

Albert Gu and Tri Dao. "Mamba: Linear-Time Sequence Modeling with Selective State Spaces". In: arXiv preprint arXiv:2312.00752 (2023)

...also known as Mamba

(get it snake makes "s" noise or something)

UBC MLRG Summer 2024 Alan Milligan alanmil@cs.ubc.ca

Everyone Loves Transformers (totally...)

Attention is all you need

<u>A Vaswani, N Shazeer, N Parmar</u>... - Advances in neural ..., 2017 - proceedings.neurips.cc ... to attend to all positions in the decoder up to and including that position. We need to prevent ... We implement this inside of scaled dot-product attention by masking out (setting to $-\infty$) ... ☆ Save ワワ Cite Cited by 123728 Related articles All 91 versions ≫ + Add to Paperlib Yearly citation count update: \approx **125,000**

Fig. 1. A timeline of existing large language models (having a size larger than 10B) in recent years. We mark the open-source LLMs in yellow color.

5

...but they are expensive.

Model name	Number of parameters	Datacenter PUE	Carbon intensity of grid used	Power consumption	CO ₂ eq emissions	CO ₂ eq emissions × PUE
GPT-3	175B	1.1	429 gCO ₂ eq/kWh	1,287 MWh	502 tonnes	552 tonnes
Gopher	280B	1.08	$330 \text{ gCO}_2 \text{eq/kWh}$	1,066 MWh	352 tonnes	380 tonnes
OPT	175B	1.09^{2}	$231gCO_2eq/kWh$	324 MWh	70 tonnes	76.3 tonnes 3
BLOOM	176B	1.2	$57 \text{ gCO}_2 \text{eq/kWh}$	433 MWh	25 tonnes	30 tonnes

Table 4: Comparison of carbon emissions between BLOOM and similar LLMs. Numbers in *italics* have been inferred based on data provided in the papers describing the models.

https://arxiv.org/pdf/2211.02001

- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)

https://arxiv.org/pdf/2004.08900

Figure 1: Gradient descent does not make progress on low-frequency classes, while Adam does. Training GPT2-Small on WikiText-103. (a) Distribution of the classes sorted by class frequency, split into groups corresponding to $\approx 10\%$ of the data. (b) Overall training loss. (c, d) Training loss for each group using SGD and Adam. SGD makes little to no progress on low-frequency classes while Adam makes progress on all groups. (b) is the average of (c, d) for the respective optimizer.

CO₂ emissions are comparable to several international flights (per run)

Financial Costs are insane

Reality check: Using Lambda (cloud) this plot would have cost Fred and I \approx \$18,000 USD (Closer to \$50k on AWS....)

Why the costs? (aside from parameter counts starting with a B)

Attention has Quadratic Everything

Training

Let ℓ be the sequence length we train with

$$X \in \mathbb{R}^{\ell \times d}$$
$$QK^{\mathsf{T}} = W_Q X X^{\mathsf{T}} W_K \in \mathbb{R}^{\ell \times \ell}$$

Model	Context length
GPT 3.5	4,096
GPT 4	8,192
GPT 4-32k	32,768
Llama 1	2,048
Llama 2	4,096

$\mathcal{O}(\ell^2)$ FLOPs and memory is no fun

Flash Attention can get you down to $\mathcal{O}(\mathcal{E})$ memory but not FLOPs

Inference

Let ℓ be the sequence length predict For the ℓ th token, we do Softmax $\left(\frac{1}{\sqrt{d}} \begin{bmatrix} \mathbf{q}_{\ell}^{\mathsf{T}} \mathbf{k}_{0} & \cdots & \mathbf{q}_{\ell}^{\mathsf{T}} \mathbf{k}_{\ell} \end{bmatrix} \right) V$

Which is $\mathcal{O}(\ell)$ per token and so $\mathcal{O}(\ell^2)$ in total. No fun.

K and V don't need to be recomputed (KV Caching) but we can't get away from making that entire attention vector (especially since Softmax is non-linear)

Many attempts to address this

Figure 15.29: Venn diagram presenting the taxonomy of different efficient transformer architectures. From [Tay+20b]. Used with kind permission of Yi Tay.

