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Abstract. This paper presents a technique for automatically generat-
ing logical schemata that specify groups of black-box test cases from
formal speci�cations containing universal and existential quanti�cation.
These schemata are called test frames. Previous automated techniques
have dealt with languages based on propositional logic. Since this new
technique deals with quanti�cation it can be applied to more expres-
sive speci�cations. This makes the technique applicable to speci�cations
written at the system requirements level. The limitations imposed by
quanti�cation are discussed. Industrial needs are addressed by the ca-
pabilities of recognizing and augmenting existing test frames and by ac-
commodating a range of speci�cation-coverage schemes. The coverage
scheme taxonomy introduced in this paper provides a standard for con-
trolling the number of test frames produced. This technique is intended
to automate portions of what is done manually by practitioners. Bas-
ing this technique on formal rules of logical derivation ensures that the
test frames produced are logical consequences of the speci�cation. It is
expected that deriving test frames automatically will o�set the cost of
developing a formal speci�cation. This tangible product makes formal
speci�cation more economically feasible for industry.

1 Introduction

The primary contribution of this paper is a technique for automatically trans-
forming formal speci�cations containing universal and existential quanti�cation
into test frames which specify groups of black-box test cases. The second major
contribution of this paper is a taxonomy for coverage schemes. This taxonomy
provides a means of standardizing the number of tests to be performed on spe-
ci�c parts of the system. This is critical to industrial processes that must make
appropriate trade-o�s between available resources and the depth of testing re-
quired for a given part of the system.

Formal speci�cations based on mathematical semantics provide a basis for
automatic test generation techniques. This mathematical structure allows for-
mal speci�cations to be manipulated mechanically so that information contained
within the speci�cation can be isolated, transformed, assembled, and repackaged.
In this manner, test frames for a system can be derived from its formal speci�ca-
tion. The mathematical semantics of the speci�cation language guarantee that
the test frames are logical consequences of the speci�cation.



Dick and Faivre [6], inspired by the work of Bernot, Gaudel, and Marre [3],
showed how test cases could be generated automatically from unquanti�ed pred-
icate logic speci�cations using a speci�c coverage scheme. This form of logic is
limited for general use in speci�cations at the system requirements level. Widely
used languages such as Z [14] make use of quanti�cation. The technique pre-
sented in this paper shows how to automatically generate test frames in the
presence of quanti�ed speci�cations using a variety of coverage schemes.

MacColl, Carrington, and Stocks [12] describe a mechanized but not auto-
mated approach to deriving test cases from formal speci�cations. They provide
for a variety of strategies that could embody di�erent coverage schemes.

Gaudel [9] describes a theory of testing based on algebraic speci�cations.
These are di�erent from the predicate logic speci�cations addressed in this pa-
per. Algebraic speci�cations are characterized by the use of functions to denote
operations. A set of axioms, typically expressed as universally quanti�ed equa-
tions, de�nes a class of algebras. Each algebra is said to be a model of the speci�-
cation. In contrast, predicate logic speci�cations typically use relations between
states to denote operations and both universal and existential quanti�cation are
often present.

Despite these di�erences, similar concepts and problems arise when generat-
ing tests. The concepts de�ned by Gaudel, such as exhaustive test set, validity,
unbias, selection and uniformity hypotheses, and the oracle problem, have coun-
terparts within the context of predicate logic speci�cations. This paper contains
only a brief description of the theory supporting the work presented here. A
full discussion is given in [7]. In the context of either type of speci�cation the
number of tests produced must be controlled. This paper discusses a method
of achieving the necessary control for boolean expressions using standardized
coverage schemes.

Techniques of producing test case instances of test frames are part of a sub-
sequent process and are not discussed here.

Section 2 sets the context that motivates this research. The notation used to
present details of the technique is described in Section 3. Section 4 presents a gen-
eral description of a process to generate test frames from formal speci�cations.
This section also introduces and distinguishes the concepts of a speci�cation, its
test classes, the test frames that follow, and the test cases they describe. Sec-
tion 5 details the test class algorithm. Test frames and how they are produced
using various coverage schemes is discussed in Section 6.

