
Scanning
Selective
Structured 
State
Space
Sequence
(Models)

…also known as Mamba (get it snake makes “s” noise or something)

UBC MLRG Summer 2024

Alan Milligan

alanmil@cs.ubc.ca

Albert Gu and Tri Dao. “Mamba: Linear-Time Sequence Modeling with
Selective State Spaces”.

In: arXiv preprint arXiv:2312.00752 (2023)

Everyone Loves Transformers (totally…)

Yearly citation count update: 125,000 ≈

…but they are expensive.

CO2 emissions are
comparable to several

international flights (per run)

Financial Costs are insane

https://arxiv.org/pdf/2211.02001

https://arxiv.org/pdf/2004.08900

Reality check: Using Lambda
(cloud) this plot would have

cost Fred and I $18,000 USD ≈
(Closer to $50k on AWS….)

Why the costs? (aside from parameter counts starting with a B)

Softmax (QK⊤

d) V

Attention has Quadratic Everything

Training Inference

QK⊤ = WQXX⊤WK ∈ ℝℓ×ℓ

X ∈ ℝℓ×d

Let be the sequence length we train withℓ

 FLOPs and
memory is no fun
𝒪(ℓ2)

Flash Attention can get you down to
 memory but not FLOPs𝒪(ℓ)

Let be the sequence length predictℓ
For the th token, we doℓ

Softmax (1

d
[qℓ

⊤k0 ⋯ qℓ
⊤kℓ]) V

Which is per token and so
 in total. No fun.

𝒪(ℓ)
𝒪(ℓ2)

 and don’t need to be recomputed (KV Caching) but we can’t get away from
making that entire attention vector (especially since Softmax is non-linear)

K V

Many attempts to address this

Many attempted remedies: scary
kernels, various linear approximations,

sparse attention patterns, etc

None managed catch on in
mainstream use cases

Why not do RNNs then?
RNN good? RNN bad?

- training step

- inference (constant per token)

𝒪(l)
𝒪(l)

- fixed context size

- Unstable optimization

- Can’t parallelize easily

:(What do I do with the
350,000 H100s I just casually

purchased then

- zuck probably

It has been theorized if we could
train larger RNNs, they would

match transformers

Q: Why can’t RNNs parallelize well?

ht+1 = σh(Whht + Uhxt + bh)
yt+1 = σo(Woht+1 + bh)

A: Nonlinear State Transitions Basic RNN Structure

The activations in pretty much all RNNs is
non-linear, so must compute all the

business before making .

σ
ht

ht+1

What if we got rid of the nonlinear ?σh(⋅)

h1 = Uhx0

h2 = WhUhx0 + Uhx1

h3 = W2
hUhx0 + Uhx1 + Uhx2

⋮ = ⋮

(Simpler by assuming and ignoring biases)h0 = 0

This can be written as a convolution and is fast on hardware

(but let’s switch to SSM notation first)

State Space Model Notation
State space models are old (control theory, bayesian stats, etc)

They are a way of modelling a system with input/output signals through time

h′￼(t) = Ah(t) + Bx(t)
y(t) = Ch(t) + Dx(t)

continuous time input signal

continuous state (and its derivative)

continuous time output signal

x =
h =
y =

These are also called Linear Time Invariant models given the transition matrices don’t
depend on time

h′￼(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

The can be viewed as a residual connection so the papers involved leave it out of the
math (but still implement it?)

Dx(t)

Annoying detail: Discretization

h′￼(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

These are functions of continuous time, but in things like next
token prediction we have a discrete sequence of inputs

While I am personally not sure why this is necessary in a deep learning context, it is
consistent with the theory of these models

This discretization is called a zero order hold and can be viewed as “how coarse” the
discretization is (I don’t have good intuition for this, and neither does anything I’ve read)

Δ

ht+1 = Aht + Bxt

yt = Cht

A = exp(ΔA)
B = (ΔA)−1(exp(ΔA) − I)ΔB
C = C

Back to RNN as a convolution
ht+1 = Aht + Bxt

yt = Cht

If we expand this out like with the RNN, we get

y1 = CBx1

y2 = CABx1 + CBx2

y3 = CA2Bx1 + CABx2 + CBx3
⋮ = ⋮

Then, we can do the following convolution fast on hardware (FFT and such)

K = (CB, CAB, …, CAℓB)
y = x * K (where is the convolution operation)*

Authors say this speedup allows you use 10-100 times larger hidden state than RNNs
because smart implementations never have to materialize ht

Matrix powers are scary
Great so now we can do fast sequence to sequence training, but can be a big problemAℓ

Recall for general matrix , A
Ahuge → {0 σmax(A) < 1

∞ σmax(A) > 1

Structured State Space Models

We have to get smart about parameterizing . Step 1 just make it diagonal. Step 2 cite this paper also
by the authors that argues their initialization doesn’t explode (too much linear algebra for slides)

A

So it’s just a diagonal matrix with on
the th diagonal at initialization. Also it’s

optimized in log space which is not
mentioned in the paper

n + 1
n

@article{hippo,
 title={HiPPO: Recurrent Memory with Optimal Polynomial Projections},
 author={Albert Gu and Tri Dao and Stefano Ermon and Atri Rudra and Christopher R\'{e}},
 journal={arXiv preprint arXiv:2008.07669},
 year={2020}
}

Digression #1: stack of scalar transforms
The and functions are typically considered . But token embeddings are in .