Many attempted remedies: scary kernels, various linear approximations, sparse attention patterns, etc

> None managed catch on in mainstream use cases

Why not do RNNs then?

RNN good?

$\mathcal{O}(l)$ training step

 $\mathcal{O}(l)$ inference (constant per token)

PCMag

Zuckerberg's Meta Is Spending Billions to Buy 350000 Nvidia H100 GPUs

In total, Meta will have the compute power equivalent to 600000 Nvidia H100 GPUs to help it develop next-generation AI, says CEO Mark...

Q: Why can't RNNs parallelize well?

A: Nonlinear State Transitions

The activations σ in pretty much all RNNs is non-linear, so **must** compute all the h_t business before making h_{t+1} .

What if we got rid of the nonlinear $\sigma_h(\cdot)$?

 $h_1 = U_h x_0$ $h_2 = W_h U_h x_0 + U_h x_1$ $h_3 = W_h^2 U_h x_0 + U_h x_1 + U_h x_2$ =

This can be written as a convolution and is fast on hardware (but let's switch to SSM notation first)

Basic RNN Structure

$$h_{t+1} = \sigma_h(W_h h_t + U_h x_t + b_h)$$

$$y_{t+1} = \sigma_o(W_o h_{t+1} + b_h)$$

(Simpler by assuming $h_0 = 0$ and ignoring biases)

State Space Model Notation

State space models are **old** (control theory, bayesian stats, etc) They are a way of modelling a system with input/output signals through time

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t)$$
$$y(t) = \mathbf{C}h(t) + \mathbf{D}x(t)$$

These are also called Linear Time Invariant models given the transition matrices don't depend on time

h'(t)v(t)

The $\mathbf{D}x(t)$ can be viewed as a residual connection so the papers involved leave it out of the math (but still implement it?)

- x = continuous time input signal
- h = continuous state (and its derivative)
- y = continuous time output signal

- $h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t)$
- $y(t) = \mathbf{C}h(t)$

Annoying detail: Discretization

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t)$$
 These $y(t) = \mathbf{C}h(t)$ tok

While I am personally not sure why this is necessary in a deep learning context, it is consistent with the theory of these models

$$h_{t+1} = \overline{\mathbf{A}}h_t + \overline{\mathbf{B}}x_t$$
$$y_t = \overline{\mathbf{C}}h_t$$

This discretization is called a zero order hold and Δ can be viewed as "how coarse" the discretization is (I don't have good intuition for this, and neither does anything I've read)

e are functions of continuous time, but in things like next ken prediction we have a discrete sequence of inputs

$$\overline{\mathbf{A}} = \exp(\Delta A)$$
$$\overline{\mathbf{B}} = (\Delta \mathbf{A})^{-1}(\exp(\Delta \mathbf{A}) - \mathbf{I})\Delta \mathbf{B}$$
$$\overline{\mathbf{C}} = \mathbf{C}$$

Back to RNN as a convolution

- $y_1 = \overline{\mathbf{C}}\overline{\mathbf{B}}x_1$
- $y_2 = \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}x_1 + \overline{\mathbf{C}}\overline{\mathbf{B}}x_2$ $y_3 = \overline{\mathbf{C}}\overline{\mathbf{A}}^2\overline{\mathbf{B}}x_1 + \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}x_2 + \overline{\mathbf{C}}\overline{\mathbf{B}}x_3$
- $\vdots = \vdots$

 $\mathbf{y} = \mathbf{x} * \overline{\mathbf{K}}$

- $h_{t+1} = \overline{\mathbf{A}}h_t + \overline{\mathbf{B}}x_t$
 - $y_t = \overline{\mathbf{C}}h_t$
- If we expand this out like with the RNN, we get

- Then, we can do the following convolution fast on hardware (FFT and such)
 - $\overline{\mathbf{K}} = (\overline{\mathbf{C}}\overline{\mathbf{B}}, \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}, \dots, \overline{\mathbf{C}}\overline{\mathbf{A}}^{\ell}\overline{\mathbf{B}})$

