
Executing Formal Speci�cations by Translation
to Higher Order Logic Programming

James H. Andrews

Dept. of Computer Science
University of British Columbia

Vancouver, BC, Canada V6T 1Z4

Abstract. We describe the construction and use of a system for trans-
lating higher order logic-based speci�cations into programs in the higher
order logic programming language Lambda Prolog. The translation im-
proves on previous work in the �eld of executing speci�cations by allow-
ing formulas with quanti�ers to be executed, and by permitting users
to pose Prolog-style queries with free variables to be instantiated by the
system. We also discuss various alternative target languages and design
decisions in implementing the translator.

1 Introduction

One of the early goals of formal speci�cation in software engineering
was to provide a formal model against which an implementation of
the software, or a more detailed model, could be checked. This goal
has not been fully realized in practice. But even where no tools exist
to check an implementation against a speci�cation, the process of
writing a formal speci�cation (FS) from an informal speci�cation
(IS) can still be very useful. For instance, since formal speci�cation
languages are less ambiguous than natural language, writing the FS
forces the writer to deal with ambiguous passages in the IS by asking
the writers of the IS to clarify them. The FS also casts the IS in the
form of more detailed requirements which can be tracked during the
course of system development.

Regardless of how the FS is used, however, a problem remains:
how do we know when it is correct? Any contradictory statements in
the IS which are not directly ambiguous may be translated directly
into the FS. Subtleties of the speci�cation language or unstated as-
sumptions made in the translation from IS to FS may introduce
other problems. Thus, just as we check the soundness of a software
project by writing a FS, we must somehow check the soundness of
the FS before using it as the basis of a project.

To check the FS, we can of course prove properties and conse-
quences of it using a general-purpose theorem prover such as HOL.
But this may be needlessly time-consuming, and we may �nd errors
in the FS only when we have already done a great deal of manu-
ally intensive veri�cation based on the faulty version. To make an

initial check of our FS, it is sometimes good enough simply to per-
form steps like unfolding de�nitions and checking for the existence
of terms which satisfy given formulas; in other words, to execute
the speci�cation. Thus, ironically, we can test the feasibility of a
program by writing a formal model, and test the feasibility of the
formal model by treating it as a program.

How should a speci�cation be executed? Building a custom envi-
ronment in which to execute it is an obvious choice, but needlessly
duplicates much of the e�ort that goes into building programming
languages. A more expeditious approach is to implement a program
which translates from the speci�cation language to an existing pro-
gramming language. This approach has the further advantage of giv-
ing the user access to the run-time environment and whatever static
analysis tools have been developed for the programming language.

This paper discusses the implementation of a translator from the
speci�cation language S to the programming language Lambda Pro-
log. S is a higher order logic-based speci�cation language developed
at the University of British Columbia by Je�rey Joyce, Nancy Day
and Michael Donat [JDD94]. It is a central focus of the FormalWare
project, an industry-funded technology transfer project concerning
formal methods in software engineering. Lambda Prolog, developed
initially by Dale Miller and Gopalan Nadathur at the University
of Pennsylvania [MN86, MNPS91], is an elegant higher order logic
extension of the Prolog programming language.

This work extends earlier work by Camilleri [Cam88], Murthy
[Mur91] and Rajan [Raj92], who translated HOL to ML. Translat-
ing to Lambda Prolog allows us to use the backtracking and higher
order uni�cation capabilities of the target language to execute such
constructs as the Hilbert epsilon operator and disjunctions inside
quanti�ers. The translation of quanti�ed variables is more straight-
forward, since the target language also has a notion of quanti�cation.
It also allows the user to ask Prolog-style queries with free variables,
to be instantiated by the system. The results are cast in terms of S,
but are applicable to any higher order speci�cation language.

This work can also been seen as extending work by Kahn [Kah87]
and Hannan and Miller [HM90] on operational semantics and logic
programming systems. These authors studied speci�cally translating
operational semantics into Prolog or expressing them in Lambda
Prolog; in contrast, this paper deals with the translation of general
speci�cations, possibly involving higher order features, into Lambda
Prolog.

The structure of this paper is as follows. Section 2 brie
y describes
the S speci�cation language. Section 3 discusses Lambda Prolog as a
target language for the translation, comparing it to S and to some al-
ternate target languages. Section 4 describes the translation scheme
and the translated program in greater detail. Section 5 discusses

some of the design decisions taken for the implementation, mainly
to deal with the problems inherent in trying to execute formulas
without crossing into full theorem-proving. Section 6 presents an ex-
tended example and experiences with the translation system. Finally,
Section 7 gives conclusions and describes future work.

