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Abstract

Emergence of mobile technologies, with their ever increasing computing power,

embedded sensors, and connectivity to the Internet has created many new appli-

cations such as navigational guidance systems. Unfortunately, these devices can

become problematic by inappropriate usage or overloading of the audiovisual chan-

nels. Wearable haptics has come to the rescue with the promise of offloading some

of the communication from the audiovisual channels.

The main goal of our research is to develop a spatiotemporal guidance system

based on the potentials and limitations of the sense of touch. Our proposed guid-

ance method, Periodic Vibrotactile Guidance (PVG), guides movement frequency

through periodic vibrations to help the user achieve a desired speed and/or finish

a task in a desired time. We identify three requirements for a successful PVG sys-

tem: accurate measurement of the user’s movement frequency, successful delivery

of vibrotactile cues, and the user’s ability to follow the cues at different rates and

during auditory multitasking.

In Phase 1, we study the sensitivity of different body locations to vibrotactile

cues with/without visual workload and under different movement conditions and

examine the effect of expectation of location and gender differences. We create a

set of design guidelines for wearable haptics.

In Phase 2, we develop Robust Realtime Algorithm for Cadence Estimation

(RRACE) which measures momentary step frequency/interval via frequency-domain

analysis of accelerometer signals available in smartphones. Our results show that,

with a 95% accuracy, RRACE is more accurate than the published state-of-the-art

time-based algorithm.

In Phase 3, we use the guidelines from Phase 1 and the RRACE algorithm to
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study PVG. First we examine walkers’ susceptibility to PVG which shows most

walkers can follow the cues with 95% accuracy. Then we examine the effect of

auditory multitasking on users’ performance and workload, which shows that PVG

can successfully guide the walker’s speed during multitasking.

Our research expands the reach of wearable haptics and guidance technologies

by providing design guidelines, a robust cadence detection algorithm, and Periodic

Vibrotactile Guidance – an intuitive method of communicating spatiotemporal in-

formation in a continuous manner – which can successfully guide movement speed

with little to no learning required.
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All work reported in this dissertation was conducted under the supervision of Dr.
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• I. Karuei, K. E. MacLean, Z. Foley-Fisher, R. MacKenzie, S. Koch, and
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Proceedings of the 2011 annual conference on Human factors in computing

systems - CHI 11, pages 3267-3276, 2011
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Phase 2: Cadence Detection
The premise of the second phase was to develop a cadence detection algorithm,
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would later use our cadence estimation algorithm in his research, helped me in

the planning of the main experiment. Oliver and Michelle both helped me con-

duct the experiment. Oliver also reimplemented the time-domain algorithm that

we compared our algorithm against. I then analyzed the results of the experiment

and compared our algorithm and the time-domain one. Oliver helped me with the

writing of these results and we published it in the Journal of Pervasive and Mobile

Computing:
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Robust Realtime Algorithm for Cadence Estimation. Pervasive and Mobile

Computing, (0):52–66, 2014. ISSN 1574-1192

This phase is explained in Chapter 4.

In a work not covered in this dissertation, Oliver Schneider supervised Mike

Wu, an undergraduate, to extend our algorithm into a library called GaitLib. I

provided advisory input to this paper, and am therefore included as a co-author.

Phase 3: Study of Periodic Vibrotactile Guidance
In the third and last phase of this research, I conducted two experiments where

I used the RRACE algorithm we developed in the previous phase and the Haptic

Notifier, developed by Diane Tam, a masters student in our lab. I developed my
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own code for the Haptic Notifier and developed an Android application that used

the GaitLib to be used in the experiments. I conducted the first experiment.

In the second stage of this work, I supervised James Bigland, a cognitive sci-

ence undergraduate, who helped me with the design of auditory tasks and conduct-

ing of the experiment. Finally, I analyzed the results of both experiments. The first

experiment was published and presented at Haptics Symposium in 2014.
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141–146, 2014

This phase is explained in Chapters 5 and 6.
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Chapter 1

Introduction

If you want to find the secrets of the universe,
think in terms of energy, frequency, and vibration.

— Nikola Tesla

It is a sunny afternoon in a beautiful city, where you are attending a conference.

You just had lunch with an old colleague, whom you had not seen for many years.

You had planned to see him for an hour during the lunch break but your conversa-

tion got very interesting and continued longer than expected. Despite trying very

hard not to be seen checking your watch you were caught and it felt uncomfortable.

Eventually the conversation ended and now you are walking back to the conference

hotel thinking that you have missed more than half of the first session in the after-

noon. It is the second session that you should definitely attend because it is closely

related to your field. You are nervous; you do not have much time, so you check

your watch and take the conference schedule out of your pocket and look at it, that

long list of talks and their lengths in awfully small fonts, while walking very fast;

the lunch break was 80 minutes and you had not accounted for the coffee break

between sessions. You actually have about 55 minutes until the next session. You

feel relieved and calm, for about two seconds, until you hear a loud car horn and

a man shouting at you in a language you do not understand; either because it is

not your mother tongue or because it is too fast and unexpected. You jump to the

sidewalk with fear and guilt. When you look up you see the conference hotel; you

really did not think you could be there so fast. You enter the hotel and walk towards
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the conference rooms. Now you take the conference schedule out of your pocket

to check the room number; this time you stop walking. On your way to room B2,

where you should be for part of the first session and all of the next one, you grab a

glass of water, instead of black coffee which you usually drink. You open the door

and feel that all eyes are on you, entering the room in the middle of a talk. There is

no empty seat, so you must be standing up for the next 49 minutes. The slides seem

very interesting and the speaker is great but you have no clue what the talk is about

because you missed one third of it. Your eyes are on the screen but your mind is

somewhere else. You are looking but not seeing, and hearing but not listening just

like when you were walking a few minutes ago. You are wondering if you could

have talked longer with your old colleague. You have already completely forgotten

that you could have been run over by a car.

1.1 Motivation
The world we perceive has four dimensions, three spatial and one temporal. We are

constrained by these dimensions but we try very hard to free ourselves from them.

We created telescopes and maps to understand where we are on earth and in the

universe, and we built ships to cross oceans, cars to travel on land, and airplanes

to conquer the skies; but moving very fast was not sufficient, so we invented tele-

phone, video conferencing, and teleoperated robots to perform tasks in far away

locations, and to be, almost, in two or more places at the same time. With all those

achievements, location has become less relevant in our lives and time has become

the more important constraint. Albert Einstein once said that “The only reason for

time is so that everything doesn’t happen at once”. In a sense time is one more “de-

gree of freedom” in our lives but we do not have much control over it. One strategy

is trying to multitask; we talk over the phone while driving, send text messages

while walking, and listen to radio shows while writing an essay; sometimes we are

just lucky not to lose our lives or others’ just for saving a few seconds. Another

strategy we use is filling all spaces between tasks with other tasks; we have meet-

ings at lunch breaks, send emails in between talks, and take the garbage out during

TV commercials. This strategy is prone to failure too because it is very sensitive to

uncertainties, although its direct consequences, being late for the next task for ex-
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ample, may not be as terrible as the previous strategy. In reality, whenever possible

we use both strategies at the same time. To reduce the likelihood of failure we plan

ahead of time but it is not sufficient and there is not much more that we can do. In

most cases, the events that jeopardize timing and performance of our tasks happen

at micro level; when we fail to notice passage of time during a conversation, or

when we see someone by chance on our way to the conference for example. Most

of these “micro” events cannot be accounted for in a plan. Nevertheless, planning

at micro level can be very time and energy consuming.

Powerful Computers in our Pockets
Technology has come to our help, to “save time” whenever possible. We use

Global Positioning System (GPS) devices that constantly receive traffic updates,

smartphones (or smart watches nowadays) that update their time zone based on

location, and application software such as to-do lists, calendars, and alarms that are

improved everyday to accommodate us better and save us more time and energy.

Most of these devices do magical things that ordinary users take for granted or fail

to notice: they make, mostly, correct assumptions about location of the user and

time of day and only inform him/her of relevant events; they take different daylight

saving times of the countries that use them, and update them whenever countries

decide to start or stop to use them. However, often times, these technological

advances fail to help us perform better or even put us at more risk. Pedestrians use

their smartphones while walking and even when crossing streets, not just to talk to

somebody, but to read and send text messages, or use very engaging applications

on their phones with their heads down and their ears not hearing the sound of

approaching cars, which are getting faster and quieter by the way. Drivers do the

same thing with one hand on the steering wheel and a foot on the gas pedal. One

way to mitigate the negative effects is reducing usage, by passing laws for example,

which is like erasing a question instead of answering it. Another way to reduce the

negative effects, and possibly increase positive effects, is to make changes to the

technology to address the user’s needs and constraints.

The tools that assist people with their daily planning provide them with tem-

poral and/or spatial information (e.g., watches, calendars, maps) or guide them

through their tasks (e.g., GPS). However, these tools fall short of ideal assistance
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for the following reasons:

1. They occupy visual and auditory senses that should be dedicated to the pri-

mary task (e.g., watching ahead while walking) or a parallel secondary task

(e.g., talking to another person).

2. They use vision and audition in situations where vision and audition are

impaired (e.g., fire fighters’ vision impaired by smoke) or are not preferred

(e.g., alarm clock in a library).

3. They do not take the context and environment of the user into account (e.g.,

a driver who may not hear GPS directions because of loud music or too much

noise in the car).

4. They provide us with numerical values (e.g., meeting in 30 minutes, 23 kil-

lometers to destination) or abstract messages, some of which could be com-

pletely arbitrary from the user’s point of view (e.g., a beep sound represent-

ing a calendar alarm) which require cognitive processing.

Partial Fixes for The Issue
To address the first and second issues, many have proposed substituting vision and

audition with tactile and haptic perception [15, 37, 70, 158]. Tactile messages

(or Haptic Icons) [14, 155] and haptic/tactile guidance for pedestrians [11, 35]

are examples of substituting (or augmenting) audiovisual channels with the hap-

tic channel. However, the most globally adopted example of this is the vibration

alerts on mobile phones that replace auditory ringtones for two reasons: to be felt

in noisy (e.g., a concert) and quiet (e.g., a library) environments. Due to their suc-

cess in improving mobile phone interfaces, vibration alerts are the most widely

used vibrotactile interactions, however, as will be discussed in Chapter 3, these

vibrotactile cues do not take into account the fact that the user might be in motion

and less sensitive to vibrations, especially on his/her thighs (i.e., the user’s pocket)

where the device usually is.

Many interfaces present information as numerical values or abstract messages

since it is the most straightforward solution in most situations (e.g., a car’s speedome-

ter) but does not translate very well to the user’s perception of time and space; for
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example, most GPS devices notify the driver of the distance to a “highway exit” or

a “left/right turn” in metric or imperial units and the driver should try to estimate

the distance and make a judgment on where to turn or change lanes while the car

is moving very fast. In contrast, humans use a much easier to understand language

when they guide each other in space: “turn right after the gas station” or “see the

red car on the right lane? follow that”. The same issue exists with presentation

of temporal information but may not be quite as evident; the fact that we round

up periods of time to hours and half hours while in reality we care about smaller

fractions such as five minute periods (e.g., we take 10 minute breaks, or allow 5

minute question periods) shows that we care about minutes but usually count hours

to make life simpler. It may be harmless to take a one hour exercise instead of 62

minutes, but you may miss a bus if you try to be at the bus stop at 11:25 when the

bus actually arrives at 11:23.

What is Really Needed
We believe guidance systems (and any other interface for that matter) can be very

efficient and intuitive if we (a) use the right medium, (b) avoid unnecessary ab-

stractions, and (c) use the right mapping for information presentation.

Using the right medium: The right medium is the one that is not blocked, pro-

hibited, or overly occupied in the context it is employed; we should note that this

applies to all types of interfaces. Imagining a fire fighter looking at the graphical

display of a handheld device in thick smoke is as absurd as a construction worker

on a jackhammer wearing a vibrotactile belt.

Avoiding unnecessary abstractions: It is well understood that sometimes ab-

stractions (e.g., converting time to numbers, using different alarms for different

purposes) are inevitable. However, there are times that we abstract information

out of habit or tradition. For example, when a presenter looks at the timer on the

podium, all he wants to know is if he is on time and should continue his talk in the

same way or if he is behind schedule and should do something about it. If instead

of seeing a four digit number – which could distract him for a moment, several

times during the talk – he sees a smiley face on the timer, he can just continue his

presentation and will only worry when the face changes.
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Using the right mapping for information presentation: When we present infor-

mation, we map it from its actual form and we use units, numbers, or even colour

and sound to communicate it to the user. This mapping can always be done in

infinitely many ways, but most of them are hard to understand for the user. Un-

derstanding the user’s abilities and needs can help us make the presentation of

information more beneficial to the user. In the above example, a smiley face is a

good indicator but it ignores an important aspect of time: continuity. The presenter

may know that he is on track or not, but he cannot know to what extent. If the

smiley face would move to right (when the presenter was ahead) or left (when the

presenter was behind), the presenter could easily understand the extent to which he

is early or late and if his current pace is compensating for that.

In the next section, we present our idea for a new solution called Periodic

Vibrotactile Guidance.

1.2 Approach

Periodicity: Our solution for the above problems comes from a simple idea: in-

stead of providing users with abstract high-level information (e.g., remaining time)

which requires cognitive work to be translated to task related parameters (e.g., how

fast some aspect of a task should be done), we can provide them with lower-level

parameters that are directly related to accomplishing a task. For example, when a

person wants to catch a bus, he/she needs to check the bus schedule, subtract the

bus arrival time with current time to know how much time he/she has, then decide

when to walk towards the bus station. There are applications, mobile or otherwise,

that go one step further and tell the user, based on average walking speed of people,

approximately when the user should start to walk (e.g., Google maps [55]). These

applications partially solve the problem by doing the math for the user, but they are

still bound in abstractions. What if we could communicate this information to the

user in a way that the he/she would know, based on his/her own typical speed, when

to start walking? We believe instead of communicating when, we can communi-

cate “how fast” the user should be walking at any point in time and the user gets

to choose. Obviously, the earlier the user starts to walk, the slower he/she needs to

walk. This idea seems promising until you realize that there is no consistent and
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accurate language for communicating absolute speed and this new solution very

much relies on accuracy and consistency of communicating speed, otherwise users

will not know what is the right speed and when is the right time. However, walking

speed is tied to something else that is more closely related to our bipedal motion

control: cadence (or stride frequency). Walking speed is the product of cadence

and stride length as shown in Equation 1.1 where v is walking speed, f is stride

frequency (cadence), and l is the stride length.

v = f × l (1.1)

These parameters are automatically adjusted based on energy efficiency in uncon-

strained normal walking [144]; however, each one of them can be constrained and

it affects the other ones as well [67, 89]. As will be explained later in Section 6.3.2,

stride length and frequency also vary as a function of speed.

Instead of trying to guide a user’s speed, we can guide his/her cadence, by

providing the desired cadence and requiring the user to synchronize his/her cadence

with it; this is based on the assumption that if we constrain cadence, stride length

will stay constant or change in the same direction as cadence. As will be discussed

later in Chapter 6, by controlling the guidance cadence and adjusting it we can

achieve high level goals such as the user’s desired speed or desired time of arrival

at a destination as shown in Equation 1.2 where t is the time until arrival, d is

distance, and v is speed.

t = d/v (1.2)

Vibrotactile Cueing: At first glance an auditory cue with the desired tempo seems

to be the perfect solution. Walking to the tempo of a metronome is very similar to

dancing to the beat of music. In fact, it has already been shown that users can syn-

chronize their cadence with the tempo of a metronome [29]. However, as explained

in Section 1.1, the medium should fit the context. Auditory cues can easily be sup-

pressed by the noise in the environment. Moreover, the auditory channel might

be occupied for other activities such as participating in a conversation or listening
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to a podcast or music during daily commutes and physical activities; this means

that using auditory cues for guidance is almost impossible. In the face of these

challenges, and considering that the vibrotactile cues offer the same solution for

communicating tempo without the disadvantages of the auditory channel, we pro-

pose to use periodic vibrotactile signals to directly guide users by synchronization

of cyclical movements. Furthermore, we emphasize the inclusion of temporal pa-

rameters in addition to spatial parameters for guidance. In this method, a wearable/

handheld tactile display periodically vibrates, taps, or squeezes the user’s skin to

indicate pedaling, paddling, or stride frequency; it gives the user a new sensation

of velocity or urgency by mapping spatiotemporal constraints into parameters of

the haptic rhythm such as tempo. This sensation is similar to the sound of a car

engine that indicates its revolutions per minute or the beat of music that helps a

dancer synchronize with it. Because this method of speed control uses a very sim-

ple vibrotactile cue, it is fairly easy to learn and does not rely on memory which

we believe causes very little workload.

1.2.1 Requirements of Periodic Vibrotactile Guidance (PVG)

A Periodic Vibrotactile Guidance system has four main parts: speed and location

measurement unit (i.e., GPS), cadence detection unit, vibrotactile display, and the

planner. These can be seen in Figure 1.1. Throughout this thesis, we assume that a

user will be wearing a standard smartphone on his/her body (with few or minimal

restrictions on how it is worn), with basic accelerometer and GPS functionality at

a quality that was commonly available in 2012. In some examples, continuous

location (GPS) data are important to an algorithmic variation, and in other cases

not. The power-draw implications of this continuous sensing and computation in a

wearable device were significant at the time of this writing, but expected to improve

substantially in the near future due to advances in computational efficiency and

more fine-grained control over processor function.

Speed and Location Measurement: At every point in time the user’s location and

speed is measured by a GPS and sent to the planner.

Cadence Detection: The user’s cadence (stride frequency) is also measured in

realtime and sent to the planner. In Chapter 4 we will present Robust Realtime
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Figure 1.1: PVG consists of a GPS for speed and location estimation, vibrotactile display, ca-
dence detection unit, and a planner; the planner receives the task parameters such as time
and destination and the user’s location, speed, and cadence and determines the tempo
(and/or intensity) of the vibrotactile cues.

Algorithm for Cadence Estimation (RRACE), an algorithm that uses the input from

accelerometers (that are available in most handheld devices) to measure the user’s

cadence.

Planner: The planner consists of:

• Speed planner which measures the user’s desired speed based on time and

destination.

• Speed-cadence model which is created (and updated as necessary) based on

the user’s cadence and speed measurements. This model can estimate the

cadence associated with a desired speed.

Vibrotactile Display: consists of one or several eccentric-mass tactors, placed in

a wearable device in a way that vibrations from the tactors are easily felt on the

skin; this means that the tactors should directly or through a sufficiently thin layer

of material touch the skin. In Chapter 3 we study different options for placement

of vibrotactile displays.

9



1.2.2 Applications of PVG

PVG has many temporal and spatiotemporal guidance applications in the daily lives

of people. Temporal guidance systems are suitable for assisting users for tasks that

are independent to location of users. Spatiotemporal guidance is a generalization

of temporal guidance when the location of users also matters for the task.

Temporal Guidance

PVG can help users manage their time, control their body movement frequency and

speed, and synchronize themselves with a reference. The dominant element of the

temporal guidance we are proposing here is its periodic, tightly resolved nature.

We should note that using start/stop alerts for an entire event is also temporal guid-

ance (e.g., “start your run now”, “stop it now”, “the event is in 5 minutes and this is

the only alert”) but it is not the focus of this dissertation. There are many potential

applications for temporal guidance through PVG: handheld calendars, sport exer-

cises, group synchronization, and performing arts. The following scenarios explain

some temporal applications of PVG.

Vibrotactile Timed Alerts: Instead of checking the calendar on the graphical dis-

play of a mobile phone, a user can keep it in his/her pocket until it starts vibrating

slowly with a simple but identifiable rhythm. The user looks at the screen and

remembers the event and puts the mobile phone back into his pocket. Based on

the type and priority of the task, the mobile phone starts vibrating with the same

rhythm and as it gets closer to the time of the event, the rhythm becomes faster and

faster to give a feeling of time relative to the event. This also represents a natural

feeling of urgency as the time of the event approaches.

Wearable Guidance for Exercising: Athletes who prepare themselves for future

events or just exercise to improve their abilities try to improve their speed, stamina,

or strength gradually and over long periods of time. For them, it is very helpful to

have a reference tempo for running, paddling, or cycling . It can be used to keep

a constant tempo or to keep a record of past tempos for increasing it gradually

during the training regimen (e.g., days or weeks of training). The guidance system

only needs to display the required tempo through vibrations. It can also measure

10



deviation from the desired frequency.

Wearable/Mobile Guidance for Collaboration: In most live performances many

agents collaborate with tight schedules. A coordinator informs everybody about the

time of different actions or changes in schedule. PVG can be used in this scenario

to make collaboration easier. The coordinator may update the time of the events

and use a central device to communicate those timings to wearable PVG devices

worn by his/her agents. As they approach the time of an event, the corresponding

agent feels a significant increase in the heartbeat of wearable device and gets ready

for the task he/she is responsible for.

Vibrotactile Guidance in Synchronized Sports: Moving at the same frequency

and with the same phase is the most important aspect of synchronized sports. The

tempo and phase of movement can be communicated by a PVG device which does

not rely on vision or audition and therefore allows athletes to use their vision for

the primary task and does not get masked out by the noise. A team of rowers or

paddlers can be synchronized by tappings of the guidance system on their shoulders

or wrists. The frequency of tappings can be constant or be controlled by the leader

of the team or their coach or an artificially intelligent system that optimizes the

speed based on the information it collects about athletes by monitoring the signals

from biosensors attached to their bodies.

Vibrotactile Guidance in Performing Arts: Speed and rhythm of a performing

artist is a very important factor which needs to be precise. The artist has to memo-

rize the speed of performance and the ups and downs of it during the performance.

Sometimes the rhythm of the music is a reference (if there is a rhythmic music) but

even musicians need a reference for the speed and/or a reminder for different parts

of the performance too (e.g., conductor). A PVG system can help musicians and

other performing artists by displaying a gentle and precise haptic rhythm which is

hidden from the audience and does not get masked out by other sounds.

Spatiotemporal Guidance

Spatiotemporal guidance can assist users with tasks that have temporal and spatial

requirements. In other words, they can help users make the right decisions about
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time and location of tasks. Pedestrians, drivers, workers, and athletes can benefit

from spatiotemporal haptic guidance.

Wearable Guidance for Pedestrians: A pedestrian needs to know when he/she

should start walking and at what direction and speed, and for how long to reach

his/her destination at a certain time. This destination can be a bus stop, a classroom,

workplace, or a meeting. People usually depend on their own estimations which

may cause them to be late or too early – e.g., if the bus, whose current location your

device might know, is delayed. PVG system can in fact, calculate the precise speed

based on the time of arrival and convert it to cadence and communicate it to the user

continuously until the user reaches his/her destination. Because the calculations

can happen in realtime some unexpected events such as stopping to talk to someone

or to get coffee can be considered as a disturbance and can automatically be taken

care of as long as it is relatively short.

Vibrotactile Spatiotemporal Navigation: A GPS device may visually or verbally

communicate distance or time to turn to a pedestrian, cyclist, or driver, which re-

quires the user to do estimations and depends on auditory and/or visual attention.

However, replacing it with a haptic rhythm which gets faster as the user gets closer

to a turning point gives the user a feeling of closeness to a point in time and/or

space in a more natural way that does not need any verbal explanations.

Vibrotactile Speed Control in Sports: An athlete needs to have a strategy for his

movement speed. His speed may need to increase or decrease at different points.

A spatiotemporal guidance system can assist in training of runners, cyclists, and

rowers. Coaches can define a reference, fine-grained movement frequency (e.g.,

gait or pedaling frequency), and use the guidance system to communicate it to the

athlete during movement. PVG can also be used as a sensory augmentation method

for athletes in competitive sports; it can notify athletes of the relative position or

speed of the closest competitor, the distance behind or ahead of the winning pace,

or the speed required for breaking a record.

12



1.2.3 Speculated Closed-loop Control of PVG

A PVG system works on a simple principle: it collects information about a task and

the user and then creates appropriate Periodic Vibrotactile Cues to guide the user.

This system can be built with up to two feedback loops. Although in this thesis we

only implement open-loop control, it is useful to explore how a full implementation

could play out. To understand this architecture better and particularly distinguish

the two loops, we start with an open-loop system and build the closed-loop struc-

ture on top of that in two steps.

Open-loop Control
In the simplest form PVG can be a completely open-loop system as shown in Fig-

ure 1.2 (top). In this system, the guidance signal only relies on the input about the

task and environment and is independent of the user’s performance and state. In the

case of cadence guidance, the system can compute desired speed of the user based

on the distance to destination and desired time of arrival. The system also incor-

porates a Cadence-Speed Model based on past measurements or user history or an

estimated average stride length, which can get updated as deemed necessary; the

Cadence-Speed Model can then estimate the desired cadence and communicate it

to the user through the tempo (and/or intensity) of the Periodic Vibrotactile Cues.

If the user’s performance is ideal (e.g., the user walks exactly at the desired ca-

dence) and the system’s estimation of desired cadence is correct (e.g., the cadence

estimation of the desired speed for that particular user is correct) the user will be

at his/her destination at the desired time. However, we can be sure that there is

always some error in the estimation of the desired cadence. On the other hand, the

user may not walk exactly at the displayed cadence. As a result, over time error

accumulates and more likely than not grows in amplitude. In Figure 1.3, the red

lines show the speed and location of a user who is given a constant cadence cue.

Because the user walks slower than desired, he/she arrives late at the destination.

