Formal Representation of Safety Verification Conditions

K. Wong

Department of Computer Science
University of British Columbia
Vancouver, BC, Canada V6T 174
tel (604) 8224912fax (604) 8225485
kwong@cs.ubc.ca

J.J. Joyce

Hughes Aircraft of Canada Limited
#20013575Commerce Parkway
Richmond, BC, Canada V6V 2L1

tel (604)2795721fax (6042795982
jjoyce@cogate.hac.com

Abstract

This paper identifies the software information that must be represented in a formal spedficaion d source
code level “safety verificaion condtions’ (SVCs) for an oljed-oriented software system. The formali zaion
does not necessrily require anotation with oljed-oriented constructs. In particular, a semanticaly simpler
notation kased on typed predicate logic is adequate for representing these cndtions. The forma source
code level SVCs are used as input into software safety verificaion. However, formalizing the condtionsin
itself contributes to the safety analysis, by requiring a caeful examination o the source @de in order to
identify the relevant software dements. The formalizaion is the final step of a process involving the
refinement of system level SVCsinto source @de level SVCs. The processis outlined and demonstrated for
ahypotheticd chemicd fadory information system.

1. Introduction

An important step in the development of a software-intensive safety-criticd system is the static analysis of the
source @de in order to raise aswrance that the system is sfe. Typicdly, safety is defined in terms of a set of
system hazads, and static analysis will i nclude review of the source mde with resped to these hazads. The
review must focus on the safety-criticd source mde and determine the risk of the software cntributing to a
hazad.

One gproadc to the static analysisisto derive system level “safety verificaion conditions’ (SVCs) from
the hazad and to use them as a guide in urcovering the hazad-related code and in performing the analysis [3].
However, hazads and the system level SVCs tend to be high-level statements of system behavior, far removed
from the software implementation. It is necessary to identify the relevant software cmmponents and attributes,
which must then be communicated to stakeholders, such as g/stem developers and ather safety enginees.

This paper outlines a processfor refining system level SVCsinto source ode level SVCs. Furthermore,
the source @de level SVCs are expressd in a “codified form” [8], using clealy defined rules of expresgon.
The goal isto oktain explicit and predse spedficaion of the relevant software cmponents and attributes in the
system level SVCs, in order to have amore dfedive static analysis of the source mde.

In creding a adified form of the source mde level SVCs, it is necessary to determine which aspeds of
the software achitecure must be captured. In the cae of a system with an objed-oriented architedure, this
includes particular objed-oriented feaures of the cwde. Since the source @de level SVCs esentialy spedfy
safe software behavior, which for an objed-oriented system is described by objed interadions, the relevant
objed-oriented feaures are objeds and their state and behavior. Though objeds are typicdly instances of a

class which may belong to a dass hierarchy, the source @de level SVCs do not require spedficaion of the
underlying static dass $ructure.

The notation used to codify the source @de level SVCs must be ale to represent the relevant objed-
oriented feaures. One posshility would be formal notation with objed-oriented constructs, such as one of the
objed-oriented approaches to Z [1]. Such notations are particularly suited for formally spedfying an objea-
oriented design, which includes the dasses and their static relationships. However, as the source @de level
SV Cs only make reference to the software behavior and not the underlying logicd classdesign, a semanticaly
simpler notation is adequate for representing the anditi ons.

In this paper, a notation based on typed predicate logic is used to spedfy the source ®mde level SVCs.
With this notation, the relevant objed-oriented feaures, objed state and behavior, are catured in asimple and
natural way, by asciating types with classes and functions with classattributes.

In Sedion 2, a processis outlined for the refinement of the source @de level SVCs from system level
SVCs. Sedion 3 describes the basic information that isto be catured in a adified form of the source @de level
SVCs. A safety-criticd information system for a chemicd fadory isintroduced in Sedion 4, along with a system
hazad. A system level SVC, generated from analysis of the hazad, is presented in Sedion 5. The software
architedure and the hazad-related modules are identified in Sedion 6, and then used to crede functional block
level SVCs. The source mde is examined, in Sedion 7, to crede source @de level SVCs. S, which is a notation
based on typed predicate logic, is introduced in Sedion 8. Sis then used, in Sedion 9, in the formali zaion of
the source @de level SVCs. A discusson follows in Sedion 10, while Sedion 11 provides a summary of the

paper.