2 The S Speci�cation Language

S is a speci�cation language developed at the University of British
Columbia. It was designed to be more readable than other formal
speci�cation languages such as Z or the script language used as input
to HOL, while still retaining the abstracting power of uninterpreted
constants and higher order logic. There is a typechecker for S input
�les, called Fuss [JDD96]; getting an S input �le to be accepted by
Fuss is comparable to getting an ML program to typecheck. Various
other tools associated with S are under development.

S construct Meaning Equivalent Lambda Prolog
construct

: process; Type declaration kind process type.

: (A, B) array; Parameterized type kind array

declaration type -> type -> type.

version_number: num; Constant declaration type version_number num.

: (A) tree := Type de�nition kind tree type -> type.

leaf :A | type leaf A -> (tree A).

branch :(A) tree type branch (tree A) ->

:(A) tree; (tree A) -> (tree A).

: style == colour # size; Type abbreviation No equivalent
mother X := Boolean function type mother person -> o.

(parent X) & (female X); de�nition mother X :-

parent X, female X.

reverse X := rev_aux X []; Non-boolean function No direct equivalent
de�nition

~(separation a1 a2 < 300); Boolean constraint No general equivalent; Horn
clause constraints declared
with Prolog-style clauses

function X . (g X X) Lambda abstraction X\ (g X X)

Fig. 1. Syntactic constructs of S and Lambda Prolog.

The syntactic constructs of S are summarized in Figure 1, along
with a comparison to Lambda Prolog features which will be discussed
later. In S, one can declare the names of new types (possibly param-
eterized), and declare new constants to be of those types. Types and
\term constructor" constants can be declared together in ML-style

\type de�nitions", and one can abbreviate one type by a new name.
A type expression in S is a declared or built-in type name, or the
type of functions from one type to another (written T1 -> T2), or
the cross product of two types (written T1 # T2). The built-in types
of S are num (the type of numbers) and bool (the Boolean values
\true" and \false").

A constant can also be de�ned as a function with a given mean-
ing, by constructs such as \reverse X := rev_aux X []". ML-
style multi-clause function de�nitions are also available. For such
function de�nitions, the Fuss typechecker will infer the type of the
arguments and the range of the function.

Expressions are largely as they are in ML. The lambda-expression
which would be written �X:(f X) in lambda notation is written
as function X . (f X) in S; the formulas 9X(p X) and 8X(p X)
are written \exists X . (p X)" and \forall X . (p X)" respec-
tively. The expression �X:(p X), where � is Hilbert's epsilon operator,
is written \select X . (p X)". (The meaning is \some individual
X such that (p X) is true.") Constraints { that is, the actual formu-
las constituting the formal speci�cation { are written as expressions
of type bool terminated by semicolons, on the same level as de�ni-
tions in an S source �le.

An example of a full S speci�cation is contained in Figure 2. It
is a speci�cation of a simpli�ed version of CCS, Milner's Calculus of
Concurrent Systems [Mil80]. In the example, we de�ne a process as
being of one of four forms:

{ The \null process" nullprocess, which can do nothing;

{ An (andthen L P) process, which can perform the action indi-
cated by its label L and then become process P;

{ A (plus P1 P2) process, which can choose between becoming
P1 or P2; or

{ A (par P1 P2) process, which represents processes P1 and P2
running in parallel and communicating via synchronized labels.

The relation can_do Process Label Newprocess holds if Process
can do the action indicated by Label, becoming Newprocess. The
function trace is intended to return a possible trace (sequence of
actions) of its argument. The last few lines de�ne some example
processes.

Of course, this is only an example for the present purposes; it
is possible to specify CCS in other formalisms as well. Readers may
wish to compare this treatment with Nesi's speci�cation of full value-
passing CCS in HOL [Nes93].

%include startup.s

: label;

: process := andthen :label :process

| plus :process :process

| par :process :process

| nullprocess;

tau: label;

prime: label -> label;

can_do (andthen Label Process) Donelabel Newprocess :=

(Donelabel = Label) /\ (Newprocess = Process) |

can_do (plus Process1 Process2) Label Newprocess :=

can_do Process1 Label Newprocess \/

can_do Process2 Label Newprocess |

can_do (par Process1 Process2) Label Newprocess :=

(exists Newprocess1 .