Single Closed-loop Control
The PVG system can easily reduce the estimation error and the user’s divergence

from the guidance cue by constantly updating the guidance cue based on the user’s

state (i.e., time and location) as shown in Figure 1.2 (middle). If the user’s speed

is exactly as expected the guidance cue stays the same (even if there is substantial
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Figure 1.2: PVG in a control setting. Open-loop control (top): PVG consists of a Speed Plan-
ner and Speed-Cadence Model which are shown as pink boxes; cadence and speed mea-
surement (i.e., measured by a GPS) units and the vibrotactile display are not explicitly
presented as boxes but as red, blue, and purple (dashed-line) arrows from the user to the
model. Speed Planner estimates the desired speed based on time and distance to des-
tination and the Speed-Cadence Model – which is built based on the user’s speed and
cadence (and updated as needed) – estimates the tempo of the vibrotactile cue (i.e., de-
sired cadence) according to the desired speed. Single closed-loop control (middle): speed
estimation (desired speed) is updated constantly based on the user’s location, shown as
green dash-dotted line arrow, (e.g., measured by the GPS). Double closed-loop control
(bottom): The input to the Speed-Cadence Model is adjusted based on the user’s current
speed (e.g., measured by the GPS) to minimize the difference between the user’s speed and
the desired speed.
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divergence between the cadence cue and the actual step rate). However, if the user’s

speed is slower (or faster) than desired, the speed setpoint1 will adjust in response

and the guidance cue will change accordingly to compensate for the lateness (or

earliness) of the user.

One of the characteristics of this system is that if the user always walks slower

(or always walks faster) than the setpoint, the setpoint constantly grows (contracts).

To demonstrate this let us assume that T is the desired arrival time, X the destina-

tion location, and x(t) the user’s location at time t (where t < T ). Controller’s speed

setpoint, and the user’s speed can be defined by Equations 1.3 and 1.4 respectively,

where Vc(t) is controller’s speed setpoint, and Vu(t) is the user’s speed.

Vc(t) =
X− x(t)

T − t
(1.3)

Vu(t) = x′(t) (1.4)

where “ x′(t) ” (prime) indicates derivative with respect to time (t). Using the

quotient rule2 we can calculate V ′c(t) as shown in Equation 1.5.

V ′c(t) =
−x′(t).(T − t)+X− x(t)

(T − t)2 (1.5)

Based on Equations 1.3 and 1.4 we can conclude that:

(1.3),(1.4),(1.5)⇒V ′c(t) =
Vc(t)−Vu(t)

T − t
(1.6)

If the user always walks slower (or faster) than the controller’s speed setpoint,

V ′c(t) will always be positive (negative) before reaching the destination (i.e., for

t < T ) and this can cause problem if the user always walks slower than the speed

1Setpoint is the desired output that an automatic control system aims to reach.
2If f (x) = g(x)

h(x) , the derivative of f (x) is f ′(x) = g′(x)h(x)−g(x)h′(x)
h(x)2 .
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setpoint because the speed setpoint will continue to increase until the user reaches

his/her maximum speed possible (i.e., cannot walk faster) in which case arriving

on-time will become impossible because the user’s speed is not fast enough. This

situation is demonstrated in Figure 1.3.

Double Closed-loop Control
User error and estimation error, including the estimation of the desired cadence

based on the desired speed, can easily be minimized with an additional feedback

channel in the system by adding the user’s estimated walking speed (e.g., via GPS)

as a feedback to the system as shown in Figure 1.2 (bottom); to make sure error

does not accumulate, we can use a PI controller3 that tries to minimize current

error as well as summation of error over time. This internal loop is responsible for

constantly adjusting the guidance cue until the user walks at the desired speed, even

though the desired speed might be changing over time according to the remaining

time and distance to destination. The blue line in Figure 1.3 shows how this setting

manages to bring the user up to the desired speed before it is too late. It is worth

noting that with the addition of the new feedback loop, the “short-term response”

of the system actually becomes slower (i.e., the gradual increase of speed under

double closed-loop system in contrast with the other two in Figure 1.3), but the

long-term response is superior to previous settings. It is possible to use a PID

controller or to combine this setting with one of the previous ones in order to get a

fast short-term response and error-free long-term response but that is beyound the

scope of this discussion.

In this thesis, we have begun to explore the possibility of using Periodic Vi-

brotactile Cues for the fine-grained control of cadence and speed (i.e., guiding a

walker’s cadence and speed with precision). The above control systems are just

examples of a very large design space of cadence controllers that are possible, none

yet tested. Our focus in this thesis is on the user’s ability to follow periodic cues

and the immediate challenges and requirements of a PVG system such as sensitivity

3A Proportional-Integral-Derivative (PID) controller calculates error of a system (the difference
between a measured variable and a desired setpoint) and tries to minimize it by adjusting the input to
the system. The proportional, integral, and derivative values are responsible for reducing the current
error, accumulation of past errors, and the rate at which error increases (i.e., predicted future error)
respectively. In many applications it is common to use just a PI controller rather than a PID controller
because derivative action is very sensitive to noise and can be problematic.
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Figure 1.3: A user’s location (upper) and speed (lower) response to the PVG system in three
settings: open-loop (red), single closed-loop (green), and double closed-loop, with a PI

controller (blue). The user has 1000 seconds to be at a destination 200 meters away.
The desired speed is thus 0.2 m/s and the user always walks 20% slower than the speed
setpoint. As a result, with the open-loop system (i.e., no feedback) the user arrives 250
seconds late. As Equation 1.6 shows, if the user always walks slower than the speed
setpoint which is estimated based on the location of the user in the single closed-loop
control system (i.e., location feedback) increases the tempo of the guidance cue over time
and rushes the user near the end until it reaches the user’s limit (see the overshoot) but
the user still arrives 30 seconds late. The double closed-loop system (i.e., location and
speed feedback) increases the tempo of the guidance cue based on the user’s location too,
but it also takes the user’s departure from the desired speed into account and increases the
setpoint even more until the user walks at the desired speed; as a result, before it is too
late, the user gets a steady speed (slightly larger than 0.2 m/s to make up for the time the
user walked slower than desired) and eventually arrives on time.
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in mobile contexts, cadence estimation, susceptibility to periodic cues, workload,

and auditory multitasking.

1.3 Research Goals
The overall goal of this thesis is to develop a new haptic guidance method (PVG) to

be used in mobile contexts. In particular, we try to find the best setting for wearable

vibrotactile displays with a focus on guidance of human walking, develop a robust

cadence estimation algorithm, and examine users’ performance and workload un-

der PVG and the extent to which their ability to utilize it is impeded by auditory

stimuli. Our aim is to answer the following questions:

1. What is the most effective location on a user’s body for placement of vibro-

tactile displays in mobile applications from a sensory standpoint?

2. How well can we measure cadence in realtime under a convenience-driven

constraint that no a priori knowledge about the user is used?

3. Can walkers synchronize their step frequency with a Periodic Vibrotactile

Cue?

4. How much workload does Periodic Vibrotactile Guidance cause?

5. How much do different types of auditory tasks affect walkers’ performance?

1.4 Research Approach
This research is done in three main phases as depicted in Figure 1.4: First, we4

need to find the right vibrotactile display and the best location for its placement in

mobile contexts and PVG in particular. Second, we develop a cadence estimation

device to be used in evaluation of PVG and eventually in the PVG control system.

Finally, we study users’ ability to follow Periodic Vibrotactile Cues at different

rates and during auditory multitasking. In this section we will explain these phases.

4For a list of contributors and their level of involvement please refer to the Preface on page iv.

18



Figure 1.4: The three phases of our research are shown as three large rectangles. Phase 1
(yellow): evaluation of vibrotactile stimuli under mobile conditions and finding best body
locations for their placement. Phase 2 (cyan): development and evaluation of a cadence de-
tection algorithm. Phase 3 (pink): study of performance, workload, and effect of auditory
multitasking on PVG. Each phase starts with a development stage (small coloured rect-
angle) followed by two experiments (white rectangles). Solid arrows show dependencies
between stages/phases: starting point is a prerequisite for the ending point. Dashed-line
arrows show a reiteration in a development stage where the findings of an experiment (or
requirements of the next experiment) dictate changes to the developed system.
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1.4.1 Phase 1: Sensitivity to Vibrations in Mobile Contexts

The choice of haptic display technology and more importantly, location for place-

ment of vibrotactile display was not trivial at first. As our first step, in Chapter 2,

we review the haptic channel, tactile technologies, and the way they have been used

in guidance system to identify the potentials and challenges that we are facing for

the development of PVG.

In Chapter 3 we compare several body locations for placement of vibrotactile

displays in terms of Detection Rate (DR) and Reaction Time (RT) during walking

in two experiments. In the first experiment we also measure the effect of visual

workload and in the second experiment we compare vibrations on expected body

locations with vibrations on unexpected body locations. Phase 1 is shown as a

yellow rectangle in Figure 1.4 and is a prerequisite of Phase 3.

These are the questions we tried to answer:

1. Which body locations are more sensitive to vibrations?

2. Which body locations are more affected by movement?

3. Does visual workload impact performance?

4. Which body locations are preferred by users?

1.4.2 Phase 2: Cadence Detection

The PVG system that we proposed relies on a cadence estimation unit that could

measure the user’s cadence with high precision and in realtime. We required the

system to be small enough to be carried by users, work out of the box (i.e., no

tuning required), robust to user differences and placement on the body. At the

time, such a solution that was available for modification as open-source software

did not exist. We knew we could use a smartphone’s accelerometers to detect

body movement during walking. Our idea was that the main component of the

frequency-domain transformation of the accelerations would belong to the cadence

or one of its harmonics. In Chapter 4 we explain the development and evaluation of

the resulting algorithm: RRACE. This algorithm was also the cadence measurement
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instrument in the next phase of our research. Phase 2 is shown as a cyan rectangle

in Figure 1.4 and is a prerequisite of Phase 3.

The main attributes of RRACE are as follows:

1. It can work across many body locations.

2. It is robust to change of orientation.

3. It works out of the box and does not require calibration.

We tested our algorithm on a treadmill and outdoors, under normal uncon-

strained walking conditions and examined the effect of body location and speed.

We also conducted a thorough comparison between our “frequency-based” gait

detection method and the highest-performing published “time-based acceleration

threshold” method.

1.4.3 Phase 3: Study of Periodic Vibrotactile Guidance

The goal of the final phase of our research was to verify that people can follow

Periodic Vibrotactile Cues, measure the workload caused by PVG, and examine the

effect of auditory tasks on users’ performance. This was done in two steps, each

corresponding to a separate study; in step one we studied susceptibility to PVG

of human walking, which is explained in Chapter 5. In step two, we measured

workload caused by PVG and the effect of auditory task on users’ performance and

workload, which is explained in Chapter 6. Phase 3 is shown as a pink rectangle in

Figure 1.4; both previous phases are prerequisites of Phase 3.

These are the questions we tried to answer in this phase:

1. How well can walkers follow Periodic Vibrotactile Cue of different tempos?

2. Does repetition improve performance of walkers?

3. How much do auditory tasks of different kinds affect walkers’ performance?

4. How much workload does PVG impose on walkers?

5. Does PVG affect walkers’ stride length?

6. Does PVG affect walkers’ speed?
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1.5 Summary of Contributions
The research presented in this dissertation makes the following primary and sec-

ondary contributions:

Primary Contributions

1. Sensitivity to Vibrations in Mobile Contexts: Evidence for

(a) positive effect of vibration intensity on Detection Rate (DR) of stimuli

and reduction of Reaction Time (RT);

(b) higher DR at certain body locations;

(c) negative effect of movement on DR and increase in RT;

(d) effect of visual workload on increasing of RT;

(e) faster RT to stimuli on expected locations versus random locations;

(f) gender differences in terms of DR and RT;

(g) subjective preferences.

These are encapsulated in guidelines for the design of wearable vibrotactile

displays.

2. Cadence Detection:

(a) The Robust Realtime Algorithm for Cadence Estimation (RRACE).

(b) Evidence for performance and robustness of RRACE

(c) Evidence for superior performance of RRACE over the readily available

state-of-the-art time-based cadence estimation method.

3. Study of Periodic Vibrotactile Guidance:

(a) A new guidance method based on fine-grained measurement of move-

ment.

(b) Tactile delivery of such guidance through interval/tempo of periodic

cues.

(c) Evidence for humans’ ability to follow Periodic Vibrotactile Cues (PVCS).
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(d) Evidence for the effect of Periodic Vibrotactile Guidance (PVG) on

walking speed and stride length.

(e) Analysis of the effect of repetition on PVG.

(f) Measurement of effect of auditory task on performance under PVG.

(g) Measurement of workload under PVG.

Secondary Contributions

1. Experimental design, methodology, and statistical analysis examples for:

(a) examining sensitivity to vibrations in mobile contexts;

(b) measuring cadence in indoor (treadmill) and outdoor settings;

(c) analyzing stride frequency and length, and walking speed and work-

load, under guidance/no guidance and different auditory tasks.

2. Shared/open source data on:

(a) detection rate and reaction time to vibrotactile stimuli of different in-

tensities across the body in stationary and mobile conditions and under

visual workload or no visual workload;

(b) detection rate and reaction time to vibrotactile stimuli of different in-

tensities across the body on random or expected locations in stationary

and mobile conditions;

(c) acceleration of six body locations at different walking speeds and step

frequencies with accompanied gold standard cadence measurements;

(d) performance under PVG and no guidance with and without auditory

tasks.

(e) workload under PVG or no guidance with and without auditory tasks.

1.6 Dissertation Roadmap
This dissertation is organized as follows:

23



Chapter 2 gives a broad coverage of the literature on the haptic channel, tactile

displays, and guidance systems with some of its elements repeated in the

following chapters in narrower scope.

Chapter 3 describes two experiments that examine sensitivity to vibrotactile stim-

uli under different conditions of movement, visual workload, and expectation

of stimuli location.

Chapter 4 presents RRACE, our algorithm for measurement of cadence in realtime

and describes two experiments that verify its accuracy and robustness.

Chapter 5 describes an experiment that examines walkers’ ability to follow Peri-

odic Vibrotactile Cues of different tempos.

Chapter 6 describes an experiment that measures workload under PVG and the

effect of auditory tasks on walkers’ performance.

Chapter 7 summarizes this dissertation and provides future directions for the re-

search.

Appendices A, B, C, and D document the supplemental materials used through-

out this research and associated with Chapters 3, 4, 5, and 6 respectively.
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Chapter 2

Related Work

If you rely only on your eyes, your other senses weaken.
— Frank Herbert, Dune (1965)

The goal of this chapter is to review guidance and explain our rationale for

choosing the tactile channel for the particular guidance system that we are inter-

ested in. To achieve this goal, first, we study several guidance systems categorized

by medium (e.g., visual or haptic) and application in Section 2.1, define spatial,

temporal, and spatiotemporal guidance in Section 2.2, and explain the benefits and

drawbacks of guidance in Section 2.3. Then we review the haptic channel in Sec-

tion 2.4 and tactile display technologies in Section 2.5 to explain our choice of

tactile display throughout this dissertation.

2.1 Guidance Systems
There is a wide variety of guidance systems, with different communication chan-

nels (e.g., audiovisual vs haptic), application areas (e.g., object manipulation vs

control of vehicles vs spatial awareness), and ergonomics (e.g., stationary vs hand-

held vs wearable). In the next few sections we will explain these with examples.

2.1.1 Non-haptic Guidance

A large body of research is dedicated to the studying of visual and auditory guid-

ance for object manipulation tasks. Many of these applications are related to
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medicine and surgery such as image-guided breast and laparoscopic surgery, neu-

rosurgery, and robot assisted minimally invasive surgery [45, 59, 109, 140]. Fuchs

et al. developed a head-mounted display that provided visual cues during laparo-

scopic surgery [45], Grimson et al. developed an image-guided neurosurgery sys-

tem that shows the location of instruments with regards to the Magnetic Resonance

Imaging (MRI) [59], and Sato et al. used 3-D ultrasound images for the guidance

of breast surgery [140]. More recently, Mourgues et al. developed a visual guid-

ance method for robot assisted minimally invasive coronary artery bypass graft that

used coronary tree model from endoscopic images which were updated in realtime

as overlay images for assisting the surgeon during the operation [109].

Guidance methods can also be used in navigation. Golledge et al. outlined

several hardware requirements for a Personal Guidance System (PGS) for blind

users [53]. They proposed the employment of Differential Global Positioning Sys-

tem (DGPS) in addition to a head mounted compass. Their system would guide

users by direct speech and relied on a virtual acoustic display consisting of binau-

ral earphones that “allow features to call as if from their real location in objective

space” to give a spatial awareness to blind users. In the above examples, vision

and audition were the communication channels from the guidance system to users.

This can be problematic in cases where users need their eyes and ears for the pri-

mary task such as looking at the road while driving or an important secondary task

such as talking to someone while walking. The requirements of such tasks suggest

the use of haptic channel, which is relatively free and may not compete for visual

and auditory resources.

2.1.2 Stationary Haptic Guidance for Object Manipulation

One of the first areas that welcomed haptic guidance was telepresence and object

manipulation. The sensors and haptic displays that were put together to give the

feel of presence in a remote site to the operator were used in a different way: the

haptic feedback link between the operator and the remote environment was “cor-

rupted” , as Rosenberg defined, by overlaying perceptual information to improve

task operation [131]. Rosenberg introduced virtual fixtures, which were computer

simulations run on several Degrees of Freedom (DOF) force-feedback displays.
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The virtual fixtures would limit the user’s movement like a ruler used for drawing

lines but with additional advantages that came from the nature of computer simu-

lations. His studies showed that virtual fixtures could enhance the performance of

a teleoperation by 70%.

In a similar work, Bettini et al. studied the employment of both hard and soft

virtual fixtures for a multi-step task of surgical tool manipulation [8, 9]. They used

admittance control to develop soft and hard virtual fixtures for haptic guidance in

micro and macro scales. Their tests on Steady Hand Robot of Johns Hopkins Uni-

versity showed significant improvement of performance of hard and soft virtual

fixtures, which included higher confidence and speed of users and reduced posi-

tioning error. Soft virtual fixtures seemed to be ideal because in addition to pro-

viding high-level guidance, they let users override the method. However, Bettini’s

work showed superiority of hard virtual fixtures in terms of performance.

Haptic guidance has also been used in animation browsing and editing. Donald

and Henle designed a system for haptic guidance of animators during motion cap-

ture data manipulation [32]. They mapped the multi-dimensional animation con-

figuration space into a lower dimensional space of vector fields that were displayed

on a six DOF PHANToM device by SensAble Technologies Inc.1 (Woburn, MA,

USA) [145]. These vector fields felt like virtual objects and guided animators along

certain trajectories or resisted against movement towards undesired regions. They

also mentioned the use of time-varying higher-order vector fields which would

change in time.

These examples show how sense of touch can assist users accomplish tasks

while they are visually engaged in their primary tasks. However, the display mech-

anisms are stationary and do not support for mobility of the user and portability of

the device.

2.1.3 Haptic Guidance and Shared Control of Inland Vehicles

In some other works haptic guidance is referred to as shared control because of

the difference in approach or the point of view of researchers. According to Steele

and Gillespie, shared control can take advantage of both mechanized control and

1SensAble Technologies Inc. was acquired by Geomagic Solutions in 2012.
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human abilities [153]. They developed a guidance method for land vehicles based

on shared control of a steering wheel. The control agent that can be viewed as live

fixtures, as opposed to the conventional virtual fixtures, exchanged power with the

human user to avoid departure from the center of a road. The torque applied to the

steering wheel by the system was proportional to the angular displacement from

the desired steering angle which was calculated based on the lateral displacement

of the car sensed by Global Positioning System (GPS). Their studies showed 50%

reduction in path following error, 42% lower visual demand, but no significant

cognitive load reduction. They argued that the latter was because driving is highly

learned and requires minimal amount of processing load and the verbal recitation

of numbers – which was used as the secondary task – did not compete over the

central processing code resources with the driving.

In a follow-up work, Griffiths and Gillespie designed new experiments with

obstacles in the middle of the road and audio signals to be identified by users to

compare cognitive load during and in the absence of guidance [58]. They found

that the guidance system helped in maintaining the performance of the primary task

when a secondary task was given to the user. The presence of the secondary task

reduced the performance of the non-guided driving by 20% but it only reduced the

performance of guided driving by 4%.

Forsyth and MacLean developed a haptic guidance method for inland vehicles

based on a predictive control method [42]. They developed two guidance methods:

one based on Potential Field Guidance (PFG) [132, 133] and the other based on

a look-ahead control method [36]. These methods were employed in a driving

scenario where users had to drive in a curvy road while keeping the vehicle in lane

and as close to the center of the road as possible. Their experiments compared these

two methods with a no-guidance scenario and showed that Look-ahead Guidance

(LAG) significantly outperformed the other two (i.e., no guidance and PFG) in terms

of smaller mean squared error from the desired trajectory. LAG also produced

smaller forces than PFG and was preferred by subjects.

The haptic displays used in the above applications are not attached to the body

of the user hence they are considered grounded. This limits their applicability to

situations where the user is stationary on the ground or in a vehicle.
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2.1.4 Haptic Guidance for Training

The idea of virtual fixtures evolved into virtual training in the work of Gillespie

et al. [51]. Their virtual teacher was similar to virtual fixtures in the sense that it

would facilitate task execution, but unlike virtual fixtures, the virtual teacher was

present only during training phase. They simulated moving a crane and used it

as their task example. During training period, the user would try virtual teacher’s

strategy. They argued that by showing the analytically obtained strategy to the user

he/she can bypass some parts of the usual practice time. Their experiments showed

that the optimal strategy could be communicated successfully to users.

Yokokohji et al. investigated the possibility of transferring skills from one

person to another through a visual/haptic display [175]. They proposed several ap-

plications of skill transfer: sports (tennis, golf), calligraphy, and surgeries (laparo-

scopic, endoscopic, and arthroscopic). They brought up the debate about training

through guidance: on one hand, guidance prevented error, which was advanta-

geous; on the other hand however, trial and error could be very helpful for learning,

which made guidance systems contradictory to the process of learning. Yokokohji

et al. developed and tested five different training methods: visual cue only, visual

cue and force playback, visual cue and motion playback, visual cue and hybrid

playback, and visual cue and hybrid playback with inverted force. They argued

that motion playback was the most promising method. However, they noted that

their results were not statistically significant to derive any conclusion probably be-

cause their task example was not difficult enough.

O’Malley et al. examined haptic guidance by comparing the performance and

effectiveness of training under shared control, virtual fixture guidance, and no

guidance [116]. They designed a hitting target task under a second order man-

ual control. Two masses with a spring-damper connection formed the under ac-

tuated 4 DOF system. The subject could only control two DOFs (x and y of one

of the masses). Their first experiments showed performance improvement under

both guidance methods with no significant difference between them. Their second

experiment showed no significant advantages for the guidance methods over the

practice in an unassisted mode.

The previous work was followed by Li et al., which elaborated on the negative
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effect of guidance on training [94]. The study of a target-hitting task showed that

subjects who practiced in the absence of shared control guidance had better perfor-

mance during the actual task. It should be noted that the negative effect of shared

control for training does not prove inefficiency of other haptic guidance methods

that are not based on force feedback or shared control. In other words, other haptic

display methods may not have negative effect on training. In addition, it is not

always desired to remove the guidance method during the actual performance.

2.1.5 Haptic Situational Awareness Aid

Sklar and Sarter suggested event-driven domains such as aviation as potential ap-

plications of tactile communication [147]. They emphasized on multiple-resource

theory [171] and suggested distribution of information to haptic modality to reduce

pilots’ mode errors or automation surprises (failure to notice change of status).

They designed an experiment to compare three modes of feedback: visual-only,

tactile-only, and visual-tactile during four phases of flight different on difficulty

level. Their tactile display consisted of a wristband with one tactor attached to

inner wrist and another one attached to the outer wrist. The pilots who received

visual only feedback showed significantly lower detection and reaction time per-

formance. In addition, pilots assisted by visual and tactile feedback missed a few

more status changes than the ones assisted by tactile only feedback during the dy-

namic phase. This was surprisingly inconsistent with multiple-resource theory that

suggested improvement of performance because of multiple modalities. Sklar and

Sarter argued that during the dynamic phase of flight, pilots required a lot of visual

attention for the primary task, and visual feedback would compete over it and cause

visual scanning penalties.

Following many other researchers interested in potential uses of tactile sig-

nals, Ho et al. designed two experiments to study spatial information presentation

through vibrotactile signals in cars [68]. They designed a pseudo-driving simula-

tion and asked their participants to check if they were approaching the car ahead

or being approached by the car behind whenever they received a vibrotactile signal

from the back or front. One of their experiments was spatially predictive, meaning

that 80% of the vibrotactile signals corresponded to the same direction (e.g., front
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tactors for the car ahead and vice versa) and the other experiment was spatially

non-predictive with random direction of vibrotactile signals (i.e., 50% likeliness of

vibrotactile signal having the same direction as the car approaching). Subjects re-

sponded faster and more accurately to visual events preceded by vibrotactile cues

of the same direction; however, the difference between the mean cueing effect of

the two experiments was not significant to prove the advantage of spatially predic-

tive over spatially non-predictive signals.

Enriquez and MacLean confirmed the harmful effect of false positive warning

signals (false alarms) [34]. They used a throttle pedal with force feedback in a

driving scenario. Subjects had control over the position of the pedal which defined

the acceleration of the car. They were asked to avoid collision with another car

ahead of them by controlling the speed of their own while being occupied with

a secondary task of identifying objects shown on the same graphical screen. The

drivers would feel pressure from the pedal when their car approached the leading

car. This pressure was produced by the force feedback system as a means of warn-

ing signal. Enriquez and MacLean examined effects of error in warning signals

by adding false positives (false alarms) and false negatives (misses) and found that

only false positives had negative effect on the use of haptic warning signals. They

argued that false positives could destroy the user’s trust and willingness to use the

information presented by the system.

The above papers suggest that haptic guidance can be used in event-driven

situations such as aviation and transportation. In addition, most of our tasks that

have temporal parameters are in fact event-driven; for example, arrival time of a

bus, train, or ferry and changes in traffic patterns are important events in an urban

commute. One may argue that these tasks are not as sophisticated as aviation to

require assistance. However, people normally try to maximize their use of time

by accomplishing their daily tasks in parallel with as many secondary tasks as

possible. Situational awareness aid seems promising in these conditions too.

2.1.6 Wearable and Handheld Haptics and Spatial Guidance

Skin is the largest organ that covers the whole body with a vast number of heat,

touch, and pain sensors, which is a great opportunity for interaction designers if
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they intend to build handheld or wearable haptic devices. Baumann et al. used an

iterative low-fidelity prototyping or “physical brainstorming” to explore the poten-

tials of wearable or holdable haptic displays for attentional cueing [6].