2 Industrial Context

There are several di�erent types of testing. Each type focuses on a di�erent
objective and a di�erent abstract view of the software. Unit testing focuses
on the robustness of individual components. Integration testing focuses on the
correctness of the interfaces between components. This paper focuses on testing
based on requirements speci�cations. An objective of this type of testing is to



demonstrate to a customer or certi�cation authority that the speci�ed software
has actually been built.

This testing is performed according to a set of test procedures. Each step in
a test procedure is referred to as a test case. The purpose of each test case is
to verify one or more requirements by the application of an external stimulus
to the system and comparison of the actual response of the system against the
expected response speci�ed by the requirements. The analysis of requirements for
the purpose of deriving tests at this level is generally limited to lexical analysis
of the natural language text used to express the requirements.

This level of testing is \system level" in the sense that the internal structure
of the system is not visible; all testing must be performed by means of external
stimuli and observation of externally visible responses. It is \requirements-based"
in contrast to other kinds of system level testing which, for instance, may be
based on scenarios that attempt to approximate expected use of the system.

Test case derivation for large projects is typically a highly manual process.
Teams of test engineers wade through large volumes of software speci�cations,
interpret them to the best of their abilities, and from this generate appropriate
suites of tests to apply to the developed systems. The process is very tedious and
error prone, due to the possible ambiguities of natural language and the amount
of detail involved. This intensity of labour coupled with the costs of ensuring test
suite correctness provides a sizable economic motivation to automate as much
of the test case derivation process as possible.

Toth and Joyce [15, 16] introduced the FORMATS Process as a way of ap-
plying formal methods to test case derivation. FORMATS is a two step process.
Requirements speci�cations are formalized and type checked to ensure that they
meet a certain level of correctness. Test cases are produced in the second step.
Speci�cations are written in S [11], which is a typed predicate logic similar to
that found in the HOL system [10]. S speci�cations are type checked using a tool
called Fuss. To advance the ideas discussed in [16], the author has implemented
a prototype test frame generator that employs the technique described in this
paper.

There are four important issues in the FORMATS Process:

1. A range of coverage schemes may be employed depending on the amount of
testing required.

2. Test suites should be as small as possible while still providing the desired
coverage.

3. Speci�cations may change as the project progresses.
4. The test team may mandate speci�c tests.

When speci�cation changes occur it is necessary to evaluate the impact this
has on existing test suites previously constructed. Although generating a com-
pletely new test suite is possible, this is undesirable if testing has already begun.
Performing a few new tests to augment positive results already obtained is less
expensive than dismissing previous positive results and performing a larger num-
ber of di�erent tests. As an example, consider the case where a portion of the



speci�cation is reworded for clarity or contractual reasons, but no implementa-
tion changes are necessary. If the test case generator produced new tests based
on the rewording, unnecessary and perhaps costly testing would be done.

When particular tests are mandated, the test case generator must build a test
suite around these given tests. This must be done in a manner that preserves the
desired size and coverage for the test suite. Note that coverage refers to coverage
of the speci�cation and not code coverage of the implementation.

The technique presented here addresses each of these issues.

3 Notation

The technique presented in this paper is based on the logical relationships be-
tween elements within the speci�cation. Since it is not tied to a particular spec-
i�cation language such as S or Z, standard logical expressions shall be used in
the discussions that follow.

The following vocabulary will be helpful:

1. A speci�cation of a system is a boolean expression relating the state of the
system before the program executes to the state of the system after the pro-
gram has executed. The expression is constructed from predicates, the logi-
cal connectives conjunction, disjunction, implication, and negation, (_;^;);

and :), along with universal and existential quanti�cation (8 and 9).
2. An atom is either a predicate or a negated predicate.
3. A stimulus is an atom that only refers to the before state.
4. A stimulus expression is a boolean expression where each atom is a stimulus.
5. A response is an atom that contains at least one reference to the after state

and may also refer to the before state, i.e. an atom that is not a stimulus.
6. A response expression is a boolean expression where each atom is a response.

