop, empty, dc, dc, dc>

<load(0).{%i:=st.top;%}, empty, dc, dc, dc>

<load(0), noexc, depth, 0, integer>

<load(2).push(30), noexc, top, 30, integer>

<load(2).push(30), noexc, depth, 3, integer>

<load(2).pop, noexc, top, 10, integer>

<load(2).pop, noexc, depth, 1, integer>

<load(2), noexc, top, 20, integer>

<load(2), noexc, depth, 2, integer>

<load(100).push(0), full, dc, dc, dc>

<load(100).pop, noexc, top, (100-1)*10, integer>

<load(100).pop, noexc, depth, 100-1, integer>

<load(100), noexc, top, 100*10, integer>

<load(100), noexc, depth, 100, integer>

Figure 5: stack test script

8



LocalCode

{%

package st is new stack(100,Complex.Number);

i: Complex.Number;

function e2i (Val : in Complex.Number) return Integer is begin

return (Complex.Real_Part(Val)*1000+Complex.Imaginary_Part(Val));

end e2i;

function i2e (Val : in Integer) return Complex.Number is

R, I : Integer;

begin

I := Val mod 1000; R := (Val - I) / 1000;

return Complex.Make (R, I);

end i2e;

procedure load (n: in integer) is begin

st.init;

for i in 1..n loop st.push(i2e(i*10)); end loop;

end load;

%}

Cases

<load(0).push(i2e(10)), noexc, e2i(top), 10, integer>

<load(0).push(i2e(10)), noexc, depth, 1, integer>

<load(0).pop, empty, dc, dc, dc>

<load(0).{%i:=st.top;%}, empty, dc, dc, dc>

<load(0), noexc, depth, 0, integer>

<load(2).push(i2e(30)), noexc, e2i(top), 30, integer>

<load(2).push(30), noexc, depth, 3, integer>

<load(2).pop, noexc, e2i(top), 10, integer>

<load(2).pop, noexc, depth, 1, integer>

<load(2), noexc, e2i(top), 20, integer>

<load(2), noexc, depth, 2, integer>

<load(100).push(i2e(0)), full, dc, dc, dc>

<load(100).pop, noexc, e2i(top), (100-1)*10, integer>

<load(100).pop, noexc, depth, 100-1, integer>

<load(100), noexc, e2i(top), 100*10, integer>

<load(100), noexc, depth, 100, integer>

Figure 6: stack script for complex numbers

9



ExceptionPrefix, Subprograms, Exceptions, and GlobalCode sections are the same as
in Figure 2. load is a utility function declared in the LocalCode of the test script; it takes
an integer n as a parameter and pushes the elements 10; 20; : : : ; 10�n onto the stack. For
each special value for the number of elements pushed onto the stack, there are a number
of test cases that exercise a stack of that size. There are �ve test cases for an empty and
full stack, and six for a partially full stack. When the code generated by the stack script in
Figure 5 is run, it executes the 16 test cases giving 100% statement coverage of the stack
implementation.

5.1 Testing generic packages

Ada generics allow a programmer to implement a package independently of the type it
manipulates. The stack described in Section 3 is implemented as a generic Ada package
that takes the maximum size and the element type as a parameter. A naive approach
to testing generic packages would require a di�erent test script for each element type.
Development costs would be low because each new test script could be quickly adapted
from the integer script. Maintenance costs would be high, however, because each change
would have to be applied manually to each script.

We can use a single test script for all element types if we represent each element type
as an integer. With the introduction of the two functions i2e (integer-to-element) and e2i

(element-to-integer) this can be done with minimal e�ort. To test a generic stack package
that stores elements of type e, the function i2e will take an integer parameter and return
an element of type e. Similarly, the function e2i will take an element of type e and return
an element of type integer.

For example, suppose that we are testing a stack of complex numbers, implemented
as an Ada package. We de�ne mappings from the complex number a + bi to the integer
n = 1000a+b, and vice versa. Speci�cally, the function i2e takes an integer as a parameter
and returns the corresponding complex number, and the function e2i takes a complex
number as a parameter and returns the corresponding integer. Suitable restrictions on the
values of a and b make these mappings one-to-one, and still permit thorough testing. The
test script for stack using this technique is shown in Figure 6. With this technique the
e�ort to modify a script to test a generic package with a di�erent element type typically
requires less than 10 lines of code.