Navigational guidance has been an area of interest since a decade ago. Ertan

et al. introduced a wearable navigation system for guidance of blind users in un-

familiar indoors areas [35]. They used a vibrotactile display consisting of a 4-by-4

array of micromotors embedded in the back of a vest to communicate stop signal

or the four cardinal directions to the user. Due to the bad reception of GPS signals

indoors they used infrared transceivers in the ceiling of the hallways instead for

sensing the position of the user. A wearable computer in the user’s backpack was

responsible for route planning.

Bosman et al. developed a wearable haptic guidance system that could be

attached to both wrists of a pedestrian to guide him inside unknown buildings [11].

Although their design could be modified to help blind or visually impaired users,

they claimed it to be a great match with regular users’ vision and perception of

the space around them. The advantages of their haptic guidance method were its

objective performance and subjective desirability. They used vibrations to indicate

directions and stop signal.

Tsukada and Yasumura developed a belt with eight vibrotactile haptic displays

to guide a pedestrian towards destinations, predefined locations, or valuables left

behind [163]. They used GPS to locate the user and geomagnetic sensors to de-

tect the orientation of the user. The eight vibrotactors were located around the

user’s waist, four of them pointing at front, back, left, and right, and the other four

pointed at between those directions. Vibration of each tactor showed a desired di-

rection to the user. They found that subjects could feel vibrations when stopped but

often failed to recognize vibrations with intervals less than 500 ms when walking.

However, subjects could stop for a moment to recognize the direction of the vibra-

tion; we will explain the negative effect of movement on sensitivity to vibrations

in Chapter 3. They reported subjects’ preference for receiving signals only when

they were lost and not all the time. Van Erp et al. used a similar system for way-

point navigation [167]. They mapped the four cardinal and four oblique directions

to vibrations on eight tactors embedded in a belt. In order to display distance to

next waypoint they developed four different schemes in addition to a control con-
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dition (i.e., no coding of distance). Two of the schemes were based on monotonic

relation between distance and tempo of the rhythm (faster tempo indicated shorter

distance) and the two others were based on communicating departure, arrival, and

intermediary phase by three fixed but different tempos of the rhythm. They found

no significant difference between the scheme; users maintained a below normal but

acceptable average walking speed. They examined the directional-only guidance

in two operational scenarios too: for a helicopter pilot and a fast boat driver and

the system showed to be successful despite the vibrating environments which could

have blocked the perception of the vibrotactile signals.

Wearable haptics seems to be an obvious choice for spatial guidance because of

the easy mapping between directions and locus of stimuli. This direct and intuitive

mapping is the main reason of success for those applications. However, the tem-

poral aspects of haptic signals can also be used for the mapping of temporal and

spatiotemporal parameters which is not explored yet.

2.1.7 Non-haptic Temporal Guidance

Maruyama et al. developed a personal navigation system called P-Tour that pro-

vided users with temporal guidance in addition to the regular map-based naviga-

tion [104]. P-Tour computed the nearly best schedule for visiting multiple tourist

attractions based on the user’s preferences and restrictions. It would find a semi-

optimal solution for the modified traveling salesman problem through a genetic

algorithm which would give a suboptimal subset of tourist attractions with a sub-

optimal order of visiting and time of visits.

Rhythm consists of several temporal parameters such as frequency and time

which can be used in temporal guidance. In [177] Zelaznik and Lantero studied

the effect of spatial visual guidance and temporal auditory guidance for the ex-

ecution of a repetitive circular movement. They found that withdrawal of visual

guidance affected the topocinetic aspects (size and location) of the task but did

not affect the morphocinetic aspects (shape) of the task. They also found that the

temporal guidance of the metronome had almost no effect on the spatiotemporal

aspects of the task. Their conclusion was based on high precision of subjects’ mean

interval duration: “the overall within-subject standard deviation was about 2.5% of
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the mean interval”. One of their most important findings was that subjects could

maintain the proper average cycle duration in all conditions but they needed a few

cycles to get synchronized with the rhythm.

These studies support the idea of temporal guidance in two ways: (a) feasibility

of temporal guidance from software and hardware development standpoint and (b)

practicality of rhythmic signals and ability of users to synchronize with it. Use of

vision can be questionable in situations where the user’s vision is engaged by the

primary task.

2.1.8 Haptic Feedback in Music

Almost all acoustic and mechanical musical instruments form a closed-loop sys-

tem with the user. While the user manipulates the instrument to make sounds, the

auditory and tactual channels make a feedback and close the loop. Chafe argued

that these two forms of feedback were necessary to the control of sound making in

music composition and vocal communication [20]. He proposed the incorporation

of haptic feedback in new musical instruments to solve the problem of instrument’s

non-determinism. He set up an experiment to test if vibrotactile feedback at the fin-

ger tip would improve the problem of an electronic French horn. This vibrotactile

feedback was simply made by sending the audio output to an actuator that vibrated

the controlling device. He concluded that the resulting device improved the user’s

perception of the music creation.

Haptic feedback can also be used in musical motor learning, as Grindlay pro-

posed [60]. He studied the effect of haptic guidance on percussion training by

building a single axis system to record and playback rotational movement of a

wrist during drumming; this system could be considered as a spatiotemporal haptic

guidance system. He measured accuracy of users on note timing and drumstick ve-

locity under three guidance conditions: audio only, haptic only, and audio+haptic.

His results showed the superiority of audio only over haptic only, and audio+haptic

guidance over the other two. He suggested generalizing audio and haptic guidance

to other applications such as dance, sports, and remote medicine.

Pedrosa studied the effect of haptic guidance for helping users follow and learn

drum beat percussion patterns [121]. He asked the users to follow a rhythmic pat-
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tern on a device similar to an electronic drum machine under four different condi-

tions: no guidance, visual guidance, haptic guidance, and visual+haptic guidance.

The results showed no statistically significant difference among the guidance con-

ditions. Two of the reasons discussed in his thesis are more important for us: (a)

the rhythmic patterns were harder than expected for users with little or no musical

background and (b) users’ delay in following the rhythm and the variation in delay

contributed a lot to the error even if they seem to be playing the right rhythm.

Hearing and the sense of touch are closely related. On one hand, the vibration

bandwidth perceivable by the receptors in humans’ skin overlaps with the range

of sounds that they can hear [62, 134]. On the other hand, vibration and sound

(music in particular) both have temporal parameters such as duration, tempo, and

rhythm. Aside from the natural coupling of music and haptics (e.g., vibrations on

the body caused by loud music or touching the instrument during performance),

there has been some attempt to take this relationship further. Gunther et al. in-

troduced the idea of tactile composition and performance [62]. They designed a

wearable system consisting of thirteen transducers across the entire surface of the

body with most of them close to glabrous (non-hairy) skin to increase sensitiv-

ity. They used the standard Musical Instrument Digital Interface (MIDI) protocol

to compose thirteen tactile tracks to be played on tactile displays in presence and

absence of music. They held a series of concerts and collected the feedback from

the audience. Users’ experience was very similar to their expectation from music.

For example, the audience would be surprised if a repeated pattern varied suddenly.

Some of their audience also reported that it felt as if the interface was making their

body move which showed the potential of using wearable tactile displays to guide

movement of the body.

The applications of haptic guidance in music show how haptic guidance can

also be used for temporal aspects of tasks. The papers presented above suggest the

use of haptic temporal and spatiotemporal guidance where human movements are

cyclical.
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2.1.9 Haptic Communication through Rhythm

Periodic haptic signals have been used to communicate information to users. Hap-

tic icons were introduced as a means of communicating abstract information through

the sense of touch to users under visual/auditory workload. Chan et al. suggested

the use of a set of haptic icons as a turn taking protocol in a collaborative envi-

ronment [21]. They developed a design protocol that perceptually optimized an

icon set to address the requirements for such applications: being easily learnable,

detectable, and identifiable. They designed three families of icons, one of which

consisted of two-tone vibrations to convey status transition and the two other fam-

ilies consisting of periodic icons to indicate status of collaborators (e.g., in control

of the device or waiting to gain control of the device) to themselves. They used the

Logitech iFeel mice, developed by Logitech (Lausanne, Switzerland) and Immer-

sion (San Jose, CA, USA), [96] for their studies which are capable of displaying

vibrations from 0.01 to 500 Hz. Users learned all the seven icons in approximately

3 minutes, identified them within 2.5 seconds in absence of workload. In presence

of workload, identification time increased to an average of 4.3 seconds which is

still acceptable in many applications. In both conditions they had an accuracy of

95%.

Ternes and MacLean used the Multidimensional Scaling (MDS) method in a

protocol to design a large set of haptic icons using rhythm, frequency, and ampli-

tude as parameters to distinguish between them [160]. They defined rhythm as a

“repeated monotone pattern of variable-length notes” that can be manipulated by

changing the number of notes, their lengths, and the gaps between them. They

suggested limiting the length of icons to 2 seconds and 4 repeats (500 ms each)

with the shortest perceivable note to be 31.25 ms followed by the same length of

rest. The user studies revealed that the evenness/unevenness (i.e., regular repeating

nature versus irregularities of the rhythm) could be felt distinctively. They con-

cluded that haptic rhythms could be distinguished by note length and evenness but

suggested other parameters such as melody, emphasis, and tempo to be effective

too.

The above papers show the possibilities and advantages of communicating

through rhythmic haptic signals; they are reliable and they give us additional de-
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grees of freedom such as note/rest length, evenness/unevenness, emphasis, and

tempo. These parameters have been used in an indirect communication through

abstraction of meanings. However, one may use an indirect mapping of informa-

tion to these parameters which seems to be less cognitively demanding.

2.2 Spatial, Temporal, and Spatiotemporal Guidance
Guidance systems can be categorized by the dimension(s) of tasks they deal with:

space or time. In this section we will explain Spatial, Temporal, and Spatiotempo-

ral guidance systems.

2.2.1 Spatial Guidance

A spatial guidance system is an assistive tool that deals with tasks in time-invariant

dynamics; i.e., the guidance system is responsible for assisting the user for a task

that is not explicitly dependent on time. A compass is one of the simplest and

oldest spatial guidance tools. Global Positioning Systems are also spatial guidance

systems that traditionally use audiovisual channels. Many haptic guidance sys-

tems [8, 34, 42, 52, 58, 131, 153], and many non-haptic guidance systems such as

[53, 109] can be categorized as spatial guidance according to the above definition.

These devices only deal with spatial aspects of the task such as direction and dis-

tance. If they are used in contexts where time (and eventually speed) is important,

the user will have to deal with those aspects on his/her own.

2.2.2 Temporal Guidance

A temporal guidance system is an assistive tool that is location-invariant and

deals with time-variant tasks; i.e., the guidance system is only dependent on time.

Timers, alarms, metronomes, and many devices that are used to help users keep

track of time, or frequency of a repetitive task are in fact temporal guidance tools

for general use and with very little or no knowledge about the user’s state and goals.

Temporal haptic guidance systems could potentially reduce visual and auditory at-

tention by keeping the user informed about future events only when necessary.

Haptic feedback is a good candidate for this because there are many locations on

the skin that are not engaged in any tactile communication and can be used in
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interrupt-based communication [156], whereas the visual and auditory channel are

busy most of the time. The option can always be open for the user to check the

graphical display of the device. However, if the user trusts the guidance system’s

judgements, he/she no longer needs to double check the time to future events like

he/she does with a clock alarm before it rings or a calendar to double check future

events. In addition, a temporal guidance system can assist users in micromanage-

ment of time. In the context of this research, micromanagement of time includes

controlling movement frequency or speed and synchronization with a reference

(e.g., tempo of the music) or another user (e.g., lead rower of a row boat).

2.2.3 Spatiotemporal Guidance

A spatiotemporal guidance system is a generalization of both temporal and spatial

guidance because the system deals with time-variant location-variant dynamics

[104, 159]. The guidance system assists the user in space and time. Passage of

time affects spatial constraints and vice versa; e.g., if the user takes longer than

expected to take a bus at a certain station, the system may realize that the next best

choice is another bus at a different station. A simple example of spatiotemporal

guidance can be seen in [32] where the user has to follow a 3D trajectory at a

certain speed.

Mobile tour guides are one of the few guidance systems that take both time and

location into account [104, 159]. Maruyama et al.’s P-Tour computes the near-best

schedule and navigation for visiting several of a tourist’s destinations and modifies

the schedule based on tourist’s location [104]. In addition to scheduling and navi-

gation, ten Hagen et al.’s Dynamic Tour Guide (DTG) also provides location based

interpretations [87, 159]. Although there are not very many spatiotemporal guid-

ance systems, many of us retrofit existing technology to create our own spatiotem-

poral guidance systems. For example, on most smartphones tapping on an address

opens the GPS enabled map software which may also provide turn based naviga-

tional cues (spatial guidance system); a mother who has to get through a complex

route/itinerary on Saturday, dropping off and picking up kids at their events at the

right time, often in unfamiliar locations, may add the addresses of places she has

to be to events in her phone’s calendar application; at time of each event (e.g.,
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dropping her son at a soccer field) she can just tap on the address and be guided to

the destination.

2.3 Benefits and Drawbacks of Guidance
In this section we will explain some of the major benefits as well as drawbacks of

guidance systems.

2.3.1 Benefits of Guidance

Temporal and spatiotemporal guidance have many potential benefits for their users.

They can improve the overall performance, decrease the amount of effort needed

for task completion, decrease the anxiety level of the user, or facilitate learning of

the task.

Decrease in Human Effort In order to do a task, a person uses his/her own knowl-

edge and may acquire additional information from other sources before and during

the task, then bases his/her decisions on approximate calculations about time, lo-

cation, or other parameters. A guidance system can assist the user by collecting

information, calculating and estimating dependent parameters, and participating

in decision making to some extent. Either of these can decrease the amount of

processing load required from the user to accomplish the task [58].

Performance Improvement A guidance system can improve human performance

in two ways: improving the information collection process qualitatively and quan-

titatively, and increasing precision and speed of calculations; more importantly, it

executes the actual movements from the start to the end.

Firstly, guidance systems have access to sources of information that are not

otherwise accessible by the user alone. Maps, GPS data, exact time of future events

(e.g., train, plane, bus arrivals/departures), and even the accurate traveling speed of

the user at every moment are available to the guidance system through the Internet,

satellites, and wearable sensors but the user has no direct access to them. This in-

formation is directly related to the user’s tasks and can be used to make or change

decisions. Secondly, the user has to make decisions based on approximate calcu-

lations. At best, he/she can use other devices (e.g., watches, maps, schedules) to
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improve precision but it takes him/her a lot of time. The guidance system however,

has a built-in computation unit that takes care of calculations in a fraction of a sec-

ond. As a result, guidance systems have the potential to make the decision making

faster and more reliable which improves the overall performance of the user. In

addition, a guidance system can increase the frequency of access to information as

needed which is a luxury a user with no guidance system cannot afford.

Decrease in Anxiety Level Guidance systems can lower the anxiety level by of-

floading some of the user’s workload. In addition, after successfully assisting the

user in several occasions, the guidance system gains the user’s trust. The guidance

system’s decisions will prove to be reliable and the user will understand that the

system has alternative solutions in hand just in case the primary solution is inval-

idated. The user would depend on the guidance system and worry less. Bodrov

introduced many causes for stress [54] and grouped them as semantic (i.e., related

to facts, concepts, strategies), temporal, and organizational.

Semantic causes for stress are:

1. subjective task complexity,

2. deficient or controversial information,

3. dangerous situations,

4. uncertain time of information presentation.

Employment of a guidance system can greatly reduce stress by removal of the

above causes. The guidance system can reduce the complexity of the task by taking

responsibility for parts of it. It can also help the user avoid deficient information

by improving the collection and using of it directly in high precision calculations.

Increasing safety is an important goal of some guidance systems which directly

reduces the user’s stress. The temporal and spatiotemporal guidance systems can

decrease the level of uncertainty of information presentation by developing a grad-

ual awareness about the time of future events.

Temporal causes of stress are:

1. time deficit,
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2. high rate of information presentation,

3. increased information flow.

Guidance systems can also decrease the stress level by removal of the tempo-

ral causes of stress. They can solve the problem of time deficit by helping users

accomplish tasks faster. In addition, they can reduce the rate and speed of infor-

mation presentation by filtering out the non-necessary parts and using non-abstract

forms of communication.

2.3.2 Drawbacks of Guidance

In addition to their benefits, guidance methods have some drawbacks. Some of

them are more critical because they interfere with the primary task or annoy the

user. The rest hurt the performance of the guidance system and reduce its ef-

ficiency. These drawbacks and possible ways of removing them will be briefly

discussed in this section.

Intrusiveness Unfortunately guidance systems are no exception to the general in-

trusiveness problem of many devices in multitasking environments. As MacLean

discussed it, in some cases the interaction with the device may just become another

distraction for the user [100]. For example, looking at the screen of a GPS device

after hearing an audio signal for direction can make the driver miss a road sign

or an obstacle. Using the haptic channel instead of vision or hearing can reduce

this effect to some extent by simply not interfering with the senses (usually be-

ing vision and hearing) that are already engaged with the primary task. However,

because haptic signals can still distract users and guidance systems have a multi-

tasking nature, haptic guidance designers should balance the level of intrusiveness

of haptic signals with their priority level; an urgent signal should attract more at-

tention from the user while a less important message should be less interrupting.

More importantly, the level of attention the user needs to give to the primary task

should be taken into account; if it is unsafe to distract the user from his/her primary

task the system should be less interrupting [100].

Cumbersomeness Because guidance systems are supposed to be carried by users

all the time they should be light and small. However, guidance systems require
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several pieces of hardware which can make them big and heavy. In order to avoid

cumbersomeness one can use simple designs with minimum number of sensors and

smaller parts such as miniature sensors and vibrotactile displays if possible; this

will also be better in terms of lower power consumption for a device that depends

on battery power for portability.

Reliance on External Data Guidance systems rely heavily on external data sources

such as GPS network or the Internet to acquire navigational and temporal informa-

tion for planning. This makes the guidance system vulnerable to accessibility prob-

lems. When the data networks are not in range the guidance system will become

unusable/unreliable unless the information is provided to them from an alternative

source. Using indoors infrared navigational signals, where there is no reception, is

an example of providing an alternative source of information [35].

Sensory Adaptation When people are exposed to stimuli for a significant amount

of time they adapt to them which means that their sensitivity threshold increases or

they become less sensitive to the stimuli [23]. Most guidance systems continually

send signals to users and because of that there is a likelihood that after some us-

age users will become less sensitive to the guidance signals. To prevent this from

happening, we should avoid long periods of stimulation when not necessary. An

example way of doing this in vibrotactile communication is to use as short as possi-

ble vibration cycles (which might be perceived as taps) and embed the information

in the length of silence between vibrations. Of course, this is only feasible when

the communication is as minimal as mapping a single guidance parameter to just

one degree of freedom which is the rest (silence) between notes.

Error Situations Guidance systems are vulnerable to several types of errors. The

information supplied to the system can simply be wrong as a result of sensor noise,

inaccuracy of measurements, or network errors. In addition to machine related

errors, there are errors that happen on the user side such as misunderstanding of a

signal, missing a signal, or even confusing stimuli from another source (e.g., coins

moving in the pocket or touching each other) with the guidance signal. Noise

can be avoided by using appropriate filtering of the signal. Network errors can be

overcome by repetition and minimal use of bandwidth. The errors in perception

of the signal can be reduced by using better contact and choosing the right locus
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of stimuli. Also, if the guidance method works based on repetitive communication

(such as the proposed rhythmic method) when the user misses or misunderstands a

single signal he/she can be corrected by the repetitions of the signal.

Hindering Skills and Attention Guidance systems may also disengage their users

from their environment [92]. By using guidance systems we stop relying com-

pletely on our own cognitive functions. Over time, those functions do not get

practiced as much as before which may hinder their development and/or be lost

altogether. For example, GPS devices have long been criticized for obstructing the

development of cognitive maps [18].

2.4 The Haptic Channel
Skin is the largest organ which is covered by a vast number of receptors that

form proprioception (sense of relative position of body parts), mechanoreception

(touch), thermoception (temperature), and nociception (pain). The haptic channel

has advantages to vision and audition that makes it a better choice than them in

some applications but has limitations which should be considered in the design of

those application.

2.4.1 Advantages of Haptic Channel

The haptic channel has some unique features which make it a great match for guid-

ance systems and very advantageous according to Van Erp, Grindlay, Feygin, and

many others [11, 40, 61, 163, 165, 167].

1. The haptic channel is available most of the time to receive new information.

2. It is private.

3. It can help capture and direct attent to audiovisual displays.

4. It can free the overloaded visual and auditory channels.

5. It can replace a visual display when vision is blocked (e.g., firefighters in

dense smoke or divers in dark waters)
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6. The haptic channel can be used in environments which must be auditorially

silent.

The single biggest advantage of the haptic channel is being dispersed. There are

simply contexts where the convergence of mobility, attention, and other contextual

factors, not only render visual and auditory modalities inappropriate, but touch can

be actively preferred and more comfortable. It keeps things compartmentalized and

in the background in a way that feels good and optimal.

In situations where users are overloaded with (mostly visual) information, au-

ditory and haptic notifications can help direct their attention [39] and make them

notice visual changes [158]. In contrast to peripheral vision – which can also be

used for attention allocation [114] – touch and audition are omnidirectional (i.e.,

do not require a particular orientation of head) and they do not require real estate

[139]. Touch is often preferred to audition because it also avoids overloading of the

auditory channel, which could be occupied by alarms and conversations [39]. It is

shown that the haptic channel is also capable of distinguishing the level of urgency

(e.g., “ignorable” vs “demand action”) when capturing attention [179]. Capturing

users’ attention selectively (with users’ priorities in mind), reducing distractions,

and shortening response time is especially important in the face of the exponential

increase in the amount of information presented to users in different contexts such

as driving and navigation [91].

The above arguments particularly support the idea of using the haptic channel

in temporal and spatiotemporal guidance when users are already occupied in a

primary task which involves visual and/or aural attention or when those senses are

blocked or using them is not desired in those particular environments. They also

explain the increasing use of touch as an information channel in many settings as

a response to the problems that arose with the increase in audiovisual information

and the opportunity that haptic technologies provided [73].

2.4.2 Disadvantages and Limitations of Haptic Channel

The haptic channel has limitations and some disadvantages compared to the visual

and auditory channel too:

1. Haptic wearables are intrusive and sometimes the stimulus is irritating.
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2. Site availability is a problem.

3. Physiological sensitivity to tactile stimuli decreases if the body part receiving

it is in motion [23].

4. Using current technology and human sensory training, the amount of infor-

mation that can be transmitted is very limited compared to the visual and

auditory channel [163].

However, some of these are not unique to haptic channel. For example, head-

phones (auditory) are also intrusive and imperfect; they can fall out of ears, they

are cumbersome, social irritant, subject to interference from ambient sound, and

they can even cause ear damage if over or mis-used. Yet, over the last few years

they have become quite accepted socially and by individuals for public use at levels

that seemed unthinkable even a decade ago. The really important disadvantage of

haptics relative to vision and audition is information transmissibility, at least when

defined as a “bit-rate” deliverable by current technology. We should point out that

this only applies to synthetic touch; real-world touch is somewhat different.

Good application candidates for haptic channel are those which require modest

information transmission and consider the other limitations.

2.5 Tactile Display
Stimulus display is essential to the proper functioning of a guidance system, whether

open or closed loop. As mentioned in Section 2.4, haptic displays have advantages

relative to audiovisual displays but they have relatively lower information trans-

missibility, which should be considered in the design of haptic interfaces. In this

section we present several types of haptic displays and our rationale for choosing

one of them.

There are two types of haptic displays: force-feedback and tactile. Force-

feedback displays are bidirectional physical interfaces that exert force or torque

on the input device (e.g., steering wheel, joystick, mouse, etc.). While manipulat-

ing the input device, the user may feel forces that encourage or resist the movement

of the device. Some examples of this type of guidance can be seen in cars: force-

feedback enabled steering wheels and pedals [34, 42, 58, 153]. Force-feedback
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has also been used in guidance of hand motion in surgical operations or object

manipulations [8, 32, 131]. The PHANToM haptic device from SensAble is the

most common haptic display in these applications [145]. These devices should be

grounded to be able to exert forces to the user. Because force-feedback devices

require physical grounding – and also tend to have significant power needs – they

are less appropriate for mobile applications.

Another emerging subgroup of force-feedback displays is exoskeleton force-

feedback systems [7, 12, 44, 63]; these are wearable haptic devices with limbs

and joints that wrap around parts of the user’s body and exert forces as the user

moves his/her limbs. Among these, exoskeleton force-feedback for fingers such as

the Rutgers Master II [12] has potential for mobile applications if it can be made

sufficiently lightweight and power efficient, because instead of being grounded it

can be fixed to the user’s body. The force-feedback display modality that seems

like a serious candidate for a mobile applications is pressure display (e.g., a com-

pressive wristband) such as Baumann et al.’s ServoSqueeze, a wristwatch band that

employed a micro-servo motor to emulate the sensation of being squeezed [6].

Tactile Displays are unidirectional physical interfaces that employ vibrations

[166, 180], tapping [6], twisting or stretching of the skin [98], compressing of the

skin, and indentation to convey messages to users [118]. Unlike the force-feedback

displays, tactile displays are not necessarily collocated with the input device and

need not be grounded. These two characteristics make them suitable for portable

and wearable devices that can be carried by users. Users can hold these devices in

their hands, keep them in their pockets, put them on, or even feel them whenever

they touch the device in their environment.

In this dissertation we restrict our focus on ungrounded displays, such as tactile,

because the Periodic Vibrotactile Guidance (PVG) has to be portable and does not

require bidirectionality. In the next section we discuss tactile display technologies.

2.5.1 Technology

Tactile displays can be put into different categories based on the kind of deforma-

tion to the user’s skin (e.g., tapping, vibrating, pinching, squeezing, and twisting)

or the technology they use [14, 50]; here, we use the latter categorization because
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the focus of this research is on periodic cues and the user’s susceptibility to them

rather than perception of each single stimulus:

1. Eccentric-mass tactors

2. Voice coil speakers

3. Piezoelectric speakers

4. Pneumatic vibrators

5. Electrotactile displays

From among these, voice coil and piezoelectric speakers and eccentric-mass

tactors are most commonly used for the development of tactile displays.