2. Stepwise Refinement of Safety Verification Condtions

This paper is based on a process where source @de level “safety verificaion conditions’ (SVCs) are derived
from system level SV Cs. The source @de level SVCs are then used during a static analysis of the source @dein
suppart of system safety verificaion.

Theinputs for the stepwise refinement of the system level SVCs are:

. A set of system level SVCs.
. Description of the software design and ar chitecture.
. Sour ce code for therelevant softwar e components.

The output of the processis:

. A set of source codelevel SVCs. The source mde level SVCs are expressed in a adified form
that refers diredly to the software objeds and their attributes, where the satisfadion of these
source @delevel SVCsis sufficient to satisfy the input system level SVCs.

There aethreedistinct stepsin this process

1 The system level SVCsarerefined into functional block SVCs. The software design and architecure
are examined for the hazad-related functionality, which is then partitioned into “functional blocks’, i.e.,
into blocks of code that exeaute in diff erent processes. The functional blocks can be viewed as
procedures with well -defined input and output parameters. The system level SV Cs are then refined into
conditions on the functional block’s input and output, as well as a set of timing constraints.

2. The functional block SVCsare refined into sour ce code level SVCs. The source ®de for eat
functional block is examined to determine the relevant source @de objeds and their attributes.
3. The source code level SVCsaretrandated into a codified form. Theinformal description of the

source @de level SVCsisre-written in amore predse form.

3. Formalizaion d Safety Verificaion Condtions

The final step of the processof deriving source @de level SV Csinvolves trandating the source @de level SVCs
into a adified form. For a system with an objed-oriented software achitedure, the choice of representation
must be sufficiently expressve to represent the objed-oriented feaures that are captured in the source ®@de level
SVCs.

3.1 Codified Form

A “codified form” is aterm used by De Marco to motivate structured analysis [8]. A codified form involves a
choice of representation with clealy defined rules of expresson, along with validation chedks that can be
performed agorithmicdly. Thoughthis could involve aformal syntax, the expressons could also be non-textual,
such as data flow or objed-scenario dagrams.

There ae anumber of motivations for having a wdified form of the source ®de level SVCs. For
example, they would then be less sibjed to persona style and more amenable to systematic review by pees.
Furthermore, if a machine-readable notation were used, there would be the potential for toal-based suppart.

3.2 SVCs and Object-Oriented Software

In order to choose a appropriate notation for representing the source @de level SVCs, it isfirst necessry to
identify the software feaures that must be spedfied. The SVCs are esentially constraints on system behavior,
which for an objed-oriented system is described in terms of objed interadions. Therefore, the relevant software
feaures are objeds and their behavior.

Objeds may be described in terms of their identity, state and behavior [5]. An objed state is determined
by a set of properties and their values at a given instant of time. Objed behavior is described in terms of the
ohjed’s gate changes and message passng. In general, the objed behavior is a function of its state and the
operations performed upon it.

The SV Cs constrains the system behavior by defining afina “safe” state, given by a set of objed states,
in terms of ealier events, operations and oljed states. As auch, aformal notation must be ale to represent:

. Symboalic instants of time, i.e., through variables sichas“T” and “T1";
. Symboalic data values, i.e., through \eriables sich as“D” and “D1";

. Symboalic objed references, i.e., through \eriables such as “Sensor” and “Message”;
. Objed states, where astate is defined in terms of a set of values corresponding to named attributes;

. An occurrence of events in an “uninterpreted” manner, i.e., naming the event without the operational
details;

. Relationships between data values, as well as functions on the data values, in an “uninterpreted” manner;

. Standard propasitional logic connedives, as well as quantification over variables.

Objeds are typicdly an instance of a dass where the objed properties correspond to classattributes, and
the operations on objeds correspond to class operations. The dass will often be part of a dass hierarchy,
conneded to the other classes through relationships sich as inheritance and aggregation. Though a safety
analysis of the source mde will eventually involve tradng through the dass hierarchy to identify the relevant
objed code, the SV Cs themselves do not require spedficaion of the underlying static dass sructure.

