
What is Afective Touch Made Of? A Sof Capacitive Sensor Array 
Reveals Interplay between Shear, Pressure and Individuality 

Devyani McLaren∗ Jian Gao∗ Xiulun Yin 
Computer Science Electrical & Computer Engineering Electrical & Computer Engineering 

University of British Columbia University of British Columbia University of British Columbia 
Vancouver, BC, Canada Vancouver, BC, Canada Vancouver, BC, Canada 
devyanim@cs.ubc.ca gaojian1@student.ubc.ca huronyin@student.ubc.ca 

Rúbia Reis Guerra Preeti Vyas Chrys Morton 
Computer Science Computer Science Biomedical Engineering 

University of British Columbia University of British Columbia University of British Columbia 
Vancouver, BC, Canada Vancouver, BC, Canada Vancouver, BC, Canada 

rubiarg@cs.ubc.ca pv@cs.ubc.ca morton9@student.ubc.ca 

Xi Laura Cang Yizhong Chen Yiyuan Sun 
Computer Science Electrical & Computer Engineering Computer Science University of 

University of British Columbia University of British Columbia British Columbia 
Vancouver, BC, Canada Vancouver, BC, Canada Vancouver, BC, Canada 

cang@cs.ubc.ca librason@student.ubc.ca sun1092@student.ubc.ca 

Ying Li John D. W. Madden Karon E. MacLean 
Electrical & Computer Engineering Electrical & Computer Engineering Computer Science 
University of British Columbia University of British Columbia University of British Columbia 

Vancouver, BC, Canada Vancouver, BC, Canada Vancouver, BC, Canada 
jacintal@student.ubc.ca jmadden@ece.ubc.ca maclean@cs.ubc.ca 

Figure 1: Tracing the role of shear in afective touch. (a) Humans afectively touch objects and creatures with complex forces. (b) We
adapted a soft capacitive sensor to capture afective-touch levels of normal and shear stress (inset shows shear (blue arrows) and normal 
stress (orange heatmap) for Back and Forth Rub). (c) We found that shear is at least or more important than normal stress in afective touch
gesture recognition. We analyzed specifc gestures and individual diferences to understand how features vary and their critical range. 
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ABSTRACT 
Humans physically express emotion by modulating parameters that 
register on mammalian skin mechanoreceptors, but are unavailable 
in current touch-sensing technology. Greater sensory richness com-
bined with data on afect-expression composition is a prerequisite to 
estimating afect from touch, with applications including physical 
human-robot interaction. To examine shear alongside more easily 
captured normal stresses, we tailored recent capacitive technology 
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to attain performance suitable for afective touch, creating a fexi-
ble, reconfgurable and soft 36-taxel array that detects multitouch 
normal and 2-dimensional shear at ranges of 1.5kPa-43kPa and ± 
0.3-3.8kPa respectively, wirelessly at 43Hz (1548 taxels/s). In a deep-
learning classifcation of 9 gestures (N=16), inclusion of shear data 
improved accuracy to 88%, compared to 80% with normal stress data 
alone, confrming shear stress’s expressive centrality. Using this rich 
data, we analyse the interplay of sensed-touch features, gesture at-
tributes and individual diferences, propose afective-touch sensing 
requirements, and share technical considerations for performance 
and practicality. 

CCS CONCEPTS 
• General and reference → Design; • Human-centered comput-
ing → Haptic devices; • Hardware → Haptic devices; Sensors and 
actuators; • Computing methodologies → Machine learning. 

KEYWORDS 
Sensors; Touch Surfaces and Touch Interaction; Touch; Haptic; 
Gesture; Machine Learning; Afective Computing 

ACM Reference Format: 
Devyani McLaren, Jian Gao, Xiulun Yin, Rúbia Reis Guerra, Preeti Vyas, 
Chrys Morton, Xi Laura Cang, Yizhong Chen, Yiyuan Sun, Ying Li, John D. W. 
Madden, and Karon E. MacLean. 2024. What is Afective Touch Made Of? A 
Soft Capacitive Sensor Array Reveals Interplay between Shear, Pressure and 
Individuality. In The 37th Annual ACM Symposium on User Interface Software 
and Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, 
New York, NY, USA, 31 pages. https://doi.org/10.1145/3654777.3676346 

1 INTRODUCTION 
What happens when you pet a cat? You might scrub her ears just 
where she likes it; she rolls over, you tickle her belly and wiggle her 
paws. You both are thinking play, pleasure, what do I like, what does 
she like? At another time, you realize she’s anxious, so you stroke 
her slowly and softly to calm her. If she missed me while I was gone, 
you hold and gently squeeze her. Always, you continuously com-
municate through quickly evolving tactile exchanges, estimating 
and often trying to alter the others’ emotional balance. 

A robot able to interact in a physically nuanced way with a hu-
man partner would provide exceptional visibility into the physical 
and neurological mechanisms of afective touch [19, 56, 59]; and 
support personalized, unobtrusive guidance in therapeutic regula-
tion of emotion and pain [5, 6, 32, 50]. 
Touch Sensing Requirements: Such a robot needs skin that com-
bines materiality and tactile sensing capabilities near enough to 
that of humans and cats that we can discover the characteristics 
essential to modeling afective touch (Figure 1). Through its skin 
mechanoreceptors, viscoelastic and frictional properties and neu-
ral wiring [22, 39], mammalian skin is magnifcently evolved for 
this purpose, able to sense, process and react to shear, pressure, 
localization, temperature and pain, simultaneously and rapidly. 

It is empirically possible to distinguish many social-touch ges-
tures using normal stress alone, with relatively low spatial resolu-
tion (e.g., fngerpad-sized taxels [17, 21, 30, 52]). But since people use 
the same gestures for many emotion-communication purposes [97], 
on its own gesture gives inadequate insight into afective state. 

The Case for Shear : Additional information seems to be embedded 
in the way afective gestures are carried out, and how gestural pa-
rameters change over time [8, 16, 18]. For now, we can only guess 
at what features matter; but we clearly need more than pressure 
and localization. Common movements like stretch, drag, pinch and 
scratch all engage skin shearing1. To capture the additional touch 
nuances that may indicate emotion, we need access to shear. 
A Shear Challenge: Sensing direct-touch shear stresses across a 
surface is a complex proposition. Shear involves displacement and 
force applied tangentially to the surface. A vector quantity, it is 
related non-linearly to normal stress by friction, shifting modes 
among sliding, stick-slip and isometric shear for a given normal and 
tangential stress. Dragging on the skin is transmitted non-linearly 
to the sensor substructure, generating mechanical and electrical 
cross-talk with adjacent regions and with normal stress sensing. If 
a sensor has discrete taxels, then transverse sliding crosses bound-
aries and inter-taxel deadzones. A shear+normal stress sensor must 
be optimized in concert with modeling methods to minimize these 
considerations, using curated gestural data. The sensor’s fabrica-
tion and wiring should enable non-rectilinear tailoring to cover 
arbitrary shapes, achieve speeds enabling realtime human-robot 
interaction, and be low enough in cost and efort for covering large 
surfaces to be feasible. 

The opportunities for shear-sensitive skin span collecting and 
modeling afective touch in many contexts — wrapped on a hand-
held device, personal fdget object, or car steering wheel: wherever 
strong emotions will occur in conjunction with a touching oppor-
tunity and an intelligent system that could helpfully respond. 
Progress: Multi-taxel robot skins have exhibited biomimicry in spe-
cifc respects: fexible, stretchy, smooth, efective on soft surfaces, or 
able to sense multi-touch pressure and location [87]. The closest to 
managing it in a single package is Choi et al [21]’s 49-taxel sensor 
array, with millimeter-scale magnets embedded in 6mm-tall, 15mm-
spaced pillars of silicone rubber on a fexible printed circuit board. 
Including shear information improved, deep-learning recognition 
accuracy for 13 gestures from 66% to 74%. 

With this encouraging but black-box result, generating reliable 
requirements and enabling further technical evolution needs more 
transparency to determine how shear is involved in afective gesture, 
and how sensors should be built to optimize this. 

1.1 Approach 
To this end, we substantively and iteratively adapted an alterna-
tive technology (soft polymer capacitive arrays) with traits making 
it promising for capturing afective touch stresses: thin (<3mm), 
bendable at >10mm radius, smooth-surfaced and inclusion-free, 
tailorable in layout, and low-cost [35, 61, 75, 94]. Original versions 
lacked normal and shear sensitivity needed for afective gesture 
classifcation, and we further had to generate a spatially steady 
shear signal from discrete taxels. Our fnal design (§4) senses two-
dimensional shear plus normal stress on 14×14��

2 taxels, each 
with 5 channels, all sampled wirelessly at 43 Hz; we report its char-
acterization for parameters likely to be important for afect appli-
cations (§5). To assess feature interplay and individual diferences, 
1Stress is force/unit area. A normal stress is applied orthogonally to the surface, while 
shear is applied transversely. 
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we modeled and analyzed data collected from a fnal, carefully di-
versifed 9-gesture set that expands on those typically reported to 
include shear-intensive items, with 88% general accuracy (§6). Our 
current prototype is intended for placement on a robot or physically 
interactive surface to provide it with afective-touch perception, 
rather than as a pass-through sensor on a living, sensate body (a 
potential future application. 
Iteration: Our approach was dominated by the absence of sensing 
requirements for estimating afective state. We required a sensor 
even to explore needed performance. Sensor design thus had to 
evolve alongside development of a data collection protocol and 
modelling pipeline, fnally converging on a sensor structure and 
parameterization (resolution, precision, range) that aligns with how 
people form a range of afective touch gestures. 
Rationale for Non-Authentic Gesture: We used performed afective-
touch gestures to bootstrap development. Extensive iteration de-
manded efcient data collection; however, acquiring authentically 
emotive touch is a major undertaking [4, 18]. Although gesture 
identity is unlikely to provide afective state on its own, gestures 
carry this information in the nuances of how they are carried out. If 
performed with instructions to cover the expressive range that we 
expect to see in authentic emotive touch, they practically exercise 
sensor capability, while giving an indication of the most promising 
(i.e., expressive) features for eventual emotion modeling in a more 
arduous authentic-emotion deployment. 
Gestural Constraint: The challenge then becomes fnding the right 
level of gestural constraint. Constraint detracts from realism and 
individual variation, but its absence impedes debugging a long 
pipeline: data collection, sensor design, fabrication, and training and 
comparing classifcation algorithms. Further, past work on social 
touch sensing relies almost exclusively on constrained performed 
gesture, to which we needed to compare our results. 

We experimented with varying degrees of gesture constraint, 
and report on a moderate level that balances data richness (adequate 
activity across a set of informative features), comparability (has 
subsets that are comparable to past work), and practicality (our 
refned study protocol could be collected within about a week, 
allowing system iteration over a period of months). 

1.2 Research Questions and Contributions 
This project was framed around several research questions relating 
to this new technology and its suitability for capturing nuanced 
afective information via touch. 
RQ1: What quality of afective touch gesture data is enabled by 

this sensor technology? Contributes: Sensitivity and range, 
identifcation of features most sensitive to afective touch nuance, 
insights into best practices for design and fabrication. 

RQ2: How well can afective touch data from this technology be 
modeled? Best-performing methods; model insight. 

RQ3: What does shear add to normal stress and localization 
data in gesture recognition performance? Overall performance; 
gestural variation in shear/normal stress involvement. 

RQ4: What kinds and degree of human individual diferences 
do we see in gesture performance, even with moderately con-
strained afective gestures? Clear evidence of this technology’s 
ability to capture nuance, and a need for individualized models. 

2 RELATED WORK 
To ground the need and suitability of the novel sensor presented 
here, we discuss past afective touch applications to capture their 
specifc requirements and technologies used (Tables 1-2), examine 
reported touch sensors and their technological approaches, then 
summarize computational methods which have been used to detect 
the types of gestures relevant to afective touch. 

2.1 Afective Touch Applications 
Afective haptic systems generally rely on some form of sensing 
to predict users’ afective states in the course of touch-based inter-
actions, and have been deployed in a number of application cate-
gories [5, 46]. In emotion communication, the touch sensor registers 
emotionally-salient input from an individual, relaying it to another 
(often non-co-located) individual [31, 47, 48, 99]. In body awareness 
applications, data extracted from tactile interaction with everyday 
objects [82] or wearables [77, 88] is used to enhance emotional state 
awareness. Emotion regulation support applications, often explored 
through touch-centric robot companions [13, 14, 17, 30, 83], may 
use haptic responsiveness to provide some manner of support. 

Due to the limited capabilities of touch-sensing technologies 
and modeling methods, researchers of afective haptic applications 
often opt for sensors detecting basic touch parameters, e.g., binary 
touch/not-touched state [31, 48, 89]; single-parametered touch (e.g., 
location [47] or pressure [33, 90]); or two at once [15, 17, 30]. 

Because afective touch interactions often involve sliding, drag-
ging, and stroking motions, researchers have articulated the need 
for touch sensors able to capture shear as well as normal stresses [10, 
11, 27]. Shear stress sensors have appeared in electrical/electronic 
engineering [21, 68] and material science [40]. Choi et al [21] pro-
vided an initial demonstration that shear can increase the accuracy 
of gesture recognition over normal stress alone. 

2.2 Related Sensor Technology 
Flexible, soft stress sensors have potential application in advanced 
robotic sensory systems [25, 26], consumer electronics [58, 92], and 
human-computer interaction [49, 69, 79, 86], where researchers 
have explored piezoresistive [37, 70], capacitive [23, 54], piezoelec-
tric [44, 53, 65] and magnetic [21, 62, 87] sensing technologies. This 
maturity is a boon for rapid prototyping as well as sensor deploy-
ment in consumer products. Moreover, when incorporating shear 
stress sensing capability, fexible capacitive sensors [29, 35, 41, 75] 
are favoured due to ease of electrode layout, compared with the 
preliminary piezoresistive systems [24, 57] available for normal 
and shear/three-axis stress measurement. 

To achieve localization and increase sensing area, fexible sen-
sors often employ arrays of taxels, adjusting inter-taxel distance 
for needed spatial resolution. Cang et al [17] used a 10×10 textile 
piezoresistive array able to capture normal stress between 0.005-
1kg for a 100in2 surface; Nguyen et al [64] demonstrated a 4×4 
capacitive array (size not reported); with ionic liquid electrodes, 
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with taxels capturing both normal stress and proximity. Tomo et 
al [87] applied a magnetic-based, 4x4 ‘uSkin’ array to a humanoid 
robotic hand, covering a 200mm2 surface (force range not reported). 
An array’s area may be limited by the minimum fabricable taxel 
size, tolerable width of unsensed inter-taxel gaps, and/or electronic 
multiplexing and data transmission considerations. Technology 
also dictates whether taxels can be arranged in an arbitrary pattern 
rather than a rectilinear grid to leverage its fexibility. Constraints 
on footprint shape and overall area are relevant in choosing an 
application’s sensor technology. 