A program speci�cation can be of the form:

(S1 ) R1) ^ (S2 ) R2) ^ : : : (1)

where the Si are stimulus expressions and the Ri are response expressions. This
speci�es a system that will satisfy Ri when given the stimulus Si . In this spec-
i�cation, each implication describes a class of behaviour to be exhibited by the
system.

To illustrate these de�nitions, consider the following example which is a
modi�cation1 of an excerpt from Bernard's solution [2] to Abrial's steam boiler
speci�cation problem [1].

The speci�cation problem is to formally specify requirements for a control
system responsible for maintaining the correct level of water in a boiler attached
to a steam driven turbine. One of the requirements is to identify whether or not
any inconsistencies exist in the sensor readings.

1 Modi�cations were made to construct a concise example and do not a�ect its logical
complexity. The excerpt is similar to the VDM speci�cation by Schinagl [13].



PHYSMESS

�WS

: OOTM 0 ,

(9
1
n : N � Level n 2 inmess) ^

(9
1
n : N � Steam n 2 inmess) ^

(8 i : PUMP � PumpState(i ;TRUE ) 2 inmess ,

: (PumpState(i ;FALSE ) 2 inmess)) ^
(8 i : N � 9 b : bool � PumpCtrState(i ; b) 2 inmess)

The schema PHYSMESS sets the \out of order" indicator, OOTM, to true
if and only if there is a detected malfunction. inmess is a set of input messages
received from the sensors of the boiler system. Level n indicates the quantity of
water in the boiler, Steam n indicates the quantity of steam coming from the
boiler, PumpState indicates whether pump i is turned on or o�, PumpCtrState
indicates whether or not water is circulating from the pump to the boiler.

Expressed in predicate logic, PHYMESS is equivalent to:

:OOTM 0
,

((9!n:Level n 2 inmess) ^

(9!n:Steam n 2 inmess) ^

(8 i :PumpState(i ;T ) 2 inmess , :(PumpState(i ;F ) 2 inmess)) ^

(8 i : 9 b:(PumpCtrState(i ; b) 2 inmess)))

Primed variables are references to the after state, thus :OOTM 0 is a response.
All the other atoms, such as PumpState(i ;TRUE ) 2 inmess, are stimuli.

4 Process Overview

This section provides an overview of the test frame generation process.
Requirements speci�cations are written to be understood at particular levels

of abstraction. For this reason, many details are hidden within de�nitions of more
abstract concepts. Issues of clarity are left to the discretion of the speci�cation
authors. Hence, it must be assumed that the speci�cation is an arbitrary logical
expression.

Test classes are the intermediate step between the speci�cation and test
frames. A test class isolates one behaviour from the speci�cation. The test class
can be considered as a standard format for writing requirements. However, for
practical reasons, it is unlikely that all speci�cations would be written as a simple
conjunction of test classes.

A test class is an implication S ) R, where S is a stimulus expression and
R is a response expression. Quanti�ers may appear anywhere in the test class
and may also bind variables occurring in both S and R. The purpose of the test
class is to isolate a class of behaviour based on the response. The �rst step of the



test frame generation process is to transform the speci�cation into its test class
normal form such as (1) in Section 3. This is discussed in detail in Section 5.

Each test class is the ancestor of a set of test frames. A test frame is an
implication A) R, where A is a conjunction of stimulus expressions and R is a
response expression. Quanti�ers may also bind variables occurring in both A and
R. A test frame A ) R generated from the test class S ) R has the property
that A) S . The generation of test frames is discussed in detail in Section 6.

The test frame generation process is as follows. Given a general speci�cation
E , a set of test classes Si ) Ri are produced such that E ) (Si ) Ri). From
each test class, a set of test frames Aij ) Ri are produced such that Aij ) Si .
This ensures that each test frame is valid, i.e. E ) (Aij ) Ri ).