Furthermore, though the SVCs do spedfy objed states at particular instances of time, they do not
describe objed dynamics. In other words, it will not be necessary to model the objea behavior over time. Unlike
software design and architecdure atifads, the SVCs do not provide amodel of the system, but simply represent
what constitutes sfe system behavior.

One useful feaure that a notation should provide is traceility between the objeds referenced in the
source ®de level SVCs and the source ®@de. This is important during the static analysis, which involves
examination of the relevant objeds in the source @de. For example, this tracedility could be adieved by

lexicd similarity between the ways objeds are referenced in the source ®de, to the ways they are referenced in
the aonditions.

3.3 Choice of Notation

The notation used to represent the source ®@de level SVCs must be able to capture the objed-oriented feaures
discussd in the previous ®dion. An obvious choice would be an objed-oriented formal notation, such as one
of the objed-oriented extensions to Z [1]. These ae particularly useful when spedfying the system’s objea-
oriented design.

However, spedficaion of the source mde level SVCs requires capturing only certain objed attributes
and behavior, and not the logicd design of the system. Therefore, the choice of notation should not be based on
how redily it can dupli cate the detail s of the objed-oriented design. In fad, there would be alvantagesin using
asemanticdly simpler notation, without the objed-oriented constructs.

In particular, a notation based on atyped predicate logic would be alequate for speafying the conditions.
For example, the semantics of one formulation of typed predicate logic, namely, the “term language” of the HOL
system, can be given by just five aioms and eight inferencerules[6].

The notation used in this paper is S [3], which is a madcine-readable spedficaion notation based on
typed higher-order logic, and is closely related to HOL’s term language. As well, S is supparted by the type-
chedker Fuss and S spedficaions may also be used asinput into the HOL theorem prover.

4. Example - Chemicd Fadory Information System

For ill ustration purposes, we mnsider a hypotheticd red-time safety-criticd information system for a dnemicd
fadory, with Ada-based software achitedure. In particular, the ade is written in Ada 83, which is an objed-
based language with suppart for encapsulation, but not for inheritance, and has been used in many safety-criticd
systems. This particular system is safety-criticad in the sense that its purpose isto provide information to human
operators who make aiticd dedsions.

4.1 System Description

The physicd layout of the factory consists of a set of reador vessls ead with a pair of redundant but prioriti zed
sensors that record vessel data such as the temperature. The sensors are wnneaded over a LAN to a central
server and a set of operator consoles. The chemicd fadory control system runs on the central server and the
operator consoles, maintaining and processng the vessl information as it is receved over the LAN, which it
displays on the operator console monitors.

4.2 Safety-Related Hazard

Following a process sich as the system safety engineaing processoutlined in [2], we asume that the display of
an "invalid" value & the temperature of avessl isidentified as a system hazad for the dhemicd fadory control
and monitoring system.

Hazard: Aninvalid temperature, D, is displayed for vessel V at time T.

It may be sssumed that the identificaion of this hazad resulted from some eailier analysis which shows that the
display of an invalid value & the temperature of a vessl, in combination with other conditions, could lead to a
mishap such as a fire or explosion. Further analysis of the hazad reveds that a displayed value may be invalid
becaise it has been corrupted or because it has become stale.

5. System Level Safety Verificaion Condtions

The system level SV Cs are used as input into the process described in Sedion 2, for deriving the codified form
of the source mde level SVCs. The system level SVCs areinitially generated in suppart of a rigorous argument
about the system safety, i.e., an argument that a system hazad dces not occur. A brief sketch of the agument for
the chemicd facory hazad is given below, while full details can be found in reference[3].

The agument begins with the assumption that the hazadous conditi on identified in the previous sdion
is possble. The analysis then proceels in a stepwise manner by attempting to show that this assumption leads to
a logicd contradiction. The analysis of this particular hazad will branch as a result of reasoning by cases.
When the analysis branches into one or more caes, eat branch must be "closed”" by showing that ead branch
leads to alogicd contradiction. In the murse of generating contradictions, system level SVCs are introduced.
Eadch system level SVC is intended to be the minimum condition required to close aparticular branch of the
analysis.