6 Case study : Abst Simple Map Generic

6.1 Interface overview

The Abst Simple Map Generic (hereafter map) package implements a function on objects
of one type, the domain, yielding objects of a second type, the range. A map thus de�nes
a dynamic collection of bindings from the domain to the range; an arbitrary number of
bindings can be created, modi�ed, and destroyed over the lifetime of a map. The domain
and the range are typically di�erent types, although they may be the same type. For every
object of the domain, there can exist no more than one object of the range. The converse
is not true; a range object can be associated with one or more domain objects

10



The_Name : in String;

type Domain is private;

type Range_Of_Map is private;

Default_Range : in Range_Of_Map;

The_Number_Of_Buckets : in Baty_System_Types.Initial_Maximum;

with function Hash(The_Domain: in Domain)

return Baty_System_Types.Hash_Value;

The_Subsystem_Id: Baty_Subsystem.Id;

Error_Severity_When_Domain_Not_Bound: in

Baty_Event_Handler_Interface.Severity :=

Baty_Event_Handler_Interface.Serious_But_Not_Fatal;

Figure 7: map generic parameters
.

Map is an generic Ada package which takes the parameters shown in Figure 7. The Name

is the name of the map, which is used in error reporting. Default Range is returned by
the function View Of when the domain speci�ed as the parameter is not found in the map.
Because map is implemented with a hash table, a hash function (Hash) and a bucket count
(The Number Of Buckets) must be provided. For a given domain object, Hash must always
yield the same key. The Subsystem Id is the name used by the private memory manager in
the map and Error Severity When Domain Not Bound is the default severity with which
errors are reported.

Map provides the operations shown in Figure 8. Bind(d,r,m) adds the pair hd; ri to the
map m. If d 2 m, then Serious But Not Fatal Error is raised. If map runs out of storage
space, then Wild And Fatal Error is raised. Unbind(d,m) deletes the entry with domain
value d from m. If there is no such entry in m, then Serious But Not Fatal Error is
raised. Bound(d;m) returns true if d 2 m and false otherwise. View Of(d,m) returns the
range value associated with d. If there is no such entry then an error with the instantiated
severity is raised, the default being Serious But Not Fatal Error. Iterate Generic

and Iterate With State Generic each take a procedure p as a generic parameter. p

is applied to each entry visited in map, without modifying map. Procedure Process in
Iterate With State Generic takes an extra parameter, s.

6.2 Automated testing

Before developing our own test driver for map, we studied a driver written by an experi-
enced industrial tester. This driver was carefully written and documented, and achieved
100% statement coverage of the code. However, it also had some drawbacks, commonly
found in even the best industrial test drivers we have seen:

11



procedure Bind(d : in Domain; r : in Range_Of_Map; m : in out Object_Ref);

procedure Unbind(d : in Domain; m : in out Object_Ref);

procedure Bound(d : in Domain; m : in Object_Ref);

procedure View_of(d : in Domain; m : in Object_Ref);

procedure Iterate_Generic(m : in Object_Ref; p : in Process);

procedure Iterate_With_State_Generic(m : in Object_Ref; p : in Process;

s : in out State);

Figure 8: map subprograms
.

for n 2 f0; 1; 2; 5; 500g
Exception testing:
load(n)

for i in 1; : : : ; n
Check that Bind(i,2� i) raises an exception
Check that Unbind(n+ 1) raises an exception
Check that View Of(n+ 1) raises an exception

Normal case testing:
load(n)

Invoke Iterator Generic; Check the sum of the range values.
Invoke Iterator With State Generic; Check the sum of the range values.
for i in 1; : : : ; 500

if i � n

Check that i 2 map

Check that View Of(i) gives the correct range value
Check that Unbind(i) removes the element with domain value i

else
Check that Bound(i) returns false

Helper Routine
load(n)

Destroy the map
for i 2 1; : : : ; n

Bind(i,2� i)

Figure 9: Partial test plan for programmatic map test script

12



� it was lengthy and expensive to develop,

� it was di�cult to enforce standardization between it and other drivers, resulting in
high maintenance costs, and

� it missed many interesting combinations of special values.

These drawbacks are di�cult to avoid without considerable upfront investment in method-
ology and tool development. In practice, testers can rarely a�ord to make this investment.

With an APE script, it is possible to test map much more thoroughly with less ef-
fort. Using loops in embedded code, a compact script can generate tests covering all the
combinations of special values. A partial test plan for such a map test script is shown in
Figure 9. Test case selection focuses on the number of elements in the map. For each of
these values we consider both the normal and the exceptional behavior. The testing of
exceptions is done by trying to Bind domain values that are already bound, and trying to
Unbind and get the View Of values that are not currently bound.