A test case is an implication t ) R, where t is a conjunction of atoms and R
is a response expression. Quanti�ers can only occur in R. Although it is desirable
to derive test cases, these cannot, in general, be generated automatically from
the type of speci�cations considered in this paper. However, much of the e�ort
required to generate a test case can be performed automatically by producing a
test frame.

Test data generation techniques, whether manual or machine assisted, can be
applied to test frames to produce test cases tijk ) R+

i such that tijk ) A+

ij where

A+

ij ) R+

i is an instance of the (quanti�ed) test frame Aij ) Ri . Discussion
of these test data generation techniques is beyond the scope of the concept
presented in this paper.

5 The Test Class Algorithm

The test class algorithm can be described as a function on boolean expressions.
The result of applying this function to an expression, E , is a conjunction of
test classes that is logically equivalent to E . The test class algorithm rewrites
the speci�cation into its test class normal form. This does not alter its logical
content.

Assuming R is a response, S is a stimulus, T is the constant true, and F is
the constant false, a de�nition for the test class function, TC , is:

TC (A ^ B) = RewriteAnd(TC (A)^TC (B)) conjunction
TC (A _ B) = RewriteOr(TC (A)_TC (B)) disjunction
TC (8 x :P) = ForallIn(8 x :TC (P)) quanti�cation
TC (9 x :P) = ExistsIn(9 x :TC (P)) quanti�cation

TC (A) B) = TC (:A_ B) implication
TC (R) = T ) R response
TC (S ) = :S ) F stimulus

Negated expressions are dealt with by applying DeMorgan's laws to move the
negation inwards and proceeding.

The function RewriteAnd combines like antecedents and consequents using
the equivalences

8A;B ;C :(A) B) ^ (A) C ) = A) (B ^C )



8A;B ;C :(A) C ) ^ (B ) C ) = (A _ B)) C :

The function RewriteOr �rst reduces any AND/OR connectives above the
test classes from TC (A) and TC (B) to conjunctive normal form. Next, any
universal quanti�ers are pulled from TC (A) and TC (B) so they are outside the
disjunctions. This is done using the equivalences

8P ;Q :(8 x :Q) _ P = 8 x :Q _ P

8P ;Q :P _ (8 x :Q) = 8 x :P _Q ;

where x is alpha converted if necessary to avoid capturing any free occurrence
of x in P . Finally, the test classes are OR'd together using the equivalence

8 S1; S2;R1;R2:(S1 ) R1) _ (S2 ) R2) = S1 ^ S2 ) R1 _R2 :

The function ForallIn moves the universal quanti�er into the conjunction of
test classes produced by TC (P) using the equivalences

8P ;Q :(8 x :P ) Q) = (9 x :P)) Q

8P ;Q :(8 x :Q ) P) = Q ) (8 x :P)

8P ;Q :(8 x :P ^Q) = (8 x :P) ^Q

8P ;Q :(8 x :Q ^ P) = Q ^ (8 x :P)

8M ;P :(8 x :M ^ P) = (8 x :M ) ^ (8 x :P) ;

where x is free in P and M , and x is not free in Q .
The function ExistsInmoves the existential quanti�er into the test class using

the equivalences

8P ;Q :(9 x :P ) Q) = (8 x :P)) Q

8P ;Q :(9 x :Q ) P) = Q ) (9 x :P)

8M ;P :(9 x :M ) P) = (8 x :M )) (9 x :P) ;

where x is free in P and M , and x is not free in Q .
Quanti�cation does impose certain limitations on the test class algorithm.