The result of the analysis of the hazad is the discovery of six distinct system level SVCs. The following
is an example of one the system level SVCs:

Safety Verification Condition:

For all vessels, v, displayed temperatures, d, and times, t, if the displayed temperature of vessel v is set
to d at time t, then at some time no earlier than MAX_SYSTEM_PROPAGATION_TIME milliseconds
before t the system received a report from the external sensor monitoring system that the temperature
of vessdl visd.

MAX_SYSTEM_PROPAGATION_TIME isa mnstant that spedfies the maximum time the system should take to
display avessl temperature on the screen after recaving a sensor update for that vessl.

6. Functional Block Level Safety Verificaion Condtion

Thefirst step in the processof creaing source @de level SV Cs takes as input the system level SV Cs, along with
the software design and architedure, and creaes as output a set of functional block level SVCs. This gep
involves identifying the hazad-related functionality and modules, and then partitioning the functionality into
blocks, which exeaute in separate processes. Ead of these “functional blocks’ can be treded as a procedure,
with well -defined input and output parameters.

The system level SVCs integrates gystem functionality and timing issues, which will be dedt with
separately in the functional block level SVCs. This sparation of functionality and timing issues then leads to the
posshility of deriving functional block pre- and past-conditions from the non-temporal functional block SVCs

[3].
6.1 The Hazard-Related Code

The hazad concerns the display of invalid vessl temperatures, where an update in the display of vessl
temperature is typicdly the result of system reception of vessl sensor data. The functionality involved in the
reception, processng and display of avess temperature are depicted in Figure 1, using the Booch notation [5].
This includes the interfaceto the sensors, which is provided by the Sensor Interfacemodule, the processng of
the sensor information, which is performed by the SensorServer module, and the user interface which is
maintained, by UIManager module.

In general, a seach for the hazad-related code will i nvolve more than just the “forward” functionality,
beginning with the standard sensor inputs, described above. Any system functionality that could contribute to a
hazad must be identified, which is best performed by a “badkward” trace of the system, beginning with a
hazadous output and then following the amde badkwardsto all potential system inputs[3].

Sensor
Interface

RealLAN
| Sensor Server

1. Call Process Monitor Sensor

Sensors Staleness

2. Schedule
 —

3a. Broadcast

UIM anager

Rea
Broadcast 3b. Broadcast

] ¥
Ve
5. Call
Display
Block
|:I Procedure Update 6. Cal
Temperature y y

COTS Roduct

% Module N

Figure 1 Temperature data flow highlighting the key modules and procedures.

6.2 The Functional Blocks

It is convenient to partition the hazad-related code into smaller blocks of functionality. The partition is
performed along dynamic lines, i.e., acording to functionality that exeaute in diff erent processes. For example,
this could involve aprocesson a different computer, or a different “thread”, i.e., a lightweight process on the
same processor. Such a partition will alow for reasoning about the dfed of properties such as concurrency and
the order of exeaution of ead block, on safety.

The blocks are uncovered by following the relevant exeaution sequences until a procedure cdl resultsin
the exeaution of code in a new process The input parameters of the procedure cdl are then the input parameters
of this functional block. The exeaution sequences are then followed urtil a procedure cadl results in system
output or the exeaution of code in different process The system output, or the input into the new process is the
functional block output.

The hazad-related functionality for the dhemicd fadory information system can be partitioned into three
different functional blocks, as siown in Figure 2.

When the external sensor monitoring system sends a LAN message to the information system, the LAN
messge is read by the procedure ReadLAN and then processed by the procedure Pr ocessSensors. We
regard the reading and processing of a LAN message in this manner as a single functional block,
LANToBroadcast.

Processng of a LAN message, which contains an updated sensor reading for a vessl temperature, causes
a separate process Moni t or Sensor St al eness, to beinitiated. This processisintended to mark the display
of the temperature for a vessel as "unavailable" if the most recently displayed value becomes dale. We regard
this as a second functional block, MonitorSensorStaleness of that portion of the implementation related to this
hazad.

A third functional block, BroadcastToDisplay, involving the procedures RealBroadcast and
UpdateTemperature, handles changes to the display broadcast by either ProcessSensors or
MonitorSensorStaleness

Monitor
Sensor
Staleness

Schedule Broadcast

Broadcast
To

Display

Broadcast

Figure 2 The hazard-related functional blocks.