The normal case tests begin by exercising the iterators. To simplify output checking,
the Process function passed as a parameter merely computes the sum of the domain
values. If the sum is correct, it is very likely that the iterator implementation has visited
every map element exactly once. We frequently use such spot checks to produce \pretty
good output checking" at very low cost. Frequently, the only practical alternative is to
omit the test entirely. The remaining normal case tests are inside a loop, with i ranging
from 1 to 500. When i � n, i should be bound. The script checks that this is so, and that
View_Of returns the correct range value. Then the script unbinds i and checks that the
unbind was successful. When i > n, i should not be bound; the script checks that this is
so.

The full test script based on this test plan is given in the Appendix. The script uses
Complex Number as the domain type and Integer as the range, and uses the e2i/i2e
technique described in Section 5.

6.3 Results

The results of applying APE methodology to the map package show that an APE script
can achieve the same level of coverage as a handcoded driver with a substantial reduction
in the lines of code that need to be written (see Table 1). Also the number of tests that
are run using APE is much larger than that of the handcoded driver.

Table 2 shows the statement coverage obtained against the number of elements in the
map. When we say the map has n elements, it means the map contains elements from 1
to n. Note that even with 0 elements we already get 69% coverage. However, even though
we get close to 100% coverage with a small number of elements, we need a larger number
to actually reach 100% coverage.

7 Conclusions

A practical and widely applicable approach for module testing has been presented. APE
is most e�ective for packages accessed through subprogram calls. When package testing

13



number of tests LOC statement coverage (%)

industrial driver 36 579 100
APE script 7556 123 100

Table 1: Comparison of hand coded driver driver and APE script

number of elements statement coverage (%)

0 69
1 97
2 97
5 97
500 100

Table 2: Number of elements and statement coverage

is done as described above, information hiding tends to reduce test case maintenance.
Because information hiding reduces changes to package interfaces, changes to tests based
on those interfaces are also reduced. Cases selected on the basis of package implementations
will still be sensitive to change. However, most cases are based on the interface alone|
these will change only when the interface does.

Preliminary results, following experimental application of APE to some commercially
developed packages, indicate that APE test scripts are more concise than customized test
drivers, while achieving the same level of control-ow coverage, and much better coverage
of combinations of parameter and state values. Also, APE scripts yield greater consistency
in the way unit tests are written, improving comprehensibility and reducing maintenance
costs.

Acknowledgements

This research was funded by formalWARE, a two-year industry/university collaborative
research project sponsored by the British Columbia Advanced Systems Institute, Hughes
Aircraft of Canada Limited, and MacDonald Dettwiler Associates. Part of the work was
carried out during the internship of one of the authors from May 1 1997 to December 6
1997 at the International Airspace Management Systems Division of Hughes Aircraft of
Canada Limited in Richmond, Vancouver.

References

[1] S. Barbey. Testing Ada 95 object-oriented programs. In M. Toussaint, editor, Ada in

Europe: second International Eurospace Ada Europe Symp., pages 406{418. Springer
Verlag, 1995. Lecture Notes in Computer Science 1031.

14



[2] S. Barbey and D. Buchs. Testing Ada abstract data types using formal speci�cations.
In M. Toussaint, editor, Ada in Europe 1994, pages 76{89. Springer Verlag, 1994.
Lecture Notes in Computer Science 887.

[3] R.V. Binder. Testing object-oriented software: A survey. Software Testing, Veri�ca-

tion, and Reliability, 6:125{252, 1996.

[4] S.P. Fiedler. Object-oriented unit testing. Hewlett-Packard Journal, pages 69{74,
April 1989.

[5] P.G. Frankl and R.K. Doong. The ASTOOT approach to testing object-oriented
programs. ACM Trans. on Software Engineering Methodology, 3(2):101{130, 1994.

[6] M.J. Gallagher and V.L. Narasimhan. A software system for the generation of test
data for Ada programs. Microprocessing and Microprogramming, 38:637{644, 1993.

[7] J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction implementation, speci�-
cation and testing. ACM Trans. Program Lang. Syst., 3(3):211{223, July 1981.

[8] D.M. Ho�man. A CASE study in module testing. In Proc. Conf. Software Mainte-

nance, pages 100{105. IEEE Computer Society, October 1989.

[9] D.M. Ho�man and P.A. Strooper. Automated module testing in Prolog. IEEE Trans.

Soft. Eng., 17(9):933{942, September 1991.

[10] D.M. Ho�man and P.A. Strooper. Software Design, Automated Testing, and Mainte-

nance: A Practical Approach. International Thomson Computer Press, 1995.

[11] D.M. Ho�man and P.A. Strooper. The testgraphs methodology|automated testing
of collection classes. Journal of Object-Oriented Programming, 8(7):35{41, 1995.