However, speci�cations exercising these limits may be deemed too weak. Note
that ForallIn will not be successful in moving the universal quanti�er into the
conjunction if there is an existential quanti�er in the way,

e.g. 8 x : 9 y :(S1 ) R1) ^ (S2 ) R2) : (2)

Similarly,ExistsIn will not be successful in moving the existential quanti�er into
a test class if TC (P) produces more than one test class as in (2), or if the single
test class has a universal quanti�er,

e.g. 9 x : 8 y :(S1 ) R1) : (3)

It could be argued that test class (3) can be dismissed as being too weak to be
a reasonable requirement. A similar argument could be made against the test
classes in (2).



5.1 Example

In our example, , is de�ned as 8A;B :(A , B) = (A ) B) ^ (B ) A) and
9!x :P x is de�ned as (9 x :P x ) ^ (8 x ; y :P x ^P y ) (x = y)). Applying the TC
algorithm begins with the conjunction rule:

TC (:OOTM 0
,

((9 n:Level n 2 inmess) ^

(8 n;m:(Level n 2 inmess) ^ (Level m 2 inmess)) (n = m)) ^

(9 n:Steam n 2 inmess) ^

(8 n;m:(Steam n 2 inmess) ^ (Steam m 2 inmess)) (n = m)) ^

(8 i :PumpState(i ;T ) 2 inmess , :PumpState(i ;F ) 2 inmess) ^

(8 i : 9 b:PumpCtrState(i ; b) 2 inmess)))

= RewriteAnd(TC (:OOTM 0
)

((9 n:Level n 2 inmess) ^

(8 n;m:(Level n 2 inmess) ^ (Level m 2 inmess)) (n = m)) ^

(9 n:Steam n 2 inmess) ^

(8 n;m:(Steam n 2 inmess) ^ (Steam m 2 inmess)) (n = m)) ^

(8 i :PumpState(i ;T ) 2 inmess , :PumpState(i ;F ) 2 inmess) ^

(8 i : 9 b:PumpCtrState(i ; b) 2 inmess))) ^TC (: : :))

The next operation is to rewrite the implication of the �rst TC term and use
the rule for disjunction:

= RewriteAnd(RewriteOr(TC (::OOTM 0) _TC (: : :)) ^TC (: : :))

The double negation is removed and the response rule is then applied:

= RewriteAnd(RewriteOr((T ) OOTM 0) _TC (: : :)) ^TC (: : :))

Using the rule for conjunction on the next TC term produces:

= RewriteAnd(RewriteOr((T ) OOTM 0) _

RewriteAnd(TC (9n:Level n 2 inmess) ^TC (: : :)) ^TC (: : :)))

The quanti�cation rule followed by the stimulus rule gives:

= RewriteAnd(RewriteOr((T ) OOTM 0) _

RewriteAnd(ExistsIn(9 n::(Level n 2 inmess)) F ) ^TC (: : :))

^TC (: : :)))

Applying ExistsIn gives:

= RewriteAnd(RewriteOr((T ) OOTM 0) _

RewriteAnd(((8 n::(Level n 2 inmess))) F ) ^TC (: : :)) ^TC (: : :)))



A full application of the algorithm to the next TC term produces:

= RewriteAnd(RewriteOr((T ) OOTM 0) _

RewriteAnd(((8 n::(Level n 2 inmess))) F ) ^

(((9 n;m:(Level n 2 inmess) ^ (Level n 2 inmess) ^ :(n = m)) _

(8 n::(Steam n 2 inmess)) _

(9 n;m:(Steam n 2 inmess) ^ (Steam n 2 inmess) ^ :(n = m)) _

(9 i :(PumpState(i ;T ) 2 inmess ^ PumpState(i ;F ) 2 inmess) _

(:(PumpState(i ;T ) 2 inmess) ^ :(PumpState(i ;F ) 2 inmess))) _

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

) F )) ^

TC (: : :)))

Since the consequents of the two inner-most implications are identical (F ), ap-
plying the inner-most RewriteAnd produces:

= RewriteAnd(RewriteOr((T ) OOTM 0) _

(((8 n::(Level n 2 inmess)) _

(9 n;m:(Level n 2 inmess) ^ (Level n 2 inmess) ^:(n = m)) _

(8 n::(Steam n 2 inmess)) _

(9 n;m:(Steam n 2 inmess) ^ (Steam n 2 inmess) ^ :(n = m)) _

(9 i :(PumpState(i ;T ) 2 inmess ^ PumpState(i ;F ) 2 inmess) _

(:(PumpState(i ;T ) 2 inmess) ^ :(PumpState(i ;F ) 2 inmess))) _

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

) F ) ^

TC (: : :)))

Applying RewriteOr combines the response and stimuli to produce the �rst test
class:

= RewriteAnd(

(((8 n::(Level n 2 inmess)) _

(9 n;m:(Level n 2 inmess) ^ (Level n 2 inmess) ^:(n = m)) _

(8 n::(Steam n 2 inmess)) _

(9 n;m:(Steam n 2 inmess) ^ (Steam n 2 inmess) ^ :(n = m)) _

(9 i :(PumpState(i ;T ) 2 inmess ^ PumpState(i ;F ) 2 inmess) _

(:(PumpState(i ;T ) 2 inmess) ^ :(PumpState(i ;F ) 2 inmess))) _

(9 i : 8 b::(PumpCtrState(i ; b) 2 inmess)))

) OOTM 0) ^

TC (: : :)))



Continuing with the remaining TC term produces the second test class:

(9 n:Level n 2 inmess) ^

(8 n;m::(Level n 2 inmess) _ :(Level m 2 inmess) _ (n = m)) ^

(9 n:Steam n 2 inmess) ^

(8 n;m::(Steam n 2 inmess) _:(Steam m 2 inmess) _ (n = m)) ^

(8 i :(:(PumpState(i ;T ) 2 inmess) _ :(PumpState(i ;F ) 2 inmess)) ^

(PumpState(i ;T ) 2 inmess _ PumpState(i ;F ) 2 inmess) ^

(8 i : 9 b:PumpCtrState(i ; b) 2 inmess)

) :OOTM 0 :

6 Generating Test Frames

As de�ned previously, a test frame froma given test class S ) R is an implication
A ) R, where A ) S , A is a conjunction of stimulus expressions, and R is a
response expression. Quanti�ers may also bind variables occurring in both A and
R.

A variety of di�erent test frame sets can be constructed from a test class.
One possible set of test frames is the one derived from a disjunctive normal form
(DNF) of the test class antecedent. In the context of our industrial process, this
presents a problem. If an existing test suite contains a valid test frame that does
not correspond to a term in the DNF of the antecedent of the test class, it will
not be recognized as valid and will be replaced. This is not desirable since we
wish to replace tests only when necessary. This situation can occur when the
test class antecedent represents a function having more than one DNF.2

Recognizing valid test frames in an existing test suite and then construct-
ing other test frames around them is an NP-complete problem [8]. The binary
decision diagram (BDD) [4] is a convenient tool for addressing this issue. The
technique described here uses BDDs to perform test frame recognition, construc-
tion, and selection. The strategy for generating test frame antecedents is:

1. Generate the set of prime implicants3 for the antecedent of the test class.
2. Identify any existing or mandated valid test frames.
3. Augment this set with other elements from the set of prime implicants to

construct a set with the desired speci�cation coverage properties.

6.1 Constructing the BDD

BDDs encode unquanti�ed boolean expressions. Quanti�ers within the test class
place a limit on the granularity of the terms that appear in test frames. To

2 Consider the function (a ^:c)_ (:b^c)_ (:a ^b) and its alter ego (a ^:b)_ (:a ^
c) _ (b ^ :c).

3 An implicant of a formula is a conjunction of variables that imply the formula. An
implicant is prime if there is no other implicant that implies it.



obtain an unquanti�ed expression from the test class antecedent, quanti�ers are
pushed inwards to group the quanti�ers as tightly as possible to the stimuli they
quantify. Existential quanti�ers that are not blocked by universal quanti�ers are
then moved outside the implication where they become universal quanti�ers.
This minimizes the number of quanti�ers in the test class antecedent.