(where * is the convolution operation)

Authors say this speedup allows you use 10-100 times larger hidden state than RNNs because smart implementations never have to materialize h_{r}

Matrix powers are scary

Recall for general matrix A,

Structured State Space Models

Theorem 2. The continuous- (3) and discrete- (4) time dynamics for **HiPPO-LegS** are:

$$\frac{d}{dt}c(t) = -\frac{1}{t}Ac(t) + \frac{1}{t}Bf(t) \qquad (3)$$

$$c_{k+1} = \left(1 - \frac{A}{k}\right)c_k + \frac{1}{k}Bf_k \qquad (4)$$

$$A_{nk} = \begin{cases} (2n+1)^{1/2}(2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

$$B_n = (2n+1)^{1/2} + \frac{1}{2}a_k + \frac{1}{$$

Proposition 5. For any times $t_0 < t_1$, the gradient norm of HiPPO-LegS operator for the output at time t_1 with respect to input at time t_0 is $\left\|\frac{\partial c(t_1)}{\partial f(t_0)}\right\| = \Theta(1/t_1)$.

```
@article{hippo,
title={HiPPO: Recurrent Memory with Optimal Polynomial Projections},
author={Albert Gu and Tri Dao and Stefano Ermon and Atri Rudra and Christopher R\'{e}},
journal={arXiv preprint arXiv:2008.07669},
year={2020}
```

Great so now we can do fast sequence to sequence training, but \mathbf{A}^{ℓ} can be a big problem

- $\mathbf{A}^{\text{huge}} \rightarrow \begin{cases} 0 & \sigma_{\max}(\mathbf{A}) < 1 \\ \infty & \sigma_{\max}(\mathbf{A}) > 1 \end{cases}$

We have to get smart about parameterizing A. Step 1 just make it diagonal. Step 2 cite this paper also by the authors that argues their initialization doesn't explode (too much linear algebra for slides)

 $(2n+1)^{\frac{1}{2}}$

So it's just a diagonal matrix with n + 1 on the *n*th diagonal at initialization. Also it's optimized in log space which is not mentioned in the paper

Digression #1: stack of scalar transforms

The y(t) and x(t) functions are typically considered $\mathbb{R} \to \mathbb{R}$. But token embeddings are in \mathbb{R}^d . Instead of just making a vector valued SSM, they stack d independent univariate ones... (the internal state of the SSM is vector valued though)

$$y_{1,1} = \overline{\mathbf{C}}^{(1)} h_1^{(1)}$$

$$y_{1,2} = \overline{\mathbf{C}}^{(1)} h_2^{(1)}$$

$$y_{1,2} = \overline{\mathbf{C}}^{(2)} h_1^{(2)}$$

$$y_{2,2} = \overline{\mathbf{C}}^{(2)} h_2^{(2)}$$

$$y_{1,3} = \overline{\mathbf{C}}^{(3)} h_1^{(3)}$$

$$y_{2,3} = \overline{\mathbf{C}}^{(3)} h_2^{(3)}$$

$$y_{1,4} = \overline{\mathbf{C}}^{(4)} h_1^{(4)}$$

$$y_{2,4} = \overline{\mathbf{C}}^{(4)} h_2^{(4)}$$

Digression #2: It's not just a big linear model

Mamba Block

All this SSM stuff is really just to replace the Attention Layer

The full model has plenty of deep learning flavour of the minute blocks including:

Linear Layers Swish Activations 1D convolutions RMSNorm

Not actually Mamba

So far I have not actually described Mamba, I have described the "Structured State" Space Sequence Model" (S4) while Mamba is (heavily) based on

- B = Batch dimension
- L = Sequence Length dimension
- D = Embedding dimension
- N = SSM State dimension

The parameter sizes listed are a bit misleading because the entries on the D dimension are use independently per channel, it's not like we ever do a (D,N) matmul

Fast convolution for training

Problems with S4

Linear Time Invariance gets you fast training, but you can't treat inputs differently

- h'(t) = A
- $y(t) = \mathbf{0}$

Transformer

"I don't need to remember what's important because I can look at every input for every prediction"

"I can decide what to remember based on what I think is important"

A, B, C don't depend on $x_t!$

$$\mathbf{A}h(t) + \mathbf{B}x(t)$$

 $Ch(t)$

An analogy

????