In practical applications that engage wearables (out of scope 
for our technology) or robots (in scope) in human-environment or 
human-human interaction, contact often involves both tangential 
(sliding or isometric) as well as normal stress [78, 81]. Emerging 
evidence of the importance of shear in characterizing interactions 
has lead to interest in soft sensing devices able to discriminate 
three-axis stresses while maintaining a soft and skin-like surface 
feel [12, 73]. Two recent fexible sensing arrays capture both normal 
and shear stress. Cheng et al [20] proposed a fexible 8×8 capacitive 
shear sensing array (8mm2 taxels), each with a bump made of PDMS 
(a form of silicone elastomer) atop electrodes embedded in a custom 
PDMS structure and a fexible printed circuit board (FPCB). Stresses 
applied to the bump are computed from capacitance changes in 
4 channels. Meanwhile, Choi et al [21] developed a 5×9 magnetic 
shear array (15mm2 taxels) with a similar stack layout. Force-driven 
displacement of a commercial hard disc magnet embedded in PDMS 
in each taxel was captured by a Hall efect sensor in a bottom layer. 

Both approaches require physical bumps on each taxel; in the 
described validation studies, the bumps also served as a visual cue 
to confne users’ input to the sensor areas with the best sensitivity. 
Both the surface bump and, at least in [21], the magnet inclusion, 
could be felt in stroking and palpating touch. This is unsuitable 
when the goal is to mimic natural, smooth skin free of inclusions, 
with relatively uniform sensitivity and unobstructed sliding contact. 
To meet our own deployment needs, we also required smaller read-
out circuits (compared to >64×64mm2 and 61×18mm2 as reported 
by [20] and [3, 21] respectively), lower power consumption (600, 
330mW), and wireless data transmission for untethered operation. 

Other approaches have developed sensors to bio-mimic skin 
sensing [66, 84]. Most relevant is SenSkin (Ogata et al, [67]), which 
measures skin deformation with a three-axis stress sensor com-
posed of infrared (IR) refective elements that capture tangential 
(perpendicular) and normal stress in wearable applications. 

SenSkin measures shear indirectly through tangential stress de-
tection. The infrared (IR) transmissions across a patch of skin are 
unable to pinpoint the exact location of touch within the patch or 
identify multiple touch points. Our sensor, however, is capable of 
detecting 2D fnger motion and can observe tangential stress at a 
contact point as shear. 

Detection of shear on our sensor is achieved through a layered-
constructed taxels, which allows for detection of shear and normal 
stress, multiple contacts localized to taxel, and 2D fnger motion 
more directly by converting the mechanical stimuli of touch into a 
change in capacitance. 

2.3 Gesture Classifcation 
Afective touch is challenging to model, with a large feature space 
(type of touch, location, duration, pressure, shear and combinations) 
and interpersonal variability. Hence, for early-stage understanding 
and designing relevant technologies, researchers have discretized 
the afective touch space by trying to recognize tactile gestures [97] 
that might convey or relate to specifc afective states. They then 
used classifcation approaches to model and identify these gestures 
from touch input. 

Modeling methods have included Bayesian classifers [52], de-
cisions trees [55], random forests [17], SVMs [51], simple neural 
networks [80] as well as deep-learning methods involving CNN [7, 
21, 74] and RNNs [45]. Random forest classifers have successfully 
demonstrated high accuracy rates upto 95% for discriminating 6 
touch gestures [17], 94% for 9 [30], and 48% for 26 [9] and proven to 
be more efective as compared to naive Bayes, k-nearest, decision 
tree, and multilayer perception approaches [9] 

More recent deep learning methods, particularly 3D convolu-
tional neural networks (3DCNNs), have shown promise in gesture 
classifcation with touch data. Past work with this approach demon-
strated a recognition accuracy of 74% [21], and 76.1% [98] using 
3DCNNs for social touch gesture recognition, outperforming other 
methods for the same dataset. Similarly, there are reported improve-
ments to accuracy in EMG-based hand gesture recognition with a 
parallel architecture of fve convolution layers [95]. In this work, we 
choose to model our gesture data with 3DCNNs due to its ability to 
capture spatio-temporal information, which is crucial in touch data 
analysis. This is particularly important because we are introducing 
a new data channel – shear – for which efective handcrafted fea-
tures for gesture classifcation have not yet been established. Since 
this is a benchmark with this sensor, we opted for using 3DCNNs 
to handle feature extraction automatically. 

However, 3DCNNs have limitations. They require a large amount 
of training data [38], and produce inscrutable black-box models — 
we cannot easily explain how a 3DCNN arrives at its predictions. 
To address this issue, we have implemented a parallel analysis 
with handcrafted features for comparison to the 3DCNN. Future 
work could also involve analyzing the intermediate feature maps 
generated by the 3DCNN to gain insights into the features the 
model learns during the training process. 

3 ESTIMATING REQUIREMENTS 
We use descriptors of human touch (Table 1) as a bridge to establish 
technical requirements for a touch sensor able to detect and classify 
afective touch (Table 2) in order to support future refnement 
guided by realistic feld use. 

3.1 Describing Human Afective Touch 
In a social context, afective touch can be described as a nuanced 
tactile exchange having emotional signifcance; in neuroscience, it 
is understood as a complex sensory phenomenon that involves the 
modulation of C-tactile aferent activity [60], integrating various 
touch contacts on the body, and engaging complex brain processes 
with emotional and social context. This dynamic, personalized, 
and context-sensitive exchange plays a pivotal role in human con-
nection and emotional well-being, making it a captivating subject 
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Table 1: Morphological properties of manual afective touch gestures, from the perspective of the toucher. Ranges and estimates 
are for gestural components of afliative afective touch, omitting aspects such as contacting surface temperature, materiality and shape. 

Gesture 
Property Description Relevance of Property to Affective Communication Examples and estimated values

Body location Location on another body or 
object that is being touched

The recipient's skin varies in tactile sensitivity based on body 
location. From a social standpont, touching different body 
locations conveys social meaning, which can vary culturally.

Hand: greeting, soothing, comfort
Shoulder: greeting, warmth, warning
Leg: attention. [O]

Contact area 
& hand extent

Size of area touched, and parts 
of hand used to make the touch

Large- vs small-contact gestures (e.g., full-hand vs. fingertip ) 
differ in sensory involvement for both giver and receiver, and 
support other gestural variations (e.g., squeezing, encircling). 

Small (5 sq. cm): attention-seeking
Large (20 sq. cm): reassurance [O]

Gesture travel
The gesture's largest 
displacement or movement 
length

Gestures often have "typical" extents, but this parameter might 
also be modulated to communicate mood, e.g., playfulness or 
intensity.

E.g., Poke (point-contact) to Hug (full 
enclosure of an object) [O]

Forcefulness
Magnitude of stress applied at 
a point of contact, in any 
direction

Gentle touch may convey tenderness or tentativeness; firm: 
support, urgency, dominance. Variation within a gesture or at 
different times can alter a gesture's meaning.

Light touches: 0.3N 
Heavy touches: 1.2N
(Teyssier'2020, [S])

Stress angle Angle at which normal and 
shear stress are applied

Touch orientation (finger angle & linear/rotating movement 
direction) is a defining gesture property and provides context for 
the receiver to make sense of the communication.

E.g., circular or dragging versus 
stationary squeezing or poking 

Sliding contact Degree to which gesture moves 
point of contact

A sliding touch (shear stress exceeds static friction) can cover 
more area, and must either be lighter or utlize a slicker surface 
than nonsliding, allowing different expressive parameters.

E.g., Stroke tends be lighter and longer, 
while a isometric Rub may be more fixed 
but deep; both engage shear.

Stress 
modulation

Degree of change in applied 
normal and shear stress during 
the gesture

Touch that is steady vs. uses the full "natural" range of stress 
intensity can both define a gesture and change its meaning.

E.g, a modulated touch might be playful 
(tickle) in contrast to a steady, comforting 
one

Duration
The length of time for a single 
contact (e.g., contact duration 
of a single tap in a series)

Temporal extent (brief vs. sustained) together with dynamics 
(what's happening over that contact) both defines the gesture, 
and can modulate both meaning or purpose. 

E.g., a (short to long) static touch might 
invite play, attention, comfort.  
Tap (short): 0.05s (Asakawa'2017, [S])
Spontaneous embraces (long): 3s 
(Nagy'2011, [S])

Velocity The primary speed with which 
the touch is performed

Speed often conveys an intended emotion-regulatory direction: 
fast touch sends it upward, asking the other to play, or pay 
attention; while a slow touch sends it down, inviting calm. 

1 to 16 cm/s (Morrison'2010, [S])

Repetitiveness

The basic movement's 
tendency to be used once or 
multiply (regardless of breaking 
contact)

A single instance of touch might serve to alert, while repeated 
touches or a periodic pattern in a continuous touch may signify 
emphasis or persistence.

E.g., Hug: once; Poke/Pat: several [O]

Repetition 
frequency

The rate at which a touch is 
repeated

Like velocity (but for different gesture types), gesture-repeat 
frequency often maps to emotional arousal (fast to increase, 
slow to reduce).

Heavily dependent on gesture and context

Movement 
pattern

The action or movement 
performed by the toucher

The specific motion used during touch, encompassing variations 
in spatial and temporal parameters, can contribute to the 
emotional message conveyed.

E.g., different characteristic movement 
patterns for stroke, pat, hug, tap [O]

Approach
Rate, location and angle at 
which the hand approaches the 
touched surface

When perceptible from warmth, hair disturbance or other 
senses, it sets an expectation which alters eventual preception, 
and predicts contact force and velocity.

E.g., the approach of a full-hand slap may 
be fast and wide; a caress slow and wide; 
a tickle fast and narrow in extent.

Citation format: (Name'year, ..., Name'year, [attribution code])
^Attribution code:  [S] Documented property of touched skin; [M] Estimated from touch sensor modeling; [O] Our estimated value, observation or definition; [R]  
From data reported in this paper, since rarely reported in literature 
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of research across disciplines. Afective touch has unique proper-
ties [14, 43, 63], an interplay of which creates a non-verbal language 
that can convey meaning beyond words; e.g., a gentle, long, and 
soft touch on the arm can convey support from a friend, whereas a 
strong, short, and high-frequency tap from a sibling might signify 
a call for attention. These tactile interactions are often highly per-
sonalized [42], and the same touch sequence may convey diferent 
meanings or emotions to diferent individuals. 

We can categorize these properties from a touch recipient’s per-
spective. Spatial properties include where on the body contact oc-
curs, its direction and spatial extent, contributing information about 
its location and orientation. Temporal properties describe timing and 
rhythm, including duration, velocity, repetition, and the frequency 
of repetitive touches. Physical properties include the materiality of 

the contact surface, (e.g., stifness, texture, temperature), stress, and 
intensity. By controlling these properties in interpersonal touch, 
humans build a social touch “language”. 

Researchers often study this language via “touch gestures” [17, 
97]. In Table 1, we draw on past work to list these properties and 
the values that others have proposed or observed as pertinent in 
describing touch stimuli. While out of our present scope, we note the 
infuence of external factors, including individual touch preferences, 
context, setting, timing, social relationship between toucher and 
touchee, and emotional history of the interaction. These nuances 
need to be considered when conducting human-subject experiments 
to understand this domain. 
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Table 2: Key technical properties for array-based surface sensors designed to capture afliative afective touch. Colored boxes 
indicate our subjectively-applied ratings for the relevance of each sensor property to Table 1’s afective touch properties. Where available, 
we have listed relevant values reported in the literature. This mapping shows what is needed to capture all the relevant touch properties; and 
can help to infer technical requirements for a specifc application’s needs. 

Spatial Mechanical Temporal Compound

Affective Gesture Property (Table 1):

Sensor Property Qualitative Description of Property Related Efforts & (where available) Values Achieved

Spatial 
resolution

Intertaxel distance (taxels/unit area) is 
small enough to support required gesture 
detection

3 5 5 1 2 3 1 1 4 1 1 5 1
1 in / 7 gestures differentiated (Cang'2015, [M])
1.5cm / 13 gestures (Choi'2022, [M])
0.3mm; no gestures recognized (Devaraj'2019, [M])

Inter-taxel 
deadzone

Minimization of any unsensed gap between 
taxels 2 4 4 2 3 5 5 3 3 3 3 4 1

Generally not reported. 

Cross-array 
measurement 
consistency

Degree to which variance in taxel readings 
across the array is minimized, at 
unstressed baseline and throughout taxel 
stress/output curves

3 4 4 4 4 5 4 3 3 2 2 5 2

Generally not reported.

Multi-touch 
capability

Number of distinct touch points that can be 
simultaneously detected and individuated 3 4 4 4 2 4 1 3 3 3 3 5 2

100 (Cang'2015, [M])
49 (Choi'2022, [M])
16 (Devaraj'2020, [M])

Touch proximity 
detection

The presence, distance and localization of 
a potential touching element in some 
specified range from the array surface.

3 2 1 1 1 1 1 2 2 3 3 3 5
Generally not reported.

Overall sensor 
size & # of 
taxels

The total area covered by a single array, 
and # of taxels incorporated; greater area 
allows larger gestures and body location 
distinction

5 4 4 1 1 1 1 4 4 3 3 4 1

14x14 mm2 (1 taxel) (Morton'2023 [M])
95 x 95 mm2 (36 taxels) [R]
10x10 in2 (100 taxels) (Cang'2015, [M])

Normal Stress:  
Saturation or 
max measured

The maximum value at which normal  
stress can be sensed 2 2 2 5 5 2 5 3 3 3 3 5 2

Max reported stress applied: 1N (Tomo'2018, 
Parzer'2018, [M])
Max reported stress applied: 5N (Teyssier'2021, [M])

Normal Stress:  
Minimum 
detectable

The rate of change of sensor output to 
applied stress, and linearity of that 
response

2 2 2 5 5 3 4 3 3 3 3 5 2
0.4 N detected change (Huisman'2013, [M])
0.5 N detected change (Cang'2015, [M])

Normal Stress:  
Slope & linearity

The minimum value at which normal  
stress can be clearly detected; important 
for light touch detection 

3 3 3 5 5 2 5 3 2 2 2 5 2
0.48  kPa-1 (Lo'2020, [M])
1.32  kPa-1 (Nie'2015, [M])

Shear Stress:  
Saturation or 
max measured

The maximum value at which shear stress 
can be sensed, and linearity of the min-
max range

2 2 2 5 5 2 5 3 3 3 3 5 2
Generally not reported.

Shear Stress:  
Minimum 
detectable

The minimum value at which shear stress 
can be clearly detected; important for light 
touch detection 

2 2 2 5 5 5 5 3 3 3 3 5 2
Generally not reported.

Shear Stress:  
Slope & linearity

The rate of change of sensor output to 
applied stress, and linearity of that 
response

3 3 3 5 5 5 5 3 2 2 2 5 2
0.31 kPa-1 (Sarwar'2023, [M])
0.01 kPa-1 [R]
Not reported (Choi'2022, [M])

Hysteresis and 
crosstalk

Degree to which inconsistency between 
stress application and release is 
minimized; including visoelastic effects

1 1 2 5 5 5 5 2 4 4 4 5 2
Hysteresis error: 0.57% (Wyss'2020, [M])
Hysteresis error: 5.6% (Guo'2016, [M])

Response 
latency

Time from physical contact to stable output 
reading (electromechanical pipeline). 1 1 1 3 4 3 5 4 5 4 4 5 2

Complex to measure and generally not reported, 
although ultimately important in performance.