As an example, consider

(8 x : 9 y :A(x ) ^ (B _C (y)))) R

= ((8 x :A(x )) ^ (B _ 9y :C (y)))) R

= (9 y :(8 x :A(x )) ^ (B _C (y)))) R

= 8 y :((8 x :A(x )) ^ (B _C (y)))) R :

Applying this process to the steam boiler test classes results in:

8 n;m; i :

(8 n::(Level n 2 inmess)) _

((Level n 2 inmess) ^ (Level m 2 inmess) ^ :(n = m)) _

(8 n::(Steam n 2 inmess)) _

((Steam n 2 inmess) ^ (Steam m 2 inmess) ^ :(n = m)) _

((PumpState(i ;T ) 2 inmess ^ PumpState(i ;F ) 2 inmess) _

(:(PumpState(i ;T ) 2 inmess) ^ :(PumpState(i ;F ) 2 inmess))) _

(8 b::(PumpCtrState(i ; b) 2 inmess))

) OOTM 0

8 n1; n2:

(Level n1 2 inmess) ^

(8 n;m::(Level n 2 inmess) _ :(Level m 2 inmess) _ (n = m)) ^

(Steam n2 2 inmess) ^

(8 n;m::(Steam n 2 inmess) _ :(Steam m 2 inmess) _ (n = m)) ^

(8 i :(:(PumpState(i ;T ) 2 inmess) _ :(PumpState(i ;F ) 2 inmess)) ^

(PumpState(i ;T ) 2 inmess _ PumpState(i ;F ) 2 inmess)) ^

(8 i : 9 b:PumpCtrState(i ; b) 2 inmess)

) :OOTM 0 :

A BDD representation is constructed by substituting a variable for each
quanti�ed subexpression and unquanti�ed stimulus. The expressions and stimuli
represented by BDD variables are referred to as frame stimuli.

The antecedent of the �rst test class (above) can be represented with the
unquanti�ed expression:

V1 _ (V2^V3^:E )_W1_ (W2^W3 ^:E )_ ((X ^Y )_ (:X ^:Y ))_Z (4)

where



V1 = 8 n::(Level n 2 inmess)
V2 = Level n 2 inmess

V3 = Level m 2 inmess

W1 = 8 n::(Steam n 2 inmess)
W2 = Steam n 2 inmess

W3 = Steam m 2 inmess

X = PumpState(i ;T ) 2 inmess

Y = PumpState(i ;F ) 2 inmess

Z = 8 b::(PumpCtrState(i ; b) 2 inmess)
E = (n = m)

The set of prime implicants is then generated from the BDD representation
of this expression. The corresponding test frames are:

(8 n::(Level n 2 inmess))
) OOTM 0

(8 n::(Steam n 2 inmess))
) OOTM 0

8 n;m:Level n 2 inmess ^

Level m 2 inmess ^ :(n = m)
) OOTM 0

8 n;m:Steam n 2 inmess ^

Steam m 2 inmess ^ :(n = m)
) OOTM 0

8 i :PumpState(i ;T ) 2 inmess ^

PumpState(i ;F ) 2 inmess

) OOTM 0

8 i ::(PumpState(i ;T ) 2 inmess) ^
:(PumpState(i ;F ) 2 inmess)
) OOTM 0

8 i :(8 b::(PumpCtrState(i ; b) 2 inmess))
) OOTM 0 :

Since the antecedent of the second test class is a conjunction of frame stimuli,
there is only one test frame; the one identical to the test class.

Although quanti�ers were used liberally throughout the speci�cation, rea-
sonable test frames could still be generated automatically. Any manual test case
generation that remains is less tedious and less error prone than it would have
been without being able to use the test frames as a starting point.

6.2 Coverage Criteria

With the set of prime implicants at hand, several coverage schemes can be de-
�ned. These can then be used at the discretion of the practitioner. The test
frame generation technique places no restrictions on the coverage scheme.