6.3 Refinement of the System Level Safety Verification Conditions

The SVC described in Sedion 5, applies to the propagation of the temperature through the system. The two
main functional blocks, LANToBroadcast and BroadcastToDisplay, cary out this functionality with a Broadcast
medhanism providing the block communicdion, as own in Figure 2. As aresult, the system level SVC can be
refined into functional block level SV Cs involving the relevant functional blocks and the Broadcast mecdhanism.
The resulting functional block level SVCs are such that satisfying them imply that the system level SVCs are
satisfied.

The system level SVCs are described in terms of system inputs and outputs, i.e., data values and events,
at particular instants of time. To map the system level SV C onto the functional blocks, which can be viewed as a
set of procedures, the events are associated with functional block invocations and output.

As well, the time nstraints and the data conditions are dedt with in separate functional block SV Cs.
Thiswill simplify the subsequent safety analysis of the source mde. The aciation of input with output is then
made through the functional block, i.e., the functional block takes the input and creaes the output. Such a view
of the functional block level SVCslendsitself to the aedion of functional block pre- and past-conditi ons.

For example, the LANToBroadcast block takes as input a LANMessage and credes as output broadcast
messages. A functional block level SV C involving the non-temporal relationship between the input and output
is:

LANToBroadcast Functional Block Level SVC:

(1) For all broadcast messages, m, vessels, v, and temperatures, d, if the LANToBroadcast block
broadcasts message, m, with the information that the temperature of visd,

(2) then there exists a LANMessage, L, which the LANToBroadcast block received from the external
sensor monitoring system that the temperature of vessel v is d, which the LANToBroadcast block
processed into the broadcast message.

7. Source Code Level Safety Verificaion Condtions

The second step in the process of creding a a@dified form of the source @de level SVCs takes as input the
functional block level SVCs, along with the source @de, and creaes as output the informal source @de level
SVCs. This gep involves identifying the objeds in the source @de that carry out the system behavior described
by the functional block level SVCs.

The demicd fadory information system is written in Ada 83, which does not suppart a dassconstruct.
Instead, a dasscan be represented by an Ada padkage, which exports a private or limited private type, named
hj ect , which is ometimes made “public” for convenience[7]. The Cbj ect typeistypicdly an Adarecord
type, where eab component represents a dassattribute. Instances of the dassare then instances of the Obj ect
type.

The source @de level SVC for the LANToBroadcast block is given by:

LANToBroadcast Block Source Code Level SVC (informal):

(1) For all BroadcastMessages, m, Sensor Objects, r, if the LANToBroadcast block broadcasts
message, m, with Sensor Object, r, with the information that the vessel with SensorID, S, has
PresentTemperature, D,

(2) then there exists a LANMessage, L, with SensorUpdate, U, which the LANToBroadcast block
received from the external sensor monitoring system from a sensor with a Sensor CodeEstab, S1, which
is correlated to the SensorID, S and a TemperatureEstab, D1, which is converted from D, which the
LANToBroadcast block processed into the broadcast message.

The mnstruction of this source ®de level SV C from the functional block level SV C is now examined. Each part
of the functional block level SV C will be discussed in turn.

(1) For all broadcast messages, m, vessels, v, and temperatures, d, if the LANToBroadcast block broadcasts
message, m, with the information that the temperature of visd,

The outgoing broadcast message is an array of sensor objeds,

type Broadcast Message is array (SensorRange) of Sensor.Object;
Message : Broadcast Message;

The sensor objed attributes include Sl D, the sensor ID, and Sensor Tenper at ur e, the vessl
temperature reading. A sensor update is recaved from a sensor with a unique sensor ID. There is no dred
reference to external vessls in this functional block, which is only concerned with the sensors and sensor
readings. The arrelation of the sensor 1D to the crresponding vessl is performed in the BroadcastToDisplay
functional block.

The sensor objed attributes are represented in the Ada mde s,

package Sensor is
type Object is
record
SID : SensorlD;
Sensor Operation : Operation;
SensorQuality : Quality;
Sensor Tenperature : Tenperature;
end record;

Thefirst part of the functional block level SVC can be re-written as:

(1) For all BroadcastMessages, m, Sensor Objects, r, if the LANToBroadcast block broadcasts
message, m, with Sensor Object, r, with the information that the vessel with SensorID, S has
PresentTemperature, D,

(2) then there exists a LANMessage, L, which the LANToBroadcast block received from the external sensor
monitoring system that the temperature of vessel v is d, which the LANToBroadcast block processed into the
broadcast message.