Eccentric-mass tactors are widely used in consumer electronics and handheld

devices in particular. One way to produce mechanical vibration is by rotating an

off-centered weight. These displays commonly known as eccentric-mass tactors or

buzzers consist of a small motor with an off-centered weight attached to its shaft.

When the motor is running, the centrifugal forces make the whole body of the dis-

play vibrate at the frequency of the motor; this means that the vibration frequency

and amplitude of the eccentric-mass tactor cannot be changed independently. An-

other way of producing vibration or tapping is to move, push, or stretch the skin.

Voice coil and piezoelectric speakers are also common in wearable haptics

community but not as widely used in consumer electronics as mechanical vibra-

tion. Same as eccentric motor vibrators, both above types of displays are inexpen-

sive, compact, and easy to control. Voice coils have an extra advantage too: they

can provide a range of frequencies [62].

2.5.2 Degrees of Freedom

Apart from their portability advantages and in spite of their simplicity, vibration

and tapping mechanisms have much potential for employment in the context of

guidance systems. These mechanisms provide several Degrees of Freedom [14,

118, 165] some of which are correlated:

1. Amplitude of vibration/tapping
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2. Frequency of vibration

3. Rhythm (note density, number of notes and rests and their length)

4. Location of stimuli

5. Tempo of a rhythm or time interval between single vibrations/tappings

6. Duration of vibration

7. Duration of silence

These parameters can be used to communicate different types of temporal and spa-

tiotemporal information to users.

Frequency and Amplitude: Humans’ skin is sensitive to a bandwidth of 700 Hz

[134]. Our ability to analyze vibration frequency is very limited. Rothenberg et

al. found that people can differentiate seven levels of vibration frequency in the

clearest region of sensation (80− 90 Hz) with their forearm and up to ten levels

with their fingers [134]. Other papers reported slightly different results. For ex-

ample, Gunther et al. reported that humans could perceive vibrations from 20 Hz

to 1000 Hz with the maximum sensitivity at 250 Hz [62]. The inconsistency of

psychophysical parameters (frequency in particular) among different papers is be-

cause of the dependency of the results on the stimulation medium and the locus

of stimulation. Sherrick investigated the interaction between frequency and ampli-

tude and found when frequency and amplitude are co-varied redundantly, people

could differentiate more levels (5-8) than when amplitude was constant and only

frequency varied (3-5 levels) [146]. However, as Sherrick discussed, the designer

should be cautious as low frequency at high amplitude could be confused with

moderate frequency at medium amplitude.

Rhythm: Similar to music as a particular form of aural stimuli, tactile stimuli have

a rhythmic characteristic. Number of notes and their timings in a repetition can

form different rhythms. Swerdfeger et al. performed a set of studies which showed

that rhythmic differences (i.e., evenness/unevenness) dominate other parameters in

terms of being perceived by humans [155]. Intensity differences (co-variation of

frequency and amplitude) came right after rhythm.
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Location of Stimuli: The vast number of touch sensors in the skin that covers the

whole body gives us another parameter to use in haptic communication: location

of stimuli. An interaction designer can place vibrotactile displays on both wrists

of a user to distinguish left and right and create other messages as in the work of

Bosman et al. [11]. Alternatively, eight vibrotactile displays at the four cardinal

directions and the four intermediate directions around the waist [163, 167] or an

array of vibrotactile displays on the user’s back [35] can communicate direction.

Tempo of Rhythm: Similar to rhythmic music, periodic vibrotactile cues have a

tempo that can be used for mapping of continous variables such as time or distance.

For example, faster tempo (i.e., shorter interval between vibrations) can convey

shorter time or distance to a destination [167].

2.6 Summary
There are many examples of haptic and non-haptic guidance systems. Most of

them are spatial and very few are temporal or spatiotemporal guidance systems.

Despite the fact that one of the greatest potentials of the tactile sensation is its tem-

poral aspects such as rhythm and tempo, it is not employed very often in temporal,

and particularly spatiotemporal guidance systems. To the best of our knowledge,

tempo of a cue (auditory or tactile) as a fine-grained control method has not been

used or suggested for any temporal or spatiotemporal guidance system. We believe

Periodic Vibrotactile Cues can be used in spatiotemporal guidance of human move-

ment. As we discussed in Section 2.5, our ability to distinguish between vibration

frequencies is very limited and frequency of vibration is not a good fit for the

fine-grained guidance that we are interested in. Therefore, eccentric-mass tactors,

which are cheaper and more powerful than piezoelectric and voice-coil speakers,

are our tactile display of choice throughout this work.
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Chapter 3

Detecting Vibrations Across the
Body in Mobile Contexts

Touch comes before sight, before speech.
It is the first language and the last, and it always tells the truth.

— Margaret Atwood, The Blind Assassin (2000)

In this chapter we1 explore the potential and limitations of vibrotactile displays

in practical wearable applications, by comparing the user’s detection rate and re-

sponse time to stimuli applied across the body in varied conditions. We examine

which body locations are more sensitive to vibrations and more affected by move-

ment; whether visual workload, expectation of location, or gender impact perfor-

mance; and if users have subjective preferences to any of these conditions. In two

experiments we compare these factors using five vibration intensities on up to 13

body locations. Our contributions are comparisons of tactile detection performance

under conditions typifying mobile use, an experiment design that supports further

This chapter appears with minimal modifications in [78]:

• I. Karuei, K. E. MacLean, Z. Foley-Fisher, R. MacKenzie, S. Koch, and M. El-Zohairy.
Detecting vibrations across the body in mobile contexts. In Proceedings of the 2011 annual
conference on Human factors in computing systems - CHI 11, pages 3267-3276, 2011

1For a list of contributors and their level of involvement please refer to the Preface on page iv.
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investigation in vibrotactile communication, and guidelines for optimal display lo-

cation given intended use.

3.1 Introduction
Graphical and auditory interfaces prevalent today are information-dense, but also

lead to problems such as perceptual overload and inefficiency of the visual and

auditory channels [70, 162], decline in primary task performance from secondary

task competition for perceptual resources [163], and situations where vision and/or

audition are unavailable or inconvenient [167]. In mobile environments, phones,

GPS guidance tools, and music players contribute to sensory resource starvation,

where vision is heavily occupied, and auditory channels are compromised by ex-

ternal noise and social concerns. Tactile display is seen as a promising conduit for

mobile communication, lacking the drawbacks of visual or auditory display; but

it brings its own challenges. Vibrotactile displays embedded in a handheld device

can notify users, without visual load and in private or noisy situations. However,

the device must be held in the hand (a condition incompatible with the secondary or

monitoring tasks that typically trigger such alerts) or stowed close to the skin. Tac-

tile sensitivity varies widely by body location [73, 90] and with movement [124];

many users have experienced this variance with missed calls and messages. This

flaw undermines the whole notion of mobile tactile notification.

One solution is for users to wear a tactile display driven through a local body

network, which can then be located to optimize tactile communication rather than

access to an associated graphical display. With this distributed approach, bodily

location of the tactor becomes a design parameter which we do not adequately

understand. Local skin sensitivity is critical, but so is context of use, convenience,

appearance, and sometimes the tactor technology; some sensitive body regions are

impractical for reasons of mobility and wearability. In the absence of a single

correct answer, designers need guidelines based on the relative perceivability of

body sites under conditions that typify mobile contexts. Of particular interest are

bodily movement, for its known impact on sensitivity; and visual workload, for

possible mental-resource competition.

The present experiments were constructed to inform such guidelines. While
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some of the needed data exist, gaps and disparate sources make comparisons difficult.

We aimed to systematically address the questions of

(a) which body locations are more sensitive to vibrations and

(b) which are more affected by movement;

and whether

(c) visual workload,

(d) gender, or

(e) expectation of location impact performance;

and if

(f) users subjectively prefer any of these locations.

Our specific contributions are:

1. Comprehensive assessment of the effect of all of loci, movement, and expec-

tation on detection probability;

2. An experiment design that can be replicated to answer more questions about

vibrotactile communication; and

3. Compilation of our results into design guidelines for optimal display location

for a given purpose.

3.1.1 Approach

We conducted two experiments. The first, Experiment 1, varied factors identified

in research questions (a-d) with stimuli applied in a random and unanticipated se-

quence; Experiment 2 varied expectation (e). For Experiment 1, we chose 13 body

sites based on practicality for wearable use; Experiment 2 employed the 9 most

promising of these. Experiment 1 varied body site, movement (sitting or walking

on a treadmill), presence or absence of visual workload, and signal intensity (5 lev-

els), counterbalanced by gender. Experiment 2 also varied expectation of stimulus
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site in place of workload. A trial consisted of a single vibration at a single site. We

measured the subject’s response time and logged undetected stimuli, and collected

subjective preferences. A statistical analysis informed our guidelines.

3.2 Related Work
In recent years, tactile displays (individual elements are known as “tactors”) have

emerged from specialized uses to become accepted consumer gadgetry, with in-

novation in size, power use, and controllability. Vibrotactile variants (piezo and

eccentric-mass tactors are most common) tend to be lowest in cost and power needs

and most deployable; designers are already embedding tactors in clothing. A sub-

stantial body of psychophysical and design research exploring tactile sensitivity

and wearable potential exists; here we highlight the most relevant works.

3.2.1 Sensitivity to Vibrotactile Stimuli

Spatial Location
Considerable research has examined sensitivity of particular body locations to vi-

brotactile stimuli. One of the most recent and comprehensive is Jones and Sarter’s

review compilation of the effect of vibrotactile stimulus frequency, duration, inten-

sity, and locus on detection [73]. They present sensitivity thresholds of many body

locations of interest at different frequencies, and suggest ideal ranges of frequency

that are most perceivable by humans. Most commercial vibrotactile displays al-

ready work within these frequency and intensity ranges.

Lederman and Klatzky provide a research summary on haptic perception. The

research cited here is based on two-point and point-localization threshold meth-

ods to compare the sensitivity of different body locations [90]. While completely

appropriate for the design of closely-spaced tactor arrays, these methods are mis-

matched to a large class of mobile contexts. For single-tactor displays (e.g., held

or worn cellphone), users do not identify exact vibratory location or spatial pat-

tern; relevant metrics are likelihood and speed of detection and response. Fur-

thermore, consumer-grade vibrotactile display diameters exceed the body’s largest

point-localization threshold (e.g., back).

Hoggan et al. used consumer-grade vibrotactile displays in a handheld device
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and compared location recognition of vibration on fingers under different station-

ary conditions [70], with promise for loci and rhythm for encoding information.

However, two factors that remain unexamined in a practical context are (a) move-

ment and its interference with other factors and (b) expectations about stimulus

locus.

Movement
Studies connecting movement to tactile sensitivity have involved animal and hu-

man models, and vibro- and electrotactile stimulation. For example, Chapin and

Woodward found suppression in movement conditions in SI2 cortical response of

rats to electrical stimulation through electrodes implanted in the forepaw, when

comparing treadmill locomotion, spontaneous grooming, quiet resting and “tensed-

up” mobility [22].

Using electrotactile stimulation on the forefingers of human subjects, Angel

and Malenka [3] found correlations between sensory suppression and movement

speed in detection rates. In a similar experiment, Chapman et al. found that both

active and passive movement of the ipsilateral arm increased the detection thresh-

old by 50% on the mid-ventral aspect of the right forearm [23].

Post et al. studied the same effect but with vibrotactile stimulation [124] on

the operant arm (forearm, thenar eminence, and distal digit) under different motor

activity levels. Voluntary motor activity increased the vibrotactile detection thresh-

old. The above papers consistently indicate that body motion directly affects the

detection of vibro- or electrotactile stimuli. However, none compare relative vibro-

tactile sensitivity by site, for activities of interest here such as natural walking.

3.2.2 Wearable Haptic Systems

Bosman et al. developed a dual-wrist system to guide a pedestrian inside an un-

known building; vibrations indicated directions and stops [11]. Although their

design could help blind or visually impaired users, it was intended to augment

unimpaired space perception, and improved performance. In a different strategy,

Rukzio et al. developed a guidance system based on the single palmar vibrotactile

phone display and a public display with 8 lights [136]. The lights toggled in a

2The primary somatosensory cortex
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rotation, while the phone vibrateed when the public display direction matched the

user’s route direction. Tsukada and Yasumura developed a belt with eight vibro-

tactile displays distributed evenly around the waist to guide a pedestrian towards

destinations, given realtime user location and user orientation [163]. Subjects felt

vibrations when stopped; but when walking, often failed to recognize vibrations

with intervals less than 500 ms, and stopped to assess it.

Driving support systems are natural targets for body-situated guidance and

alerts. Ho et al. examined spatially informative vibrotactile signals in a driving

simulation where front vs back stimuli might indicate direction of an oncoming

car [68], and found promise for encoding directional information to locus of stim-

uli. Meanwhile, Straughn et al. compared auditory and tactile pedestrian warning

systems for drivers, finding two vibrotactile displays on the driver’s biceps more ef-

fective than auditory signals [154]. For short Time to Collision (TTC), the warning

signal was best utilized to generate a reactive motor response (warning direction

= safe direction), whereas for long TTC, attention is best served with warning =

hazard direction.

In summary, numerous tactile display setups have been prototyped; these, and

others featuring back and arm. Their use confirms reduced performance during

movement, which might however be confounded with workload. To our knowl-

edge, relative site sensitivity has not been systematically explored in mobile con-

texts.

3.3 Apparatus and Setup
Our setup consisted of a tactor array, a treadmill, a tall chair, and a large-screen

display, which were deployed to create the conditions described below (Figure 3.1).

3.3.1 Vibrotactile Array and Calibration

We built an array of tactors of which different subsets could be activated (Fig-

ure 3.2), with inexpensive VPM2 eccentric-mass tactors from Solarbotics Ltd.

(Calgary, AB, Canada) [152], 12 mm in diameter and 3.4 mm thick. A Duemi-

lanove Arduino processor, developed by Smart Projects Srl (Strambino, Italy),

[149] drove a tactor drive circuit with quick release connectors. Resistor networks
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Figure 3.1: Setup of Experiment 1 during “walking with visual workload” condition. Tall
chair is not shown.

and Darlington transistor arrays provided 80 mA at 3 V to each motor (Figure 3.2).

The tactors were energized with Pulse-width (PW) modulated signals. To main-

tain resolution despite variable site sensitivity but without concern for discrim-

inability, we specified five intensity levels spanning all site detection thresholds.

We performed an iterative perceptual calibration in which we recorded pilot-subject

detection rate, beginning with a logarithmic PW distribution and adjusting it to

achieve satisfactory perceptual separation. To check for inter-unit variability, we

measured the output of all the tactors used with a piezo-electric accelerometer

(PCB Inc) aligned normal to the eccentric mass rotation plane and sampled at 5

kHz, with the tactor restrained by a magnetic mount screwed onto the clamped

accelerometer. A Welch power spectrum analysis on 20 s samples indicated fre-

quency varied by 16% (mean = 190 Hz, SD = 30), and power by 5% (mean =

59.0 dB/Hz, SD = 2.87). We addressed this variance by placing tactors on body

sites with a different random layout for each participant.
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Figure 3.2: VPM2 eccentric-mass tactor.

3.3.2 Movement Setup and Task

The sitting and walking conditions were chosen as typical and distinctive move-

ment states in wearable contexts. For the former, particpants sat in a tall chair for a

consistent screen view. When walking, participants chose a comfortable treadmill

pace that they could maintain for twenty minutes. The mean speed chosen was 2.4

Km/h (SD = 0.5).

3.3.3 Visual Workload Setup and Task

During trials with visual workload, participants sat and walked approximately two

meters from a simple geometric scene on a 3(H) × 4(W) meter display (Fig-

ure 3.1). The scene showed twenty-five red, green, blue, yellow, and pink blocks

in equal quantities, each numbered between 1-5, bouncing slowly around a three-

dimensional room. Participants were asked to count the times a single highlighted

block hit any walls in the room, including the invisible wall represented by the
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screen. This task was chosen as controllable continuous visual workload char-

acteristic of a pedestrian’s everyday attention and memory tasks, but not so dis-

tracting that participants were liable to stumble. The collision count was meant

to reproduce the mental activity of a pedestrian keeping track of nearby cars and

pedestrians. The other blocks simulated local objects that are distracting but need

not be tracked.

3.3.4 Metrics and Analysis Technique

Our primary metric to assess site sensitivity as a function of condition was number

of detected vs missed vibrations or Detection Rate (DR); we also used Reaction

Time (RT) as a secondary indicator. Because detection data are distributed bi-

nomially, we statistically analyzed Detections with a Generalized Linear Mixed

Model (GLMM) using “R” and the glmmML package [16]. We refined the model

with backwards selection, beginning with many terms then iteratively removing

those with the largest p-value until all the terms had significant p-values (p< 0.05).

Only main effects and significant interactions are reported.

The presence of missed-stimuli trials prevented a normal RT distribution and

use of ANOVA. We replaced the censored data points (missed trials) of RT with

a “sufficiently” large value and used a Kruskal-Wallis analysis, which uses metric

rank rather than value to compute a test statistic. The value chosen for censored

data points then needs only be larger than the maximum; we set RTm = 3500 ms

for “miss” trials. RTm renders RT means meaningless for conditions with many

miss trials, which are common at low amplitudes for some body sites. Therefore

in graphical comparisions of RT (but not DR) between conditions, we focus on

high intensity stimuli with their higher detection rates. We also ran the Kruskal-

Wallis test on the high-intensity subset, which were detected at≥98% for all factors

except intensity; and on the “all detected” subset for intensity, to confirm that the

results are not simply due to the missed data points.

3.4 Experiment 1: Random Site With Visual Load
In our first pass (Experiment 1), we tested potentially relevant body sites at five am-

plitudes while addressing initial experimental factors of visual load and movement.
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We balanced gender to allow the consideration of its impact, which could arise

through, for example, gender-linked differences in body fat composition. Specifi-

cally, we examined the following hypotheses:

H1 Intensity increases DR and decreases RT.

H2 Body sites will differ in terms of DR and RT.

H3 Movement decreases DR and increases RT; and it affects different body sites

to different degrees.

H4 Visual workload decreases DR and increases RT.

H5 Gender differences in DR and RT exist.

3.4.1 Design

Experiment size imposed a limit of 15 tactor sites. We chose seven sites corre-

sponding to common or potential wearable locations, and mirrored these to address

possible response assymmetry (Figure 3.3 and Table 3.1). 500 ms vibrations were

presented in randomized order across the body sites. Per condition, each intensity

was displayed twice at each right and left site, or four times at the spine.

Half the male and half the female participants first sat in a chair and subse-

quently walked on a treadmill, while the other half walked first then sat in a chair.

During half of the walking and half of the sitting trials, we asked participants to

direct their attention to the visual scene, which was turned off during the other

trials.

Using a full-factorial design, we ran 5×4×7×2×2 (intensity× repetitions×
site × movement × visual workload) trials, for a total of 560 trials per participant.

3.4.2 Procedure

After signing consent forms, participants changed into sports clothing. We attached

tactors (which vibrated normal to skin without slip or shear) directly to the skin

at defined locations with Lightplast Pro sports tape. Except for the feet (tactors

covered with socks but no shoes), no clothing covered the tactors. The interval

between tactor vibrations was randomized to between four and six seconds, with
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Figure 3.3: Body sites used in Experiments 1 and 2; sites 6, 7, 10, 11 were ommitted in
Experiment 2.

interval length doubled on random trials (odds of 1 to 7) for a more arrhythmic

pattern. We asked participants to press the right button on a modified computer

mouse when they detected a vibration. We recorded RT up to a cutoff of 3500 ms,

noting missed responses. No feedback was given to responses.

Training conducted before experiment trials:

1. Experience maximal vibrations on each site.

2. Experience each of the five intensities on the wrist.

3. Respond to ten maximal vibrations at random sites.
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Table 3.1: Body sites used in Experiment 1. ‘*’ indicates sites used in Experiment 2.

Body site Number Location

Foot* 0,1 top surface of the foot,
e.g., tongue of a shoe

Thigh* 2,3 outer thigh, halfway between knee and hip joint,
e.g., hem of shorts on the sides

Wrist* 4,5 posterior between small bones,
e.g., watch face*

Stomach 6,7 halfway between navel and hip bone,
e.g., belt or waist band

Upper arm* 8,9 halfway between shoulder and elbow on the sides,
e.g., arm band

Chest 10,11 below collar bone,
e.g., necklace or shirt collar

Spine* 12 four centimeters below C7 vertebrae

4. Count ten wall collisions in the visual task.

5. Respond to ten maximal vibrations in four conditions: Sit+No Workload,

Sit+Workload, Walk+No Workload, Walk+Workload.

Experiment: Respond to 140 vibrations (location × intensity × repetitions) in

four conditions, order counterbalanced by participant.

Participants took a short break after each condition and a longer break before

switching movement state. After training, between conditions, and at experiment

end, tactor function was verified. Participants answered online survey questions

between sitting and walking conditions and at experiment end. During trials, par-

ticipants wore noise canceling headphones. Sessions lasted 90-110 minutes.

3.4.3 Results

For this experiment, 16 participants (8 male) volunteered. These were distributed

in age as 18-25 (n = 12), 31-40 (n = 2) and 40-60 (n = 2); in height as tall (n = 8),

average (n = 3) and short (n = 5); and body type as ecto (n = 6), meso (n = 7)

and endomorph (n = 3). In the prior year, participant use of portable devices with

tactile feedback was distributed as daily (n = 10), 2-3 times/week (n = 4), and <1

time/week (n = 2). Participants used a treadmill ≤1 time/month (n = 14) and 1
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Figure 3.4: Mean Detection Rate (left) and Reaction Time (right) per body location in Experi-
ment 1.

time/week (n = 2). All reported themselves righthanded.

Detected/Missed Stimuli DR

Intensity initially had a nearly linear effect on the estimated odds ratio of DR in

our GLMM model. Therefore, we considered it as a continuous variable to increase

model readability, causing only slight differences in estimates and corresponding

p-values for other covariates. Finding no differences between sides, we merged

left and right body sites except for spine. Feet are the baseline for sites, male for

gender, sitting for movement, no workload for workload, and first trial for trial

number.

In the GLMM results (Table 3.2), p-value indicates effect significance (p <

0.05). For a significant p, a negative coe f decreases and a positive coe f increases

odds of detection, i.e., the quotient of the probability of detecting (p) and missing

(1− p) a signal, i.e., p/(1− p). The odds ratio of a particular factor (e.g., wrist in

Table 3.2) is the ratio of the odds of detection under that condition (e.g., wrist) to

the odds of detection under the reference condition (e.g., foot). There were very
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Figure 3.5: Mean Detection Rate (left) and Reaction Time (right) for different intensities in
Experiment 1.

few false positives (1.2%), therefore we neglected their effect in the analysis.

Main effects: As we can see in Table 3.2 and Figure 3.4, all body sites ex-

cept thighs are significantly different from feet. In terms of detecting vibrotac-

tile signals, thighs are as bad as feet; stomach, chest, and arms are slightly better;

wrists and spine are best. Walking greatly decreases odds of detection. Intensity

has a significant effect (Figure 3.5), as is expected. Gender and the presence of

the visual task do not have a significant effect on detection of vibrations. Trial

number, which accounts for the opposing differences caused by learning and fa-

tigue, is marginally significant (p = 0.048). Since its coefficient is very small

(−5.7E−4), we computed the odds ratio of detecting a vibration after 100 trials as

(exp(coe f × 100) = 0.94); i.e., the odds of detecting a vibration decreases by 6%

after 100 trials, suggesting minimal practical impact.

Interactions: Several factors interact with body sites. By Gender: females de-

tect significantly more vibrations on their thighs. By Intensity: higher intensity
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Figure 3.6: Mean Detection Rate per body location and condition in Experiment 1.

increases detection on spine, arms, wrists, and stomach less than other sites, with

spine the least sensitive.

For all sites except spine and stomach (e.g., Wrists:Walking), Movement de-

creases DR but it affects chest, arms and wrists least (Figures 3.6 and 3.8). The

positive coefficients for interactions between Movement and these body sites do

not compensate for the negative main-effect of movement coefficient.

Reaction Time (RT)
We ran two sets of Kruskal-Wallis tests for RT: on the entire dataset, using 3500 ms

for missed vibrations, and on a data subset containing only high-intensity trials

where most of the vibrations (99.2%) were detected. Both sets show that Intensity,

Site, Movement and Task have a significant effect on RT, but gender and trial ID do

not (Table 3.3). Intense vibrations are detected faster (Figure 3.5), and movement

and visual workload increase RT (Figure 3.7).

We also ran the Kruskal-Wallis test on Intensity for only the trials that were

detected (excluding misses), finding a significant effect of Intensity on RT (p <
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Figure 3.7: Mean Reaction Time of high intensity stimuli per body location and condition in
Experiment 1.

0.05).