(can_do Process1 Label Newprocess1

/\ (Newprocess = (par Newprocess1 Process2)))) \/

(exists Newprocess2 .

(can_do Process2 Label Newprocess2

/\ (Newprocess = (par Process1 Newprocess2)))) \/

(exists Newprocess1 Newprocess2 Handshakelabel .

((can_do Process1 Handshakelabel Newprocess1 /\

can_do Process2 (prime Handshakelabel) Newprocess2) \/

(can_do Process2 Handshakelabel Newprocess2 /\

can_do Process1 (prime Handshakelabel) Newprocess1))

/\ (Newprocess = (par Newprocess1 Newprocess2))

/\ (Label = tau));

trace Process :=

if (Process == nullprocess) then []

else (select Trace .

(exists Label Newprocess .

((can_do Process Label Newprocess)

/\ (Trace = (CONS Label (trace Newprocess))))));

% Example

a, b, c: label;

process1 := (andthen a (andthen b nullprocess));

process2 := (andthen a (plus (andthen b nullprocess)

(andthen c nullprocess)));

process3 := (plus (andthen (prime a) (andthen (prime b) nullprocess))

(andthen (prime a) (andthen (prime c) nullprocess)));

Fig. 2. A sample speci�cation in S: The CCS formalism.

3 Lambda Prolog as a Target Language

Lambda Prolog was chosen as the target language for the translation
because of the relatively large number of features it shares with S,
and its ability to reason both about logical connectives and quanti-
�ers and about higher-order constructs.

3.1 A Comparison of S and Lambda Prolog

S and Lambda Prolog are both based on typed higher order logic.
Both languages allow type declarations; parameterized type declara-
tions; declarations of new uninterpreted constants of arbitrary types;
and de�nitions of the meanings of functions with boolean range. Fig-
ure 1 shows the correspondences between the syntax of these con-
structions in the two languages.

The most important notational di�erence between the languages
is that Lambda Prolog has an explicit notion of \kind". Kinds form
a third level of objects above individuals and types; just as each
individual belongs to some type, each type belongs to some kind.
Thus, for example, list is of kind type -> type in Lambda Prolog,
because it takes a type (the type of its elements) and returns another
type (the type of lists of that element type). In S, the notion of kind
is implicit in type expressions.

Some of the most important features which S (or its typechecker
Fuss) has but which Lambda Prolog1 does not have are: type in-
ference on constant de�nitions; type abbreviations; the ability to
de�ne functions with arbitrary range; the \select" (Hilbert epsilon)
operator; and constraint paragraphs.

As we shall see, the only one of these that causes a signi�cant
problem in the translation is the absence of function de�nitions. We
must translate functions into predicate clauses in order to achieve
the same e�ect. However, these features help make S a more use-
ful speci�cation language. Because of their absence, Lambda Prolog
itself cannot be used e�ectively as a speci�cation language.

The main features which Lambda Prolog has but S/Fuss does
not have are, obviously, its explicit evaluation semantics, run-
time environment and so on. Lambda Prolog also has a slightly
richer type structure, theoretically allowing objects to be of kind
(type -> type) -> type whereas in S we are implicitly restricted
to \linear" kinds such as type -> (type -> (type -> type));
however, this added richness is not usually important in practice.

1 Unless described otherwise, all references to Lambda Prolog in this paper are to the
Terzo implementation available from the University of Pennsylvania [Mil96].

3.2 Alternative Target Languages

What other languages could be used as the target language for the
translation from S? It can be assumed that we do not want to con-
sider languages that involve explicit memory allocation and pointer
manipulation for building dynamic data structures, since the task of
building a translator to such a language would be of similar com-
plexity to that of building an interpreter for S. There are several
other programming languages with features which could make them
useful as the translation target.

{ ML was the target language for both Murthy's [Mur91] and Ra-
jan's [Raj92] translations from HOL. It also has parameterized
types, polymorphic functions, and lambda-expressions. Its main
advantages over Lambda Prolog are that it is more widely known,
used and supported, and that one can make explicit function
declarations in it. However, it does not have built-in support
for logical variables or explicit backtracking over disjunctions,
as Lambda Prolog does. Thus the translation would have to use,
or build, ML code to simulate these features, somewhat defeat-
ing the purpose of translating rather than custom-building an
interpreter.