The incoming LANMessage is a LANMessage objed, whose dtributes are represented in the source ®de &,

package LANMessage is
type bject is
record
LMD : LANMessagel D,
NumlUpdat es : Sensor Updat eRange;
Updat es : Sensor Updat eArray;
end record;

The sensor realings are stored in an array of Sensor Updat es,

type SensorUpdateArray is array (SensorUpdateRange) of SensorUpdat e;

where aSensor Updat e isaAdarecord type,

type SensorUpdate is
record
Interpol atedState : |Interpol ati onRange;
TenperatureEstab : Tenperature_S;
Sensor CodeEst ab : Sensor Code;
end record,;

The Tenper at ur eEst ab attribute is the raw sensor temperature reading, which is transformed into
the Sensor Tenper at ur e. The Sensor CodeEst ab attribute is the the raw sensor ID, which is converted
into the SI D.

The seaond part of the functional block level SVC can be re-written as,

(2) then there exists a LANMessage, L, with SensorUpdate, U, which the LANToBroadcast block
received from the external sensor monitoring system from a sensor with a Sensor CodeEstab, S1, which
is correlated to the SensorID, S and a TemperatureEstab, D1, which is converted from D, which the
LANToBroadcast block processed into the broadcast message.

8. Typed Predicate Logic

The source @de level SVCs may be adified using a formal spedficaion notation based on typed predicae
logic. This notation, cdled "S", was developed at the University of British Columbia to serve & a foundation
for avariety of different approaches to formal spedfication[4,9,10,11]. This ®dion provides a brief description
of S and how it may be used to spedfy source @de level SVCs in a manner which achieves a high degree of
lexicd correspondencewith objed-oriented code.

An S spedficaion is a sequence of "paragraphs’. Each paragraph is a fragment of ASCII text terminated
by a semi-colon, which serves one of the foll owing purposes:

e dedaresor defines anew type;
* introduces an abbreviation for atype expresson;

e dedaresor defines a new constant;
« dedaresor defines anew function;
e dedaresor defines anew predicae;
e expressesan assrtion.

The formalization described in Sedion 9 uses S in a particular style where objeds are represented as
"uninterpreted” types. For instance, atype named sensorObiject isintroduced by atype dedaration,

: sensorObject;

to serve & the formal representation of sensor objeds. In this syle of S spedfication, attributes of an objed are
seledively introduced as ®ledor functions. For example, the SI D and Sensor Tenper at ur e attributes of a
sensor objed, may be formally represented by apair of S function dedarations,

SID : sensorObject -> sensorlD;
SensorTemperature : sensorObject -> temperature;

which dedare SID and SensorTemperature to be functions which map values of type sensorObject to values
of type sensorID and temperature respedively.

As means of adhieving a degree of lexicd correspondence with the Ada 83 source ®de, references to
attributes of an objed may be given using "dot notation”. For example, the S expresson

Sensorl.SensorTemperature

denotes the value of the SensorTemperature of the sensor objed denoted by Sensorl. In S, dot notation is
merely postfix applicaion of a function to a value. For instance, Sensorl.SensorTemperature denotes the
applicaion of the function SensorTemperature to Sensorl. It is semanticdly equivalent to
SensorTemperature (Sensorl), i.e., prefix applicaion of afunction to avalue.

In addition to the formal representation of objeds, uninterpreted types are used to represented data values
whose @mposition is not relevant to the formali zation task. For instance, the @ove example includes references
to sensorlD and temperature, both of which are introduced as uninterpreted types by the following S type
dedarations:

: sensorlD;
: temperature;

Several other uninterpreted types are used in Sedion 9 to suppat the formalization of the source ®de level
SVCs including sensorRange, sensorUpdateRange, sensorCode and temperature_S. This use of
uninterpreted types is analogous to the typicd use of "basic types' in Z spedfications.