Subjective Results
Users preferred wrists and arms the most, feet and thighs the least. When we asked

which site they would choose for notifications, directional guidance, and for cues

during exercise, they chose wrists, arms, and spine.
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Figure 3.8: Detection Rate (DR) per body location on the body map; pink bars show DR during
sitting conditions and blue bars show DR during walking conditions.
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Table 3.2: Generalized Linear Mixed Model (GLMM) of Detection Rate (DR) in Experiment 1.
Pr smaller than 0.05 indicates that DR is significantly different from the reference for that
factor (e.g., from feet, for body sites). ‘*’ indicates statistical significance.

coe f se(coe f ) z Pr(> |z|) O.R.
(Intercept)* -4.02 0.31 -12.81 <0.001 0.02
Female -0.40 0.25 -1.60 0.11 0.67
Wrists* 2.57 0.36 7.07 <0.001 13.11
Stomach* 1.28 0.36 3.54 <0.001 3.60
Thighs -0.36 0.41 -0.89 0.37 0.69
Chest* 1.07 0.38 2.82 <0.001 2.90
Arms* 1.62 0.36 4.49 <0.001 5.06
Spine* 2.28 0.35 6.43 <0.001 9.73
Intensity* 2.02 0.11 18.73 <0.001 7.55
Walking* -1.95 0.20 -9.56 <0.001 0.14
Workload -0.06 0.07 -0.85 0.40 0.95
TrialID* 0.00 0.00 -2.82 <0.001 1.00
Female:Wrists 0.23 0.25 0.91 0.36 1.26
Female:Stomach 0.18 0.25 0.75 0.46 1.20
Female:Thighs* 0.62 0.25 2.47 0.01 1.87
Female:Chest 0.37 0.25 1.47 0.14 1.45
Female:Arms 0.11 0.25 0.43 0.67 1.11
Female:Spine -0.21 0.25 -0.82 0.41 0.81
Wrists:Walking* 0.58 0.28 2.07 0.04 1.78
Stomach:Walking -0.26 0.28 -0.93 0.35 0.77
Thighs:Walking* -1.33 0.31 -4.25 <0.001 0.26
Chest:Walking* 0.86 0.28 3.14 <0.001 2.37
Arms:Walking* 0.66 0.27 2.42 0.02 1.93
Spine:Walking 0.16 0.28 0.59 0.56 1.18
Wrists:Intensity* -0.35 0.15 -2.30 0.02 0.70
Stomach:Intensity* -0.38 0.14 -2.72 0.01 0.69
Thighs:Intensity -0.11 0.15 -0.72 0.47 0.90
Chest:Intensity -0.10 0.15 -0.68 0.50 0.90
Arms:Intensity* -0.35 0.14 -2.42 0.02 0.71
Spine:Intensity* -0.41 0.14 -2.86 <0.001 0.67
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Table 3.3: Results of Kruskal-Wallis tests on Reaction Time (RT), Experiment 1. ‘*’ indicates
statistical significance.

Full Set
chi-squared df p-value

BodySite* 434.3 12 <0.001
Task* 24.1 1 <0.001
Movement* 422.7 1 <0.001
Gender 11.3 1 0.596
Intensity* 4517.2 4 <0.001
TrialID 509.4 559 0.162

Subset: High Intensity
chi-square df p-value

BodySite* 130.9 12 <0.001
Task* 48.4 1 <0.001
Movement* 62.6 1 <0.001
Gender 1.3 1 0.249
TrialID 487 528 0.899

Subset: All Detected
chi-square df p-value

Intensity* 4517 4 <0.001
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3.5 Experiment 2: Random vs Expected Site
In Experiment 1, participants did not know which of the 13 sites would receive

the next vibration, whereas in actual wearable use, usually only one site would be

used. We theorized that there could be a performance cost associated with scanning

multiple body sites, and therefore performed a second experiment (Experiment 2)

where site expectation mode is controlled. To maintain experiment size, we also

removed the two least-likely body site pairs (stomach and chest), and the visual task

condition because it did not have a significant effect on DR, our primary metric. All

other aspects were identical to Experiment 1. In addition to verifying H1-H3 and

H5 from Experiment 1, we examined the following Experiment 2 hypotheses:

H6 Expectation of site increases DR and decreases RT.

H7 Expectation reduces the effect of movement.

H8 Expectation impacts different genders differently.

3.5.1 Design

In Experiment 2, we used five paired body sites (Table 3.1). Half the male and

half the female participants first sat in a chair and subsequently walked on a tread-

mill, while the other half walked on a treadmill first then sat in a chair. During

half of the walking and half of the sitting trials, the vibrations were displayed in

10-trial clusters (5 intensities × 2 repetitions) at each body site and participants

were informed of the site (Expectation condition). During the other half, the vibra-

tions were randomly displayed on any site and participants were not informed of

location.

After signing consent forms, participants completed the following training steps

(1-3 are the same in Experiment 1):

Training 1:

1. Experience maximal vibration on each site.

2. Experience each of the five intensities on the wrist.

3. Respond to ten maximal vibrations at random sites.
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Training 2: Respond to 4 counterbalanced conditions of:

4. Sitting+Expectation: sets of four vibrations, random intensity on three ran-

domly selected sites, sitting.

5. Sitting+No Expectation: twelve vibrations of random intensity on randomly

selected sites, sitting.

6. Walking+Expectation: sets of four vibrations, random intensity, on three

randomly selected sites, walking.

7. Walking+No Expectation: twelve vibrations of random intensity on ran-

domly selected sites, walking.

Experiment: Respond to 100 vibrations (location × intensity × repetitions) in

four conditions, order counterbalanced by participant. Participants took a short

break after training and between the second and third conditions, and filled ques-

tionnaires at the beginning (profile) and end (preferences) of the experiment. Each

person was compensated $15 for participation. Total experiment time was 90 min-

utes.

3.5.2 Results

For this experiment, 16 participants (8 male) volunteered; none were from Experi-

ment 1. These were distributed in age as 22-24 (n = 4), 25-27 (n = 6), 28-30

(n = 6); in height as tall (n = 4), average (n = 10), short (n = 2); and body type as

ecto (n = 5), meso (n = 9), endomorph (n = 2). In prior year, participant use

of portable devices with tactile feedback was distributed as daily (n = 9), 2-3

times/week (n = 2), 1 times/week (n = 1), <1 time/month (n = 4); and partici-

pants used a treadmill <1 time/year (n = 3), ≤1 times/month (n = 9), 2-3 times/-

month (n = 1), 1 time/week (n = 3). 4/16 reported themselves lefthanded. As in

Experiment 1, false positive effect was negligible (0.8%).

Detected/Missed Stimuli DR

Our GLMM analysis was conducted as for Experiment 1. With expectation is the

reference for the new expectation factor. Main effects: All body sites are signif-

icantly different from feet (Table 3.4, Figure 3.9), with wrists and spine best and

70



0.00

0.25

0.50

0.75

1.00

W
ris

ts

Spin
e

Arm
s

Fe
et

Thig
hs

Body Location

D
et

ec
tio

n 
R

at
e

0

1

2

3

W
ris

ts

Spin
e

Arm
s

Fe
et

Thig
hs

Body Location

R
ea

ct
io

n 
T

im
e 

(s
)

Figure 3.9: Mean Detection Rate (left) and Reaction Time (right) per body location in Experi-
ment 2.
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Figure 3.10: Mean Detection Rate per body location and condition in Experiment 2.
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Figure 3.11: Mean Reaction Time of high intensity stimuli per body location and condition in
Experiment 2.

feet worst at detecting vibrations. Walking greatly decreases detection odds. As

expected, intensity is significant. Gender has a significant effect on the odds of

detecting a vibration (females seem to have higher DR) but it is cancelled out with

the interaction effects (see below). TrialID (time into the experiment) and Expecta-

tion have no significant effect on the odds of detecting a vibration. An interaction

between Intensity and spine reduces the main effect of Intensity, suggesting In-

tensity plays a less important role for spine than for other body sites. Movement

decreases detection odds at all sites (Figure 3.10); wrists and spine least, thighs

and feet most. Again, positive interaction coefficients for Movement and sites do

not compensate for the negative main Movement coefficient. Movement:Intensity

reduces the main effect for Movement. The interaction effect between Gender and

body sites indicates that females have higher odds of detection only on their feet.

Reaction Time (RT)
As with Experiment 1, we ran two sets of Kruskal-Wallis tests: one on the entire

data set, using 3500 ms for missed vibrations, and another on the subset of high-
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intensity trials where most of the vibrations (98.4%) were detected (Table 3.5).

Both tests show that Intensity, Movement, Expectation and Gender have a signif-

icant effect on RT but Trial ID does not (Figure 3.11). More intense vibrations

are detected faster, movement and lack of expectation increase RT, and males are

slightly faster to respond than females. A Kruskal-Wallis test on Intensity for the

trials where vibrations were detected showed a significant effect of Intensity on RT

(Table 3.5, Subset=All detected).

Subjective Results
Experiment 2 participants preferred spine and wrists the most, feet and thighs the

least (relative to Experiment 1, spine replaced arms as a preferred site). For notifi-

cations and directional guidance they chose wrists and for exercise cues they chose

spine.

3.6 Summary and Discussion
We begin our discussion with an examination of our hypotheses, then further reflect

on their implications.

H1 - Vibration Intensity: Both Experiment 1 and Experiment 2 showed that in-

creasing vibration intensity strongly increases detection odds and reduces reaction

time, supporting H1. However, impact of DR varies across the body. In Experiment

1, DR increases with intensity for all body sites but less so for spine, wrists, arms

and stomach; in Experiment 2, less so for the spine.

H2 - Body Sites: Experiment 1 and Experiment 2 consistently show that wrists and

spine are most sensitive in detecting vibrotactile signals, whereas feet and thighs

are least sensitive. As described for H1, body sites are differentially sensitive to

intensity in terms of absolute detection. However, Experiment 1 and Experiment

2 also demonstrate that response time for high intensity signals (≥ 98% detection)

is similar across the body. Thus, H2 is confirmed for detection rate, but not for

response time.

H3 - Movement: Walking significantly reduces odds of detecting a vibration, and

increases reaction time even to high intensity vibrations. Both experiments further

confirmed that the DR of thighs and feet are most affected by walking. H3 is thus

73



Table 3.4: GLMM of DR in Experiment 2. Pr smaller than 0.05 indicates that DR is significantly
different from the reference for that factor. coef greater than zero indicates increased odds
of detecting a vibration. ‘*’ indicates statistical significance.

coef se(coef) z Pr(> |z|) O.R.
(Intercept)* -1.36 0.35 -3.85 <0.001 0.26
Female* 0.89 0.34 2.63 0.009 2.42
Thighs* 0.65 0.28 2.32 0.021 1.92
Wrists* 1.84 0.29 6.29 <0.001 5.32
Arms* 0.76 0.29 2.61 0.009 2.14
Spine* 1.84 0.28 6.66 <0.001 6.28
Intensity* 1.70 0.11 15.72 <0.001 5.50
Walking* -2.91 0.25 -11.48 <0.001 0.05
Randomized -3.01 0.19 -0.05 0.960 0.99
TrialID 0.00 0.00 -1.78 0.075 1.00
Female:Thighs* -1.02 0.25 -4.14 <0.001 0.36
Female:Wrists* -1.39 0.26 -5.26 <0.001 0.25
Female:Arms* -0.62 0.26 -2.40 0.016 0.54
Female:Spine* -1.45 0.25 -5.91 <0.001 0.23
Female:Randomized* -0.42 0.16 -2.63 0.009 0.65
Thighs:Intensity -0.17 0.14 -1.27 0.204 0.84
Wrists:Intensity -0.08 0.16 -0.47 0.638 0.93
Arms:Intensity 0.24 0.16 1.51 0.132 1.27
Spine:Intensity* -3.39 0.13 -3.00 0.003 0.68
Thighs:Walking* -1.26 0.32 -3.99 <0.001 0.28
Wrists:Walking* 1.84 0.30 6.20 <0.001 6.30
Arms:Walking* 1.16 0.29 3.96 <0.001 3.18
Spine:Walking* 1.54 0.27 5.70 <0.001 4.68
Thighs:Randomized* -0.09 0.24 -0.38 <0.001 0.91
Wrists:Randomized* 0.87 0.26 3.31 0.001 2.38
Arms:Randomized 0.16 0.26 0.63 0.531 1.17
Spine:Randomized -0.31 0.24 -1.27 0.204 0.73
Intensity:Walking* 0.28 0.09 3.17 0.002 1.33
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Table 3.5: Results of Kruskal-Wallis tests on RT, Experiment 2. ‘*’ indicates statistical signif-
icance.

Full Set
chi-squared df p-value

BodySite* 284.450 8 <0.001
Randomization* 10.320 1 0.001
Movement* 402.495 1 <0.001
Gender* 31.916 1 <0.001
Intensity* 3116.700 4 <0.001
TrialID 358.017 399 0.931

Subset: High Intensity
chi-squared df p-value

BodySite* 149.65 8 <0.001
Randomization* 9.3279 1 0.002
Movement* 72.8988 1 <0.001
Gender* 36.237 1 <0.001
TrialID 380.7202 384 0.538

Subset: All detected
chi-squared df p-value

Intensity* 3116.7 4 <0.001

confirmed.

We note that while thighs and feet moved the most during walking in this

experiment, participants also swung their arms. Walking was chosen as a repre-

sentative movement in mobile contexts. Further work is required to establish more

generalizable patterns of body sensitivity to different types of movement; but the

present result is highly relevant to designing for mobile uses.

H4 - Visual Workload: Our visual workload task did not have any apparent effect

on vibration detection. It did significantly impair reaction time, increasing even for

the most intense vibrations. H4 is thus partially rejected and partially confirmed.

There is no evidence in our results of body site specificity in impact of the workload

task.

Wickens proposes four qualities to describe workload: mental stage, modality,
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channel and processing code [171]. Stage can be perceptual or responsive. Modal-

ity is typically visual or auditory, and it is better to spread work across modalities

rather than on time-sharing a single modality. Visual workload can be focal or

ambient without competition. Codes are analogue/spatial or categorical/symbolic.

Typically, people perform simultaneous manual and focal tasks well. Thus, our vi-

sual task (focal) and vibration response modality (manual) do not compete heavily

for the same resources.

Ferris et al. presented vibration patterns from back-mounted tactors to partic-

ipants in a driving simulation, with categorical (TC) or spatial (TS) visual tasks

[38]. Their visual task had a significant effect on RT but similarly to our results,

the overall effect of task on accuracy (detection of the type of visual stimuli) did

not reach significance; in particular, while their TC task impacted accuracy, their

TS task (which seems more similar to our visual task) did not.

We did not choose a harder visual task or one which more specifically inter-

fered with detecting and responding to signals because we aimed to simulate a

typical mobile context, i.e., watching for other pedestrians and cars over a wide

field of view. However, there will be situations when more severe competition

does occur, even if not endemic.

H6 and H7 - Expectation: Expectation had a significant effect on detection only at

the wrists where, surprisingly, it reduced detection odds. One possible explanation

is that in the no-expectation mode where in recent trials a perceptually weaker

stimulus had been felt elsewhere, the wrist percept was relatively more salient.

Another possibility is that sensory adaptation acted as a side effect of sending a

number of signals to the wrists. Because wrists detect more vibrations than other

sites, the adaptation effect on wrists should be larger than elsewhere. However,

the positive effect of expectation (which cancels adaptation on other body sites) is

not large enough for wrists to compensate for adaptation. Finally, there is a one in

20 chance that this result is simply due to chance; our analysis employed a 95%

confidence level.

Expectation significantly reduced response time: scanning the whole body

when the stimulus site is unknown slows the process of vibration detection and

response. Thus, H6 is confirmed with respect to reaction time. Expectation did
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not have a significant effect on detection rate and (compared to movement) it had a

very small effect on reaction time. Therefore, expectation alone cannot cancel the

effect of movement, and H7 was not confirmed.

H5 - Gender: In Experiment 1, males were better than females at detecting vi-

brations on the chest and stomach, the sites omitted from Experiment 2. For the

remaining sites, males always detected vibrations on wrists and spine better than

females. However, Experiment 1 and Experiment 2 disagree as to the body sites

where females were best: thighs in Experiment 1, arms and feet in Experiment 2.

In general, females’ reaction times were slightly longer than males, with the ex-

ception of the feet, where females were faster. Thus overall, while H5 is confirmed

(gender does have some impact) the difference is not consistent or large.

Subjective Results
On average, Experiment 1 participants preferred vibrations on their wrists most,

arms the second; Experiment 2 participants preferred spine, then wrist. Grouping

the 32 participants of both experiments, there is a tie for highest preference between

spine and wrists. Both groups disliked vibrations on their feet by far the most; thigh

is second least preferred.

Both groups chose wrists for notification applications, arms and wrists for di-

rectional guidance, and spine as the most appropriate spot for vibrotactile signals

during exercise.

3.7 Conclusion and Future Work
We ran two experiments to study the differences between sensitivity of several

body sites to vibrotactile signals. We narrowed down the number of body sites to

those most practicable for wearable haptics and mobile applications: wrists, upper

arms, outer thighs, feet, chest, stomach, and spine. Most of these locations have

been suggested or used in past wearable tactile systems such as belts, back arrays,

wrist and arm bands, tactile shoes, and most commonly, cellphones in pockets (on

the thighs).

We compared these body sites under conditions of presence or absence of a

visual workload, sitting in a chair or walking on a treadmill, and with or without
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knowledge of location of the next stimuli. We also looked at gender differences,

and considered five vibration intensities.

One of our most important and perhaps surprising results is that expectation of

stimulus location does not improve detection rate, under the conditions of Experi-

ment 2; but it does decrease reaction time. We did not include a visual workload

condition in Experiment 2 because of its limited impact in Experiment 1; how-

ever, it will be of interest to see if expectation can counteract negative effects of

workload tasks which cause more interference.

The fact that our workload task did not interfere with vibration detection in

Experiment 1, i.e., even when the next vibration location was unknown and partic-

ipants had to scan their body to detect it, is an encouraging result. To the extent

that this kind of workload is realistic, vibrotactile signals can still “get through”

anywhere on the body even under load conditions, albeit more slowly when the

user is under mental effort. The implication is that the detection and some kinds of

workload typical of mobile contexts do not directly compete for mental resources.

In another notable result, the thigh was among the least effective and least

preferred stimulus site we tested; and yet, the front pocket is a common location to

stow a mobile device, particularly for men.

Although H1-H5 seem to be predictable from past work, none of our hypothe-

ses have ever been confirmed in a controlled comparison with realistic display

technology and is very necessary from a design perpective. For example, H1 con-

firmation informed/justified our choice of intensity levels and assumptions on its

linearity (which were used later in the GLMM). Furthermore, the secondary re-

sults of H2-H5 (e.g., interaction effects, change in the ordering pattern) were not

predictable from published data.

3.7.1 Design Guidelines

From our results, we propose the following guidelines. We note that these heuris-

tics have particular relevance for applications which have either of two attributes:

intolerance to missed signals, and/or a requirement for fast responses. The first is

typified by tasks that rely on background processes, such as notification, or those

where signals carry notable content, e.g., haptic icons [100] where inattention could
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distort the signal’s meaning. The second includes gaming and time-and-safety-

critical guidance systems. Others have need of both, e.g., driving systems that use

both guidance and notifications.

Location, Location, Location Wrists and spine are generally best for detecting

vibrations, and are also the most preferred, with arms next in line. Feet and thighs

are poor candidates for vibrotactile displays, exhibiting the worst detection perfor-

mance of those we tested and ranking lowest in user esteem. However, for reaction

time, location does not matter.

Stronger Vibes Are Felt Faster Unsurprisingly, increasing intensity increases de-

tection rate and reduces reaction time, particularly on the lower-body sites tested

here. This result does not imply that strong vibrations will always be preferred or

appropriate; but when a notification must get through, intensity increases salience.

Don’t Take Movement For Granted Movement can decrease detection rate and

increases response time. Walking (the movement we tested) affects lower body

sites the most. For applications that involve a considerable movement, other factors

such as intensity and body location need to be adjusted to compensate for this.

Visual Workload Slows Users Down Although workload of the type we employed

(visual search) does not apparently impact vibration detection rate, it does increase

response time. Therefore, expect some lags and irregularities in user response to

vibrotactile displays in visually demanding situations.

Users React Slower to Unexpected Vibrations Multiple site tactile interfaces mean

surprises for the user; single site interfaces mean the user always knows where to

“watch”. If reaction time is critical, designers should be cautious in proliferating

display sites across the body. If only detection matters and time is not critical, the

number of sites does not matter, and the redundancy may in fact prove more robust

to local interference.

Gender Differences do not Change Our Suggestions Men detect vibrations on

their wrists and spine a little better than women. Women detect vibrations some-

what better on thighs and arms. However, wrists and spine are still the best choices

for both genders, and differences are not large.
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3.7.2 Future Work

We embarked on this study because we required guidelines of this sort to reduce

design errors and shorten the iterative design process for our wearable haptic sys-

tems. These results solve our immediate needs, and the body sites investigated are

a good sample of those that might ever be successfully used in wearable contexts.

However, other factors deserve broader investigation. Of greatest importance

will be to encompass a broader set of workload tasks and movement types beyond

visual search and walking, and to incorporate auditory and vibrotactile noise of

typical environments such as moving vehicles.
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Chapter 4

Cadence Measurement

Everywhere is walking distance if you have the time.
— Steven Wright

We1 present an algorithm that analyzes walking cadence (momentary step fre-

quency) via frequency-domain analysis of accelerometer signals available in com-

mon smartphones; and report its accuracy relative to published state-of-the-art al-

gorithms based on data gathered in a controlled user study. We show that our

algorithm, Robust Realtime Algorithm for Cadence Estimation (RRACE), is more

accurate in all conditions, and is also robust to speed change and largely insensitive

to orientation, location on person, and user differences.

RRACE’s performance is suitable for interactive mobile applications: it runs in

realtime (∼2 s latency), requires no tuning or a priori information, uses an exten-

sible architecture, and can be optimized for the intended application. In addition,

we provide an implementation that can be easily deployed on common smartphone

platforms. Power consumption is measured and compared to that of current com-

mercially available mobile apps.

This chapter appears with minimal modifications in [79]:

• I. Karuei, O. S. Schneider, B. Stern, M. Chuang, and K. E. MacLean. RRACE: Robust
Realtime Algorithm for Cadence Estimation. Pervasive and Mobile Computing, (0):52–66,
2014. ISSN 1574-1192

1For a list of contributors and their level of involvement please refer to the Preface on page iv.
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We also describe a novel experiment design and analysis for verification of

RRACE’s performance under different conditions, executed outdoors to capture nor-

mal walking. The resulting extensive dataset allows direct comparison (conditions

fully matched) of RRACE variants with a published time-based algorithm.

We have made this verification design and dataset publicly available, so it can

be re-used for gait (general attributes of walking movement) and cadence measure-

ment studies or gait and cadence algorithm verification.

4.1 Introduction
Contemporary smartphones carry a wealth of sensors which can be used to estimate

aspects of a user’s context and activities that are of value in a multitude of appli-

cations. One notable example, walking cadence (“the beat, time, or measure of

rhythmical motion or activity” – Merriam-Webster; used hereafter to refer to step

frequency as estimated in realtime), has broad utility for applications that support

fitness, rehabilitation, gaming, navigation, and context awareness. But available

cadence detection methods require unrealistically specific placement and sensor

calibration to achieve viable performance. There is a need for realtime cadence

detection that is robust to carrying method.

Current realtime mobile cadence detection methods are largely based in the

time domain, detecting timing of individual footfalls which themselves are esti-

mated when an accelerometer signal exceeds a threshold. This threshold depen-

dency is not ideal from a usability standpoint because the threshold is specific

to many parameters – for example, Melanson et al. show that threshold-based

pedometer accuracy changes dramatically by age, weight, and height [106]. De-

tection accuracy consequently necessitates device (or additional sensor) placement

in a location known to the algorithm, on one of a small number of body sites with

highly regular movement – e.g., the pocket, on the hip, or the leg [43] – at a specific

orientation, and with user-specific calibration to adjust for weight, height, and body

shape of the user. This invokes a harsh tradeoff between reliability and usability

[47].

Frequency methods for cadence detection have received little attention to date,

yet in contrast to acceleration thresholds, there is substantial qualitative common-

82



ality in frequency profiles as a function of position in various body locations [93].

Because the frequency and wavelength of the acceleration depend on the time inter-

val between footfalls and the wave’s shape and amplitude depend on the individual

and location on the body, theoretically the major frequency component of the ac-

celeration should be more robust to the individual-, location- and model-specific

amplitude concerns which make time-based thresholds so problematic.

In this chapter, we describe an algorithm, Robust Realtime Algorithm for Ca-

dence Estimation (RRACE), to analyze cadence through a frequency-domain anal-

ysis of movement, and report its accuracy based on data gathered in a user study.

RRACE’s basic structure is a computationally efficient moving window that is sub-

jected to a spectral analysis followed by an analysis of frequency peaks. Empiri-

cally, we found that performance peaks at a window length of 4 s, producing about

2 s latency including computational delay. This algorithm is extendable, allowing

for improvements with advanced filtering or harmonic analysis, and can be used to

provide spectral information for classification of gait (general attributes of walking

movement) and other gait analysis applications.

While others have reported using frequency-based approaches [93, 178], our

approach’s exceptional robustness is due in part to its ability to utilize non-uniformly

sampled data (the most readily available) and in part to the reliance on acceleration

vector magnitude (the component unaffected by orientation) to determine cadence

without knowledge of the placement of the device on the user’s body.

Our contributions are (a) a cadence detection algorithm that can work across

many body locations, is robust to change of orientation, and does not require

calibration; (b) an experimental setup for assessing the accuracy of a gait de-

tection method across many body locations, outdoors and under normal, uncon-

strained walking conditions; (c) performance data examining the effects of body

location and speed on the algorithms we tested; (d) a thorough comparison between

our frequency-based gait detection method and the highest-performing published

time-based acceleration threshold method, hereafter referred to as the time-based

method; and (e) an implementation that can be easily deployed on common smart-

phone platforms.

After discussing related work, we describe the RRACE algorithm and present

our pilot and main validation experiment with RRACE running in realtime on a

83



smartphone. We then compare RRACE to the time-based method, and conclude

with a discussion of our findings and plans for future work.

4.2 Related Work
To ground the presentation of our algorithm and evaluation, we first discuss real-

time gait and cadence detection and its applications, then examine the state-of-the-

art in time-domain and frequency-domain methods of cadence detection.

4.2.1 What is Realtime Cadence Detection Good For?

Gait and cadence information is relevant to many current and future mobile ap-

plications. Often attributed to Thomas Jefferson [172], the modern pedometer has

long been a fitness tool for dedicated walkers and runners. Today’s ever-expanding

lineup of smartphone app versions further support logging, mapping, calorie burn-

ing estimates and social media [46, 115, 164].

Kavanagh and Menz point out the popularity of accelerometer-based systems

for human gait measurement and give a broad overview of accelerometer-based

gait measurement systems with suggestions on optimal use conditions, reliability,

and applications [80].

A number of fitness applications and products focus on automaticity, personal-

ization, and direct feedback to increase motivation. As early as 2008, UbiFit used

persuasive technology in its visual displays (using a metaphor of a garden’s health-

iness) of activity and goal achievement [25]. The Nike+iPod Nano, developed by

Nike Inc. (Beaverton, OR, USA), measures distance, speed, and energy expendi-

ture and can be programmed to play a motivational song when necessary [113].