{ Standard Prolog has logical variables and explicit backtracking,
and is even more widely used and supported than ML. However,
it does not handle lambda-expressions and has no built-in capa-
bilities for checking the well-typedness of queries. Again, these
things would have to be built.

{ A��t-Kaci's language LIFE [AKP93] would be another interesting
choice, insofar as it allows both function and predicate de�ni-
tions, and can handle function calls containing uninstantiated
variables. (This issue is an important one, as we will later see.)
However, LIFE also lacks lambda-abstraction capabilities, and
its type system has an entirely di�erent foundation from that of
the higher order logic type system.

Various other logic programming systems exist (see Section 5)
which could provide other useful features in a target language. How-
ever, the crucial combination of lambda notation, uni�cation and
backtracking, which makes the execution of higher order logical con-
structs possible, is available only in Lambda Prolog.

4 The Translation Scheme

There are two main components to the translation scheme: a
program called s2lp and a Lambda Prolog source �le called
s2lp_common.lp. s2lp acts as a Unix �lter, translating an S �le on
its standard input into a Lambda Prolog �le on its standard output.

It is an adaptation of the S typechecking program Fuss [JDD96],
and typechecks its input before translation. s2lp_common.lp con-
tains declarations supporting the translated speci�cations, and is
included in every translated �le. Here we will look at the most im-
portant features of s2lp and s2lp_common.lp.

4.1 Translation of Type Declarations and Function
De�nitions

s2lp translates S type declarations into Lambda Prolog in the
straightforward way; for instance, the declaration of the parameter-
ized type array in Figure 1 is translated into the equivalent Lambda
Prolog construct in Figure 1.

The main duty of s2lp is to generate Lambda Prolog clauses
of the predicate eval for every constant declaration and de�nition
in the S input �le. eval is a predicate which takes two arguments
of the same type, and (in its usual mode of use) instantiates its
second argument to the \value" (according to the S input) of its �rst
argument. The queries we will pose to the Lambda Prolog program
will usually be of the form eval expr Result, where expr is some
expression to be evaluated and Result is a variable which will be
bound to its value.

Thus the S polymorphic function declaration

(:Element_type)
reverse (X: (Element_type) list) := rev_aux X [];

will (assuming rev_aux has been declared) produce the expected
Lambda Prolog type declaration2

type reverse ((list Element_type) -> (list Element_type)).

but also the eval clause
eval (reverse X) Result$:-
eval ((rev_aux X) 'NIL') Result$.

Because of this clause, when eval evaluates a call to reverse, it does
so by immediately evaluating the corresponding call to rev_aux.

4.2 Translation of Constant Declarations and Type
De�nitions

The recursion of the eval predicate in the translated program
\bottoms out" on declared constants, in keeping with the view of
these constants as \uninterpreted". Thus the S constant declaration
version: num will produce the Lambda Prolog declarations
2 Note that in Lambda Prolog, variable names start with an upper case letter and
constant names start with a lower case letter, whereas case is not signi�cant in S.
This paper largely glosses over the di�erence by choosing names consistent with
Lambda Prolog, but s2lp does do the required translation.

type version num.
eval (version) (version).

This indicates that the value of the expression version is the term
version itself. Similarly, the type de�nition

: (A) tree := leaf :A | branch :(A)tree :(A)tree;

which creates constructors leaf and branch, will produce the dec-
larations

kind tree type -> type.
type leaf (A -> (tree A)).
type branch ((tree A) -> ((tree A) -> (tree A))).

but also the clauses

eval (leaf X$1) (leaf Y$1) :-
eval X$1 Y$1.

eval (branch X$1 X$2) (branch Y$1 Y$2) :-
eval X$1 Y$1,
eval X$2 Y$2.

These clauses ensure that, for instance, if an expression like
(branch Tree1 Tree2) is evaluated, the arguments will be eval-
uated and the results will be assembled into a new branch structure
as the value.

4.3 The Common Declarations

Every translated �le contains a directive to include the Lambda Pro-
log source �le s2lp_common.lp. This �le contains supporting decla-
rations of the built-in types and constants of S (such as 'NIL'), as
well as the eval clauses for evaluating logical expressions.