LSTMs would probably be in this bucket but they are slow and unstable

Although maybe not xLSTMs I have no idea

S4

"I have to remember everything and I can't decide if some inputs are more important than others"

Adding an S: Selective

...but there's no nice fast convolutional form anymore which kind of defeats the purpose right?

This is the key _algorithmic_ contribution: add input dependence for ${f B}, {f C}$ and Δ As math, $h'(t) = \mathbf{A}h(t) + \mathbf{B}(x(t))x(t)$ $y(t) = \mathbf{C}(x(t))h(t)$ Or $h_{t+1} = \overline{\mathbf{A}}h_t + \overline{\mathbf{B}}(x_t)x_t$ $y_t = \overline{\mathbf{C}}(x_t)h_t$ And as usual, $s_B(x)$, $s_C(x)$ and $s_{\Lambda}(x)$ are neural networks

A note on Δ

We can see that this discretization parameter is now a learned function of the input $\Delta : (B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))$

Supposed $\Delta \rightarrow 0$

 $\overline{\mathbf{A}} = \exp(\Delta A) \rightarrow \mathbf{I}$ $\overline{\mathbf{B}} = (\Delta \mathbf{A})^{-1} (\exp(\Delta \mathbf{A}) - \mathbf{I}) \Delta \mathbf{B} \rightarrow \mathbf{0}$

$$h_{t+1} = \mathbf{I}h_t + \mathbf{0}x_t$$

This corresponds to ignoring the current input

> Assuming these claims are true, this connects the learned discretization to "gating" in RNNs such as LSTMs and GRUs

Supposed $\Delta \rightarrow \infty$

Authors claim this means the current input overwrites the hidden state. I cannot figure out why that is the case mathematically unlike in the other cas

Final S: Scanning

We have hit the limit of my knowledge for the second contribution.

Even without the convolution, the authors figured out a way to make a fast on GPU algorithm.

Blelloch parallel prefix scan

The SSM operation can be written as a prefix sum, naively $\mathcal{O}(\mathcal{E})$ but has a fast parallel algorithm

> $\circ\,$ For the following diagrams, a **red** node indicates a contribution from the downsweep tree, and the **yellow** node indicates the contribution from the upsweep tree, and **orange** indicates combined resul

I did not have time to figure out this algorithm in detail but here are some resources

https://jameschen.io/jekyll/update/2024/02/12/mamba.html#the-blelloch-parallel-prefix-scan https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Kernel Fusion

Typically, GPUs will load data into the fast memory, do something, and then write it back. If you have a chain of operations you can do in sequence, you can remove the back and forth writing (slow)

Model Summary

Linear RNN with fast training and constant time inference

Linear RNN where the model parameters are a function of the inputs

Training

Transformers

RNNs

Fast! (parallelizable)

Slow... (not parallelizable)

Fast! (parallelizable)

Mamba

Selective

Scanning

Smart algorithm to be fast on hardware

Inference

Slow... (scales quadratically with sequence length)

Fast!

(scales linearly with sequence length)

Fast! (scales linearly with sequence length + unbounded context)

Authors claim 5x inference and 3x training speedup and over transformers

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

So does it work? (generic results table)