Endomondo app, developed by Endomondo (Copenhagen, Denmark), claimed to

be the most highly-reviewed activity monitoring Android app, uses a GPS signal to

track speed, distance, duration, and calories burnt for running, cycling, and other

sports [33]. Runtastic Pedometer by Runtastic GmbH (Linz, Austria), another An-

droid app, also uses accelerometer data to count steps and measure calories burnt

[137].

MPTrain (later extended to be TripleBeat) goes further by selecting and play-

ing music with specific features to support pace goals like speeding up and slowing
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[31, 115]. Garmin (Olathe, KS, USA) produces the Forerunner 910XT, a multi-

sport watch that can be used for running, biking, and swimming [49]. It can detect

walking steps and swimming and cycling strokes using its 3-axis accelerometers,

measure elevation by a barometric altimeter, and be paired with a heart rate mon-

itor; as for many tools, users can plan their workouts and analyze their activity

through a number of metrics. The burgeoning area of exercise games could benefit

from realtime knowledge as well; previous work has linked game performance to

step count [95] and overall physical activity [48].

All-day wearable activity monitoring currently includes successful commercial

products like the Nike+ Fuelband [112], developed by Nike Inc. (Beaverton, OR,

USA), and the FitBit, by FitBit Inc. (San Francisco, CA, USA), [41] and mobile

apps such as Endomondo [33] and Runtastic Pedometer [137]. These products,

using 3-axis accelerometers along with various extras like GPS and ambient light

sensors, aim to track and support goal achievement including steps taken, calories

burned, and hours of sleep, providing a global view of activity levels as distributed

over the day, week, and longer periods of time. Based on our informal measure-

ments, Fuelband (worn on the wrist) appears to be less precise in measuring steps,

while we saw Fitbit’s error remain within a 5% bound and Runtastic Pedometer’s

within a 10% bound when counting steps.

These devices are representative of the current market selection, which is rapidly

moving. Popularity and supported price points (presently $100-200 USD) high-

lights growing consumer interest in holistic, conveniently acquired perspectives on

their activity.

Meanwhile, it is possible to fuse cadence estimates with other data to identify

more complex user states. When Global Positioning System (GPS) is unavailable,

they can augment navigation algorithms through dead-reckoning [105, 178]. Accu-

rate cadence information provides a valuable feature for mobile fitness games and

detailed guidance tasks that require higher-resolution data (e.g., skipping, hopping,

“turn here”) in addition to GPS and biometrics [47]. Context-aware applications

benefit from discerning walking, running, or sedentary states by using gait along

with posture, auditory and other data to optimize notification timing [69, 81, 82].

Cadence can also supplement interior GPS and localization systems [1]. In all of

these examples, accuracy and convenience of mobile collection is paramount.
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A number of specialized, commercially available devices record and analyze

human movement with good accuracy for medical purposes such as clinical, biome-

chanical, physical therapy, and movement disorders research, as well as athletic

tuning. Movement Monitors by APDM Movement Monitoring Solutions (Port-

land, OR, USA) are watch-sized Inertial Measuring Units (IMU), intended to be

worn on multiple sites simultaneously (wrist, ankle, belt, and sternum straps), us-

ing accelerometers, gyroscopes, and magnetometers [4]. Industrially, IMUs are a

valuable diagnostic and research tool for industrial vibration or movement monitor-

ing, inertial guidance, virtual reality, or any application where precise monitoring

of subtle movement is required. However, in these specialized situations it is feasi-

ble to wear or install a potentially expensive specialized device, precisely calibrated

and location constrained. This is not the case for most potential consumer uses of

cadence or gait detection.

4.2.2 Sensor Type

Traditional pedometers identify individual steps using mechanical or piezoelectric

sensors. Purely mechanical sensors detect a step if acceleration surpasses a thresh-

old, measured when a sensor element strikes a surface. Piezoelectric sensors vary

in form and sophistication. Like their mechanical cousins, many operate on an

acceleration-threshold principle while more sophisticated devices compare an ac-

celeration time series to a model of a step. The variants found in contemporary

smartphones and IMUs, however, typically rely on 3D accelerometers. Their out-

put can be processed in the same way as a piezoelectric or mechanical sensor, but

also give rise to new algorithmic possibilities as described below.

There has been some sensor-based improvement in pedometer accuracy ob-

served for piezoelectric relative to mechanical sensors, in particular at very slow

walking speeds, likely due to increased sensitivity. A 2004 treadmill-based analy-

sis of mechanical and piezoelectric pedometers found error reduced with speed for

slow walking: 29% (< 0.89 m/s), 9–26% (0.89 to 1.34 m/s), and 4% (> 1.34 m/s)2

for mechanical pedometers. In a second variant, at speeds between 0.80 and 0.89

m/s, the piezoelectric’s error was < 3% as compared to the mechanical sensors’s

21 m/s = 2.24 mph
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5−48% [106]. The lowest error reported (0.3%) is for a piezoelectric sensor worn

on the ankle [43]. In these studies, all pedometers were tested while worn on their

optimal and calibrated specified location with specific orientation.

Accelerometer-based instruments are sampled using an embedded CPU, and

accessed by an application through its operating system. Thus, their usable accu-

racy is both due to the sensor itself, and the quality, rate and latency of access to

its output permitted by the operating system; these parameters all vary widely and

their relative impact is not generally discussed. Current overall performance levels

are discussed below.

4.2.3 Estimating Cadence

Time Domain

Whether standalone or in an iPhone app, an algorithmic (programmed) cadence

estimate derived in the time domain is based on thresholds or peaks and step model

parameters. These are in turn generated from user-supplied information such as

body mass and height, as well as the sensor’s known or constrained Location on

Person (LOP), and details of the hardware platform. Without this, accuracy is poor

(as we will demonstrate in Section 4.5.2), and this need for substantial context

and/or limitations in where and how they can be worn is their major drawback.

The most straightforward solution for cadence estimation of any type is to an-

alyze acceleration in the time domain and detect individual footfalls. This requires

just a single axis of acceleration, and produces algorithms that are computationally

lean. Time domain approaches can be quite effective when context information is

known or constrained, being simple and reasonably accurate. A brief frequency-

based peak-detection algorithm (such as the one we compare later in this chapter)

delivers a latency equivalent to the last two steps.

Yang et al. sampled a waist-mounted tri-axial accelerometer module with built-

in low pass filter, and computed autocorrelation in the time domain to measure ca-

dence in realtime [174]. They reported a mean absolute percentage error of 4.89%

when comparing their results with cadence measurements from the synchronized

video. Their algorithm used a 3.5 s window.
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The specifics of most commercial pedometer algorithms such as Runtastic Pe-

dometer [137] are unavailable. However, an MPTrain publication [115] identifies

its step detection as an adaptive accelerometer threshold with a low-pass filter, and

report its accuracy as comparable to standard piezoelectric pedometers [115]. We

further describe the MPTrain algorithm in Section 4.5.1, as we use it for compari-

son with our algorithm.

Frequency Domain

Frequency analysis has been instrumental in revealing interesting characteristics

of gait (e.g., discriminating the steps of the left and right foot [181] or comparing

acceleration frequency content of two devices to determine if they are carried by

the same person [93]). Zhao et al. use gait detection in assisted GPS systems [178],

and identify the uncertainty of the sensor location as an important issue. Their

solution is to classify sensor location by extracting time and frequency domain

features, then choosing a dead-reckoning algorithm according to the classification

result.

Unlike cadence estimation in the time domain, where each footfall is recorded

and time-stamped, a frequency-based algorithm looks at a bigger picture: it iden-

tifies the signal’s major frequency components during a given window of time.

At the cost of not detecting single footfalls and (typically) a larger delay to col-

lect multiple samples, a frequency-based algorithm is far less dependent on signal

shape and amplitude. This is because a frequency-based algorithm can distinguish

between the major frequency component of the signal influenced by the repetition

intervals (i.e., step duration), and the harmonics influenced by placement of the sen-

sor and the subject’s unique walking pattern and noise. A frequency-based cadence

estimation algorithm is thereby theoretically more robust to individual differences

and sensor location than a time-based approach.

Thus, in applications where the exact time of footfalls is not required but ease

and flexibility of use is valued, a frequency-based algorithm seems a promising ap-

proach, and is the one we took here. For related reasons, autocorrelation is another

avenue that deserves attention, although it is beyond the scope of this chapter.

For either, achievable latency and accuracy then become the crucial issues, and

88



necessitated a development plan that included careful validation. Of published

algorithms, the frequency-based ones state that they depend on proprietary info

such as placement on the body or adjustments to the parameters to compensate for

user differences. Kavanagh and Menz note the necessity of user-specific calibra-

tion procedures and errors caused by change of orientation [80]; they present an

elaborate list of accelerometer attachment methods from past research with every

one of them using a single location for the placement of the sensors. Zijlstra and

Hof for example, like the majority of other researchers, placed accelerometers on

the lower trunk [181]; specifically, they fixed the position of accelerometers at the

dorsal side of the trunk with a fixed orientation. To our knowledge no realtime

frequency-based methods have been reported for measuring cadence that uses the

built-in sensors of a commodity smartphone and works out-of-the-box (i.e., without

calibration).

4.2.4 Performance Assessment of Cadence Estimation Algorithms

Published performance data are a rarity in cadence and gait estimation. Schneider

et al. elaborate on the challenge of comparing performance of such algorithms

for realtime gait classification and accelerometer-based activity recognition [143],

which are partly due to the large number of possible parameters and settings, and

format of testing. The sheer logistical effort of precise validation may be an even

more significant problem: natural walking is best done outdoors, and the technique

in question must be compared with one or ideally two additional, independent and

highly accurate ‘gold standard’ methods that are sampled at the same time. As can

be seen in the following pages, this entails a considerable commitment in setup and

data collection that most published works have omitted.

Furthermore, many of the examples we have cited are proprietary algorithms in

commercial products released within a fast-moving market, with minimal or zero

information available about their function or performance. Without easy access

to their internal realtime data streams (for example, FitBit must compute realtime

step frequency, but does not share it with the consumer even post-hoc) it is difficult

for a 3rd party to independently verify their accuracy and other parameters.

Much of this difficulty would disappear with the availability of standardized
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datasets: published trajectories of carefully collected and documented acceleration

data, ideally as streams obtained simultaneously from multiple points on the body

during a range of walking conditions. Different algorithms can then easily be com-

pared. This practice is common in other communities, such as machine learning,

but there is no standard data set for gait detection that we know of. For this reason,

we are making our own dataset available, as detailed in Section 4.4.

4.3 Approach: The RRACE Algorithm
To support other research in our lab, we required a reliable, outdoor-ready cadence

detection method that is both unconstrained in body location, and does not require

users to acquire or wear specialized hardware.

Our goal was therefore to develop an algorithm that measures cadence at the

same rate of accuracy as the best on record [35] (5% error) or better, that works on

typical smartphones and is independent of orientation, placement on the body and

individual wearer’s physiology, and works out-of-the-box and in realtime. We also

predicted that due to their growing ubiquity, a highly usable, smartphone-ready

cadence detection algorithm would enable many new possibilities beyond our im-

mediate needs. We chose a frequency-based approach for the reasons cited above,

and developed an implementation that solved a number of inherent complexities as

described below.

4.3.1 Overview

Our cadence-detection algorithm, (RRACE), performs a spectral analysis on a four-

second window of sampled 3-axis accelerometer data. Our approach has three

characteristics that make it appropriate for realtime cadence estimation on mobile

phones: (a) it is independent of body location and subject differences (as discussed

before), (b) it is robust to orientation, and (c) it is robust to sampling irregularities.

Without published details or even the identity of other frequency-based algo-

rithms, it is difficult to compare our approach to others on theoretical grounds.

However, all the frequency based algorithms of which we are aware report using

fixed-rate sampling (e.g., [30]), and, as some of them point out, for smartphone

signals this would likely be a source of considerably reduced accuracy.
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4.3.2 Implementation Details

Supporting orientation-invariant information: To estimate overall movement

from this measure, we use the magnitude (Euclidean or L-2 norm) of the three

accelerometer axes (x,y,z) as our signal, as in [93]. This is a simple path to orien-

tation invariance which we later show to be effective.

Accommodating Non-uniform Sampling (FASPER): Most smartphones supply

accelerometer data which are not sampled at a constant rate (e.g., 25±5 Hz); our

data indicate that irregularities in accelerometer sample intervals are endemic. For

example, the variance in the data analyzed for this chapter is:

• Sampling period: mean = 40.0 ms, median = 31.0 ms, SD = 37.7 ms

• Sampling frequency: mean = 127.7 Hz, median = 32.3 Hz, SD = 231.5 Hz

Spectral analysis of such irregular data is not possible with Fast Fourier Transform

(FFT), which computes a Fourier decomposition under the assumption that samples

are equispaced. Attempts to ‘repair’ the data, e.g., with interpolation, obviously

introduce new sources of uncertainty, and this renders the most common spectral

analysis methods inappropriate.

However, the Lomb-Scargle periodogram approach (also known as least-squares

spectral analysis), derived by Lomb [97] and later validated with a mathematical

proof by Scargle [141], accurately handle non-equispaced data by, effectively, fit-

ting a sine wave and estimating its frequency spectrum.

In particular, Fast Calculation of the Lomb-Scargle Periodogram (FASPER)

[126] employs four parameters: the vector time series along with the time coor-

dinate of each sample, an output gain and an oversampling parameter to control

resolution of the computed spectrum. FASPER computes the significance level for

each of a discrete set of frequencies.

RRACE uses FASPER to find the spectrum of the overall movement of the de-

vice. We then make the key assumption that cadence is the most significant fre-

quency peak in the spectrum for a given computational window. We define our

algorithm’s latency as half the window length – e.g., a 4 second window has a

latency of 2 seconds. 3

3Although it may be possible to improve the performance of our algorithm through signal pro-
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4.3.3 Pseudocode

Pseudocode for our implementation is shown in Figure 4.1. We obtained the high-

est accuracy using 0.25 and 4.0 for FASPER’s output gain (“hifac”) and oversam-

pling (“ofac”) parameters, respectively.

function RRACE():
(timestamps, xs, ys, zs) := get_accelerometer_values(from 4s ago to now);
n := length(timestamps);
magnitudes := new array of length n;
for i := 1 to n do
magnitudes[i] := sqrt(xs[i]ˆ2 + ys[i]ˆ2 + zs[i]ˆ2);

size := 128*n;
hifac := 0.25;
ofac := 4;
frequencies := fasper(timestamps, magnitudes, size, ofac, hifac);
cadence := most_powerful(frequencies);

Figure 4.1: RRACE Pseudocode.

4.3.4 Android-Based Validation Platform

The results of Section 4.4 are based on data from up to six simultaneously-worn

Google Nexus One smartphones running Android OS version 2.3.4 (Gingerbread).

Our main application was implemented in Java, the primary programming lan-

guage for Android development. Numerical programming algorithms (including

FASPER) were implemented in C for speed benefits and because of readily-available

implementations [126]. We used the Java Native Interface (JNI) to connect the two

languages.

4.4 Experimental Validation of RRACE

In laying out RRACE’s formal validation, we first summarize a pilot study which

informed our subsequent methodology. We then describe our full study’s walking

task, apparatus, and measurement; and its design, metrics, analysis, and subjects.

cessing, e.g., by employing a smoothing filter, for the current analysis we did not use any filter or
other processing components other than the parts we describe here. This permitted us to make the
fairest comparison possible to other algorithms, since we were not aware of what optimization they
had undergone.
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Next, we present the results of the analysis for the optimally configured (4 second

window) RRACE and compare it with other RRACE variants. Finally, we measure

the power consumption of our algorithm and compare it with similar Android apps

in the market.

Our dataset is available at: http://www.cs.ubc.ca/labs/spin/data/.

4.4.1 Treadmill-based Pilot Validation

Before conducting our full outdoor experiment, we built confidence in our gen-

eral approach (algorithm and smartphone implementation) with a preliminary study

based on four participants (one female) who volunteered without monetary com-

pensation out of interest in the research. The setup consisted of a treadmill, the

three Google Nexus One smartphones available at the time, and a PC x86-64 for

manual logging of footfalls. Smartphones were synchronized with the PC; each

phone recorded accelerometer signals (average sampling frequency = 24.8 Hz) and

estimated cadence using RRACE in realtime.

Subjects walked for 15 minutes at a selection of speeds chosen to represent

slow to fast walking based on similar studies and pedestrian speeds [43, 85], while

wearing smartphones on 3 of the 6 LOP sites at a time, randomly selected each

trial. They then walked for another 15 minutes wearing the phones on the other

three locations. For both segments, they were instructed to adjust their walking

speed to keep up with the changes in treadmill speed, but given no instructions as

to step frequency.

We assessed accuracy of cadence measurement relative to the manually recorded

step interval (Tm). Our primary metric – Error Ratio (ER) – was thus the ratio

of RRACE’s measurement “error” (the difference between the frequency measure-

ment produced by RRACE, Fa, and the reference frequency, Fr) to the reference

frequency:

ER =
|Fa−Fr|

Fr
(4.1)

where
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Fr =
1

Tm

Pilot Study Results: In an Analysis of Variance (ANOVA) on ER, our independent

variables were LOP (6 sites), Speed (10 speeds ranging from 0.45m/s to 1.65m/s),

and Window Size (2 lengths: 4 s and 8 s). We used a significance level of 0.05,

applying a Bonferroni correction to counteract the multiple comparisons problem.

Location had a significant effect on ER. Front pocket (mean = 6%,SD = 11%),

belt (mean = 14%,SD = 30%), arm (mean = 15%,SD = 30%), and bag (mean =

15%,SD = 32%) were much more reliable than back pocket (mean = 30%,SD =

38%) and hand (mean = 31%,SD = 27%). Speed also had a significant effect on

ER. RRACE had a lower ER at higher speeds across all LOPs except hand. Arm,

bag, belt and front pocket reached their low ER at a much lower speed than did

back pocket. Surprisingly, hand did better at lower speeds. The impact of window

size was statistically significant but of a small numerical value, with 8 s window

outperforming 4 s window.

The pilot study confirmed general accuracy for our approach and suggested

a better choice of factors for use in a more naturalistic outdoor-walking study.

Specifically, because 4 s and 8 s window sizes both produced good performance

with minimal difference, we concluded that the accuracy of window sizes larger

than 4 s is not worth the extra latency and we decided to try smaller window sizes

for comparison. We reduced the number of speed levels to five.

4.4.2 Primary Outdoor Walking Task and Measurement Apparatus

The primary experiment to validate RRACE was run on a concrete sidewalk in an

open area on a university campus, with no nearby buildings to block GPS signals.4

Subjects were asked to walk twice at each of five different speeds, and instructed

with the definitions provided in Table 4.1. We further instructed all subjects that

‘leisurely’ walking speed meant their slowest normal walking speed, and ‘typical’

walking speed is their usual walking speed. Allocation of walking speed order was

4While GPS data were collected for possible use in validation, RRACE does not use GPS data itself.
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randomized.

We note that subjects’ walking speed and cadence were not expected or re-

quired to be perfectly consistent (either within or between subjects) for measuring

accuracy of cadence detection. Our goal was to observe walking at a larger vari-

ety of speeds for every individual, and this loosely controlled mechanism allows

a more finely resolved spectrum of actual speeds; meanwhile, this allowed a large

dataset, mitigating the effect of imbalances and imperfections.

Table 4.1: Walking Speeds During the Experiment.

Label Definition Mean (m/s) SD

Speed -2 leisurely (slowest) walking speed 1.14 0.22
Speed -1 slower than typical but faster than leisurely 1.34 0.14
Speed 0 typical walking speed 1.52 0.08
Speed 1 faster than typical but slower than the fastest speed 1.67 0.12
Speed 2 fastest walking speed 1.95 0.12

Apparatus: The experimental setup consisted of six Google Nexus One smart-

phones, an external GPS receiver connected to one of the phones via bluetooth,

our reference cadence measurement consisting of two shoe-mounted Force Sens-

ing Resistor (FSR) sensors [72] to detect footfalls and connected to a Bluetooth-

enabled Arduino board, developed by SmartProjects (Strambino, Italy) [150], two

laptops (one for logging trials and a second, a small netbook, to log footfalls sent

from the Arduino board via Bluetooth), a backpack, a stop watch, and two flags

for experimenters to send timing signals to each other. The study required three

experimenters to run.

Prior to the experiment, subjects were asked to wear pants with front and back

pockets but pocket locations were not controlled. The six phones and the Arduino

board were synchronized with the main computer at the start of the experiment.

One of the phones, the GPS receiver, netbook, and Arduino were put in the back-

pack (bag). The bag had a filled weight of approximately 2 kg. See Table 4.2

for general phone locations, which were chosen as the places people used most

frequently for their mobile phones while commuting [28].

FSR Footfall Detection: We used timestamped FSR data as our reference footfall
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detection method:

ER =
|Fa−Fr|

Fr
(4.2)

where

Fr =
1

TFSR

FSRs are ideal for detecting changes in force. We placed an FSR force sensor,

by Interlink Electronics (Camarillo, CA, USA) [72], inside each shoe (to measure

the force exerted by subjects’ feet and compare it with a threshold), and connected

both to the Arduino. The Arduino timestamped the FSR readings (avoiding impact

of Bluetooth latency) and sent them on to the netbook via Bluetooth. The footfall

detector system was calibrated and verified for each subject at the beginning of the

experiment. To analyze the data, we used the median of the last three intervals of

each of the two feet (TFSR in Equation 4.2) to filter errors caused by false positives

(extra footfall detected) or false negatives (footfall missed).

Trial Length and Speed Measurement: We wished to collect 20 seconds of walk-

ing data for each trial (twice the length of our largest window size with a 25%

safety margin) and compute step frequency every 200 ms. We asked subjects to

walk a known distance, either 30m or 60m (marked by small flags along the walk-

way), depending on whether 20 seconds had elapsed by the time the 30m point

(first end time) had been reached (Figure 4.2). Timespan was manually recorded

via stopwatch.

Figure 4.2: Experiment walkway, start and end points.
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4.4.3 Experiment Design, Metrics, and Subjects

The design was within-subjects repeated-measures, with independent variables of

window size, LOP, and speed condition (Table 4.2). The five speed conditions and

their repetitions (10 trials) were randomized.

Table 4.2: Experiment design

Factor Number of Levels Factor Levels
Window Size 4 1, 2, 4, or 8 seconds
LOP 6 back pocket, bag (backpack), dominant hand (held),

front pocket, hip (mounted on belt), upper arm (mounted)
Condition 5 typical (0), fastest (2), leisurely (-2),

faster than typical (1), slower than typical (-1)
Repetition 2 first time, second time

Metrics and Analysis: We assessed RRACE’s accuracy by comparing it to our

shoe-located force sensor reference (Section 4.4.2). As in the pilot, our primary

metric was ER (Equation 4.1 in Section 4.4.1). We conducted our analysis with

Generalized Linear Models (GLM), using unpaired Z-test comparisons for post-hoc

analysis and p = 0.05 significance, again applying a Bonferroni correction. Note

that for sample sizes as large as our dataset, Z-test produces the same result as a

t-test. Also, we report differences between effect levels as z-scores, and because

z-scores are normalized by standard deviation, differences between means in our

analysis are analogous to Cohen’s d statistics of effect size.

Subjects: Eleven individuals (6 female and 5 male), aged 21−30 years (mean =

25.2, SD = 3.3), 155− 179 cm tall (mean = 165.9, SD = 7.0), and weighing

46− 80 kg (mean = 59.1, SD = 10.0) volunteered. No subjects had physical im-

pairments.

Speed / Frequency Relationship: As a basic check for our measurements we

verified a correlation between walking speed and cadence (r = 0.84 using Pearson’s

Correlation), which is consistent with [67].
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4.4.4 Results for Outdoor Validation of 4 Second Window RRACE

We chose the 4-second window RRACE as our analytical baseline, and describe its

analysis first: both theoretically and in our pilot, 4 seconds is enough to detect a

wide range of walking cadences. We then present results from alternative window

sizes. Because the phones were prone to dropping data (14%), we used GLM for

its robustness to this situation.

Main Effects: LOP has a significant effect on ER. Results were consistent with

our pilot: front pocket, belt, arm, and bag (light-green box plots of Figure 4.3) are

much more reliable than back pocket and hand (dark-red box plots of Figure 4.3).

Speed condition also has a significant effect on ER; ER is generally lower at the

typical and fast speed and higher at the slowest and the fastest speed.

Interaction Effects: Both LOP / speed condition and LOP / window size on ER

interact significantly. Arm, bag, and front pocket ER remain consistently below 5%

under all speed conditions, with their minimum at the middle (typical) speed. Belt

produces lowest ER at the typical speed and largest ER at the fastest speed. Back

pocket produces lower ERs at higher speeds and hand produces lower ERs at lower

speeds (Figure 4.3). As we will see in Section 4.4.5, the interaction between LOP

and window size does not affect our general conclusions about LOPs.

Quantitative Comparisons

Location on Person (LOP): Table 4.3 compares ER as a function of LOP – four

out of six locations have an ER of 5% or below. Front pocket and bag, with the

lowest ERs, significantly outperform the other locations. For example, arm has an

ER of 3.6% on average and is 0.3% different from front pocket while bag and front

pocket are not significantly different from each other.