These clauses are crucial to the success and ease of the transla-
tion. For example, in S one can write Hilbert-epsilon expressions of
the form select x . A, where A is any formula. In accordance with
higher order logic conventions, these are parsed as SELECT (�x. A).
The eval clause in s2lp_common.lp which evaluates such expres-
sions is simply

eval ('SELECT' Abstraction) Result :-
eval (Abstraction Result) 'T'.

In other words, if the lambda-abstraction applied to the result is a
formula which evaluates to the truth value 'T', then the value of
the 'SELECT' expression is the result.

With the declarations in s2lp_common.lp, one can even com-
pute goals involving implication and the universal quanti�er, to
the extent to which this is possible in Lambda Prolog; for in-
stance, one can write boolean functions with bodies of the form
forall Pred . (Defn ==> Goal), where Defn is a Horn clause
de�ning Pred and Goal is a boolean expression.

5 Design Decisions

A speci�cation is a collection of logical formulas associated with
some notion of what constitutes a proof; since even �rst order logic
is undecidable, a proof cannot always be found by following a pre-
de�ned strategy. A program, however, is an object associated with a
prede�ned execution strategy. Thus an attempt to \execute a speci�-
cation" must inevitably come up against the contrast between these
two notions. These issues have long been explored in the functional
and logic programming communities, and the design decisions made
in the s2lp translation scheme re
ect some of the knowledge that
has been gained.

5.1 Negation

In the logic programming community there seems to be a consensus
that trying to handle full negation in a sound and complete man-
ner takes one into the realm of theorem proving. Some schemes,
such as Loveland's \near-Horn" programming [LR91], provide for a
graceful degradation of performance from regular Prolog when the
user attempts to work with programs containing a small number of
negations; but they are not available with Lambda Prolog.

s2lp deals with this issue by providing eval clauses for negation
which perform the usual Lambda Prolog negation as failure, which is
in some circumstances incomplete or unsound. Users should under-
stand that if they wish to evaluate negation completely, they should
move to a semi-automated theorem proving system such as HOL.

5.2 Uninstantiated Variables in Function Calls

When working with a combination of function and predicate def-
initions, the issue arises of what to do with a function call which
contains an uninstantiated logical variable. This arises frequently in
s2lp translations when the source speci�cations involve both quan-
ti�cation and functional syntax.

For example, consider the expression trace process1, with
respect to the speci�cation of CCS (Fig. 2); we can evalu-
ate this expression in the translated program by the query
eval (trace process1) Result. The evaluation will eventually in-
volve the solving of a subgoal of the form

eval (can_do process1 Label Newprocess) Result1

which in turn will eventually involve the solving of a subgoal of the
form

eval ('=$' Donelabel a) Result2

where '=$' is the pre�x binary operator corresponding to the S
operator =. But now, if the Lambda Prolog program treats the argu-
ments of '=$' exactly as it would any other expressions, it will try
to \evaluate" the uninstantiated variable Donelabel. This results in
an in�nite recursion as the program matches variables against the
existing eval clauses. Clearly this is not acceptable.

A��t-Kaci's language LIFE [AKP93] takes the approach of delaying
function calls containing uninstantiated variables until such time as
all their arguments are instantiated, a scheme called residuation.
Again, this scheme is not available in combination with Lambda
Prolog.

The scheme adopted in s2lp is to assign a special meaning to the
standard \=" operator. Normally, arguments to any function sym-
bol appearing in a de�nition body are evaluated in that function's
eval clause. In contrast, the clauses in s2lp_common.lp handling =
evaluate only the right-hand argument, and unify the value with the
left-hand argument. Thus s = t will succeed only if s is syntactically
identical to the eval value of t, or is some partially-instantiated gen-
eralization of that value (including an uninstantiated variable). With
care, as in the CCS example, it can be used to instantiate uninstan-
tiated variables in the correct pattern. The operator == is de�ned
with the more expected semantics of evaluating both arguments and
comparing the results.

5.3 Caller and Callee Evaluation

s2lp adopts a \callee evaluation" scheme (sometimes referred to
as \call-by-name"), where the called function is passed unevaluated
arguments and evaluates them itself during the course of its compu-
tation. A potential alternative is a \caller evaluation" scheme: each
eval clause assumes that all its function arguments contain no calls
to de�ned functions (though they may contain uninstantiated vari-
ables), and pre-evaluates all the arguments of the functions it calls.
For instance, the S declaration

stalled Y := ((trace Y) = []);

would under s2lp's \callee evaluation" be translated into the form

eval (stalled Y) Result :-
eval ('=$' (trace Y) []) Result.

but under a \caller evaluation" scheme be translated into the form

eval (stalled Y) Result :-
eval (trace Y) Trace,
eval ('=$' Trace []) Result.

