Full citation
Seifi, H., Oppenheimer, M., MacLean, K. E. & Kuchenbecher, K. "Capturing Experts’ Mental Models to Organize a Collection of Haptic Devices: Affordances Outweigh Attributes." ACM Conference on Human Factors in Computing Systems (CHI’20), 2020, pp. 1-11.
Thumbnail
Abstract
Humans rely on categories to mentally organize and understand sets of complex objects. One such set, haptic devices, has myriad technical attributes that affect user experience in complex ways. Seeking an effective navigation structure for a large online collection, we elicited expert mental categories for grounded force-feedback haptic devices: 18 experts (9 device creators, 9 interaction designers) reviewed, grouped, and described 75 devices according to their similarity in a custom card-sorting study. From the resulting quantitative and qualitative data, we identify prominent patterns of tagging versus binning, and we report 6 uber-attributes that the experts used to group the devices, favoring affordances over device specifications. Finally, we derive 7 device categories and 9 subcategories that reflect the imperfect yet semantic nature of the expert mental models. We visualize these device categories and similarities in the online haptic collection, and we offer insights for studying expert understanding of other human-centered technology.
SPIN Authors
Year Published
2020