This accuracy is approximately the same as the best reported elsewhere and has

proved acceptable for most applications [43, 106]. As noted earlier, it is not cur-

rently possible to make a direct comparison (i.e., based on running the algorithms

on the same dataset, or confirmation that the datasets / experimental conditions

are fully comparable) with other reported results given the level of implementation

detail available. However, to the best of our knowledge the comparison is conser-

98



Slowest Slow Typical Fast Fastest

0
5

10
15

20

Arm

Speed

E
rr

or
 R

at
io

 (
%

)

Slowest Slow Typical Fast Fastest

0
10

20
30

40
50

Back Pocket

Speed

E
rr

or
 R

at
io

 (
%

)

Slowest Slow Typical Fast Fastest

0
5

10
15

20

Bag

Speed

E
rr

or
 R

at
io

 (
%

)

Slowest Slow Typical Fast Fastest

0
5

10
15

20

Belt

Speed

E
rr

or
 R

at
io

 (
%

)

Slowest Slow Typical Fast Fastest

0
5

10
15

20

Front Pocket

Speed

E
rr

or
 R

at
io

 (
%

)

Slowest Slow Typical Fast Fastest

0
10

20
30

40
50

Hand

Speed

E
rr

or
 R

at
io

 (
%

)

Figure 4.3: ER (ER) as a function of Speed Condition for 4-Second Window RRACE. Dark-red
boxplots have a larger range for ER. The boxplot’s central bar indicates sample median.

vative: we asked RRACE to do the same or harder task, in that our setup was far

less constrained.

Table 4.3: ER differences by LOP for four-second window RRACE through an unpaired Z-test.
The second column contains the mean ER of each LOP; remaining cells contain the differ-
ence between two LOPs where the difference is significant. The differences are the maxi-
mum possible while maintaining statistical significance, and thus are less than the distance
of ER means from each other. A large value means larger distance between ERs.

Difference from
LOP ER (%) Front Pocket Bag Arm Belt Back Pocket
Front Pocket 2.8 - - - - -
Bag 3.1 not sig - - - -
Arm 3.6 0.3 0.1 - - -
Belt 5.5 2.2 2.0 1.4 - -
Back Pocket 7.9 4.5 4.3 3.7 3.0 -
Hand 11.4 7.8 7.6 7.1 5.2 2.6

Speed Condition: Figure 4.3 shows that ER decreases as speed increases only

when the phone is placed in back pocket and the opposite happens when the phone

is held in hand. However, the differences among different speed conditions are
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not very obvious for other LOPs in the figure. We can exclude those two LOPs

and quantitatively compare speed conditions for the other LOPs; if we do so, we

will see that ER is lower at the typical and fast (one level above typical) speed and

generally highest at the slowest and/or fastest speed conditions (Table 4.4).

Table 4.4: RRACE ER differences by speed condition for 4 LOPs with a four second window
(unpaired Z-test). Hand and back pocket – the inconsistent LOPs with more obvious reaction
to speed – are excluded to focus on the effect of speed in the absence of the interaction
effects and on the more similar LOPs. See Table 4.3 for more information.

Difference from
Speed Condition ER (%) (0) (1) (-1) (2)
Typical (0) 2.5 - - - -
Fast (1) 2.8 0.04 - - -
Slow (-1) 3.4 0.6 0.3 - -
Fastest (2) 4.0 1.1 0.8 0.2 -
Slowest (-2) 6.3 3.2 3.0 2.3 1.7

4.4.5 Analysis of The Effect of Window Size on RRACE

Four-second and eight-second processing windows produced similar ERs, consis-

tent with our pilot results (Figures 4.4, 4.5, and Table 4.5). While the ER of a

one-second window is double that of four or eight seconds, the two-second win-

dow is only 1% (significant) different from four and eight-second windows, and

may be usable in some circumstances (Table 4.5). As shown in Figure 4.4, increas-

ing window size reduces ER for all LOPs but has a smaller effect on locations with

lower ER in general. By comparing Table 4.3 (ER of LOPs for four-second window

RRACE ) with Table 4.6 (ER of LOPs for all variations of RRACE ) we see that win-

dow size only affects the rank of front pocket among other LOPs; front pocket is not

the best LOP when we choose smaller window sizes. Other five LOPs stay in the

same relative order when we change window size.

As anticipated, the effect of increasing window size on reducing ER is more

noticeable at lower speeds (Figure 4.5). Since smaller windows capture fewer steps

than larger windows, with decreasing speed the chance of capturing enough steps

is reduced. In effect, increasing window size compensates for the effect of slowing

down.
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Figure 4.4: ER is a function of Window Size per each LOP for all Speed Conditions lumped.
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4.4.6 Power Consumption

We used PowerTutor [125] to measure RRACE’s power consumption on a Samsung

Galaxy Nexus smartphone running the Android 4.1.1 Jelly Bean operating system,

and compared it with Endomondo [33], a sport tracking app, which is claimed

to be the highest rated app of its kind on Android, Runtastic Pedometer [137],

a pedometer app that uses accelerometers to count steps, and Angry Birds, the

famous game (Table 4.7).

Table 4.5: ER differences by window sizes of RRACE, with walking speed and LOP lumped.
Window sizes are ordered by increasing ER mean. See Table 4.3 for more information.

Difference from
Window Size ER (%) 8 Seconds 4 Seconds 2 Seconds
8 Seconds 5.8 - - -
4 Seconds 5.8 not sig - -
2 Seconds 7.1 1.1 1.1 -
1 Second 11.5 5.4 5.4 4.1
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Table 4.6: RRACE ER differences by LOP for all window sizes and walking speeds (unpaired
Z-test). Locations are ordered by increasing ER mean. See Table 4.3 for more information.

Difference from
LOP ER (%) Bag Arm Front Pocket Belt Back Pocket
Bag 4.1 - - - - -
Arm 4.8 0.5 - - - -
Front Pocket 5.5 1.2 0.4 - - -
Belt 7.1 2.8 2.0 1.3 - -
Back Pocket 10.5 6.1 5.3 4.6 3.0 -
Hand 12.8 8.3 7.6 6.9 5.3 1.9

Like most activity measurement algorithms, RRACE does not require the dis-

play to be on; but for consistency, all of these apps were compared with screen

on. PowerTutor is able to distinguish between LCD power usage, which Table 4.7

shows is similar for all of them. CPU power usage varies: RRACE uses 10× the

CPU power of Endomondo, 5× more than Runtastic Pedometer, and is comparable

to Angry Birds.

With the screen off, our algorithm will consume considerably less power than

mobile games even before improving the CPU efficiency. Until now, our devel-

opment has focused on proving accuracy rather than power efficiency, so the low

power consumption of other activity measurement apps is promising in terms of

what RRACE can achieved with optimization, e.g., with methods such as “code

offload” [27] and “µSleep” [13].

Table 4.7: Power consumption.

App Name Duration (s) Average Usage (mW) LCD Usage CPU Usage

RRACE 361 772.85 528.53 244.32
Endomondo 308 555.52 529.87 25.65
Endomondo (no GPS) 369 548.78 530.08 18.70
Runtastic Pedometer 322 575.47 521.74 53.73
Angry Birds 559 735.78 516.00 225.33
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4.5 Comparing RRACE with a Threshold-based
Time-domain Algorithm

As detailed in Section 4.2, the many pedometers available commercially use propri-

etary algorithms that have not been released to the public. We therefore compared

our frequency-based algorithm to MPTrain’s algorithm [115]. MPTrain uses two

low-pass filters. One removes noise in the original accelerometer signal, producing

a smoothed signal; the second has a lower cutoff frequency, and its output is used

as a dynamic threshold. Footsteps are detected when the smoothed signal crosses

the dynamic threshold from above to below (Figure 4.6). Because the MPTrain

accelerometer is required to be situated on the user’s torso and oriented to detect

accelerations in the superior-inferior axis, it detects footsteps on both feet. Foot

falls are translated to instantaneous (i.e., sampled) Steps per Minute (SPM) using

the following formula:

SPMi = (int)
60.0×SamplingRate

#SamplesSinceLastStep
(4.3)

Finally, the MPTrain algorithm applies a median filter to the instantaneous SPM

to calculate estimated SPM. The MPTrain study reported a uniform sampling rate

of 75 Hz for accelerometer data, achieved with an external chest-mounted sam-

pler. The authors report that cadence measurement accuracy is comparable to those

found in commercial pedometers by [106], but provide no specifics.

4.5.1 Implementation of Time-based Algorithm for Comparison

We reconstructed parameterizations for the MPTrain algorithm, since details were

not reported for either of the low-pass filters, and no window was given for the

median filter. We also accommodated the variable sampling rate found in smart-

phones, and measured cadence in Steps per Second (SPS) instead of SPM to com-

pare it with RRACE.

Finally, given that we do not have a sensor in a known orientation, we also

consider each of four different axes in our analysis: x, y, z, and m (the magnitude

of the vector, i.e., m =
√

x2 + y2 + z2).
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Figure 4.6: Example of the MPTrain time-based step detection algorithm. The y-axis shows
the L-2 norm (magnitude) of the accelerometer signal.

Two low-pass filters (accelerometer data smoothing and dynamic threshold)

employ parameters α and β (β < α), which were trained on our data (Section

4.5.2). For efficiency and simplicity, we implemented these as Exponentially-

Weighted Moving Averages (EWMA). An EWMA is defined as follows:

Si = αxi +(1−α)Si−1 (4.4)

where Si is the i-th smoothed (low-passed) value, xi is the i-th raw accelerometer

value, and α is the smoothing parameter (0≤ α < 1).

As for MPTrain, steps are detected when the smoothed signal crosses the dy-

namic threshold from above to below. The difference between step times is used to

calculate instantaneous cadence by the formula:
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Cadence = 1/CurrentDifferenceBetweenSteps (4.5)

For example, if the two previous footsteps were detected at StepTimei = 100 ms

and StepTimei+1 = 600 ms and we wanted the instantaneous cadence at any time

t ≥ 600 ms, we would compute 1/(600−100) = 0.002 steps per millisecond, or

2.0 SPS. Final cadence estimates were the average of each instantaneous cadence

estimate and one previous estimate (i.e., a 2-sample smoothing filter).

4.5.2 Tuning of the Time-based Algorithm

To compare the MPTrain time-based algorithm as favourably as possible to RRACE,

we optimized the low-pass filter smoothing parameters α and β (Section 4.5.1) for

several data subsets involving different combinations of subjects and LOP:

• All data (all subjects and LOPs): 1 set

• Each subject (over all LOPs): 11 sets

• Each LOP (over all subjects): 6 sets

• Each subject-LOP combination (e.g., Subject 1, Arm) minus 9 (missing data):

11×6−9 = 57 sets

This thorough search thus used 75 parameterizations of the time-based algorithm.

During analysis (below), data were only scored on the dataset on which it was

trained. This represented a best-case scenario of an algorithm trained for a cer-

tain individual and/or LOP, which could occur in real-world use cases with one

individual using a personal device in a consistent way.

Within a dataset, we used a uniform search for the best combination of smooth-

ing parameters (α and β ) with a granularity of 0.05 (i.e., α ∈ {0.05,0.1, ...,1.0}
and β ∈ {0,0.05, ...,1.0}, one of the three axes or magnitude (γ ∈ {x,y,z,m}),
as well as four scaling factors (δx,y,z ∈ { 1

2 ,1,2,4} for individual axes and δm ∈
{1

4 ,
1
2 ,1,2} for magnitude; scaling factors accommodate harmonics by scaling the

computed cadence). The best of all these combinations for each dataset was de-

termined by having the lowest mean squared ER by comparing to the FSR gold
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standard. The scaling factors scale the calculated cadence; for example if the user

walks at 1.5 Hz and the time-based algorithm calculates a cadence of 0.75 Hz (i.e.,

detects either left or right steps), a scaling factor of 2 would fix this (0.75×2= 1.5).

Analysis of Time-based Algorithm

We found it was not possible to train the time-based algorithm to work on all LOPs

and for all subjects with an ER below 5%; the minimum attained was ER = 74%.

The time-based algorithm for all LOP on one subject reached ER = 18%, but this

was only for the best-case scenario.

Tuning the time-based algorithm for one best-case LOP on all subjects was

more feasible: this achieved ER = 12% for bag. If we tune the algorithm for one

LOP of each subject we may even get a lower ER; when tuned for Subject10’s arm,

the algorithm reached ER = 7.8% (Table 4.7). In the next section we will show that

these results are not nearly as good as the performance of RRACE with ER = 5.8%

for the 8s window variant.

Comparisons with Frequency-based Algorithm

Figure 4.7 shows boxplots of ER of all the RRACE and time-based algorithm vari-

ants ordered by the median of ER. We divided them into five categories as identified

in the figure’s caption, differing by algorithm and breadth of training set, where a

more specific (but unrealistic) training set generally leads to better performance in

this test.

Because it is unproductive to compare each of these algorithms with the rest,

we have chosen the best of each category in addition to the worst-case RRACE

variant (one-second window) which are marked by blue ticks and blue dashed-line

box plots on Figure 4.7. This is a highly conservative comparison which tends to

favor the time-based algorithm. We used the same data for verification of each

time-based algorithm that was used for their training and secondly, the ER of all

versions of the frequency-based algorithm is measured across all LOPs of all sub-

jects. RRACE was not trained or tuned in this comparison.

Thus, the single “fair” comparison is between either version of RRACE (green

in Figure 4.7), and the time-based algorithm trained on all subjects and all LOPs
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(red). Table 4.8 summarizes these comparisons, but in order of mean rather than

median; thus subject10’s arm comes after the 1-second RRACE in the figure but

before it in this table.

The best of time-based categories — Subject10’s arm, bag (across all subjects),

Subject10 (all body locations), and all subjects’ body locations — and the 8-sec and

1-sec variants of RRACE appear on the first column of Table 4.8. Their respective

ERs are listed in the second column. It is statistically incorrect to compare these

values without testing the statistical significance of their difference. Therefore,

we used unpaired Z-tests (with Bonferroni correction for multiple comparisons) to

(a) test the statistical significance of the difference between each two algorithms

(one from the first column vs another one from the third to seventh column of the

second row), and (b) measure the maximum difference while maintaining statistical

significance which does not apply to pairs that are not significantly different such

as bag vs 1-sec RRACE; this also applies to Tables 4.3, 4.4, 4.5, and 4.6.

In particular, the difference between the best variant of RRACE and the bests

of all categories of time-based algorithm, 1.2, 5.5, 10.2, and 67.5 presented on

rows 4, 6, 7, and 8 (row of Subject10’s arm, row of bag, row of Subject10, and

row of all subjects’ body locations) and 3rd column (column of 8-Sec RRACE) are

important to us; these values show that RRACE has a much lower ER than any of

the time-based algorithms and this difference is statistically significant.

4.6 Discussion
The goal of this research was to develop a cadence measurement algorithm for

accelerometer-equipped mobile phones. We required this algorithm to be robust

and work out-of-the-box with an ER of 5% or less (comparable to Yang et al.’s

waist-mounted cadence measurement device [174] and MPTrain of Oliver & Flores-

Mangas [115]). First, we will review the nature of RRACE’s error, its performance

on different LOPs and robustness to subject differences, and compare it with the

time-based algorithm. Then we will examine its main weakness, and finally we

will discuss the best choice for window size.
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Table 4.8: Unpaired Z-test comparison of error ratios of the best and the worst versions of the
frequency-based algorithm and the best of each category of time-based algorithm. Algo-
rithm variants are ordered by increasing ER mean. See Table 4.3 for more information.

Difference with
Algorithm ER (%) 8-Sec

RRACE

Subject10’s
Arm

1-Sec
RRACE

Bag Subject10

8-Sec Window 5.8 - - - - -
RRACE (a)
Subject10’s 7.8 1.2 - - - -
Arm (e)
1-Sec Window 11.5 5.4 2.9 - - -
RRACE (a)
Bag (d) 11.9 5.5 3.2 not sig - -
Subject10 (c) 17.9 10.2 8.1 4.6 4.0 -
All Subjects’ 73.5 67.5 65.0 1.8 60.9 53.7
Body
Locations (b)

4.6.1 The Nature of RRACE’s Error

A small number of outliers are responsible for some of the error in RRACE’s read-

ings. These are of two types: (a) random readings as a result of irregularities in the

signal, and (b) harmonic readings which happen when the main frequency compo-

nent gets smaller than its harmonics. These outliers may be avoided by filtering the

outcome of RRACE. The rest of the error is caused by hardware measurement error

and delay from the 4 second window.

4.6.2 RRACE Meets Criteria for 4/6 of Tested Locations; Time-Based
for 0/6

Movement at four LOPs (arm, bag, belt, and front pocket) contain sufficient consis-

tent information for RRACE to make accurate estimates and RRACE does not need

to be calibrated in order to work there. They each achieve a 3–5% ER, satisfying

the criteria laid out above.

In contrast, the time-based algorithm was highly sensitive to LOP. It was almost

impossible to tune the time-based algorithm for three of the LOPs, front pocket

among them. The LOP that fit the time-based algorithm the best was bag with

almost double the ER of the 8-second and 4-second window RRACE.
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4.6.3 RRACE is Robust to Subject Differences

The time-based algorithm was very sensitive to subject differences. It could not

be trained to work on all LOPs of all subjects, and when trained on single LOPs,

only 12% was achieved, in only one location (bag). Because it was calibrated by

subject, its present tuning would not work on subjects outside our experiment with

no adjustment. However, RRACE achieved much lower ER for all subjects with no

prior tuning to compensate for subject differences.

4.6.4 RRACE is Sensitive to Very Slow Speeds

Our outdoor validation results showed that, like other pedometers, RRACE is sen-

sitive to speed. The highest ER belongs to the slowest speed with ER = 6.3%. We

attribute this worsened performance to two possible causes:

(a) At lower speeds, walking cycles take longer and fewer cycles are captured

in a fixed window size. As anticipated, this weakens RRACE. Mitigation requires

use of a larger window size, e.g., by dynamically changing the window size to fit

the speed.

(b) Walking becomes less autonomous and more irregular when subjects are

asked to walk at very low speeds, especially because users can easily choose to

walk as slowly and irregular as they want, while at high speeds step interval is

bounded by the subject’s physique.

The time-based algorithm is less affected by walking speed because it just de-

tects single steps, no matter how irregular or distant from each other they are. Thus

one practical approach might be to shift to a time-based algorithm at low speeds.

4.6.5 RRACE Window Length of 4 Seconds is Best

Our results showed that highest accuracy (lower ER) is achieved at larger window

sizes. The difference in ER is substantial for 1 vs 2-second windows, and for 2 vs

4-second windows, but not for 4 vs 8 seconds. A 4-second window size seems the

ideal length among our candidates as a compromise between responsiveness and

accuracy.
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4.7 Conclusion and Future Work
In this chapter we introduced a new algorithm for measuring cadence through a

frequency-domain analysis of accelerometer data from smart phones, called RRACE.

This algorithm’s advantages are strong robustness to location on body, orientation,

and to individual physiological parameters, resulting in exceptional usability and

suitability for a broad range of consumer-type applications.

We also presented an experiment design to verify our and other algorithms.

Our user-based validation showed that RRACE performs well under different speed

conditions, providing 5% or lower error for four of the six common LOPs exam-

ined: front pocket, bag, arm and belt, consistent with previous work in a single

location [174], and producing 8% and 11% for the other two: back pocket and

hand. RRACE’s primary weakness is a drop in performance for slow and irregular

walking, a flaw which can be mitigated by dynamically adjusting the window size

to maximize accuracy at the cost of more latency, and/or switching to a time-based

algorithm at slow speeds.

We compared RRACE with a state-of-the-art published time-based algorithm

which we tuned in every way possible; our highly conservative comparisons show

that RRACE is substantially more accurate than the time-based algorithm tuned

for any subset of the data. Our results show that RRACE is also superior to the

time-based algorithm in terms of independence from LOP and robustness to user

differences. The exception is for very low and/or irregular speeds, situations which

many applications of a cadence detection method might classify as a different gait

and analyze using a different algorithm. We also plan to extend comparisons to

include autocorrelation of time-based techniques, which may share some of the

advantages of a frequency based approach.

As well, our algorithm provides general guidelines for window size and ro-

bust spectral analysis. This information can be used to inform solutions to more

complex realtime gait analysis problems, such as activity detection for fitness or

rehabilitation applications, or individual gait identification for mobile security.

We are continuing to improve our algorithm. Some avenues likely to further

increase its performance are to reduce estimation outliers by using smart filters

and adjust window size based on current cadence. We will also look into reducing

111



power consumption of our algorithm by reducing sampling and CPU usage when

the subject is in low activity mode. Finally, we look forward to deploying RRACE

in the real world: we are engaged in employing cadence to measure other useful

information about gait such as stride length and type of gait, and exploring deploy-

ment in a variety of real applications [143].
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Chapter 5

Susceptibility to Periodic
Vibrotactile Guidance of Human
Cadence

If everything seems under control, you’re not going fast enough.
— Mario Andretti

In this chapter we1 introduce a new guidance method that employs periodic

vibrotactile cues to help users walk at a desired speed. We also explore walker’s

susceptibility to Periodic Vibrotactile Guidance (PVG): specifically, adjustments of

their stride frequency in response to cues that are clearly perceived; and finally,

how long users can maintain their stride frequency after the guidance cue stops.

While wearing a vibrotactile display on one wrist, each participant was given

five vibrotactile tempos, logarithmically spaced across the participant’s walking

frequency range. We measured stride frequency, and compared it with cue tempo

under conditions that varied cue tempo and presence / absence.

This chapter appears with minimal modifications in: [76]

• I. Karuei and K. E. MacLean. Susceptibility to periodic vibrotactile guidance of human
cadence. In Haptics Symposium (HAPTICS), 2014 IEEE, pages 141–146, 2014

1For a list of contributors and their level of involvement please refer to the Preface on page iv.
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Our results suggest that most individuals (here, 13 out of 15) can synchronize

their cadence with a vibrotactile cue with 95% accuracy (mean error, all partici-

pants: -1.5%, SD = 8.1) for a guidance tempo within their physical ability. Once a

tempo was matched, walkers could maintain it for at least 30 seconds after the cue

was turned off, showing promise for intermittent guidance as a solution to stimulus

adaptation and annoyance.

This finding informs design of spatiotemporal guidance systems, by showing

how the informationally narrow but nevertheless underused haptic channel may

have utility in guiding pedestrians’ speed, without a need to learn abstracted sig-

nals, and through a continuous control system.

5.1 Introduction
New technologies emerge daily that aim to use sensing and computation to assist

in our daily activities: task and time management, navigation and location services

are but a few. Many are framed as guidance tools: they can save us time or im-

prove our performance in some task (e.g., walking in an unknown neighborhood)

by providing immediate information or by making a task (e.g., finding the nearest

coffee shop) easy enough to be done in parallel with another.

However, this potential is often undermined by usability challenges, with one

of the most crucial being sensory load. Whatever the communication channel,

signals deployed at a conscious level are likely to be intrusive. Additionally, most

such tools rely on vision and audition as their medium for user communication. By

their nature they are used in multi-task scenarios, so perceptual competition is the

norm; the result often overwhelms, and routinely jeopardizes safety. Meanwhile,

the tactile modality is often suggested as an underutilized alternative, but has other

potential drawbacks (its own sensory load, nonperceptibility, annoyance).

In this research, we examine the use of Vibrotactile (VT) guidance cues to pro-

vide pedestrian cadence guidance, ultimately processed pre-attentively. We have

previously reported sensorially optimal locations on the human body for process-

ing pedestrian guidance cues (Karuei et al. 2011 [78]; and Chapter 3), and a val-

idated algorithm that can measure realtime cadence well enough for interactive

cadence guidance, with a commodity smartphone sensor (Karuei et al. 2014 [79];
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Figure 5.1: PVG regulates a walker’s step frequency with subtle cues – to help him arrive at
the bus stop at just the right time. Or, help a runner train at the right cadence, or a rehab
patient exert the right effort.

and Chapter 4). Here, we demonstrate that given a periodic cue in a single-task

scenario, walkers can adjust their step frequency to match it with minimal reported

effort. In a final step reported elsewhere, we evaluate how this ability persists under

varying types of sensory, physical and cognitive load.

5.2 Approach
Human walking is a repetitive movement whose rate is primarily characterized by

the stride’s length and its frequency. Under normal circumstances, the walker (or

runner) can control either one to achieve a desired speed: when one is constrained

to increase or decrease, speed changes proportionally while the unconstrained pa-

rameter is relatively independent of this change [89].

We propose a simple way of guiding human cadence with VT cues: we map

a desired walking frequency to the tempo of a PVG cue, and ask the pedestrian to

match walking tempo to it. This guidance can subsequently be incorporated into

feedback control to maintain or adjust the walker’s locomotion speed as desired or

dictated by an application.

This means of communicating rate information fits well with known capabil-

ities of the haptic channel, and could be helpful to pedestrians and athletes who

need to efficiently manage the timing of repetitive movements (walking, running,

rowing). Direct-mapped rather than abstract, PVG should require minimal learn-

ing, and have a lower steady-state impact on cognitive processing than symbolic

cues [100, 156]. By freeing cognitive and attentional resources needed to attend
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to ones’ surroundings, they may improve safety directly and indirectly. Their sim-

plicity may allow them to be combined with other methods of VT communication,

for example to transmit higher-level activity information.

From a control perspective, PVG operates on a continuous spectrum; tempo

and its inverse, the inter-cue interval, can be any positive real number. Continuous

control affords many alternatives for control configuration and gain adjustment to

achieve smooth, efficient regulation of cadence and speed. These include flexibility

in judicious deployment of ‘silence’ breaks: long periods of VT stimuli should be

avoided because too long or too many vibrations can become irritating to some

users, and over-stimulation produces adaptation and loss of sensitivity [64].

5.2.1 Contributions

Our quantitative contributions demonstrate empirically the potential effectiveness

of PVG, with:

1. Data on the effect of tempo and repetition on walkers’ ability to match stride

to a VT cue, confirming a broad ability to do so given a comfortably realiz-

able tempo; and

2. Evidence of walkers’ ability to maintain cued frequency at least 30s after

cue-off, important for avoiding cue adaptation.

This creates new opportunities for systems to help pedestrians control walking

speed easily and accurately. We also share an experimental methodology with

utility for future cadence-control development, and discuss implications for appli-

cation design.

5.3 Related Work

5.3.1 Perceptual Overload and Safety

The critique of our dependency on eyes and ears for interacting with consumer

electronics (e.g., music players, GPS guidance tools, phones containing both) is

well known. This reliance contributes to overload and inefficiency in visual and au-

ditory perception [70, 101, 162], while the graphical and auditory interfaces them-

116



selves often fail when their target modalities are unavailable or inconvenient [167].