Caller evaluation allows an uninstantiated variable to be passed
through until it reaches an = expression and is uni�ed straightfor-
wardly. It therefore solves the problem of uninstantiated variables.
However, it has the unfortunate e�ect of requiring that users simi-
larly evaluate each function call in each query given to the Lambda
Prolog interpreter, making queries clumsier.

Moreover, under caller evaluation it is not clear how to translate
function de�nitions of the form apply X Y := (X Y) in such a way
as to allow the �rst argument to be either a constant, a de�ned
function, or a lambda expression. On the whole, the callee evaluation
scheme seems less problematic for the user.

5.4 Uninterpreted Constants and Interpreted Operators

In speci�cations, we may occasionally want to declare uninterpreted
boolean constants { for instance, heater_on: bool { to stand for
conditions on the environment of the system under speci�cation.
When such constants are declared in S speci�cations, the s2lp trans-
lation essentially treats them as false rather than taking them as
\new truth values", as we might prefer.

An alternative is for the translated program to take the expression
to be evaluated, whether boolean or otherwise, and rewrite it to the
most reduced form possible. Donat [Don97] has developed a rewriting
package as an extension of Fuss for use in generating test cases from
S speci�cations. This rewriting package is preferable to s2lp for this
purpose because the truth of quanti�ed formulas does not have to
be determined.

Unfortunately, rewriting does not help when it comes to quanti�ed
formulas. For example, if (p 3) rewrites to heater_on and (p 4)
rewrites to ac_on, it is not at all clear what the returned value of
exists X . (p X) should be. Logic programming with boolean con-
straints, as is possible in SICStus Prolog [oCS94], essentially allows
for such behaviour by allowing variables to be uni�ed with \true"
and \false" in whatever way will cause a goal to succeed.

The problem extends to constants of types other than bool.
For instance, if temperature: num, we would like the expres-
sion temperature+2 = temperature+3 to evaluate to 'F', but
temperature*2 = temperature*3 to evaluate to 'T' while unify-
ing temperature with 0. In general, the problem of uninterpreted
constants and interpreted operators leads us into the realm of con-
straint logic programming systems [JMSY92], which can process such
queries correctly. Again, however, constraint processing is not avail-
able in Lambda Prolog.

In conclusion, then, it seems that the ideal target language for
translation from a higher order speci�cation language would be
a higher order constraint logic programming language with near-
Horn processing and residuation. In the absence of such a language,

Lambda Prolog seems to be a reasonable choice given the design
decisions made in the implementation of s2lp.

6 Working with the Translated Program

The following is an extended example to illustrate how the
s2lp translation of an S speci�cation works. After the command
\s2lp <ccs.s >ccs.lp", which translates the CCS speci�cation
given in Fig. 2 into Lambda Prolog, we invoke the Lambda Pro-
log interpreter, terzo. Commands given to the Terzo loader start
with #.

re[1]: /usr/bin/time terzo

loading /isd/local/generic/src/terzo/bin/sun4/.lpsml

..... done

Terzo lambda-Prolog, Version 1.0b, Built Wed Jul 17 22:14:23 EDT 1996

[reading file /isd/local/generic/src/terzo/lib/terzo.rc]

[closed file /isd/local/generic/src/terzo/lib/terzo.rc]

Terzo> #load "ccs.lp".

[reading file ./ccs.lp]

[reading file ./s2lp_common.lp]

GC #0.0.0.0.1.1: (0 ms.)

module s2lp_common

[closed file ./s2lp_common.lp]

GC #0.0.0.1.2.14: (80 ms.)

module s2lp

[closed file ./ccs.lp]

Terzo> #query s2lp.

?-

(\GC" lines give Terzo garbage collection statistics.) We are now
in an interpretive loop for the program, and can give queries. First
we ask it to evaluate the simple function call process1 and return
the result in the variable Result.

?- eval process1 Result.

Result = andthen a (andthen b nullprocess) ;

no more solutions

Next we ask it for the possible traces of this process (the sequences
of actions which it can perform).

?- eval (trace process1) Result.

GC #0.0.0.2.3.81: (130 ms.)