[12] D.M. Ho�man and P.A. Strooper. ClassBench: A methodology and framework for
automated class testing. Software: Practice and Experience, 27(5):573{597, 1997.

[13] AdaTEST the solution for testing ada software. http://www.iplbath.com/.

[14] G. Murphy, P. Townsend, and P.S. Wong. Experiences with cluster and class testing.
Commun. ACM, 37(9):39{47, 1994.

[15] D.J. Panzl. A language for specifying software tests. In Proc. AFIPS Natl. Comp.

Conf., pages 609{619. AFIPS, 1978.

[16] S.R. Waterman. Techniques for testing Ada 95. In K. Hardy and J. Briggs, editors, Re-
liable Software Technologies|Ada-Europe '97, pages 278{291. Springer Verlag, 1997.

15



Appendix

PackagePrefix

"Map"

ExceptionPrefix

"Baty_System_Exceptions"

SubPrograms

<destroy,bind,unbind,bound,view_of,iterate,iterator_with_state_generic>

Exceptions

<Wild_And_Fatal_Error,Serious_But_Not_Fatal_Error>

GlobalCode

{%

with Baty_System_Exceptions;

with Abst_Names; -- For Map Subsystem Id

with Baty_System_Types; -- For Hash Function

with Tms; -- For testmate

%}

LocalCode

{%

function Hash (Val : Integer) return Baty_System_Types.Hash_Value;

K,tmp_sum1,tmp_sum2 : Integer;

loadsize:array(1..5) of Integer :=(0,1,2,5,500);

Max_Map_Size : Baty_System_Types.Initial_Maximum := 10;

package Map is

new Abst_Simple_Map_Generic (Domain => Integer,

Range_Of_Map => Integer,

Default_Range => K,

The_Name => "The_Map",

The_Number_Of_Buckets => Max_Map_Size,

Hash => Hash,

The_Subsystem_Id => Abst_Names.Subsystem_Id);

Integer_Map : Map.Object_Ref;

function Hash(val: Integer) return Baty_System_Types.Hash_Value is

i: integer;

begin

i := val rem 10;

if i = 0 then

i := 10;

end if;

return Baty_System_Types.Hash_Value(i);

end hash;

procedure load(n: in Integer) is

begin

Map.Destroy(Integer_Map);

for i in 1..n loop

Map.Bind(i,2*i,Integer_Map);

end loop;

end load;

function exp_sum(n: in integer) return integer is

16



s: integer := 0;

begin

for i in 1..n loop

s := s+i;

end loop;

return 2*s;

end exp_sum;

procedure Process1(The_Domain: Integer;

The_Range:Integer;

Continue: in out Boolean) is

begin

tmp_sum1 := tmp_sum1 + The_Range;

end Process1;

procedure Process2(The_Domain: Integer;

The_Range: Integer;

The_State: in out Integer;

Continue: out Boolean) is

begin

tmp_sum2 := tmp_sum2 + The_Range;

Continue := True;

end Process2;

package p1 is new Map.Iterator_Generic(Process => Process1);

package p2 is new Map.Iterator_With_State_Generic(Process => Process2,State =>

Integer);

%}

cases

{%

for i in 1..loadsize'last loop

load(loadsize(i));

for j in 1..loadsize(i) loop

%}

<unbind(loadsize(i)+1,integer_map),Serious_But_Not_Fatal_Error,dc,dc,dc>

<{%k :=

map.view_of(integer_map,loadsize(i)+1);%},Serious_But_Not_Fatal_Error,dc,dc,dc>

<bind(j,j,integer_map),Serious_But_Not_Fatal_Error,dc,dc,dc>

{%

end loop;

end loop;

for i in 1..loadsize'last loop

%}

<load(loadsize(i)).destroy(integer_map).load(loadsize(i)),noexc,dc,dc,dc>

{%

tmp_sum1 := 0;

tmp_sum2 := 0;

p1.iterate(over_the_map => Integer_map);

p2.iterate(over_the_map => Integer_Map,With_The_State => k);

%}

<, noexc,tmp_sum1,exp_sum(loadsize(i)),integer>

<, noexc,tmp_sum2,exp_sum(loadsize(i)),integer>

17



{%

for j in reverse 1..1000 loop

if j <= loadsize(i) then

%}

<,noexc,bound(j,integer_map),true,boolean>

<{%k:=map.view_of(integer_map,j);%},noexc,k,2*j,integer>

<unbind(j,integer_map),noexc,bound(j,integer_map),false,boolean>

{%

else

%}

<, noexc,bound(j,integer_map),false,boolean>

{%

end if;

end loop;

end loop;

%}

<load(100).unbind(10,integer_map),noexc,dc,dc,dc>

18