Model	Token.	Pile ppl↓	LAMBADA ppl↓	LAMBADA acc ↑	HellaSwag acc ↑	PIQA acc ↑	Arc-E acc↑	Arc-C acc ↑	WinoGrande acc ↑	Average acc ↑
Hybrid H3-130M	GPT2	_	89.48	25.77	31.7	64.2	44.4	24.2	50.6	40.1
Pythia-160M	NeoX	29.64	38.10	33.0	30.2	61.4	43.2	24.1	51.9	40.6
Mamba-130M	NeoX	10.56	16.07	44.3	35.3	64.5	48.0	24.3	51.9	44.7
Hybrid H3-360M	GPT2	_	12.58	48.0	41.5	68.1	51.4	24.7	54.1	48.0
Pythia-410M	NeoX	9.95	10.84	51.4	40.6	66.9	52.1	24.6	53.8	48.2
Mamba-370M	NeoX	8.28	8.14	55.6	46.5	69.5	55.1	28.0	55.3	50.0
Pythia-1B	NeoX	7.82	7.92	56.1	47.2	70.7	57.0	27.1	53.5	51.9
Mamba-790M	NeoX	7.33	6.02	62.7	55.1	72.1	61.2	29.5	56.1	57.1
GPT-Neo 1.3B	GPT2	_	7.50	57.2	48.9	71.1	56.2	25.9	54.9	52.4
Hybrid H3-1.3B	GPT2	—	11.25	49.6	52.6	71.3	59.2	28.1	56.9	53.0
OPT-1.3B	OPT	—	6.64	58.0	53.7	72.4	56.7	29.6	59.5	55.0
Pythia-1.4B	NeoX	7.51	6.08	61.7	52.1	71.0	60.5	28.5	57.2	55.2
RWKV-1.5B	NeoX	7.70	7.04	56.4	52.5	72.4	60.5	29.4	54.6	54.3
Mamba-1.4B	NeoX	6.80	5.04	64.9	59.1	74.2	65.5	32.8	61.5	59.7
GPT-Neo 2.7B	GPT2	_	5.63	62.2	55.8	72.1	61.1	30.2	57.6	56.5
Hybrid H3-2.7B	GPT2	—	7.92	55.7	59.7	73.3	65.6	32.3	61.4	58.0
OPT-2.7B	OPT	—	5.12	63.6	60.6	74.8	60.8	31.3	61.0	58.7
Pythia-2.8B	NeoX	6.73	5.04	64.7	59.3	74.0	64.1	32.9	59.7	59.1
RWKV-3B	NeoX	7.00	5.24	63.9	59.6	73.7	67.8	33.1	59.6	59.6
Mamba-2.8B	NeoX	6.22	4.23	69.2	66.1	75.2	69.7	36.3	63.5	63.3
GPT-J-6B	GPT2	_	4.10	68.3	66.3	75.4	67.0	36.6	64.1	63.0
OPT-6.7B	OPT	_	4.25	67.7	67.2	76.3	65.6	34.9	65.5	62.9
Pythia-6.9B	NeoX	6.51	4.45	67.1	64.0	75.2	67.3	35.5	61.3	61.7
RWKV-7.4B	NeoX	6.31	4.38	67.2	65.5	76.1	67.8	37.5	61.0	62.5

Appears to perform well against models of similar size/larger

I am yet to see any company throw millions of dollars of compute at one of these

Table 2: (**Induction Heads**.) Models are trained on sequence length $2^8 =$ 256, and tested on increasing sequence lengths of $2^6 = 64$ up to $2^{20} =$ 1048576. Full numbers in Table 11.

Still got rejected from ICLR tho

	Ac	dd: Public Comment
	Public Comment by Junbin Gao	d: Public Comment
- 11 11	Public Comment by Nguyen Hoang Khoi Do Public Comment ✓ Nguyen Hoang Khoi Do Image: Comment: Such a good paper, I don't understand why it was rejected. The reviewers overlooked a lot of things	d: Public Comment
-	Public Comment 💉 🛱 29 Mar 2024, 00:38 (modified: 29 Mar 2024, 01:17) 💿 Everyone 🌓 Revisions [Deleted]	
	Public Comment Public Comment Image: Public Comment Public Comment Public Comment Public Comment Image: Public Comment Ima	
	Public Comment Public Comment 💉 🛱 18 Mar 2024, 23:58 (modified: 18 Mar 2024, 23:59) 💿 Everyone 🖺 Revisions [Deleted]	
- 1	Public Comment by Alexander Kolpakov iffer 17 Mar 2024, 16:36	d: Public Comment
- 11	Paper Decision Decision 🖋 Program Chairs f 16 Jan 2024, 03:54 (modified: 16 Feb 2024, 12:40) 💿 Everyone 🖺 Revisions Decision: Reject Add	d: Public Comment