Result = CONS a (CONS b NIL) ;

no more solutions

We do the same for a more complex process.

?- eval (trace process2) Result.

Result = CONS a (CONS b NIL) ;

Result = CONS a (CONS c NIL) ;

no more solutions

We have obtained two results from the function call, and the
select expression inside it, because there were two traces which met
the given criteria. Next we look at the process made up by placing
process2 and process3 in parallel; we evaluate the boolean function
can_do with two uninstantiated variables, to see what possible ways
the process can evolve. We should get �ve solutions.

?- eval (can_do (par process2 process3) Label Newp) Boolresult.

GC #0.0.0.3.4.287: (140 ms.)

Label = a

Newp =

par (plus (andthen b nullprocess) (andthen c nullprocess))

(plus (andthen (prime a) (andthen (prime b) nullprocess))

(andthen (prime a) (andthen (prime c) nullprocess)))

Boolresult = T ;

Label = prime a

Newp =

par (andthen a (plus (andthen b nullprocess) (andthen c nullprocess)))

(andthen (prime b) nullprocess)

Boolresult = T ;

Label = prime a

Newp =

par (andthen a (plus (andthen b nullprocess) (andthen c nullprocess)))

(andthen (prime c) nullprocess)

Boolresult = T ;

Label = tau

Newp =

par (plus (andthen b nullprocess) (andthen c nullprocess))

(andthen (prime b) nullprocess)

Boolresult = T ;

GC #0.0.0.3.5.519: (50 ms.)

Label = tau

Newp =

par (plus (andthen b nullprocess) (andthen c nullprocess))

(andthen (prime c) nullprocess)

Boolresult = T ;

Label = Label

Newp = Newp

Boolresult = F ;

no more solutions

In fact we get a sixth solution, in which the variables have not
been instantiated and the system returns a result of \false". This is
to be expected as the �nal alternative, since we are backtracking on
the value of a boolean expression and the only other possibility is
falsehood. Note that the syntax of the output of Lambda Prolog is
very close to that of simple S terms, and can in most cases be input
back into Fuss if necessary.

?- 241.0 real 59.7 user 1.7 sys

re[2]:

After breaking out of the interpreter, we �nd that all this eval-
uation has taken about a minute of CPU time. We have been run-
ning the Terzo interpreter; on compiled Lambda Prolog systems like
Prolog/MALI [BR93] this may be signi�cantly reduced due to such
techniques as �rst argument indexing.

Finally, we re-enter Terzo and try to see the possible traces of the
(par process2 process3) process.

re[229]: terzo

...

Terzo> #query s2lp.

?- eval (trace (par process2 process3)) Result.

GC #0.0.0.2.3.83: (150 ms.)

GC #0.0.0.3.4.260: (270 ms.)

GC #0.0.1.4.5.380: (380 ms.)

GC #0.1.2.5.6.494: (400 ms.)

GC #0.1.2.5.7.620: (30 ms.)

^C

interrupt

Terzo>

We have found a hole in the speci�cation: there is a speci�cation
for the trace of the null process, but no speci�cation for the trace of
the process (par nullprocess nullprocess), one of the possible
descendents of the process in the query. The system has responded
by going into an in�nite loop on one of the uninstantiated variables.
Now we can return to the speci�cation and patch the hole before
basing any further work on it. Future edit-translate-execute cycles
will allow our con�dence in the correctness of our speci�cation to
increase.

s2lp has been run on a number of di�erent speci�cations, in-
cluding portions of an S speci�cation of a telecommunications net-
work being developed within the FormalWare project. The trans-

lated Lambda Prolog code returns results of function calls as ex-
pected and �nds solutions within its capabilities.

7 Conclusions and Future Work

s2lp represents an advance over some previous schemes for evalu-
ating higher order speci�cations, in that it allows a wider range of
quanti�ed formulas to be executed using the Prolog backtracking
and uni�cation features. With s2lp, users can build formal speci-
�cations of their systems of interest in S, and translate them into
Lambda Prolog in order to verify that desired properties hold before
doing more extensive theorem-proving or implementation.

The results of this paper are not speci�c to S, but generalize
to other speci�cation languages. For instance, we should be able to
translate HOL into Lambda Prolog via ML functions which traverse
the ML internal representation of HOL terms. Future extensions of
the scheme could include extensions for partially evaluating arith-
metic expressions, or providing the option of \caller evaluation" (see
Section 5.3) for situations which require it.