Instead of just making a vector valued SSM, they stack independent univariate ones…
y(t) x(t) ℝ → ℝ ℝd

d

x1 x2

(the internal state of the SSM is vector valued though)

x1,1 x2,1 h(1)
1 = B(1)x1,1

h(1)
2 = A(1)h(1)

1 + B(1)x1,2

y1,1 = C(1)h(1)
1

y1,2 = C(1)h(1)
2

y1 y2

x1,2 x2,2
h(2)

1 = B(2)x1,2

h(2)
2 = A(2)h(2)

1 + B(2)x2,2

y1,2 = C(2)h(2)
1

y2,2 = C(2)h(2)
2

x1,3 x2,3 h(3)
1 = B(3)x1,3

h(3)
2 = A(3)h(3)

1 + B(3)x2,3

y1,3 = C(3)h(3)
1

y2,3 = C(3)h(3)
2

x1,4 x2,4
h(4)

1 = B(4)x1,4

h(4)
2 = A(4)h(4)

1 + B(4)x2,4

y1,4 = C(4)h(4)
1

y2,4 = C(4)h(4)
2

Digression #2: It’s not just a big linear model
Mamba Block

All this SSM stuff is really just
to replace the Attention Layer

The full model has plenty of
deep learning flavour of the

minute blocks including:

- Linear Layers

- Swish Activations

- 1D convolutions

- RMSNorm

Not actually Mamba
So far I have not actually described Mamba, I have described the “Structured State

Space Sequence Model” (S4) while Mamba is (heavily) based on

B = Batch dimension
L = Sequence Length dimension
D = Embedding dimension
N = SSM State dimension

The parameter sizes listed are a bit
misleading because the entries on

the dimension are use
independently per channel, it’s

not like we ever do a matmul

D

(D,N)

Fast convolution for training next token prediction in
recurrent mode

𝒪(1)

Problems with S4
Linear Time Invariance gets you fast training, but you can’t treat inputs differently

 don’t depend on !A, B, C xt

h′￼(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

An analogy

Transformer S4

“I don’t need to remember
what’s important because I
can look at every input for

every prediction”

“I have to remember
everything and I can’t decide

if some inputs are more
important than others”

????

LSTMs would
probably be in this
bucket but they are
slow and unstable Although maybe

not xLSTMs I
have no idea

“I can decide what to
remember based on what I

think is important”

Adding an S: Selective
This is the key _algorithmic_ contribution: add input dependence for and B, C Δ

As math,

And as usual, and
are neural networks

sB(x), sC(x) sΔ(x)

Or

ht+1 = Aht + B(xt)xt

yt = C(xt)ht

…but there’s no nice fast convolutional form anymore which kind of defeats the purpose right?

h′￼(t) = Ah(t) + B(x(t))x(t)
y(t) = C(x(t))h(t)

A note on Δ
We can see that this discretization parameter is now a learned function of the input

A = exp(ΔA) → I
B = (ΔA)−1(exp(ΔA) − I)ΔB → 0

Supposed Δ → 0

ht+1 = Iht + 0xt
This corresponds to ignoring the current

input

Supposed Δ → ∞

Authors claim this means the current
input overwrites the hidden state. I

cannot figure out why that is the case
mathematically unlike in the other cas

Assuming these claims are true, this connects the learned
discretization to “gating” in RNNs such as LSTMs and GRUs

Final S: Scanning
We have hit the limit of my knowledge for the second contribution.

Even without the convolution, the authors figured out a way to make a fast on GPU algorithm.

Kernel FusionBlelloch parallel prefix scan

Typically, GPUs will load data into the fast memory, do
something, and then write it back. If you have a chain of
operations you can do in sequence, you can remove the

back and forth writing (slow)

The SSM operation can be written as a prefix sum,
naively but has a fast parallel algorithm𝒪(ℓ)

I did not have time to figure out this algorithm
in detail but here are some resources

https://jameschen.io/jekyll/update/2024/02/12/mamba.html#the-blelloch-parallel-prefix-scan
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Model Summary

SSMs

Linear RNN with fast training
and constant time inference

Selective
Linear RNN where the model

parameters are a function of the
inputs

Scanning

Smart algorithm to be fast on
hardware

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

Authors claim 5x inference and
3x training speedup and over

transformers

So does it work? (generic results table)

Appears to perform well against models of similar size/larger
I am yet to see any company throw millions of dollars of compute at one of these

Still got rejected from ICLR tho

Thanks for listening!