The author proposes the following taxonomy for coverage schemes:

1. All points: This is the DNF of Dick and Faivre where each test frame
speci�es the truth or falsehood of each of the frame stimuli from the test
class stimulus expression.

2. Implicant: Test frames are produced for each prime implicant.
3. DNF: Test frames are produced for a subset of prime implicants whose

disjunction corresponds to a DNF of the test class stimulus expression.
4. Partition: A subset of prime implicants are used to determine an impli-

cant set that is similar to DNF coverage, but the implicants are pair-wise
contradictory. i.e. There is no test case that will satisfy any two test frames.



5. Term: Test frames are produced for a subset of prime implicants such that
each frame stimuli from the test class stimulus expression is present in at
least one of the selected prime implicants.

The di�erences between these coverage schemes can be illustrated by consid-
ering the number of terms produced when applied to the expression in Figure 1.
This �gure shows the points where the expression is true and compares the Kar-
naugh maps of the coverage schemes de�ned above. Each bubble represents the
antecedent of a test frame. The coverage schemes produce 8, 5, 4, 4, and 3 test
frames, respectively.

Comparison of coverage schemes applied to
(:W ^ :X ^ :Y ) _ (:W ^ :Y ^ Z ) _ (X ^ Y ) _ (W ^Y ^ :Z )

WX
YZ 00 01 11 10

00
01
11
10

All Points:

Implicant:

Partition:

DNF:

Term:

Fig. 1.

Term coverage is of interest since it is linear with respect to the size of
the speci�cation rather than exponential, as are the others. Note that term
coverage does not produce test frames that cover two of the eight all-points
cases, W ^X ^Y ^Z and :W ^X ^Y ^:Z . This is the compromise made in
order to produce fewer tests.

7 Conclusions

The technique described in this paper addresses the process of deriving test
frames from formal requirements speci�cations. A prototype has been constructed
that demonstrates that this process can be automated for speci�cations written
in a predicate logic with universal and existential quanti�cation. Augmenting
existing test suites will be implemented in the near future.



As noted by Gaudel, predicate logic speci�cations are more general than
algebraic speci�cations. However, the price of this generality is the restriction
that, in general, only test frames can be generated automatically. Algebraic
techniques such as [3] can generate test data corresponding to what this paper
refers to as test cases.

The automatic construction of a state machine to facilitate test case sequenc-
ing is not considered here. For requirements speci�cations, specifying the state
machine explicitly may be more appropriate, as in B�ussow and Webers' hybrid
Statecharts-Z approach [5].

BDDs provide a valuable and powerful mechanism for recognizing existing
test frames. This same approach should also be able to match white-box test data
to the corresponding test frames, provided that a mapping from the white-box
vocabulary to that of the speci�cation is given. This would provide a mechanism
for generating oracles for white-box tests.

Quanti�ers place limits on the depth to which automation can go in produc-
ing test frames. Further research is needed to assess the impact of quanti�ed
expressions within test frames and the frequency with which they typically oc-
cur. With respect to the limits existential quanti�cation places on generating
test classes, further research will be needed to determine if this limitation is
signi�cant.

In spite of these limitations, the fact that these components are identi�ed
by the technique and automatically carried through to test frames constitutes a
large savings in manual e�ort. The e�ort saved is the e�ort to generate the test
frames manually along with the e�ort required to ensure they were generated
correctly.

The use of prime implicants ensures that existing valid test frames or man-
dated tests stated in terms of test frames will be recognized. This represents a
savings of testing e�ort and provides 
exibility. The use of prime implicants also
provides a mechanism by which the coverage scheme can be parameterized.

The information necessary for producing oracles for the test frames is pro-
duced at the time the test class is generated. The oracle is represented by the
consequent of the test class. However, such oracles must be used with caution.
As Gaudel points out, implementing such oracles relies on the correctness of the
implementation of the oracle function.
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