Sampling 
frequency

Refresh rate of the entire array, or 
taxels/second; a factor of the control 
electronics and # of taxels in array

1 1 1 3 4 3 5 4 5 5 5 5 2
1225 taxels/s (Choi'2022, [M])
2560 taxels/s (Devaraj'2020, [M])
32 taxels/s (Fernandes'2021, [M])

Temporal 
measurement 
consistency

Degree to which variance in taxel readings 
over time for the same applied stress is 
minimized

1 2 2 5 5 3 5 4 5 4 4 5 2

Minimal variance over 5 cycles (Fernandes'2021, [M])
Minimal variance over 10000 cycles (Sharma'2020, [M])

Other sensor properties not directly related to sensing of touch, but which are likely to have required values imposed by the specific application.  
Underlying 
surface stiffness
Array 
configurability

Rating meaning: The relevance of the information available from this sensor property to the affective touch property is [5] direct and important; to [1] not informative.
Citation format: (Name'year, ..., Name'year, [attribution code])
^Attribution code: [S] Documented property of touched skin; [M] Estimated from touch sensor modeling; [O] Our estimated value, observation or definition; [R] From data reported in this paper, since rarely reported in 
literature 
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3.2 From Human to Technical Requirements 
Table 2 translates parameters descriptive of human afective touch 
to technical sensing parameters and their likely needed range of 
values, such as spatial and temporal characteristics, sensitivity, 
adaptability, and reliability. Finally, the table provides values where 

these requirements have been reported. This is a non-exhaustive list 
but provides a framework for benchmarks of sensors designed for 
similar applications and denotes where values are rarely reported. 
We anticipate that exact needs will vary for many reasons already 
mentioned, including application context. Table 2’s targets should 
be viewed as a starting point adaptable to specifc situations. 
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4 SENSOR DESIGN 
We substantially adapted previous approaches [34, 35] to create a 
soft fexible capacitive sensing array with 36 (6×6) taxels, overall 
size of 94×94mm2, and 2mm thickness. Each 14×14mm2 taxel has 
3 axes (� normal and �-� shear stress), with 2mm between taxels. 
Our design prioritized low cost, manufacturability, fexibility and 
confgurability, alongside sensing performance. 

In overview, the sensor array is an elastomer matrix of deformable 
pillars sandwiched between (on top) transmitting electrodes (laser-
patterned on stretchable conductive fabric), and receiving elec-
trodes on a custom FPCB forming the array’s bottom surface (Fig-
ure 2). We worked with large ranges of elastomer density and pillar 
design to adapt sensitivity and spatial resolution from previous 
high-stress applications (e.g., 1mPa [96]) to the delicate levels ex-
erted by afective touch (43kPa or 10N/taxel). The soft sensing stack 
has been demonstrated with 1D bending at a 10mm radius, limited 
by the FPCB base [61]. It is read by a compact custom microcon-
troller, featuring low power consumption and wireless connectivity; 
with a global sample rate of 43Hz with 2Mbps throughput, from a 
user’s touch to receipt on an untethered control laptop. In §4.1, we 
provide full details of our own implementation. Some aspects are 
similar to [35], but not fully documented; others difer substantively. 

This design’s most salient improvements relative to [35] are: 
Mechanical Design (§4.1.1): We used an inverted truncated pyra-
midal pillar structure rather than square pillars; and Ecofex GEL 
as the compositing elastomer instead of the stifer Ecofex 00-30. 
Together these adaptations increased per-taxel sensitivity by 570%. 
Array Size (§4.1.3): We devised 36 taxels rather than 16 to cover a 
larger area for three-axis stress sensing, targeting diferentiation of 
one-hand gestures. 
Modularity (§4.1.4): Although not demonstrated here, the current 
FPCB can be cut into any array smaller than 6×6. This adds versa-
tility for soft sensing applications requiring smaller or diferently-
shaped sensing areas. 
Virtual taxel for data augmentation (§4.1.5): Our new data augmen-
tation approach improved the all-inclusive gesture classifcation 
model (§6.2.3, §6.3.1) by ∼5% in accuracy by efectively tripling the 
number of taxels per unit area. 
Manufacturability (§4.2.2): We improved alignment between �� /�� 
electrodes and thickness homogeneity by adding and modifying 
mould elements and steps, increasing sensitivity uniformity (§5.2). 

4.1 Design Details 
4.1.1 Taxel Structure. We employed a 5-channel parallel-plate ca-
pacitive taxel confguration (Figure 2), adapting the design from a 
shear sensing array for foot plantar-stress monitoring [34, 35]. Mod-
ifcations to increase sensitivity and spatial uniformity included 
material (a much softer elastomer), dielectric pillar structure and 
inter-taxel spacing, resulting in a 5.7× increase in normal stress 
sensitivity (Supplement E, Figure E.1 & Table E.1). 

Taxel size (14 × 14��
2, similar to a human fnger-pad) is com-

parable to previous shear sensing eforts [20, 21]; other properties 
are listed in Table 3. 

Figure 2: Layout of an individual taxel with electrode and 
pillar dimensions. Green regions are elastomer, yellow copper 
electrodes on the FPCB, and grey stretchable conducing fabric. 
Exploded view at left, full taxel on the right, with the black square 
showing the top (�� ) electrode, partially overlapping with the outer 
Rx electrodes to enable shear detection in 2 axes based on the 
diferential signal. 

Functionally, one square excitation electrode (“transmission” or 
�� , patterned on conductive fabric, width �� = 10��) is embedded 
in an upper insulating elastomer layer; fve square receiver elec-
trodes (�� , width �� =4mm) are laid out on the underlying FPCB. 

These layers are separated by 1.5��-tall square, truncated-pyramid 
elastomer pillars with 1.6⇑2.6�� lower/upper edges. Qin et al [71]⌋ 
suggests that a pillar width/height ratio of 2 optimally balances 
sensitivity and linearity. As we sought this ratio, the pyramidal 
shape decreases shear stifness relative to a rectangular pillar, for 
greater defection and thus signal, while increasing normal force 
range. Concerns regarding PCB bonding led us to cut of the point. 
Taxels are separated by 2��; air flls the non-pillar �� /�� gap. 

Total structure height is 3mm including the elastomer structure, 
adhesive and FPCB. 

4.1.2 Sensing Shear and Normal Stresses. Following [73], we com-
puted three-axis stress using each taxel’s 5 capacitance channels 
(rather than the 4 previously used). For this method, [73] found 
cross-talk of <5% from normal stress to shear signal, and <10% 
between shear axes [73]. 

Figure 3[a-upper] shows how overlap of the larger �� electrode 
with the fve �� electrodes creates fve corresponding capacitances 
1–5, separated by a feld of elastomer pillars. The blue dotted lines 
between �� and �� electrodes approximate the electric feld in each 
channel, imposed by the potential diference across two terminals. 
Higher-density electric feld lines mean high electric fux density 
and thus channel capacitance. When unloaded, �� overlaps fully 
with the central electrode to generate the central capacitance �3, 
and 50% with the four outer electrodes to form capacitances �1,2,4,5. 

The separating elastomer pillars are of height �� when unloaded 
(Figure 3[a-lower]). Under a uniform normal stress, the electrode 
separation �� decreases by ΔZ, while the overlap area, ��� is un-
changed for all electrodes; so �1−5 increase in inverse proportion to 
ΔZ. With an �-axis shear stress added, assuming�� remains parallel 
to the �� electrodes, �2 decreases while �4 increases due to their 
difering overlap (��� ) changes. Meanwhile, �3’s ��� is unchanged 
in the absence of accompanying normal stress. 
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Figure 3: Principle of applied normal and shear stress trans-
lation to 5 capacitance channels. Top (upper) and side (lower) 
views of a single taxel’s active elements under (a) no stress, (b) 
normal stress, and (c) normal stress plus shear. Dashed blue lines 
represent feld, with more lines indicating higher capacitance. The 
dark grey square is the top electrode, which displaces vertically in 
(b) and laterally in (c), as indicated by the dashed black lines. 

We calculate capacitance changes related to shear, labelled �� 
and �� [73] (as estimation of displacements ΔX/ΔY in two axes, 
Figure 3(c)) using capacitance diferences across each axis: 

′ ′ 
�� = �5�1 − �1�5 

�3 
′ 

(1)′ ′ 
�2�4 − �4�2�� = ,

�3 
′ 

′ where �� denotes the baseline (channel �) and �� the instanta-
neously measured (channel �) capacitances. These extracted signals 
are related to measured displacements and stresses via calibra-
tion (§5). In the normal stress direction, we report the capacitance

′ change divided by the initial value, �0: Δ�⇑�0 = �3 − �3 �⇑�3. 

4.1.3 Array Design. To scale a single taxel to an array, a grid re-
duces electrical connections. �� connections are shared by column 
(6 total); there are fve �� connections per taxel row (30 total). Fig-
ure 4 shows the FPCB and depicts the top layer of the exploded 
view in Figure 5. For example, a second taxel to the right of the 
frst requires one new �� connection but can re-use the frst taxel’s 
fve �� connections. Similarly, creating a new row of taxels, the �� 
connections are re-used, and a new set of fve �� connections is 
added. The column is scanned by measuring capacitance between 
one �� and each �� connection, and the array is probed by repeat-
ing this for all �� . The number of taxels, P, scales as the number of 
connections squared. Given a total of � connections including � 
�� connections and � sets of 5 �� connections (total � = � + 5� ), 
the number of taxels, g in a square sensing array is: 

� = � × � = −5� 2 + �� . (2) 

The square sensing array used here has � = 6, � = 6 and a total 
of 36 connections. For our square array, the number of connections 
scales as the square root of taxel number times 6. 

Figure 4: Sensor design. A 6×6 array of three-axis (normal & 
shear) stress sensing taxels are confgured on a custom FPCB. 

Figure 5: Array assembly. 6×6 normal/shear stress sensing array 
assembly and its connection to a custom microcontroller. 

The �� electrodes, fewer in number, are made from patterned 
strips of conductive and stretchable fabric on the sensor’s top sur-
face. The �� features require fner and tighter connections, and so 
are patterned directly onto the fexible printed circuit board. 

4.1.4 FPCB. Figure 4 depicts our 2-layer FPCB design with 6 �� , 
30 �� , and 4 Ground connections that form the array’s base. On 
top, 6 �� copper pads align with the conducting-fabric electrodes. 
For each �� row, 5 �� -aligned copper pads are linked to traces on 
the bottom layer. Ground planes on both FPCB layers minimize 
parasitic capacitance. All�� , �� , and Ground connections are routed 
to the top-left of the FPCB’s bottom layer, linking to the 40-pin 
0.5mm pitch FPC header and thence a custom microcontroller. 

4.1.5 Shear from Computed Virtual Taxels. To mitigate the efect of 
un-sensed inter-taxel deadzones, and also anticipating that higher 
spatial resolution could improve gesture recognition, we computed 
normal and shear values from adjacent outer channels of neigh-
bouring taxels. We used these new clusters of capacitance channels 
as virtual taxels, a novel data augmentation method. 

Specifcally, we focused on the virtual taxels in the middle of 2 
and 4 physical taxels (Figure 6), looking at the capacitance channels 
that overlap the area of a selected virtual taxel. Based on the ratio 
of the overlap, the original 5 capacitance readings involved in the 
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Figure 6: Virtual Taxels. The 6×6 three-axis stress sensing array 
is expanded to 11×11 by integrating the measurements from 2 (A) 
and 4 (B) adjacent physical taxels. 

calculation of �� , �� , Δ�⇑�0 for a physical taxel got replaced by 
a set of new capacitance readings. This efectively increases the 
spatial resolution in normal/shear stress by nearly 2 times, from 
6×6 to 11×11. More information can be found in Supplement C. 

4.2 Fabrication 
Fabrication involves moulding the elastomer dielectric, cutting and 
patterning the conducting fabric �� electrodes, bonding the layers 
to the FPCB, adding a shielding layer to remove interference from 
proximity signals, and bonding a soft elastomer cover layer. 

4.2.1 Preparing Materials. We print four moulds in PLA using 
a FDM 3D printer (Prusa MK3S+): a base with square truncated-
pyramid voids; an electrode alignment guide; and two base-mounted 
rails to control elastomer cover thickness. For the �� electrodes, we 
use stretchable conductive fabric (silver-coated nylon from Less 
EMF) for ease of laser-cutting into arbitrary patterns using a Ver-
salaser carbon dioxide cutter. We cut 6 conductive fabric strips, each 
with 6 �� electrodes. We used Smooth-On EcofexTM GEL [1] for 
the elastomer cover and pillars, for its low durometer (the second 
softest material TM in the Ecofex  lineup, Shore hardness 000-35) to 
enhance mechanical deformation and thereby sensitivity. 

4.2.2 Moulding. We fabricate the elastomer structures with em-
bedded �� electrode in four steps (Figure 7). 

TM(1) Form elastomer pillars: 15g of Ecofex  GEL (Part A:B = 1:1) are 
poured into the base mould. Vacuum is applied to remove bubbles. 
Excess Ecofex is scraped of. The pillar layer is cured for 2 hours 
at room temperature. 
(2) Form layer embedding �� electrodes: A thin bonding layer of 
Ecofex is applied to the pillar layer, followed by a laser-patterned 
transparent flm guide. The top electrodes (six �� fabric strips) are 
inserted into the guide’s cutouts and the guide is removed. Vacuum 
is applied, then a 2-hour cure at ambient conditions. 
(3) Form elastomer cover : 10g of Ecofex is poured, excess removed, 
then cured for 2 hours. 
(4) De-mould: Excess Ecofex is cut from the edges of the cured 
structure. The custom structure is then ready to attach to the FPCB. 

4.2.3 Assembly. A non-conductive silicone-based adhesive (Sili-
cone Solutions SS6004VF+) is applied to the elastomer pillars (Fig-
ure 5) before aligning each taxel’s �� electrode to the corresponding 
�� electrodes. The �� electrode strips are crimped with copper con-
nectors and soldered to the FPCB. 

Figure 7: Fabrication process for custom elastomer structure 
with embedded �� electrodes. (1) Form elastomer pillars; (2) 
embed patterned �� electrodes; (3) form and level the elastomer 
cover; (4) demould. 

4.3 Microcontroller Design & Control 
A microcontroller measures taxel capacitances and relays them by 
Bluetooth to a computer or mobile device. It is electrically connected 
to the sensor array via an FPC connector (Figure 5). 

4.3.1 Microcontroller Board Design. We achieved this form by 
adopting Infneon’s Cypress PSoC-63 dual-core (160/100 MHz) mi-
crocontroller unit (MCU) in a 116-pin BGA package [2]. Its built-in 
capacitance sensing solution (CAPSENSETM) eliminated the need 
for external capacitance-to-digital converters (CDCs) commonly 
seen in embedded systems built for capacitive sensing. For wireless 
data transmission, we implemented PSoC’s built-in Bluetooth Low-
Energy (BLE) 5.0 solution by incorporating a chip antenna and a 32 
MHz crystal oscillator. With an 8-layer PCB architecture, including 
resin-flled blind vias, our compact custom microcontroller is fast 
(up to 10,000 mutual-capacitance reads/s, wireless-capable (BLE 5.0; 
max 2Mbps bandwidth), and low-power (∼20mW when scanning 
and wirelessly transmitting data). 