In the demicd fadory example, the formalizaion of the source @de SVCs includes the formal
representation of elements of the source code, which are redized as arrays. For instance, the broadcast message
creaed by the LANToBroadcast functional block is implemented as an array of sensor objeds in the source
code. For this purpose, an Stype abreviation,

: broadcastMessage == sensorRange --> sensorObject;

can be used to introduce broadcastMessage as a hame for a function type which maps an array index to a
sensor objed. As indicated by the above type breviation, the value of the aray index is constrained to be a
value of type sensorRange. Theformal representation of an array in this manner all ows array referencesto be
expressed in a manner which corresponds lexicdly to the aray referencesin the source @de. For example, the S
expresson,

Message (I).SensorTemperature

denotes the value of the SensorTemperature dtribute of the Ith element of the aray denoted by Message. In
this example, Message is either a variable or constant of type broadcastMessage and | is a variable or
constant of type sensorRange.

The formali zation of an SVC aso involves the expresson of relationships between denotable values. For
instance, Sedion 9 introduces an uninterpreted infix predicate named is_converted_temperature_of,

(_is_converted_temperature_of _) : temperature -> temperature_S -> bool;

which expresses a relationship between a value of type temperature and a value of type temperature_S. As
presented here, this predicate is left "uninterpreted” on the basis of a dedsion that the relationship expressed by
this predicate does not need to be formalized. Alternatively, this predicae could be defined, rather than
dedared, as ameans of formali zing this relationship.

9. Formalizaion d the Source Code Level Safety
Verificaion Condtions

The final step of the process of constructing codified source ®de level SVCs is the “codificaion” of the
informal source mde level SVCs. As discussd ealier, the notation used in this paper is S, which is based on a
typed predicate logic.

The formali zed source @de level SVCisgiveninitsentirety as,

forall (Message:broadcastMessage, l:sensorRange).
(let D := Message(l).SensorTemperature in
(let S := Message(l).SID in
if(Message.isBroadcast)
then (exists (LanMessage:lanMessage, J:sensorUpdateRange).
(LanMessage.isReceivedLanMessage)
AND (D is_converted_temperature_of
((LanMessage.Updates)(J). TemperatureEstab))
AND (S is_converted_sensor_code_of
((LanMessage.Updates)(J).SensorCodeEstab)))));

The formalization of ead part of the source mde level SVC is now presented.

(1) For all BroadcastMessages, m, Sensor Objects, r, if the LANToBroadcast block broadcasts message, m,
with Sensor Object, r, with the information that the vessel with SensorID, S, has PresentTemperature, D,

As discussd in Sedion 8, the S type abreviation, broadcastMessage, is used to represent broadcast
messages, which are arays of sensor objeds. The S type sensorObject is used to represent sensor objeds, and
the Sfunctions, SID and SensorTemperature, represent the mrresponding sensor objed attributes.

Thefirst part of the source mde level SVC can be represented by the foll owing S fragment:

forall (Message:broadcastMessage, l:sensorRange).
(let D := Message(l).SensorTemperature in
(let S := Message(l).SID in
if (Message.isBroadcast)

(2) then there exists a LANMessage, L, with SensorUpdate, U, which the LANToBroadcast block received
from the external sensor monitoring system from a sensor with a SensorCodeEstab, S1, which is correlated
to the SensorID, S, and a TemperatureEstab, D1, which is converted from D, which the LANToBroadcast
block processed into the broadcast message.

The Updat e attribute of a LANMessage objed is a Sensor Updat eAr r ay in the Ada Code. This array can
again be represented by atype abreviation, i.e.,

: sensorUpdateArray == sensorUpdateRange -> sensorUpdate;
Sensor updates are represented by the Stype,

: sensorUpdate;

and the S functions,

TemperatureEstab : sensorUpdate -> temperature_S;
SensorCodeEstab : sensorUpdate -> sensorCode;

represent the wrresponding sensor update atributes.