Ideally, one can envision an integrated logic and functional pro-
gramming and speci�cation language, in which computable functions
and predicates can be de�ned in a natural style, but uninterpreted
constants and assertions can be included where required to produce a
readable and su�ciently abstract speci�cation. Such a scheme might
be built as a generalization of an existing programming language,
such as ML or Lambda Prolog, or an existing speci�cation language,
such as Z or S.

8 Acknowledgments

Thanks to Je� Joyce for suggesting the topic of this paper and,
together with Nancy Day and Michael Donat, for the development
of the Fuss typechecker on which s2lp was based, for giving valuable
comments on an earlier version of this paper, and for providing a
stimulating working environment in which to explore ideas of logic,
computation, and software engineering.

The FormalWare project is �nancially supported by the BC Ad-
vanced Systems Institute (BCASI), Hughes Aircraft of Canada Lim-
ited Systems Division (HCSD), and MacDonald Dettwiler Limited
(MDA). The author derives half his funding from this project and
half from the generous support of Dr. Paul Gilmore of UBC Com-
puter Science, via his grant from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).

References

[AKP93] Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of Life. Journal
of Logic Programming, 16(3/4):195, July 1993.

[BR93] Pascal Brisset and Olivier Ridoux. The compilation of Lambda Prolog and
its execution with MALI. Technical Report 1831, INRIA, 1993.

[Cam88] Albert Camilleri. Simulation as an aid to veri�cation using the HOL the-
orem prover. Technical Report 150, University of Cambridge Computer
Laboratory, October 1988.

[Don97] Michael R. Donat. Automating formal speci�cation-based testing. In TAP-

SOFT: 7th International Joint Conference on Theory and Practice of Soft-

ware Engineering, April 1997.

[HM90] John Hannan and Dale Miller. From operational semantics to abstract
machines: Preliminary results. In Proceedings of the ACM Conference on

Lisp and Functional Programming, pages 323{332, Nice, France, June 1990.
ACM Press.

[JDD94] Je�rey J. Joyce, Nancy A. Day, and Michael R. Donat. S: A machine read-
able speci�cation notation based on higher order logic. In Higher Order

Logic Theorem Proving and Its Applications, 7th International Workshop,
volume 859 of LNCS. Springer-Verlag, 1994.

[JDD96] Je�rey J. Joyce, Nancy A. Day, and Michael R. Donat. S { a general-
purpose speci�cation notation. Draft report, 1996.

[JMSY92] Joxan Ja�ar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap.
The CLP(R) language and system. ACM Transactions on Programming

Languages and Systems, 14(3):339{395, July 1992.
[Kah87] G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoreti-

cal Aspects of Computer Science, volume 247 of LNCS, pages 22{39, Passau,
Federal Republic of Germany, Feb 1987. Springer.

[LR91] Donald W. Loveland and David W. Reed. A near-Horn Prolog for compli-
ation. In Computational Logic: Essays in Honor of Alan Robinson, Cam-
bridge, Mass., 1991. MIT Press.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[Mil96] Dale A. Miller. Lambda Prolog home page.
http://www.cis.upenn.edu/ dale/lProlog/index.html/, 1996.

[MN86] Dale A. Miller and Gopalan Nadathur. Higher-order logic programming.
In Proceedings of the Third International Logic Programming Conference,
Imperial College, London, July 1986.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Annals of Pure and

Applied Logic, 51:125{157, 1991.

[Mur91] Chetan R. Murthy. An evaluation semantics for classical proofs. In Proceed-
ings of the Fifth Annual Symposium on Logic in Computer Science. IEEE,
1991.

[Nes93] Monica Nesi. Value-passing CCS in HOL. In HOL Users' Group Workshop,
Vancouver, August 1993.

[oCS94] SICS (Swedish Institute of Computer Science). SICStus Prolog user's man-
ual. Technical report, Swedish Institute of Computer Science, Kista, Swe-
den, April 1994.

[Raj92] P. Sreeranga Rajan. Executing HOL speci�cations: Towards an evaluation
semantics for classical higher order logic. In L. J. M. Claesen and M. J. C.
Gordon, editors, Higher Order Logic Theorem Proving and its Applications,
Leuven, Belgium, September 1992. Elsevier.

This article was typeset using the LATEX macro package with the LLNCS2E class.