4.3.2 Avoiding Parasitic Capacitance. Parasitic capacitance (cou-
pling to within the board and to external objects such as fngers) in-
creases the total reading, compromising the relative change caused 
by taxel deformation. On the FPCB, a ground plane is inserted be-
tween �� and �� traces that are on the same layer, and it is ensured 
that there is no overlap between layers. For the custom 8-layer 
microcontroller, it is ensured that none of the 40 FPC traces overlap 
with each other between adjacent layers. A ground plane is added to 
each microcontroller PCB layer to prevent the proximity of fngers 
or other from afecting the capacitive signal. 

4.3.3 Firmware Logic. On the top layer of the microcontroller 
PCB is an FPC socket linking the array’s 40 electrical connec-
tions (�� /�� /Ground) to pins in the PSoC 63 MCU (Figure 5). The 
frmware is programmed to scan the 6 �� × 30 �� = 180 pairs of 
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array measurement points. The MCU’s built-in average flter (win-
dow size = 4 samples) and median flter (3 samples) reduce noise 
without signifcant impact on temporal response. The output is a 
180-element array, RawCounts. Values proportional to the change of 
channel capacitances are packed into an array of integers, and trans-
mitted to outer systems via BLE. Alongside the 180 ��������� , 
additional CAPSENSETM parameters are also transmitted wirelessly 
to calculate the raw capacitance values (see Supplement B, Figure 
B.1 & B.2). 

4.3.4 Data Capture Pipeline. Data collection and visualization con-
sists of the FPC connector (sensor array to microcontroller), Blue-
tooth (to receiver board), and a USB cable (to PC) (Figure 8). The 
receiver (a PSoC-6 BLE Pioneer Evaluation Board) captures the mi-
crocontroller’s data via BLE and passes it to a Windows 11 PC via a 
USB2 connection. Using Python, the timestamped data is saved. The 
PC calculates �� , �� (Eq. 1), given capacitance values converted 
from ��������� and CAPSENSETM parameters. 

A custom real-time visualization displays shear (�� , �� ) with 
arrows indicating magnitudes and directions, and a heatmap of 
vertical capacitance change magnitudes. 

4.4 Surface Material and Friction 
The soft sensor array benefts from a surface covering, especially 
for the very soft elastomer and tacky elastomer used in this study. 
Exact needs vary with polymer softness and taxel sensitivity. 
Protection vs. electromechanical transparency: The surface must be 
durable enough to protect the sensor from wear and tear, while fex-
ible enough to cleanly transmit touch indentation and capacitance. 
Friction for shear : If too slick, lateral (shear) stresses are not trans-
mitted to the sensor unless unnaturally large normal stresses are 
applied (heavy touching). If too sticky, the contact cannot slide, or 
chatters unpleasantly. 
Tactility: The surface texture should reasonably emulate the simu-
lated surface (e.g., skin or short fur); and be inviting to touch. 
For the fnal sensor version and gesture collection (§6), we covered 
the sensor with a soft stretchable cotton fabric, 2mm thick. 

4.5 Overarching Objectives & Outcomes 
Sensor design was motivated by several high level goals. 
Modular Design: We placed the FPC connection between the sensing 
array and the readout circuit, splitting electronics into two modules 
to reduce the cost, debugging efort, and efort of replacing the 
low cost FPCB. An option also exists to extend the FPC length by 
commercially available 40-pin cables and connectors, ncreasing 
options for real-time deployment. When the sensing array is worn 
out after long-time use, it can be replaced at a cost that is low 
relative to other technologies. 
Low Cost: We estimate a per-system cost of ∼20USD. This includes a 
∼15USD microcontroller (at 1000 pieces, with PCB manufacture and 
on-board component assembly); and <5USD for materials (laser-
patterned conductive fabric electrodes, elastomer base and FPCB). 
Low Power : Consumption is ∼20mW (sensing system, ∼43Hz sam-
pling and wireless transmission), signifcantly lower than previous 
wire-transmission counterparts (600mW [20], 330mW [3, 21]). 

Table 3: Sensor characterization summary. All values reported 
are for the same sensor version (Sensor B). 

Value/Description Section & Figure**
Fixed Sensor Spatial Properties

Taxel size [mm^2] 14 x 14 Section 4.1.1 Taxel Stucture

Inter-taxel deadzone [mm] 2 Section 4 Sensor Design (Intro)

Number of taxels 36 Section 4 Sensor Design (Intro)
Overall sensor size [mm^2] 95 x 95 Section 4 Sensor Design (Intro)
Spatial resolution [1/mm^2] 0.004 (0.4 cm^-2) Section 4 Sensor Design (Intro)

Spatial Performance
Cross-array measurement 
consistency (Standard Deviation of 
the slopes [1/kPa]) 

7.6e-5 (8.5%) Calculated based on Table SuppE.2

Multi-touch capability Yes (36) N/A
Fixed Sensor Mechanical Properties

Sensor stiffness (z-axis): Effective 
Modulus [kPa] 58 Calculated based on Figure SuppE.2

Sensor stiffness (x,y-axis): 
Effective Modulus [kPa] 1.5

Calculated based on Figure SuppE.3

Normal Stress (measured as 𝚫C/C in response to applied normal stress [kPa]

Maximum stress measured  [kPa] 43 Figure 11 a)

Minimum detectable stress [kPa] 1.5 Figure 11 a)

Slope [𝚫C/C/kPa] Slope of linear 
portion of response/input stress 
curve

0.01 (< 10 kPa), 0.0008 (> 10 kPa) Calculated based on Figure SuppE.4

Goodness to the linear fit - 
Coefficient of determination [R^2] 0.99 ( < 10 kPa) Calculated based on Figure SuppE.4

Repeatability (standard Deviation of 
the peaks of 300 cycles) 0.0017 (3.5%) Calculated based on Figure 12

Inter-taxel Z axis crosstalk
No observed normal activation in 
adjacent taxels for applied z axis 
stress in central taxel

Figure SuppE.6

Shear Stress - Isometric lateral response (measured as Dx and Dy in response to applied shear stress [kPa]

Maximum stress measured (limited 
by setup) [kPa] (+2 mm to - 2 mm) +- 3.8 Calculated based on Table SuppE.2

Minimum detectable stress [kPa] +- 0.3 Figure 11(b),(c)

Slope[(1/kPa] 0.11 Calculated based on Table SuppE.2

Goodness to the linear fit - 
Coefficient of determination [R^2] 0.994 Calculated based on Table SuppE.2

Independence of shear from normal 
stress

Shear sensitivity is largely 
unchanged with different normal 

force application
[Sarwar'2023]

Within-taxel X-Y Axis independence
No observed activation of x-axis 
shear when y-axis shear applied, 

or vice versa.
 Figure 11(e)( f)

Intra-taxel X-Y axis cross-talk
No observed shear activation in 

adjacent taxels for applied x, y or 
z stress in central taxel

Figure SuppE.7

Temporal properties

Sampling frequency [taxel/s] ~ 1548 Hz Section 4

Sampling frequency [array/s] ~ 43 Hz Section 4

**SuppE.# = Supplemental materials E, figure/table #
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5 SENSOR PERFORMANCE 
To connect this sensor’s capabilities to the tentative targets from 
past descriptive studies of afective touch (Table 2), we carried out 
an extensive test battery which we hope will serve as a baseline 
for future touch-sensing eforts. These numbers are a snapshot 
representing one application with its design tradeofs. 

Table 3 summarizes characterization results for taxel perfor-
mance in normal and shear stress, cross-array consistency, impact 
of the elastomeric material, and measurement repeatability. These 
are further discussed in §7.5 in light of our performance needs. 

5.1 Characterization Methods 
Figure 9 demonstrates our characterization setup, consisting of a 
THORLABS 3-axis NanoMaxTM 300 Flexure stage and an ATI SI-50-
0.5 Multi-axis Force/Torque (F/T) load cell [72]. A fat 14×14mm2 

square-face indenter was printed and mounted on the load cell 
to provide uniform taxel compression. Prior to characterization, 
the array was taped to a custom-printed upper platform on the 
3-axis stage, used to align the centers of the chosen taxel and the 
indenter. We then raised the stage to put the array in contact with 
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Figure 8: Hardware connection pipeline for collection and data visualization (Visualized gesture example: Circular Stroke). 

Figure 9: Sensor characterization setup. THORLABS 3-axis 
NanoMaxTM Flexure stage equipped with an ATI Multi-axis 
Force/Torque (F/T) load cell, used to apply normal and shear dis-
placements to the sensor array. 

the indenter at a normal stress of 2.5kPa for shear characterization 
and 2.5e-2kPa for normal direction characterization. 

We simultaneously recorded the load cell’s 3-axis force and the 
array’s 180-channel capacitance readings on six representative tax-
els. This included the four most heavily used (B2, B5, E2, E5 – 
Figure 10): in piloting, most gestures were performed on the central 
taxels, and this region also showed the most use during formal data 
collection (§5.3). We therefore represented each 3x3 quadrant with 
its central taxel. We further examined taxel A1, representing a typi-
cal response from corner and near-connector taxels; and taxel C4 to 
compare sensor responses across surfaces with varying curvatures. 
These results are detailed in Supplement E, Figure E.12. 

We defned a movement sequence for the 3-axis stage to validate 
the sensing array’s ability in capturing shear touches: the x-axis/y-
axis ofset of each taxel was incremented from 0mm to 2mm (the 
sensor’s designed 2mm shear limit) every 3s in 0.2mm steps. After 
the last step, the stage moved the taxel to its origin (ofset = 0mm). 
This procedure was performed in all four shear directions. 

Displacement speed was 2��⇑� (acceleration 2��⇑�2), with no 
holding at local peaks. These were chosen to complete incremental 
peaks within 2s, to align with the gesture data collection window of 
§6.1. The normal stress characterization followed a similar protocol, 
with the upper limit at 0.8mm, corresponding to 40% shear strain. 

Figure 10: Taxels chosen for shear characterization. Array 
columns are referenced as (A-F), rows as 1-6. 

5.2 Performance Test Results & Analysis 
We report the sensing uniformity among the characterized taxels 
in the three-axis stress readings, as well as sensitivity and measure-
ment range for individual taxels. To assess the EcofexTM elasticity, 
we measured hysteresis in single-taxel normal stress readings with 
displacement-controlled compression cycles. 

5.2.1 Normal Stress. Figure 11(a) presents normal stress response 
over time. An initial stress of 0.15kPa was applied to ensure proper 
contact, followed by an increase to ∼66% (normal stress of 43kPa). 
Baseline capacitance is 2.2pF (maximum change 0.24pF). Figure 11(d) 
shows the stress response at diferent displacements: a strong linear 
relationship between the sensor reading (Δ�⇑�0) and displacement. 

Figure 11(b) exhibits good linearity between the shear stress 
reading and displacement; a linear ft has a slope (sensitivity) of 
0.08��

−1 with �2 of 0.98, an excellent ft. However, Figure 11(a) 
shows a a nonlinear relationship between normal stress and sensor 
reading (Δ�⇑�0). Therefore, we applied two linear fts to the two 
operating normal stress ranges (Supplement E, Figure E.4). In the 
low normal stress range (<9.3kPa), we see a slope of 0.01���−1; 
then a lower sensitivity of 6.2×10−3���−1 in the high-stress region 
(9.3kPa<P<43kPa). This is unsurprising: the pillar design creates 
the air void structure in which a small stress can cause a large 
displacement change. However, the pillars are compressed almost 
to saturation, increasing the compression modulus. 

Sensor hysteresis is another consideration. The red-circled re-
gion on Figure 11(a) reveals shear relaxation as position is held 
constant following the fnal force ramp. This leads to apparent hys-
teresis phenomenon (Supplement E, Figure E.5) when the change in 
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Figure 11: Normal and shear stress characterization – linearity and channel independence. Shear response (�� ) as a probe 
horizontally shears a single taxel with non-sliding (isometric) contact from the taxel’s center to 2mm displacement in 0.2mm steps (∼2 s). 
Directions are normal (left), negative x (center) and negative y (right). The red circle indicates shear relaxation. 

Figure 12: Normal stress Repeatability. A sensor taxel under-
went 22000 normal-stress cycles over 14 hours. The two upper 
callouts show the similarity between the start and end of this test. 

position or force is fast compared to relaxation rate (approximately 
3s here). When the indenter is rapidly pulled up, a delay in the 
return of the material to its original state leads to a sudden drop 
in normal stress This efect is not seen under position control. The 
main implication is a slight delay in the drop in normal stress at 
removal of contact. As a result, very fast and repetitive gestures, 
such as piano playing or quick fnger-tapping, may not be fully 
captured. In our study, this could afect movements like tickling. 

5.2.2 Shear Stress. Figure 11(b) and (c) present a sample test re-
sult wherein a normal contact force of 0.5N (2.5kPa) is applied to 
prevent the indenter from sliding on the sensor’s surface. Baseline 
capacitance is 2.2pF (maximum change ± 0.05pF). In Figure 11(a), 
(b) and (c), the sensor’s shear stress reading is depicted by the blue 
curve, while the red curve represents the load cell reading, con-
verted to kPa. Following each local peak, the shear steps return to 
0mm, with an observable ofset in the shear reading equivalent to 
0.2mm or 10%. This ofset likely results from slippage at high shear 
displacement, but may also have a viscoelastic contribution, and in 
use could manifest as a phantom light or increased touch following 
the application of heavy shear, especially over a prolonged period. 
The ofset disappears once contact with the surface is removed. 

Figure 11(e) and (f) display the sensor’s shear reading vs. the dis-
placement. Each blue dot represents the reading at a specifc applied 
shear direction, while red dots indicate shear readings (crosstalk) 
for the perpendicular direction. Blue dots are derived from local 
displacement peaks, and corresponding red dots from crosstalk 
at those specifc times. The blue datapoints show strong linearity 
within the characterized range of -2mm to +2mm; therefore, we 
applied a linear ft to these data, and found an �2 (coefcient of 
determination) of 0.99, signifying an excellent ft. 

Its slope indicates the sensitivity in the unit of ���−1. Specifcally, 
the slope for x-axis shear is 1.2 × 10−2pF*���−1(0.11 ���−1), with a 
range from -3.8kPa to 3.9kPa and a minimum detectable shear stress 
of ±0.6kPa. For y-axis shear, it is 1.3 × 10−2pF*���−1 (0.12���−1)), 
covering -3.2kPa to 3.8kPa, also with a threshold stress of ±0.3kPa. 