The relationship between the Tenper at ur eEst ab and Sensor Tenper at ur e attributes is denoted
by the uninterpreted, infix predicate, is_converted_temperature_of, as defined in sedion 8. Similarly, the
relationship between SID and SensorCodeEstab can be represented by the uninterpreted, infix predicate,
is_converted_sensor_code_from,

(_is_converted_sensor_code_from _) : sensorlID -> sensorCode -> bool;

The formalized segment of the SV C is then represented by the S fragment:

then (exists (LanMessage:lanMessage, J:SensorUpdateRange).
(LanMessage.isReceivedLanMessage)
AND (D is_converted_temperature_of
((LanMessage.Updates)(J).TemperatureEstab))
AND (S is_converted_sensor_code_of
((LanMessage.Updates)(J).SensorCodeEstab)))));

10. Discusson

Thoughthe mnstruction and formalization of the source @de level SV C was presented as two separate steps, in
pradice they overlapped. Using aformal notation to represent the relevant objed states resulted in a caeful and
disciplined examination of the source mde. Writing down the states in a predse manner was a useful aid in
identifying the relevant objed attributes and relationships. In particular, identifying the initial and final objed
states led to questions regarding the relationship between them, and helped to uncover intermediate operations.

In this regard, S was found to be particularly useful. The aility to represent the relevant objeds and
attribute types as smple uninterpreted S types and predicaes was an invaluable bodk-keeping device The
simple semantics and the aility to achieve lexicd similarity between the mde and the source @de level SVC
meant that using the formal notation did not complicae the cature of the relevant objea information. For
example, the use of the post-fix form of function applicéion to represent objead attributes, closely mirrored the
source @de representation of objed attributes as record fields. As a result, S did not require alarge cognitive
shift when used to record the relevant objed attributes and operations.

11 Summary

During system safety verification, it isimportant to have apredse definition of safety that captures the aiticd
aspeds of the wde. In this paper, safety was defined in terms of system level SVCs, which were refined into
source @de level SVCs. The relevant source @de dements were identified as objed states, as well as the
relationships between them. A simple typed-predicate logic was e to be an eff edive notation for representing
the objeds. In particular, it was not necessary to use an objed-oriented formal notation. The result was a dea
and predse spedfication of the relevant objeds and their states, which could be used during a safety analysis of
the source ®@de. In fad, the formalization of the source mde level SVCsitself could be mnsidered an effedive
preliminary source ®@de safety analysis.

12. Acknowledgments

This reseach was partially supparted by B.C. Advanced Systems Institute, Hughes Aircraft of Canada Limited,
and Maadonald Dettwiler. This work is a cmponent of the formaWARE university-industrial coll aborative
projed.

13. References

1 Susan Stepney, Rosalind Barden, and David Cooper (Eds), “Objed Orientation in Z”, Workshops in
Computing, Springer-Verlag, 1992

2. Nancy G. Leveson, “Safeware: System Safety and Computers’, Addison-Wedey, 1995
3. Ken Wong, M.Sc. Thesis, Department of Computer Science, University of British Columbia, 1998

4, Jeff J. Joyce, Nancy Day, and Mike Donat, “S: A Madhine Readable Spedficaion Notation Based on
Higher Order Logic”, in 7th International Workshop on Higher Order Logic Theorem Proving and Its
Applications, pp. 285299, 1994

5. Grady Booch, “Objed-Oriented Analysis and Design with Applicaions (Secwond Edition)”,
Benjamin/Cummings Pub. Co., Redwood City, California, 1994

6. Mike J. Gordon and Tom F. Melham, “Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic”, Cambridge University Press Cambridge, UK, 1993

7. Grady Booch, “Software Components with Ada”, Benjamin/Cummings Pub. Co., Redwood City,
Cadlifornia, 1987.

8. Tom DeMarco, “Structured Analysis and System Spedficaion”, Prentice-Hall, Engelwood Cliffs, N.J,
1979

9. Nancy Day, Jeff Joyce and Gerry Pelletier, “Formalizaion and Analysis of the Separation Minima for
Aircraft in the North Atlantic Region”, in 4th NASA Langley Formal Method Workshop, Hampton
Virgina, USA, September 10-12 1997

10. JH. Andrews, N. A. Day and J. J. Joyce, “Using a Formal Description Technique to Model Aspeds of a
Global Air Traffic Teleoommunications Network”, in Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols, and Protocal
Secification, Testing, and Verification, Osaka, Japan, November 18-21, 1997

11 Nancy Day, “A Model Chedker for Statecharts’, Technicd Report 93-35, UBC-CS, October, 1993