The results for all four taxels are summarized in Supplement E, 
Table E.2. The average slope of the four characterized taxels is 
1.2 × 10− pF* −  

��� (0.11 − ��� ), with a standard deviation of 2 1 1

0.01 × 10−2pF*���−1 (9.4 × 10−5���−1). In computing average and 

https://10�2pF*�������1(0.11
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standard deviation, taxel B2 was excluded due to its notably low 
sensitivity compared to the others, which likely indicates damage 
from previous testing. Figure E.12 ( E) shows a typical response of 
a taxel positioned at the corner and near the connector (Taxel A1), 
which has sensitivity of (x-axis) 1.3 × 10−2pF*���−1 (0.12���−1) 
and (y-axis) 1.9 × 10−2pF*���−1 (0.18���−1). The edges deform 
somewhat more easily in shear due to lack of neighbors, with the 
x-axis less sensitive than the y-axis, likely due to the stifness of 
the crimped electrical connection to the FPCB in that direction. 
Crosstalk between shear axes is 10% at most. This will lead to some 
small apparent shear on perpendicular axes, potentially shifting 
the shear vector by about 6 degrees. 

5.2.3 Efect of Curvature on Shear Sensitivity. We mounted the 
sensor array on surfaces of 80mm (forearm) and 30mm (thumb) 
radii, with the axis x-aligned (Supplement E, Figure E.8). Sensitivity 
increased in the x-axis by 20% and 30%, respectively, while in the 
y-axis it decreased by 6% and 20% (Supplement E, Figure E.9-E.11 
& Table E.3). In the x-axis (along the ridge) sensitivity increases 
because the lower indenter contact area increases normal stress for 
the same applied force, creating a larger capacitance, and hence a 
larger change in capacitance [61]. In the y-axis, the capacitances 
observed when normal stresses are applied drop, from 3.40pF fat, 
to 3.30pF at 80mm and 3.20pF for the 30mm curvature, since these 
regions are not as heavily compressed. Later, we show that gesture 
classifcation works on a soft, curved surface (§6.3.3). 

5.2.4 Repeatability. An Instron Universal Testing Machine (Model 
5969) applied 22,000 normal-direction stress cycles to a single taxel 
over 14 hours (peak normal stress 16kPa; Figure 12). Motion was 
continuous with no hold time at peak or trough. 

We would expect to see some shift in maximum and minimum 
signals due to material softness, but there should not be a clear 
changing trend in overall signal shape. The test showed a standard 
deviation of 0.0015 (2.8%) in the maximum per-cycle change, show-
ing minimal persistent efects of force cycling for this period. §5.3 
also describes sensor condition after >5000 gestures. 

5.3 Failure Assessment 
The sensor (A) on which 12 of 16 reported participants’ data was 
collected (§6.1) underwent 26.5 hours of use, including characteri-
zation, pilot testing, and multiple iterations of data collection. After 
this extensive use, it was replaced (Sensor B) for the fnal 4 reported 
participants (7 hours use after its characterization and data collec-
tion). 3 participants’ data was discarded and replaced by these 4, 
due to excessive anomalies. The characterization data presented in 
Table 3 is from Sensor B. 

We believe much of Sensor A’s damage occurred in bursts; one 
of its last users was particularly forceful. 

The damage applied to the middle 9 (most heavily used) taxels. 
The top Ecofex layer wore out in this region, exposing the top 
electrode to the air. The pillars underneath were broken, and had 
debonded from the FPCB. The implication of this failure mode is 
that shear stress causes the sensor layer to shifted to a new position 
on the FPCB without returning, a form of inelastic deformation. 

We describe possible mitigations in Supplement A. 

6 GESTURE CLASSIFICATION & EVALUATION 
To test the ability of the 6×6 sensing array to capture essential 
features of afective touch gestures throughout its iterative devel-
opment, we developed a protocol to collect gesture instances from 
multiple individuals, then used its data to train a variety of machine-
learning models. In all, we ran versions of this protocol 3 times, 
adapting it with respect to gesture set, constraints on gesture per-
formance and gesture segmentation, as well as sensor version and 
modeling approach, as we strove to understand the complex inter-
play between touch-generated normal and shear stresses and how 
to coax these out of the sensor. Reported here is the fnal version of 
that protocol and analysis of its dataset (N=16, 9 gestures) using a 
custom 3DCNN model. To better understand how the 3DCNN might 
be arriving at its predictions, we implemented a set of handcrafted 
features on participants’ data and reported signifcant diferences 
observed between participants and between gestures. 

6.1 Gesture Data Collection 
For the fnal gesture set that we report here, we recruited 16 partic-
ipants (15 right-handed, 1 left-handed, 8 female, 8 male, aged 21-30 
years) for 1.25-hour (75 min) sessions, compensated $15 for their 
time. This protocol was carried out under approval of the University 
of British Columbia’s behavioral ethics approval #H15-02611-A021. 

6.1.1 Gesture Selection. We selected 9 gestures to address several 
considerations: 
Ecological validity: Diverse representation from Yohanan et al (2012)’s 
naturalistic social touch dictionary [97]. 
Data richness and classifcation challenge: Representation of shear 
as well as normal stress activation, and including items that vary in 
morphological properties and in between-gesture similarity from 
easily confusable to easily distinguished. 
Comparability: Subset-consistency with past sensor-based studies 
of social touch (e.g., [17, 21]). 
Classifcation challenge vs. practicality: A total set-size of 8-10 – 
slightly larger than most past works but still collectable in a single 
participant session without undue fatigue. 
These gestures are listed and described in Table 4, along with their 
variation on several relevant morphological properties to illustrate 
the set diversity. Notably, Back & Forth Rub, Isometric Rub and 
Circular Stroke are similar in temporal dimension but difer in sliding 
contact, rotation and gestural travel. 

6.1.2 Gesture Constraint and Instructions. Gestural constraints can 
co-vary in many factors, such as instruction (oral vs. video; detail 
on heaviness of touch, gestural extent, shape, orientation; enforce-
ment), orientation relative to sensor, and gesture trial segmentation. 
One possible spectrum for co-varying these factors to balance nat-
uralism with logistic and technical modeling challenge is: 
Zero: Fully naturalistic and continuous touching with no instruc-
tions outside of the provided context. 
Minimal: Participants given gesture description; instructed to per-
form single gesture continuously over a timed period. 
High: Participants shown textual descriptions and video demon-
strations of the gestures (as implemented by [21]). 

https://E.9-E.11
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Table 4: Gesture Defnitions provided to participants, mapped to Gesture Properties adapted from Table 1. The range of ratings in 
each column (subjective by authors) demonstrates diversity of how this gesture set "exercises" each gestural dimension. 

Spatial Mechanical Temporal

Gesture Definition provided to participants

Poke Using one finger, poke the sensor repeatedly 1 1 1 5 5 5 1 1 1 2 1 5 5

Wide Pinch 
(w_pinch)

Using 2-4 fingers, make one inward pinch that is at least 
2 finger-widths apart, release the pinch within the 2s trial 3 3 3 4 3 4 5 3 4 2 2 3 1

Heavy Pat      
(h_pat)

With the flat of your hand, pat the sensor repeatedly as 
through you are heavily patting your leg 5 5 1 3 1 5 1 1 1 3 2 4 5

Twist Anchoring 2-5 fingers on sensor, twist your fingers in 
place more than 90 degrees repeatedly 3 3 2 4 4 3 5 5 2 3 3 2 4

Back & Forth Rub 
(b&f_rub)

Using 3-5 fingers, rub the sensor back and forth with your 
fingers sliding 5 4 5 3 1 3 5 2 5 4 5 3 5

Isometric Rub 
(iso_rub)

Anchoring 2-5 fingers on sensor, jostle fingers back and 
forth in-place, as if rubbing a bruise on your leg 2 3 1 4 2 3 5 1 1 5 5 3 5

Circular Stroke 
(cir_stroke)

Rub the sensor in circles with the flat of your hand, 
allowing your hand to slide 5 5 4 3 1 3 5 5 5 4 5 3 5

Tickle Using as many fingers as you like, lightly tap the sensor 
as though you are tickling someone 4 4 3 1 4 1 2 1 2 4 2 5 4

Constant Touch 
(constant)

Place the flat of your hand on the sensor 5 5 1 2 1 2 1 1 1 1 5 1 1
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Rating: The degree to which a gestural dimension applies to a gesture definition: [5] high degree (e.g., many fingers, high force relative to other gestures); [1] little to none.
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(capturing most relevant affective touch properties, Table 1)
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Since we are at the stage of establishing sensor requirements and 
needed segmented data, but also wanted our data to contain features 
representative of natural afective touch, for the reported gestural 
dataset collection we used a “moderate” level (between minimal 
and high) wherein participants were instructed to ‘imagine per-
forming each gesture as they would naturally on their leg,’ perform 
the gesture repeatedly within a 2s trial (except for Pinch) and to 
interpret otherwise the defnition provided in (Table 4) as best they 
could. Overall the defnitions of gestures were well understood. 
However, Tickle was confusing for 3 participants and Isometric Rub 
was confusing for all participants. In these instances, the experi-
menter performed the gesture on their leg and asked participants 
to copy it as best they could from the visual demonstration. 

Over our many collection iterations, we varied these factors ex-
tensively to identify modeling sensitivity to their variation. Two 
protocol improvements proved helpful. First, we focused partici-
pants on performing more or less the same gesture, so as to avoid 
overwhelming the model with irrelevant data variation, by ofer-
ing visual demonstrations when participants were confused by the 
description (as opposed to simply naming the gesture as described 
earlier). Secondly, we shortened trial time from 9s to 2s for a single 
gesture (this unit is also referred to as a “data instance” in analysis, 
below). This way any large individual diferences in the 9s data 
instances that the model was unable to recognize, was mitigated. 

6.1.3 Collection Study Design. Data collection was segmented by 
trials, wherein a trial consisted of repeated performance of a gesture 
for 2s (unless otherwise specifed by the defnition). Trials were 
performed in 9-gesture blocks (one gesture/trial, with gesture-trial 
order randomized per block). Each participant performed 52 blocks, 

for a total of 468 trials (data instance). The full dataset is thus 
composed of 52 blocks × 1 trial × 9 gestures × 16 participants = 
7488 instances of gesture data. In the user study, we collected 7581 
data instances. This diference was resulted from repeated trials or 
minor errors (e.g., participant failed to record the correct gesture at 
frst and had to redo the gesture). From the 7581 instances, we used 
7315 (96.49%), based on the second step in the data preprocessing 
described in Table 5. 

We determined data needs for our 3DCNN classifcation model 
via iterative piloting. 2s trials best captured one full gesture per-
formance. 468 trials (all gestures) require a non-onerous 15.6min 
per participant of contact time. For efciency comparison, Skin-On 
Interfaces (UIST’2019) [85] models 8 gestures (320 trials, trial du-
ration not provided) with efcient image processing techniques. 
Our 3DCNN, chosen to handle 3D temporal data, requires more 
data. Choi et al [21], with a CNN, capacitive shear+normal stress 
sensor, used approximately double this data in 5s trials (29.3min 
per participant). 

6.1.4 Procedure. During a study session, participants were told 
about the study, completed the consent process and were provided 
with instructions about performing the gestures. A collection ses-
sion took about 75 minutes. 

Participants were seated in a desk chair facing the sensor (placed 
in the same orientation with the microcontroller connection on the 
top left side) on a hard fat surface, near their dominant hand, and 
with a laptop and monitor screen in front of them (Figure 13). The 
sensor was covered with a white cotton fabric chosen to provide 
enough slip on the sensor’s surface for gestures that required sliding 
friction and to protect the sensor’s top gel layer. 
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Figure 13: Gesture collection study setup. 

They were frst introduced to the sensor with 10s of Free Play 
(freely touching the sensor to reduce the interaction’s novelty). 
To capture the 2s trial participants had to begin performing the 
gesture as they pressed a corresponding key on the data collection 
laptop with their non-gesturing hand. After 2s they would hear 
a beep from the computer to indicate that the 2s trial is over and 
they can perform the next gesture. The monitor screen showed 
the list of gestures to perform in the current block along with the 
unique key to press, the gesture descriptions, what gestures had 
been previously performed, and what block number they were 
currently at. Example photos of gestures being performed with the 
corresponding visualization can be found in Supplement D. 

During collections, a researcher monitored the process and asked 
participants to repeat a gesture if they noticed a large deviation 
from the gesture defnition. E.g. for Twist, if participants did not 
twist their fngers more than 90 degrees, the experimenter would 
request them to repeat the gesture. After 12 blocks, participants took 
a 2m+ break to minimize fatigue. We also checked in periodically 
for self-reports of fatigue, which no participants indicated. 

6.2 Machine Recognition Pipeline 
6.2.1 Organizing Raw Data. After collecting data from all 16 par-
ticipants, we organized the raw data for the 9-class classifcation 
with deep learning (pipeline shown in Figure 14). Within each 
participant’s folder were one or more CSV fles corresponding to 
segments within their data collection session. Within each CSV fle 
(§4.3.4), raw sensor data was frst fltered by the custom microcon-
troller’s built-in average and median flters, collected as 180-channel 
RawCounts (180 columns), alongside CapSenseTM parameters (1 
column) for capacitance calculation, and timestamps (1 column). To 
facilitate extraction of gesture instances for deep learning, we added 
a gesture label (1 column) and a touch fag (1 column), expanding 
the CSV size to (184, n). 

6.2.2 Preprocessing. The goal of the preprocessing (steps in Ta-
ble 5) was to efectively extract valid gesture data, calculate the 
normal/shear stress measurements at 36 taxel locations, and prepare 
them for loading to our custom deep learning model. 

Table 5: Preprocessing steps for the machine recognition 
pipeline. For each CSV data fle, we included the �� , �� , Δ�⇑�0 
data for both physical taxels and virtual taxels, generated NPZ fles 
of sizes (3, 86, 11, 11), and stored them in 9 gesture instance folders. 

. 
Step Process 

1 Split fle into multiple 2-second data instances according to the logged 
gesture labels and touch fags. 

2 Screened out gesture data chunks that have too many (>96) or too few (<76) 
samples — the sample number varied due to wireless data transmission. 

3 Linearly interpolated the remaining data chunks (96.5% of the total) in 
time to be 86 samples each. 

4 For each sample, calculated capacitance values for the 180 channels as 
discussed in §4.1.2. 

5 Obtained �� , �� , Δ�⇑�0 for the 36 taxels according to each taxel’s 5 
capacitance values. 

6 Adopted virtual taxel implementation, as explained in §4.1.5, to create 
taxel readings (�� , �� , Δ�⇑�0) between the existing 6×6 taxels to reach 
an array size of 11×11. 

7 Saved the expanded array of quantifed taxel readings (10-bit integers; 1024 
levels with level 0 being zero normal) as gesture instances in the NPZ fle 
format with a size of (3, 86, 11, 11) each. 

After including the �� , �� , Δ�⇑�0 data for both physical taxels 
and virtual taxels, we generated NPZ fles of size of (3, 86, 11, 11) 
and stored them in 9 gesture instance folders. 

6.2.3 Data for classification. We utilized the 3DCNN model [21, 
45, 74] to tackle aspects of our research questions. From RQ3: Can 
shear stress data facilitate ML classifcation? From RQ4: Are these 
9 gestures, with verbal defnition shown to the participants, gen-
eralizable between at least the 16 studied individuals? If so, the 
potential exists for a classifcation model that can efectively dis-
tinguish anyone’s gestures (from the 9 studied gestures) without 
further training with the new stress data. 
All-inclusive: To tackle RQ3, we randomized the gesture instances in 
each of the 9 gesture data folders, followed by a 70/20/10% data split 
(train/validation/test). The train and validation gesture instances 
were then joined between the folders respectively, ready to be 
loaded to the 3DCNN. 
Leave-one-out: For RQ4, we implemented a 70/30% data split (train/ 
validation) for 15 participants’ data and reserved the last partici-
pant’s data only to test the trained model. This was done for P1-16, 
leading to 16 datasets prepared for the 3DCNN. 

6.2.4 Gesture classification using 3DCNN. We constructed a cus-
tom 3DCNN (Figure 15), used for both all-inclusive and leave-one-
out (LOO) modelling tasks. It consisted of an input layer, 3 three-
dimensional convolutional (Conv3D) layers, 1 global average pool-
ing (GlobalAveragePooling3D) layer, and 2 fully-connected (Dense) 
layers inserted with 1 dropout layer. The reason for the increased 
number of convolutional layers and flters, compared to prior work 
[21, 74], was the higher amount of data stored in each data instance. 
Coming from the input layer, the frst Conv3D layer had a kernel 
size of (1, 1, 43), a stride of (1, 1, 4), and a flter number of 128. The 
kernel and stride were set to condense the time-domain informa-
tion, so the output could have balanced dimensions—(11, 11, 11)—in 
the hope for better feature extraction in the following Conv3D 
and fully connected layers. The second and third Conv3D layers 
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Figure 14: Preparation of data for the 9-class gesture classifcation using a 3DCNN. 

Figure 15: Custom 3DCNN for gesture classifcation. Following 
Visualkeras [36]. For illustration purposes, the model visualization 
is not to scale, and the three batch normalization layers, each fol-
lowing one Conv3D layer, are omitted. 

shared a kernel size of (3, 3, 3) and a stride of (1, 1, 1), but difered 
in the number of flters—256 and 512. Batch normalization was per-
formed after each Conv3D layer. The third Conv3D was followed 
by the GlobalAveragePooling3D layer, the frst Dense layer, and 
the dropout layer—all of the same size (512). The output was then 
fed to a 9-neuron Dense layer to generate the probability matrix of 
predicted gestures. 

Regarding our all-inclusive model, depending on the input data, 
we altered the number of channels of 3DCNN’s the input layer – 
1 for normal stress only data, 2 for shear stress only data, and 3 
for three-axis stress (normal and shear combined) data. For the 
leave-one-out model, in comparison, the number of channels was 
fxed at 3 since we only used three-axis stress data. 

Before starting on the training, we set a learning rate of 0.00001 
and a loss function using categorical crossentropy. In addition, an 
Adam optimizer and early stopping callback (patience = 15; max 
number of epochs = 200) were adopted. 

6.3 Results 
6.3.1 Overall accuracy. For both all-inclusive and leave-one-out 
models, we ran 5 rounds and training and testing. Here we report 
their respective overall accuracy and gesture-related fndings. 
All-inclusive: Among 5 rounds of results, the median overall test 
accuracies (Figure 16(d)) are 80%, 79%, and 88% respectively for 
models trained and tested with normal-only, shear-only, and three-
axis data. Therefore, to classify the 9 gestures defned by our study, 
the three-axis data model outperforms the other two. Using the 
test data from three models, we present their normalized confusion 
matrices (CMs) in Figure 16(a-c). From them, we noticed that, three-
axis model yielded the highest classifcation accuracy for 6 out of 
9 gestures. The three gestures for which normal-only and shear-
only models performed better than the three-axis were Wide Pinch 
(normal-only by ∼5%), Poke (shear-only by ∼14%), and Twist (normal-
only by ∼1%). 
Leave-one-out: A leave-one-out cross-validation approach (Figure 17) 
revealed an average accuracy of 64% (SD ± 27%) for the generalized 

three-axis model, with each participant serving as test data fve 
times as described in §6.2.3. Although we saw relative moderate 
classifcation accuracies for three participants (P3, P8, P14; each 
with a 5-round median >75%, compared to chance – 11%), the sub-
stantial variation between the rest suggests the model may struggle 
to capture the unique characteristics of unseen participants with 
diferent traits, potentially limiting its generalizability. Confusion 
matrices for the LOO analysis can be found in Supplement D, Figure 
D.3-D.4. 

6.3.2 Relative Shear and Normal Stress Contributions to Accuracy. 
To analyze the efects of ‘Channel’ (three-axis, shear-only, or normal-
only) and ‘Gesture’ on test accuracies. we employed a two-way 
Aligned Rank Transform (ART) ANOVA [93], given that our data 
violated the assumptions of normality and homogeneity of vari-
ances for a regular ANOVA. 

The analysis revealed a signifcant main efect of ‘Channel’ (F(2, 
144) = 17.64, p < 0.001). This indicates that test accuracies difered 
signifcantly across the diferent channel types. However, ‘Gesture’ 
(F(8, 144) = 2.80e-29, p = 1.00) and the interaction between ‘Channel’ 
and ‘Gesture’ (F(16, 144) = 1.73e-30, p = 1.00) did not show any 
statistically signifcant efects. 

Post-hoc tests using Tukey’s HSD further confrmed signifcant 
diferences in test accuracy between the ‘three-axis’ group and both 
the ‘normal-only’ (mean diference = -2.0, p < 0.001) and ‘shear-
only’ groups (mean diference = -2.0, p < 0.001). Interestingly, there 
was no signifcant diference in accuracy between the ‘normal-only’ 
and ‘shear-only’ groups (mean diference = 0.0, p = 1.00). 

6.3.3 Gesture and Individual Diferences. To gain a deeper under-
standing of the data, we extracted fve key metrics from each par-
ticipant’s gesture execution. These were calculated based on 50 
observations sampled for each participant-gesture pair. All measure-
ments were normalized to 0-1 for consistency across participants. 
Table 6 summarizes how each metric was calculated. 

To quantify diferences within these metrics, we employed a 
Generalized Linear Model (GLM). The decision to use a GLM was 
driven by the nature of our data, which violated the assumptions of 
normality and homogeneity of variances that are required for many 
traditional statistical tests. This analysis was conducted using the 
Python libraries ‘patsy’2 and ‘statsmodels’ [76]. 
Procedure: Initially, we created contrast matrices for both the gesture 
and participant variables. The contrast coding scheme used was the 
‘sum’ contrast, which compares each level of a categorical variable 
to the mean of the subsequent levels. This was done for all unique 
gestures and participants in our normalized measures dataset. 

2https://patsy.readthedocs.io 

https://patsy.readthedocs.io
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Figure 16: Test results for all-inclusive 3DCNN models. a) CM from the model trained and tested with 1 channel of normal stress data. 
b) CM from the model trained and tested with 2 channels of shear stress data. c) CM from the model trained and tested with 3 channels of 
three-axis stress data. d) 5-round median test accuracy of three models with respective minimum and maximum. 

Figure 17: Test accuracy for leave-one-out models. Each is 
trained with 15 participants’ data and tested with 1 reserved par-
ticipant’s data. The x-axis label indicates the data left out from 
training. 

Subsequently, for each measure under investigation, we con-
structed a GLM. The model was specifed such that the measure 
was the response variable, and it was modeled as a function of 
the gesture and participant factors. The gesture and participant 
variables were treated as categorical, with their contrasts defned 
by the previously created contrast matrices. The GLM was ftted to 
our normalized data using the Gaussian family. 

Our primary objective is to understand and summarize the in-
dividual diferences in how participants interact with the sensor 
during various gesture executions. Hence, we focus on individual 
variability, prioritizing the analysis of main efects for participants 
and gesture types. 
Gesture Diferences: We summarize the key fndings for each ex-
tracted feature, visualized on Figure 18, investigating the efects of 
diferent gesture types. 

Table 6: Key metrics for participant gesture execution & cal-
culation details. Metrics are calculated based on 50 observations 
sampled for each participant-gesture pair. All measurements were 
normalized to 0-1 for consistency across participants. 

. 
Metric Calculation Summary 

Average 
Normal 
Stress 

Absolute 
Shear 
Magnitude 

Average 
Contact 
Area 

Maximum 
Fre-
quency 

Movement 
Type 

An activation threshold was frst established at 5% of the maximum 
stress recorded across all participants. The average stress exerted 
by a participant on the sensor surface was then calculated for each 
sample, considering only the “activated” taxels (those exceeding the 
stress threshold). 
Similar to the average normal stress, the average absolute magnitude 
of the shear stress in the x and y directions was computed for each 
sample. This metric considers the magnitude of shearing stress acting 
on the sensor surface during the gesture execution. 
The total number of activated taxels (those exceeding the activation 
threshold for pressure or shear for a majority of the time window) 
was summed to determine the average contact area. This metric 
provides insights into the surface area engaged during the gesture. 
As a proxy for the gesture dynamics, the maximum frequency 
(capped at 5 Hz) of summed pressure and shear signal was iden-
tifed using a Fast Fourier Transform (FFT), capturing the dominant 
frequency component associated with the gesture execution. 
The predominant movement type during the gesture was categorized 
as either “Transversal”, “Convergent”, “Divergent”, or “Mixed/Static”. 
This classifcation was achieved by analyzing the change in shear 
magnitude over time. If all changes were consistently positive (or 
negative), the movement was classifed as “Transversal”. An average 
positive change indicated “Convergent” movement, while an average 
negative change signifed “Divergent” movement. Gestures without 
a clear directional trend were categorized as “Mixed/Static”. 

● Average normal stress applied: All gestures except Back and 
Forth Rub (p=0.606) exhibited a signifcant diference (p<0.001) 
in average normal force compared to the reference gesture. 
● Average absolute shear stress magnitude: Similar to average 
normal stress, all gestures except Poke (p=0.081) showed a 
signifcant diference (p<0.001, �constant=0.048) in average 
absolute shear stress magnitude compared to the reference 
gesture. 
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● Average contact area: Every gesture type analyzed (Back and 
Forth Rub, Circular Stroke, Constant, Heavy Pat, Isometric Rub, 
Poke, Tickle, and Twist) demonstrated a signifcant diference 
(p<0.001, �poke=0.040) in average contact area compared to 
the reference gesture. 
● Maximum frequency (speed of gesture execution): Back and 
Forth Rub, Circular Stroke, Constant, Heavy Pat, Poke, and 
Twist displayed a signifcant diference (p<0.020) in maxi-
mum frequency compared to the reference gesture. In con-
trast, Isometric Rub (p=0.532) and Tickle (p=0.491) did not 
exhibit a statistically signifcant diference. 
● Movement type: All gestures showed a signifcant difer
ence in movement type compared to the reference gesture 
(p<0.020). 

Individual Diferences: We observed a range of individual diferences 
for each of the metrics derived from participants’ gesture data, 
summarized in Figure 19. 

● Average normal stress applied: A signifcant diference (p < 
0.001) in average normal stress was observed between the 
reference and all participants, except for P6, for whom we did 
not observe a statistically signifcant diference (p = 0.267) 
compared to the reference participant. 
● Average absolute shear stress magnitude: Similar to average 
normal stress, all participants, with exception of P9 (p = 
0.057) and P10 (p = 0.681), difered in average absolute shear 
stress magnitude compared to the reference participant (p < 
0.001).
● Average contact area: The analysis revealed a signifcant dif-
ference (p < 0.001) inthe average contact area between the 
reference participant and all participants, with exception of 
P7 (p = 0.679).
● Maximum frequency (speed of gesture execution): With excep-
tion of P3 (p = 0.130), P5 (p = 0.496), P7 (p = 0.106), P11 (p 
= 0.825), and P15 (p = 0.507), we observed a signifcant dif-
ference between all other participants’ maximum frequency 
compared to the reference participant. 
● Movement type: The analysis indicated a signifcant difer-
ence (p < 0.020) in movement type between the reference 
participant and participants P2, P3, P4, P5, P7, P8, P11, P12, 
P14, P15, and P16. For the remainder, we did not observe a 
signifcant diference (p > 0.193). 

6.3.4 Testing the Sensor on a Sof Curved Surface. As a preliminary 
step to verify the sensing array’s performance when mounted on 
a curved and soft surface, we taped the 6×6 sensing array to a 
3D-printed, 125mm diameter cylinder covered with 1cm-thick soft 
foam, and collected a session from one new participant (P17) using 
the same procedure described in §6.1.4 (see Supplement D Figure 
D.1 for images of heatmap and gesture performance on this curved 
setup). We then carried out only the leave-one-out (LOO) analysis 
(§6.3.1), using P1-16’s data for training and validation and P17’s 
data for testing. We did not perform the all-inclusive analysis due 
to the 16x diference in fat/curved surface data volume. 

Five LOO rounds achieved a median test accuracy of 51% (mini-
mum 44%, maximum 58%). Although this median is lower than the 
average (64%) of the 5-round median test accuracy for P1-16, it is 

comparable to the fve lowest individual fat/hard surface perfor-
mances (medians 52, 46, 50, 50, 51% for P5,6,11,12 and 15 respec-
tively), and considerably better than chance (11%). While more data 
is obviously needed to diferentiate efects of individual and surface 
condition, and to establish exactly what is happening structurally 
within the sensor to increase or diminish sensitivity for softness and 
curvature; but this quick look is promising in terms of versatility. 

7 DISCUSSION 
We start by returning to the research questions articulated in §1.2, 
then expand on design considerations and future potential for this 
sensor technology learned through this development experience. 

7.1 RQ1: What qualities of afective touch 
gesture data are enabled by this novel sensor 
technology? 

7.1.1 Identification of Technical Requirements. In Table 2, we pro-
posed important technical properties based on observed human 
touch characteristics, and reported a few values that have been 
achieved and reported in past work (sometimes for other applica-
tions with diferent needs). Most properties have not been reported 
on at all. 

By way of validating targets, we observed that the sensor pro-
totype used here captured shear and normal stress well enough to 
(a) demonstrate good signal range across normal touch levels, (b) 
diferentiate a carefully curated gesture set, and (c) reveal nuances 
in gestural and individual diferences. The values we report thus 
arguably comprise initial minimum requirements. 

7.1.2 Priorities for Sensor Improvement. We believe that capture 
would be further improved by an even lower minimum-detectable 
stress threshold (both normal and shear), and by addressing is-
sues accompanying the fnal soft sensor material (for performance, 
quickening of the viscoelastic response; and for usage, gaining con-
trol over surface tactility). While robustness was reasonable for an 
early prototype, greater durability is needed for diferent kinds of 
studies. These are further discussed in Supplement A. 

-

7.2 RQ2: How well can afective touch data 
from this technology be modeled? 

In summary, the three 3DCNN all-inclusive models (normal, shear, 
and combined) are efective at classifying gestures. The three-axis 
stress model in particular shows 88% accuracy for the 9 gesture 
classes, in contrast to chance (11%), and an improvement over nor-
mal stress only and shear stress only, at 80% and 79% respectively 
(§6.3.1). To this we added modeling of individual and gestural dif-
ferences. We examine this result for novelty and limitations, along 
with ways to address them. 

7.2.1 Results in Context. This performance is consistent with the 
improvement to 78% accuracy achieved by Choi et al [21] (a 3DCNN 
model for 13 gesture classes when including both normal and shear 
forces, compared to 66% without shear). Choi et al’s work was 
enabled by recent advancement in magnetic sensing, as ours is with 
soft capacitive sensing. We compare our soft fexible sensing array 
against this work in three respects. 
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Figure 18: Normalized individual-participant data for each gesture. In a parallel coordinates plot, average execution of a given gesture 
for participants P1, P8, P16 are highlighted in bold colors to track their feature involvement across by gestures. The �-axis displays several 
of the data’s numeric features; the �-axis gives the features’ the normalized values. Movement types (Transversal, Convergent, Divergent, 
Mixed/Static) are indicated in equally-spaced plot ranges (e.g., Mixed/Static = [0, 0.25)). Line spread reveals the degree to which model 
features captured diversity in participant and gesture. 

Figure 19: Parallel coordinates plot of normalized data for each participant. Each line represents a gesture, with an average 
representation of a gesture highlighted (Constant, Back and Forth Rub, Twist, and Wide Pinch) in bold colors. 

Smaller hardware size (portability, intrusiveness): Our electronics Moderately controlled gesture instruction: In an attempt to balance 
minimize physical footprint, cost and power consumption, com- capturing a natural range with needed control, we prompted the 
pared to Choi et al, where of-the-shelf magnetic sensors and a participants with written gesture descriptions. Our individuals anal-
Teensy 4.1 Cortex M-7 microcontroller (readout dimensions ysis confrmed that there was considerable inter-person variation 
61×17.78mm2). In comparison, our custom microcontroller’s foot- in performance. We would describe Choi et al’s approach as more 
print is 72% smaller. Our three-axis stress sensing array is also fully controlled (gestures demonstrated by video), but without an 
thinner (<3mm compared to Choi et al’s ∼8mm). 
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individual analysis or assessment of variation, we cannot say how 
much this impacted their results. 
ML Modeling: Our 3DCNN model added complexity – 3 Conv3D 
layers instead of the 1 and 2 used in Choi et al [21] and Sarwar et 
al [73] – to handle increased per-instance data delivered by our 
sensor collection protocol. 
Individuals and gestures: Our individual and gestural analyses are 
the frst of their kind for shear-based classifcation. This analysis 
of stress magnitudes, and varied stress utilization across individual 
and gesture, is unique contribution of the current work, that can be 
used by the community to further quantify gestures and improve 
sensor design. 

7.2.2 Limitations on Model Findings. In the following, we examine 
how these modeling results can inform about naturalistic touch, 
and pave the way to better models. 
Naturalism of modelled data: Our data collection procedure sought 
to elicit a natural range of expression, but obviously did not cap-
ture fully natural social touch. Participants were in a lab setting, 
touched on a fat surface, and were somewhat instructed in ges-
ture performance. Further, as for the majority of emotional touch 
recognition work to date, they were not in emotionally authen-
tic situations; gestures were performed, rather than being natural, 
emotional expressions. 
Choice of gestures modeled: Table 4 shows how we intentionally 
diversifed design of our gesture set. The gestures’ evident use of 
diferent classifcation features (§6.3.3 generally confrms actual 
gesture diversity). However, it is self-evident that a larger set with 
more similar members would present greater challenge. 
Potential of model approach: The 3DCNN model is a black box, unre-
vealing of the features that are important in distinguishing gestures. 
Several factors in our data and collection prohibited classical mod-
eling with trained weights (§6.2.2), and the implemented 3DCNN 
model has more than 4 million parameters. 

However, the raw data is a resource that can help test classifca-
tion methods, and indicate where the sensor needs improvement. 
By computing characteristics such as net magnitude of shear, di-
rection, time variation, area of contact, it should be possible to 
dramatically simplify and also speed model computation. 

7.3 RQ3: What does shear add to normal stress 
and localization data in gesture recognition 
performance? 

Our priority in this research was to understand shear : learning 
how to extract accurate shear stresses from human touch gestures, 
and getting insight into how shear manifests in these gestures and 
whether this information can assist in classifcation of gesture. 

In 7 out of 9 gestures, shear alone or a combination of normal and 
shear measurement resulted in equivalent or better performance 
than normal measurements alone. Likely explanations involve both 
the direct information provided by the shear computation, and the 
added information as a result of 5 channel sensing. 

7.3.1 Most Informative Features. Unable to interpret the inner 
workings of a 3DCNN, we analyzed the relationship between sensor 
data and model performance to reveal how individuals infuence the 

data and, consequently, model recognition accuracy. Our analysis 
of features extracted from sensor data underscored the diversity of 
even these moderately-constrained touch interactions. 

We found that most gestures varied substantively in normal, 
shear and spatial parameters compared to average execution across 
all participants; in particular average normal stress, average abso-
lute shear stress, and average contact area. All gestures exhibited a 
unique movement type. Additionally, range in maximum frequency 
indicates the importance of gesture speed in interaction analysis. 

These fndings confrm the importance of a sensor able to capture 
this diversity – including shear as well as normal stress and spatial 
features; and model them with temporal history. 

7.3.2 Overall Shear Contribution. Our study demonstrates that 
incorporating all three axes of touch data, including shear stress, 
leads to signifcantly higher accuracy in touch pattern recognition 
compared to using only normal or shear stress alone. This suggests 
that the additional information captured by shear plays a crucial 
role in diferentiating subtle variations within gestures. 

Intriguingly, there wasn’t a signifcant diference between using 
only normal stress and only shear stress for gesture classifcation. 
This might indicate that emotional cues are expressed through 
subtle changes in shear stress that aren’t fully captured by normal 
stress alone. While normal stress might encode the basic form of a 
gesture, shear stress could potentially capture fner variations in 
touch patterns that are linked to emotional expression. 

The chosen gesture set, while exhibiting a range of “closeness”, 
likely shares some underlying characteristics. For instance, back-
and-forth rubbing gestures displayed higher shear stress values 
(§6.3.3), suggesting a link between shear and dynamic movement. 
Interestingly poke gestures, despite low shear variability, achieved 
signifcantly higher detection accuracy with shear data. This sug-
gests that shear stress might be particularly informative for distin-
guishing static gestures (like pokes) from those with more move-
ment (like rubs). Conversely, for gestures like rubbing that rely 
heavily on shear for diferentiation (as evidenced by the lower 
performance with normal stress-only data), incorporating shear 
data becomes even more critical to capture the inherent variations 
within this gesture class, leading to more nuanced recognition. 

7.3.3 Next Steps. To further investigate the relationship between 
shear stress and emotional touch, several avenues of research should 
be explored. First, the touch data should be labeled with correspond-
ing emotional states during data collection, allowing for a direct 
assessment of how shear stress correlates with diferent emotional 
experiences. Additionally, feature engineering techniques focused 
on extracting characteristics of shear stress changes over time or 
its interaction with normal stress could provide more informative 
features for emotion recognition. Finally, training classifcation 
models using the extracted features and emotional labels would 
help determine if including shear data improves the ability to clas-
sify emotions from touch data. 
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7.4 RQ4: What kinds and degree of human 
individual diferences do we see in gesture 
performance, even with moderately 
constrained afective gestures? 

7.4.1 Overall individual variation. The individual diferences which 
we observed at a high level were unsurprising. Individuals seem 
somewhat idiosyncratic from one another across their entire ses-
sion’s data, in that LOO accuracy varies. From this we infer that (a) 
individualized models may be important (or at least, user types); 
and (b) a larger database with more individuals will improve the 
situation (it becomes more likely that there will be another individ-
ual in the set that is more like you). As an indication of this, our 
own results were still improving as we added our 16th individual. 

7.4.2 Individuals’ Variability in Their Use of Shear. At a more fne-
grained level, we also looked at the variability with which individ-
uals employed shear relative to how they used normal stresses in 
gesture performance (§6.3.3). This analysis strengthens the case for 
individualized models. 

The results reveal substantial individual diferences in terms of 
average absolute shear stress magnitude compared to normal stress. 
While the GLM analysis for gesture efects showed a signifcant 
diference for all gestures (except Poke), the individual participant 
analysis is more nuanced. For example, P9 and P10 exhibited no 
signifcant diference in shear usage from the all-participant average, 
suggesting they might present more variability in normal stress; in 
turn, models built on these two participants would likely beneft 
more from the normal stress channel. Clearly, individual profles 
can deviate from overall gesture trends. 

These fndings support the notion that a one-size-fts-all model 
might not capture the full spectrum of user interaction. By incor-
porating participant-specifc characteristics, such as their personal 
balance between shear and normal stress usage, individualized 
models could potentially improve recognition accuracy. 

Future investigations could explore the underlying reasons be-
hind these individual diferences. Factors like hand size, dexterity, 
prior experience with touch interfaces, or gender and cultural norms 
might infuence how people do their touching. 

7.5 Design Considerations 
This project spans 4 major sensor revisions, 3 formal gesture-data 
protocols, and a substantially evolved modeling pipeline. In Ta-
ble 7, we summarize the design’s current limitations and chal-
lenges — spanning basic sensor design issues like sensitivity and 
shear/normal stress decoupling, scaling and versatility, modeling 
and verifcation, and practicality — then articulate goals and strate-
gies which became apparent during our own process. Supplement A 
(Design Considerations) has further details. 

8 CONCLUSIONS AND FUTURE WORK 
This work sought to craft a sensor that is able to capture the nuanced 
way in which people carry out afective touch, prior to deploying 
such a sensor in authentically emotional, unconstrained environ-
ments where it is deployed on a physically interactive surface. To 
this end, we iteratively revised an existing technology, while using 
its ability to deliver data able to distinguish a carefully chosen set of 

gestures as an indication of its converging suitability for detecting 
nuanced elements of afective touch. 

Key to our approach is the supposition that shear stress is one of 
these important elements, even though it has been rarely measured 
because of the technical challenge. Part of our objective, therefore, 
was to see if it was worth the efort. 

The data we collected clearly demonstrates that shear is cru-
cial, perhaps even more so than normal stress, even with the tech-
nology’s current limitations. We propose a full set of technical 
properties that seem to be important in observed human afective 
touch, many of which are rarely reported or even sensed. This list 
is aspirational, but this work has begun putting numbers to it. 

Technically, we found that shear is especially hard to capture for 
light touch – but light touch, for both normal and shear, is crucial 
to its value in this regard. 

Finally, the sensor’s ability to efectively capture subtle variations 
in touch gestures is promising as a window into the individualism 
of emotion expression, crucial to accurate modeling of afect in 
touch data. 
Future Work: This work adds to the promise of using touch sensing 
to infer changes in emotion state; for example, in the context of 
human-robot or human-object interaction, for therapeutic, self-
calming or emotive social communication purposes. 

Challenges briefy touched upon in Table 7, and further expanded 
upon in supplement A, when addressed, will improve issues of 
performance, suitability, fexibility and robustness. With better, 
validated and faster models, we will be ready to attempt realtime 
control for responsive applications. 

Stepping back, this project has given us confdence to deploy this 
technology in authentic-emotion experimental scenarios, which 
will in turn yield more valid data for modeling, both generally and 
for individualized models. 
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Table 7: Summary of design challenges and approaches for efective shear stress sensing design and evaluation. For articulated 
challenges, goals ( • ) are connected to ( ¢� ) strategies in sensor design, data collection and machine recognition (Supplement A for details.) 

The Challenge Sensor Design Gesture Data Collection Recognition Pipeline

Decoupling Shear & 
Normal Stress

Shear and normal Stress are mechanically 
linked: a minimum normal stress must be exerted 
to engage shear. However, they are different 
parameters which sensor design must decouple 
in order to use both effectively later in the 
pipline. Specifically, normal stress must be 
detectable with zero shear, and shear across a 
range of normal stresses.

• Reduce mechanical and electrical cross-talk between 
capacitance channels ➤ Subtle adjustments in sensor 
geometry design.
 • Minimize deadzones and smooth out nonuniformities ➤ 
``Virtual taxels" offset the differential mechanical coupling 
that arises from touch contact away from taxel center. 
 • Optimize finger-sensor mutual friction ➤ Careful choice 
of surface covering (\eg slightly grabby fabric)

• Validate sensitivity and cross-axis 
independence ➤ Gesture set with 
diversity in activation of shear and 
normal stress

N/A

Minimizing the 
Normal Stress 
Detection Threshold

High sensor sensitivity is required to capture the 
naturally delicate pressures naturally used in 
affective touch gestures.

• Reduce stiffness through geometry ➤ Pyramidal rather 
than square pillars
 • Reduce stiffness through material ➤ Reduced elastic 
modulus of elastomer
 • Tacky surface ➤ Use adhered surface covering
 • Tradeoffs (Future Work):  capacitance saturation and 
reduced durability

• Confirmation that sensitivity is 
issue, rather than ML recogntion ➤ 
"Heavy gesture" collections 
improved models, motivating 
investmented in increasing sensor 
sensitivity.

N/A

Sensor Size, 
Resolution & 
Scaling

There is currently a soft physics-based limit on 
lower taxel size; meanwhile, resolution and 
spatial coverage are a tradeoff, with total taxel 
number constrained by multiplexed sampling 
rates. This array technology eases configuration 
to smaller, larger, arbitrarily shaped and linked 
layouts.

•  Reduce taxel width ➤ Reduce layer thickness with 
different material and/or fabrication method.
 • Increase resolution in software ➤ Calculate virtual taxels
 • Eased demolding of soft components ➤ Use non-
rectangular pillars
 • Arrays with configuration options ➤ Vary taxel spacing 
on FPCB; cut FPCB array down to any shape; daisy-chain 
multiple arrays to cover more space at same resolution.

N/A
• Increase model performance 
➤ Higher resolution data from 
virtual taxels and denser arrays

Multi-Axis 
Flexibility

Affective touch will often be performed on 
complexly curved surfaces. Ideally, sensors will 
have multi-axis flexibility without substantive 
loss of performance. The current flexible PCB 
base allows just one bending axis.

• Achieve nonuniform shape confirmation ➤ Introduce 
'kirigami' cuts into the PCB [28, 91].
 • Achieve uniform general flexibility ➤ Eliminate PCB 
altogether [72].

N/A N/A

Robustness
At 26.5 hours of use, our final test sensor 
showed signs of wear. Its failure points were 
debonding and soft material damage.

• Strengthen bonding ➤ Investigate different material 
approaches.
 • Increase elastomer durability ➤ Adjust tradeoff between 
sensitivity, structure and materials.

N/A N/A

Pipeline & Modeling

We aim ultimately for continuous, realtime 
processing of live data with personalized models. 
Currently, we collect gesture data in delineated 
samples, and seeking explainability through 
multiple models pursued in parallel.

N/A

• Continuous collection ➤ Requires 
new segmentation algorithms
 • Emotion expression ➤ Authentic 
emotion elicitation [18].

• Continuous-data modeling ➤ 
Will require new live modeling 
methods.
 • Effective, understandable 
models ➤ Chosen after more 
analysis of a variety of 
approaches, on emotion data.

Debugging
A complex data pipeline (sensor -> data 
collection -> machine learning) made it difficult to 
ascertain issues.

• Identify issues with source data ➤ Perform sensor 
``wellness checks''

• Locate issues throughout pipeline 
➤ Institute data quality monitoring 
at multiple points

• Quickly try new model 
configurations ➤ Fast 
collection via streamlined 
protocols and accessible 
participant pool.

Practicality

Key to practicality is replacement cost \vs length 
of use. The reported prototype began to degrade 
at 26.5 hours of use, with the failed component 
replaceable at <$5 USD (6×6 array).

• Support longer unmonitored deployments ➤ Improve 
robustness (above)
• Support longer overseen deployments ➤ Improve 
replaceability and parts costs

• Support longer unmonitored 
deployments ➤ Plan modeling for 
reduced amount of touching 
involved "in the wild"

N/A
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A SUPPLEMENT: DETAILED DESIGN 
CONSIDERATIONS 

A.1 Decoupling Shear and Normal Stress 
Validation of this technology requires establishing that we are 
indeed measuring shear and normal stresses as separate constructs. 
These quantities are necessarily linked: a minimum normal stress 
must be exerted to engage shear (by an amount dependent on 
sliding vs. static mode and mutual friction). However, we should 
be able to detect normal stress with zero shear, and shear across a 
range of normal stresses. §5.2 and previous characterization [73] 
show that the forces can largely be separated. We discuss how this 
occurs, and where it is at risk. 
Ideal behavior and non-ideal efects: Diferential 3-dimensional de-
fections of the fve pillars in each taxel result in channel capaci-
tance changes, which are variously combined to estimate normal 
and shear components. Several factors can potentially interfere, 
including cross-talk from mechanical coupling within and between 
taxels and electrical coupling between electrodes. 

Most signifcantly for this sensor geometry, stress computations 
assume uniform cross-taxel stress. In fact, for a sub-taxel-size in-
denter, linearity drops away from the taxel center, minimized in 
the inter-taxel zone; and if normal stress is localized to one of the 
four outer electrodes, it mistakenly appears as shear. We largely 
address this by computing virtual taxels (§4.1.5). 
Surface friction interaction with sensitivity: The sensor’s cover layer 
had to (among other criteria) provide a fnger-fabric mutual fric-
tion that activated shear without being too sticky to slide. As we 
increased normal-shear sensitivity with each prototype, we had to 
increase surface friction coefcient to continue to activate shear 
at lower normal forces. At the same time, one of our sensitivity-
increasing strategies (lowering the shore-hardness of the elastomer 
- see below) made the surface more soft and tacky. While the bare 
surface was too tacky to slide on, adding carefully chosen fabric 
as a surface layer optimized mutual friction while protecting the 
structure. 
Data collection: To validate sensitivity and cross-axis independence, 
we curated a gesture set with diversity in activation of shear and 
normal stresses (§6.1.1), then confrmed this diversity by examin-
ing model feature involvement by gesture. In the future, we need 
more defnitive validation with gestures that represent experienced 
emotion and minimal control, while we examinat saturation and 
activation to ensure sensor range. 

A.2 Minimizing the Normal Stress Detection 
Threshold 

While early sensor versions indicated normal-stress readings for 
afective gestures which seemed reasonable, we found that even 
after amplifcation, autoscaling, and other signal processing, our 
ML models worked better when participants were asked to use 
“heavy” gestures. We substantively reduced detection threshold by 
several means. In later collections we instructed participants to use 
a “natural” weight, and report accuracy for this data. 
Sensor design: The two most efective sensitivity adjustments were 
generally to reduce taxels’ vertical (z-axis) structural stifness. First, 

we switched from rectangular to pyramidal pillars, which were more 
compressible over same defection and thus amplifed capacitance 
output. We note this as another tradeof: we had earlier found that 
rectangular pillars had lower stress sensitivity levels, but also that 
they may have better cross-taxel mechanical consistency. 

Secondly, we reduced the elastomer’s shore hardness. As a trade-
of, this softer material was more fragile, and more tacky to the 
touch. 

We addressed both of these issues with a surface covering, which 
on the positive side now adhered easily to the Ecofex and the 
choice of which allowed us to control surface friction independent 
of elastomer material. 
Tradeofs in using soft material to lower threshold: A major design 
change of softening the elastomer to increase mechanical response 
came with drawbacks. The frst is increased viscoelasticity. The 
current prototype requires seconds for full relaxation from a heavy 
sustained deformation, with possible drift in the capacitance re-
sponse (Figure 11). 

This introduces error in a direct capacitance-stress conversion, 
particularly for light defection immediately after a large one. Al-
though we attained good gesture classifcation, it would doubtless 
improve, e.g., by combining stifer materials with more sensitive 
electronics. Meanwhile, viscoelastic modeling could correct the 
response. 

Capacitance saturation (with high stress that fully compresses 
the pillars) dropped; this is possibly addressable by increasing sen-
sor thickness, but with its own consequence (below). The tacky 
surface inhibits sliding contact (addressable with a suitably slick 
fabric top-layer); and there were durability efects (§??). 
Further possible improvement: Capacitance changes are determined 
by geometry, i.e., proportional to inter-electrode separation. When 
force is applied, the strain is inversely proportional to the efective 
elastic modulus (intrinsic stifness resulting from material mod-
ulus and pillar structure). However, reduction in elastic modulus 
is generally associated with higher loss, greater stress relaxation 
and lower strength, so these efects must be balanced. Electronics 
are also a key part in sensor improvement, as factors such as the 
signal noise magnitude strongly afect minimum resolvable stress 
for the sensor. Improvements to signal quality are possible through 
flters or a higher number of collected samples per measurement, 
but these tend to lower the overall measurement rate. 

A.3 Sensor Size, Resolution and Scaling 
The taxel size, array layout, and density we report on were infu-
enced by ease of fabrication, and the spatial resolution which has 
proven successful in the past at afective-touch gesture recognition 
for past normal-stress array sensors. While we did not alter these 
physical properties in the iterations leading to the reported proto-
type, the ability to do so could be a beneft of the technology. We 
consider the tradeofs. 
Smaller taxels: Reducing taxel width requires concomitant thick-
ness reduction. The thinner surface layer could feel stifer, reduce 
saturation stress; and fabrication will require more precision. 
Increasing resolution with virtual taxels: We analytically leveraged 
our taxels’ multi-channel structure to improve and smooth spatial 
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resolution. This nearly 2x data augmentation step utilized infor-
mation only from contacted capacitance channels. They yielded 
better localization of between-taxel contact when compared with 
either taking the average normal/shear stress readings between 
adjacent taxels or simply repeating taxel readings in column and 
row directions of the sensing array. With the same 3DCNN model 
tweaked for these two methods, we saw higher overall classifcation 
accuracy for both all-inclusive and leave-one-out experiments. 
Sloped pillars for easier demolding: Demolding represents a critical 
obstacle to component miniaturaztion, particularly as softer, stickier 
elastomers were used. The pyramidal pillars which we used to im-
prove stress sensitivity also facilitated release of the highly viscous 
Ecofex from molds during fabrication, allowing us to create smaller 
taxels. We would expect a similar result from any non-rectangular 
pillar structure. 
Towards smaller arrays with minimal modifcation: We chose this ar-
ray technology in part due to its adaptability. In the elastomer-FPCB 
sensing stack, the conductive fabric�� connections are oriented par-
allel to the FPC connection, perpendicular to the FPCB-embedded 
�� tracks. Hence, the sensing array can literally be cut down into any 
array format smaller than the 6×6 layout and perform normal/shear 
stress sensing for the remaining taxels without modifying the mi-
crocontroller frmware. 
Towards larger arrays through linking: To achieve larger coverage, 
specifc to the PSoC chip we used, up to 4 sets of microcontroller-
sensor systems can be implemented at once with an external BLE 
controller gathering the data concurrently from those 4 microcon-
trollers. If more than four 6×6 sensing arrays are needed, data 
transmission can be reverted to hard-wired with reserved Inter-
Integrated Circuit (I2C) connections on the microcontroller. 

A.4 Multi-Axis Flexibility 
For our application space, we are interested in curved surfaces, 
incorporation into fexible structures and testing in environments 
where feedback from afective touch is sought. This sensor’s base is 
a conventional polyamide-based fexible PCB, allowing signifcant 
bending on a single axis – it cannot currently wrap over complex 
surfaces. 

Multi-axis curvature will be possible by eliminating the PCB alto-
gether [72]; or by introducing “kirigami” cuts into the PCB to allow 
nonuniform shape conformation [28, 91]. These accommodations 
for complex underlying curvatures would require careful reconsid-
eration of the electrode placement and alignment for the sensor, 
such as simplifying traces or reducing overall design complexity. 

Initial characterizatino with this technology approach suggests 
that sensitivity becomes dependent on curvature when the radius 
of curvature becomes smaller than the taxel width [61], motivating 
smaller taxels and higher spatial resolution. 

A.5 Robustness 
We saw signs of damage over the 26.5 hours our primary test sensor 
was used. For their intended use in protracted and less-monitored 
contexts, robustness can be improving through bonding, and ad-
justing the tradeof between sensitivity, structure and materials 

— where recent improvements in fast, high-dynamic-range elec-
tronics may provide another path attaining high sensitivity with 
higher-stifness materials (§??). 

A.6 Pipeline and Modeling 

Towards continuous sampling: While we eventually plan for contin-
uous, realtime processing of live data, at this development stage it 
was necessary to collect data in delineated samples (data instances 
from discrete trials), and isolate preprocessing from collection so 
we could explore modeling approaches. This sets us up in the future 
to more efectively optimize for sufcient computational speed to 
keep up with live collection. 
Model improvement and explainability: We found that a 3DCNN 
model identifed predictions most quickly, but we relied on manual 
feature engineering for insight. We speculate that classical models 
may be more efective with data instances longer than our current 2s 
windows. Classical models often rely on well-understood statistical 
relationships. With a longer data window, these assumptions be-
come more reliable. Deep learning models, on the other hand, need 
to learn these relationships from the data itself, which can be less 
efcient with longer windows. We also imagine that a deep learn-
ing model able to target more information in the time domain, e.g., 
ConvLSTM or transformer-based models, will outperform 3DCNN. 

A.7 Debugging 

Complex pipeline hampered debugging: This project had a complex 
data pipeline. A number of human individuals (exhibiting normal, 
i.e., substantial, population variance) are instructed to touch the 
sensor with a specifed protocol which they follow imperfectly. A 
sensor (with an electromechanical structure that might be degrad-
ing at an unknown rate) is defected, a capacitance read and fltered. 
A signal is transmitted through wires and air, received, conditioned 
and modeled in various ways. 

We had to develop and test the full pipeline all together. We 
typically discovered an issue’s existence only when the fnal stage 
delivered lower-than-expected classifcation accuracy. It was dif-
cult to insert intermediate checkpoints, being often unclear what to 
look for, or how much. For example, our early prototypes seemed 
to be delivering healthy normal-stress data, yet modeling lagged 
results from other technology. We had been forced to use diferent 
ML models by nature of the data; so, was the problem model, noise, 
preprocessing, or the data itself? In the end it was a combination of 
stress thresholds plus modeling bugs. In other words, when recogni-
tion accuracy was weak, the pipeline meant multiple data-collection 
iterations to identify thresholds as the culprit. 
Sensor wellness checks and built-in monitoring points throughout 
pipeline: We eventually found ways to build in monitoring, e.g., fast 
instrumented taxel re-characterization. 

We instituted and iteratively improved within-study sensor ’well-
ness checks’, conducted between participants and between data-
collection-series, to keep track of degradation and faulty data. For 
example, a check might involve placing a known weight on 5 difer-
ent locations on the sensor to check that readings are satisfactory. 



What is Afective Touch Made Of? UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

Finally, we refned an efcient gesture collection protocol, to-
gether with a quickly accessible participant pool, so that we could 
do new collections in a minimal amount of time. 

In future, we plan to add a 3-axis stress plate under the ges-
ture collection setup as a reliable ground-truth sensor check, and 
automate all-taxel characterization by programming a 3D printer 
extruder with controlled motion sequences. 

A.8 Practicality 
In §5.3, we reported on one prototype’s degradation after an esti-
mated 26.5 hours of use. While our present stage of development 
is about feasibility and verifying that we have a platform suitable 
for studying the role of shear in afective touch, this initial level of 
durability combined with the low cost of fabrication (<5 USD for 
the 6×6 sensing array) suggests the technology is already suitable 
for monitored laboratory research with checks in place to replace 
or repair as issues arise. 
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B SUPPLEMENT: CAPACITANCE 
CALCULATION FROM RAWCOUNT BY OUR 
PSOC-BASED CUSTOM 
MICROCONTROLLER 

See Supplemental Materials for: 
● Figure B.1: CAPSENSE� � mutual capacitance (CSX) sensing 
confguration, copyright Cypress Semiconductor 2023. 
● Figure B.2: : CAPSENSE� � mutual capacitance (CSX) sensing 
principle 
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C SUPPLEMENT: IMPLEMENTATION OF 
VIRTUAL TAXELS 

See Supplemental Materials for: 
● Figure C.1: Shear sensing array response while pressing at 
the a) center, b) edge, c) corner of a taxel. 
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D SUPPLEMENT: GESTURAL DATA AND 
CHARACTERIZATION 

See Supplemental Materials for: 
● Figure D.1: Gesture execution and heatmap on a fat surface 
on Sensor A (no fabric covering). 
● Figure D.2: Gesture execution and heatmap on a curved-
surface, Sensor B (with fabric covering). 
● Figure D.3: Normal stress profle for 16 participants while 
performing 9 diferent gestures (sorted by median). 
● Figure D.4: Confusion matrices for the 16 leave-one-out mod-
els tests with 5-round median accuracies. 
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E SUPPLEMENT: CHARACTERIZATION 
RESULTS 

See Supplemental Materials for: 
● Figure E.1: The Normal Stress response of a taxel of previous 
version of the sensor 
● Table E.1: Normal performance of a taxel using diferent ma-
terial and microstructure 
● Figure E.2 & E.;3 : The left fgure is normal stress character-
ization data loading portion to the maximum displacement; 
The right fgure is shear X-axis characterization data loading 
part to the maximum displacement. The speed is constant at 
2mm/s.
● Figure E.4: Δ�⇑�0 versus Normal Stress 
● Figure E.5: Force vsersus Δ�⇑�0 
● Table E.2: Performance of four characterized taxels with an 
average shear sensitivity of 0.013/kPa 
● Figure E.6: The normal stress response of the taxel being 
characterized and its adjacent taxels. 
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● Figure E.7: The shear stress response of the taxel being char-
acterized and its adjacent taxels. 
● Figure E.8: Sensor Characterization Setup for Curve Surface. 
a) THORLABS 3-axis NanoMaxTM Flexure stage equipped 
with an ATI Multi-axis Force/Torque (F/T) load cell. b) Curved 
Ridges mounted on the base of the characterization setup. c) 
Close-up view of a taxel on the curved surface undergoing 
characterization. 
● Figure E.9: The shear stress response of a taxel characterized 
on a fat surface. 
● Figure E.10: The shear stress response of the taxels character-
ized on an 80mm radius surface. 
● Figure E.11: The shear stress response of the taxels character-
ized on a 30mm radius surface 
● Table E.3: Performance of a taxel on the fat and curved sur-
face. 
● Figure E.12: The shear stress response of a corner taxel near 
the connector. 
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