In other cases, in competing for required resources they undermine primary task

performance [163]. Motor vehicle authorities increasingly acknowledge risks in-

herent in electronic device usage while driving, citing distracted driving due to tex-

ting or talking on the phone as directly responsible for upticks in collision statistics

[127]. But pedestrians are equally at risk of attentional lapses [66, 71, 111], ren-

dering them vulnerable to crossing streets more slowly while using a phone [66]

and inattentional blindness [71].

The two obvious approaches to reducing visual and auditory, and ideally cog-

nitive, load are to (a) limit the secondary task (e.g., by not using a guidance tool),

which is less desirable to the user; or (b) replace audiovisual cues, and their con-

scious processing, with VT cues that require little effort to interpret and ideally

processed pre-attentively [11]. Examples include vibrations on the left or right

side of the torso as turn direction indicators [163], alarms to warn of safety issues

such as an unduly slow street-crossing or oncoming traffic or cues that influence

walking speed to make travel more efficient and retain mental capacity for other

situated tasks.

5.3.2 Spatial Vibrotactile Guidance

Spatial guidance systems typically provide event-driven cues not continuous con-

trol, but the relatively extensive efforts here are informative as to cue interpretabil-

ity, attentional load and evaluation.

One class uses direct-mapping of vibratory stimulus to direction, e.g., Ertan

et al.’s system to guide blind users in unfamiliar indoors areas, with a 4-by-4 vest-

embedded array which rendered a stop signal or cardinal direction [35]; or Bosman

et al.’s use of tactors on both wrists to augment space perception in unimpaired

wearers [11]. Tsukada & Yasumura achieved 8-direction guidance outdoors with a

tactor belt [163], and Koslover et al. compared VT and skin-stretch signals with vi-

sual and auditory cues [86]. All of these systems have found users able to interpret

direct-mapped spatial guidance with high accuracy.

In a different shared-display approach, Rukzio et al. coordinated a palmar VT

phone display with a public 8-light display. The lights toggled on/off in a rotation,

117



and the phone vibrated when the direction on the public display matched the user’s

route direction [136]. Van Erp et al. investigated more abstracted VT navigation

cues, displayed around the waist using four distance-coding schemes. Two related

distance and tempo of stepping rhythm (faster tempo indicated shorter distance)

and the others communicated departure, arrival, and intermediary phase by three

distinct tempos of one rhythm [167]. Their VT system was a successful direction

indicator but the distance indicators for walking needed improvement.

We envision a future system in which speed-control and direction cues are

combined, with sufficient care taken to disambiguate them.

5.3.3 Periodic Guidance of Locomotion

Study of guiding how fast to walk is less common, yet pace guidance has obvi-

ous utility for mobile, Global Positioning System (GPS)-enabled navigation apps.

These currently tend to assume an average walking speed applied to everyone to

predict time-of-arrival and suggestions for departure time. In reality, people walk

at different speeds. When arrival time is important (catching a bus or train, going

to a meeting) walking speed may be as important as direction (Figure 5.1).

Walking is a repetitive task with a variable speed controlled as: walking speed=

stride frequency× stride length [89]. Individuals walk at a preferred frequency,

which minimizes energy expenditure and depends on the person’s body. A walker

may adjust both stride frequency and length to control walking speed [29]. Laurent

& Pailhous measured walker response to both metronomc cues and constraints on

step length, and found that good pace control can be accomplished by constrain-

ing and controlling just one of the two parameters, due to their relative indepen-

dence [89].

One auditory study found that metronome beeps can also guide walking ca-

dence [29].

Ferber et al. used haptic cues delivered through foot pedals to maintain tar-

get intensity level on a stair-climber exercise machine while doing a mental task.

Two methods embodied velocity-control (“on” when outside a target zone), and

another gave metronomic VT cues at 2x the desired stepping rate. Results showed

issues with perceptibility and signal understandability, and reported increases in
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average parameters (velocity, power, and variance) rather than performance in step-

level tempo matching. However, user reactions are relevant here: likeability and

comprehensibility did not correspond to effectiveness at increasing effort, and the

tempo-matching scheme was deemed hard to follow, and produced the greatest

interference with a simultaneous task of any method tested.

In our own design we emphasized perceptibility, comprehensibility and low

cognitive processing effort. Feet are not ideal for mobile cueing – sensitivity is low

in the feet and degrades with movement body-wide as explained in Chapter 3 – so

we proceeded with wrist-worn tactors.

5.3.4 Controlling Step Rate

In the present work, we explore the use of continuous control on stepping fre-

quency. The obvious alternative is discrete: a bang-bang (on-off) controller [5]

that gives rate-control cues (“walk faster / slower”) when speed goes outside a

specified band. This approach is simple to implement, and can be attempted with

sensor sources subject to noise and dropouts, such as GPS.

However, when the control action is not well matched with system responsive-

ness (here, the walker’s variable response to the cue; or a runner’s heart-rate in

reaction to a change in pace on a hilly route), the result oscillates between thresh-

olds. The resulting discomfort can be experienced with many currently available

heart-rate and GPS-based running speed regulation products. Oscillation is best

mitigated by widening the control band, undermining precision. Guidance into

multiple bands of desired velocity (for greater precision) does not improve stabil-

ity, and can make the system harder to learn or conceptually understand.

Continuous control does need reliable data with accuracy, refresh and phase

delays commensurate to control bandwidth requirements. Our implementation

uses our Robust Realtime Algorithm for Cadence Estimation (RRACE) algorithm

– which derives realtime step frequency estimates from a commodity smartphone

accelerometer – with a phase delay, within 2 steps (Chapter 4).
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5.4 Experiment
To ascertain the feasibility of low-level VT guidance of stride frequency, we needed

to measure how well humans can synchronize their walking frequency with PVG,

and how well they can maintain their walking frequency once the cue stops.

We hypothesized that

H1 most people can follow the tempo of PVG with an accuracy >= 90%;

H2 tempos near an individual’s natural walking frequency will be easier to follow

(exhibiting lower cue divergence than extreme tempos);

H3 error will be negative for fast tempos (walking cadence < cue) and positive for

slow tempos (walking cadence > cue); and

H4 magnitude of error will increase when the cue is turned off.

5.4.1 Apparatus and Context

Our setup consisted of a wrist-worn VT display, cadence sensing (four Android

smartphones running a custom step-detection algorithm), and a control laptop as

explained below. The laptop managed the procedures (Section 5.4.4) and sent com-

mands to the VT display wirelessly while the phones constantly measured walking

frequency.

To reduce measurement noise due to cornering, we collected data on a straight,

wide, level walkway in a quiet residential area within a university campus. We

found that 350 meters accommodated one minute of walking by the fastest-moving

pilot participants.

Client Side: VT Cues
To deliver tactile cues to the participant’s wrist, we used Tam et al.’s Haptic Noti-

fier [156] (Figure 5.2). Relevant parts of this system are (i) an Arduino Fio micro-

controller [151] with built-in XBee socket, (ii) XBee series 2 radio to communicate

with the experimenter’s laptop, (iii) three synchronized eccentric-mass tactors with

a vibration frequency of ∼ 190 Hz (Section 3.3.1), and (iv) a lithium polymer bat-

tery.
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To avoid communication delay between laptop and Arduino wrist controller,

the Arduino logged the start / end of each trial and the time when haptic cues were

turned off during the trial, according to its clock. These data were communicated to

the laptop (server side) at the end of each trial. Arduino timestamps were converted

to computer time in post-processing (Section 5.4.4).

We displayed two types of vibrations, all delivered at ∼ 190 Hz: the guidance

cue (periodic vibrations, each 100 ms in duration, with an interval defined by the

guidance tempo) and the stop signal (a single 5 s vibration, administered at the

end of a trial). For example, for a guidance tempo of g = 2 Hz, a trial’s wrist-

display vibrations would consist of: [0-20s]: 100 ms every 500 ms; [20-60s]: no

vibrations; [60-65s]: 5 s vibration.

Figure 5.2: The Haptic Notifier (top) and the Xbee USB radio (bottom).

Server Side: the Experimenter’s Laptop
The experimenter ran the main control code on a laptop that acted as the server,

responsible for: (a) Measuring the participant’s fast and slow cadences and deriving

the mid levels from those through the experimenter’s key presses, which revealed

start, end, and number of strides. (b) Logging synchronization times from the
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wrist-worn Arduino, and the Android phones. (c) Reading the trial order from a

pre-generated table. (d) Running the study step-by-step and send the commands

such as “start the trial” to the Arduino. (e) Sending a request to the Arduino for

logs at the end of each trial, receiving them, and saving them to a file.

Cadence Measurement: RRACE

We used four Android phones equipped with our custom RRACE algorithm for

measuring users’ walking frequency (Chapter 4). We placed two phones in partic-

ipants’ front pockets and the other two in a small backpack: while RRACE is espe-

cially robust to orientation and body placement, here we used locations previously

shown to provide the highest accuracy. These phones logged the 3-D acceleration

of the user’s thighs and torso and measured and recorded the user’s cadence every

200 milliseconds. Duplication provided robustness to issues such as the Android

operating system terminating RRACE due to perceived CPU over-usage, or inad-

vertent button presses. We used the median of all active cadence estimations (to

discard outlier measurements) to improve measurement accuracy.

5.4.2 Experiment Design

Our experiment had two factors: guidance tempo (to assess response to divergence

from natural step rate), and repetition (learning). Each trial consisted of 20 s with

VT guidance and 40 s without.

An experiment session contained 16 regular trials (5 guidance rates × 3 repe-

titions + 1 dummy). Trials were put into out-and-back pairs for practical reasons;

because 15 is an odd number, we added a dummy trial at the end (whose data were

not used) to make sure the participant finished the experiment near the starting

point.

Factor 1 – Guidance Rate: We coordinated five guidance rates to each individual’s

own fastest and slowest walking frequencies (Section 5.4.3).

Factor 2 – Repetition: To ascertain learning (performance improvement as a

result of exposure) we presented every guidance rate three times, arranged in three

blocks, each consisting of the five rates in random order.
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5.4.3 Computing Experimental Guidance Rates

In an initial calibration step, we measured participant i’s slowest and fastest ca-

dences using RRACE, then matched that participant’s two extreme custom guidance

rates (cue tempos) gi[1],gi[5] to his/her slowest and fastest demonstrated cadences,

respectively. We then distributed the middle rates evenly on a logarithmic scale;

i.e., the ratio of each two consecutive tempos (gi[n+1]/gi[n]) is constant.

Reference frequency fr(t) was then set to one of gi[1−5].

5.4.4 Procedures

After introduction and consent, we asked the participant to walk at his/her slow-

est and fastest walking speeds. For each, we measured the time required for

twenty strides (t20). Our experiment program computed the inter-step interval

( τ = t20 / 20 ) and thence walking frequency ( f = 1 / τ ), to define this par-

ticipant’s g[1] and g[5] (slowest and fastest stride frequencies). We sent the tempos

to the wrist-worn Arduino client, and synchronized the phones and Arduino clocks

with the control laptop.

We next explained the task, the wrist display and the experiment format, then

carried out a representative practice trial. Participants were explicitly instructed to

try to (a) walk at the tempo of the cue, and (b) continue to walk at that same cadence

after the cue stopped. This was repeated until the participant fully understood the

protocol, and then the 15 actual trials (plus the dummy trial) were run. A session

took about 45 minutes and we thanked each participant with 10 dollars.

Pairing of Trials: Participants walked away from the experimenter on a straight

walkway for odd-numbered trials, stopped when they felt the sustained VT stop sig-

nal, then turned around. When they felt the new guidance cue they began walking

again, proceeding until they again felt the stop signal (in some cases passing the

experimenter). To conclude close to the experimenter, the experiment ended with

a dummy trial number 16 with a random cue frequency; its data were not used.

5.4.5 Metrics

We described users’ stride frequency with cadence ( f ) and cadence ratio ( f̄ ). Ca-

dence is the walker’s stride frequency, whereas cadence ratio is cadence divided by
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middle cadence, defined as the geometric mean of that walker’s fastest (gi[5]) and

slowest (gi[1]) stride frequencies, which was the guidance tempo gi[3] in this study

(Eq. 5.1). Cadence ratio was used to normalize participants’ cadences to their own

middle cadence, to minimize offset and scale deviation due to individual variability

in natural walking frequency and range.

f̄i(t) =
fi(t)
gi[3]

(5.1)

We then measured departure from the guidance cue with cadence error %, defined

as the difference between participant i’s cadence ( fi) and the tempo of the j’th

guidance signal (the tempo of the guidance signal at time t), normalized to the

latter and presented in percentage points:

ei(t) =
fi(t)−gi[ j(t)]

gi[ j(t)]
×100% (5.2)

5.4.6 Analysis Technique

Cadence was measured every 200 milliseconds on all of the phones, each datapoint

timestamped with the phone clock, and analyzed in (non-overlapping) two-second

windows. We converted the timestamps of all the data from the phones to the

computer time

We grouped the cadence measurements from all the phones at each window,

removed outliers and used their median for subsequent analysis, and removed the

first 4s where the participant is transitioning from a stationary position to natural

walking. One datapoint/2s in 56s of usable trial yielded 28 datapoints/ trial.

We separated data into VT cues on/off; then used Generalized Linear Model

(GLM) for statistical analysis of each region, with post-hoc pairwise comparisons

with Bonferroni adjustment for multiple comparisons. To assess the effect of cue-

off over time, we compared datapoints at different times in the cue-off region.
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Table 5.1: Summary statistics of cadence error % by guidance condition for cue-on (top) and
cue-off (bottom).

Cue On (18 s after the start of the trial)

Guidance mean sd median min max skew kurtosis se
g1 -0.50 2.47 0.00 -6.61 3.78 -0.35 -0.54 0.40
g2 0.40 5.51 -0.04 -20.36 13.50 -0.13 4.32 0.84
g3 -0.64 2.51 -0.54 -7.58 7.10 -0.01 1.91 0.39
g4 -3.20 4.71 -1.04 -19.13 3.20 -1.35 1.71 0.73
g5 -7.70 7.42 -9.10 -21.58 2.40 -0.16 -1.48 1.11

Cue Off (58 s after the start of the trial)

Guidance mean sd median min max skew kurtosis se
g1 6.11 6.07 6.50 -8.14 25.06 0.70 1.59 0.96
g2 3.43 5.26 2.74 -6.54 16.75 0.51 -0.36 0.83
g3 0.33 6.41 0.47 -24.06 10.56 -1.30 3.15 1.00
g4 -3.10 5.89 -1.47 -14.45 6.81 -0.47 -0.90 0.91
g5 -10.29 7.07 -10.98 -26.25 1.57 -0.33 -0.85 1.05

5.4.7 Results

Data Summary

15 participants (9 male), aged 19− 31 years (mean = 24.9, SD = 3.6), 152−
196 cm tall (mean = 169.7, SD = 11.2), and weighing 39− 90 kg (mean = 63.4,

SD = 14.2) took part. 4, 2 and 9 participants respectively had none,<5 years, and

>5 years of prior musical training.

Stride frequency increases with cue tempo (g1...g5) even 38 seconds after turn-

ing off the cue, i.e., at t = 58 s (Figure 5.3). The fastest VT cue shows less success

at making users walk faster (g5 and g4 are too close in Figures 5.3 and 5.4).

Cadence error % demonstrates how well people are following the VT cues:

positive (or negative) error % means the participant’s cadence is faster (or slower)

than the cue tempo. Figure 5.5 shows that when the cue is on, users closely follow

the cue tempo (average error < 4%) except for the fastest (average error -7.7%).

When we turn off the VT cue, step rate diverges more from cue tempo and (unsur-

prisingly) tends towards the middle stride rate.

Individual post-cue divergence is best seen by viewing data from a single

participant (second repetition) as a set of time series. Figures 5.6-5.7 are scat-

ter plots with a smooth curve fitted by the Locally Weighted Regression (LOESS)
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method [24]; Participant 4 was chosen randomly from 12 of the 15 participants

showing a similar response pattern. Consistently with the aggregate views, 20 sec-

onds into the trial when the cue stops, cadence error starts to grow, although for

some tempos, it quickly plateaus. For slower guidance cues (g1 and g2) cadence

error is generally positive, and negative for faster cues (g4 and g5).
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Figure 5.3: Cadence by guidance rate (average of all participants and all repetitions), when cue
is on (left/yellow, at 18s); and off (right/gray, at 58s). Despite inter-individual variability,
the cue-linked cadence increase is clear in both cases. Guidance rates are individual-
specific and thus cannot be shown.

Statistical Analysis

We separately analyzed guidance and non-guidance periods, to investigate whether

cadence error % is significantly different (a) under different guidance conditions

when the cue is on and off, (b) at different points in time since the start of the trial

when the cue is on, and (c) at different points in time after the cue is stopped (see

Table 5.1).

VT Cue On: The statistical analysis of Generalized Linear Model of the data

showed that for cue-on, guidance rate and time from trial start have a significant

effect on cadence error % (p < 0.05). Pairwise comparisons show that each two of

the guidance tempos differ significantly from each other. These factors also interact

with each other (p < 0.05), with a simple explanation: under slower guidance
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Figure 5.4: Cadence ratio by guidance rate, when cue is on (left, at 18s) and off (right, at 58s).
Cadences normalized to the participant’s middle tempo), in contrast to non-normalized
cadences of Figure 5.3, show less individual variance and the difference between the 5
levels is clearer.

tempos, walkers start with a positive error that shrinks as the cue continues, and

under faster tempos participants start with a negative error that then shrinks.

In the temporal response, the first measurement after the 4s transition period

removed for this analysis (Section 5.4.6) was significantly different from the rest of

the measurements during the cue-on region, but there is no significant differences

between subsequent 4s windows in the guidance period. This indicates that partic-

ipants aligned their walking rate with the cue tempo early on, attained stability by

4s, then maintained it thereafter.

VT Cue Off: Similarly to cue-on, when the guidance cue is off, guidance rate

and time into trial (or since cue-off) significantly impact cadence error % (p <

0.05). They also interact with each other in the cue-off region, with an explanation

similar to above. Pairwise comparisons show that each two of the guidance tempos

are significantly different from each other.

Temporally, two of the first measurements after stopping the cue were signif-

icantly different from two other times near the end. This means that the error

increases in amount when the cue stops but the change in error is so slow that there

is little difference except for points sufficiently far apart in time.
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Figure 5.5: Cadence error % by guidance rate, when cue is on (left, at 18s) and off (right, at 58
seconds). At the end of the cue-on phase (left), the smallest error is seen in the lower three
levels, g1, g2, and g3 (means: −0.5%,0.4%,−0.6% respectively) and the largest with g5
(−7.7%). After the cue stops, absolute value of error grows faster for g1 and g2 (absolute
value of means increase 5.6 and 3.0 respectively) than all other rates.

5.4.8 Discussion

Our experimental results confirm that periodic VT cues can easily affect pedes-

trian’s walking frequency, when consciously followed (less than 5% divergence

in four out of five cue rates and less than 10% during the fastest) (H1 accepted).

Our results showed that for tempos distributed across an individual’s full walking

range, divergence from cued tempos near and lower than individual’s natural walk-

ing frequency is lower (H2 rejected). Error increases when the cue is turned off

(H4 accepted), but this increase happened at a subtle rate within the 40s window

we observed.

When a user tries to synchronize steps with a cue, the direction of error and

its upper bound are generally predictable: positive when the cue is faster than

walker’s typical cadence and negative when slower (H3 accepted). A benefit of

this predictability is the possibility of mitigating overall error in a Closed-loop

Control system by anticipating the worst case scenario and adjusting the cue to

compensate, i.e., by applying a model of the walker’s response to this low-level

stimuli.
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Figure 5.7: Scatter plot of P4’s cadence error % during trials 6-10 by guidance rate (colour
coded) with smooth curve fitted by the LOESS method. From guidance cue off (20s) to trial
end (60s), cadence error tends to grow (further from zero) at least initially, then stabilizes
in some cases.

5.5 Conclusions and Future Work
In this chapter we proposed Periodic Vibrotactile Guidance (PVG), for regulating

pedestrian stride frequency. An exemplar application is guiding a commuter toward

the closest bus stop at the optimal walking speed, not sweating when there is time

for a stroll nor missing the bus when a slightly faster pace is sufficient. Other

applications for PVG include athletic training (a long-distance or sprint runner or

rower, seeking to maintain a step-level pace) and rehabilitation (displaying desired

step frequency to a patient instructed to achieve a given effort or mobility level,

and no more).
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Our results confirm that taction, and in particular stimuli applied through a

wearable to the wrist, is a viable choice for such applications. It is not used in

larger task of locomotion, and does not compete for perceptual or motor resources

that other tasks (listening, reading, even texting on a mobile device) might; simple

to learn, it is likely to be cognitively lightweight as well.

Whether audible or tactile, periodic guidance has a potential for more stable,

comfortable cadence regulation than the common alternative, bang-bang velocity

control, although this premise remains to be tested. Specifically, its continuity

allows for deployment in close-loop control systems – most simply a Proportional-

Integral-Derivative (PID) controller – that can further improve the user’s perfor-

mance by adjusting the cue based on current state, previous error and future pre-

dictions, with gains adjusted to the user’s needs and physiological responsiveness.

An interesting next step will be to explore the control parameter customization

needed for different task scenarios and individual differences.

Our experiment tested individuals’ ability to match stride frequency with a VT

cue displayed to the wrist. Most (13/15) could synchronize at 95% accuracy across

their full range of walking speed, with a 5-10% lag behind cues faster than their

natural cadence, and 5% lead ahead for slower cues, without significant training.

In day-to-day applications such as pedestrian guidance this error ratio will be neg-

ligible relative to other factors: a 5% error for a 15 minute walk is equal to 45 s,

and is predictable enough for a planning algorithm to compensate for it. In appli-

cations that require more accuracy such as training athletes, users’ focus and effort

could improve accuracy. Ideally, we would like users to “lock the buzz” to a partic-

ular point in their walk cycle to achieve maximum accuracy and stability; however,

without data on the phase of walking cycle we cannot be sure if that was achieved

by some users or not.

Walkers maintained their stride frequency within a manageable bound after

cue-off; divergence was slow enough to contemplate use of (at least) 30s ‘silence’

breaks between cued periods, important for avoiding irritation and adaptation. The

actual length of silence breaks can be further optimized by a Closed-loop Control

algorithm.
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5.5.1 Future Work

As we proceed stepwise to a fully viable control approach, the most immediate

next step after verifying conscious cue-matching ability is to examine subconscious

step-matching to VT cues. This is an essential component of a viable control ap-

proach for users unlikely or unable to fully concentrate on step rate for any length

of time.

Set up as a dual-task scenario, important cases to consider will be distracting

auditory, visual and cognitive tasks with qualities similar to those that we do while

walking and exercising (listening to music or podcasts, talking on the phone, nav-

igating a map, or perhaps even regarding our surroundings. Workload imposed by

the PVG system on any of these tasks, and of them on step-matching performance,

are of keen interest.

Finally, we anticipate that using PVG in a simple closed-loop format will be key

to its applicability. Many variables remain to be investigated on this topic: e.g.,

whether modifying vibration intensity in proportion to target tempo divergence

will improve performance, and the many possible means of incorporating silence

periods to mitigate adaptation and improve acceptability.
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Chapter 6

Periodic Vibrotactile Guidance of
Human Cadence, Performance
during Auditory Multitasking

The degree of slowness is directionally proportional to
the intensity of memory.

The degree of speed is directionally proportional to
the intensity of forgetting.

— Milan Kundera, Slowness

In this chapter we1 evaluate the viability of a haptic cueing approach for guid-

ing pedestrian walking cadence with regards to workload, walker’s performance,

and interference with auditory tasks. We previously demonstrated that pedestrians

can synchronize and maintain walking frequency with vibrotactile pulses delivered

on the back of the wrist from a wristband. Here, we examine walker’s guidabil-

ity in the face of realistic auditory multitasking scenarios (listening to podcasts, or

music of varying rhythmicity). We measure workload and walkers’ performance

under three guidance rates and four auditory tasks. Our results suggest that while

auditory tasks – in particular, those with verbal content – do undermine cadence

matching performance, stepping synchrony is generally achieved with >= 90%

1For a list of contributors and their level of involvement please refer to the Preface on page iv.
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accuracy within 10 seconds. Vibrotactile guidance does thereby successfully affect

walkers’ speed. Perceived guidance-related workload is statistically significant but

not related to cueing frequency; future work will assess its practical significance.

6.1 Introduction
Multitasking has become one of the main themes of our lives; society encourages

it, our ambitious lifestyles demand it, and technology facilitates it. Sadly, pro-

ductivity does not always improve; instead, the competition for mental resources

imposed by tasks conducted in parallel may slow us down or cause mistakes. When

multitasking is unavoidable, technology needs to mitigate negative impact – e.g.,

by simplifying a task, improving its timing, or diverting the required processing

to a less-used cognitive resource. A good example is the auditory step-by-step di-

rections that have become the norm for GPS navigation devices; augmenting the

graphical interface with auditory signals enables drivers to keep their eyes on the

road, and breaking the directions into small steps makes guidance signals easier to

digest.

Guidance (e.g., for time management, navigation, and finding nearby services)

is by definition multitasking: the guidance happens in parallel to a primary task

(e.g., coordinating a meeting, walking to a destination). Replacing or augmenting

the visual interface with an auditory one may reduce some negative effects (e.g.,

looking at the device instead of the road while walking or driving) but may also

create new usability challenges. For example, audition can be as occupied as vision

(listening tasks), while environmental noise can further interfere with perception.

The tactile modality is often suggested as an underutilized alternative.

Haptic cues, most conveniently implemented as Vibrotactile (VT) stimuli, have

the potential to apply less attentional load than visual and auditory cues, and con-

flict less with situational awareness and other listening tasks. The larger goal of

this project is to establish the degree to which this can be exploited in pedes-

trian guidance. In earlier steps, we identified sensorially optimal locations on the

human body for processing pedestrian guidance cues (Karuei et al. 2011 [78];

and Chapter 3), and a validated algorithm that can measure realtime cadence well

enough for interactive cadence guidance, with a commodity smartphone sensor
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Figure 6.1: Experiment setup. Left: during a trial, the participant carries four smartphones
equipped with RRACE algorithm for cadence measurement (two in front pockets and two
in backpack); another smartphone (audio player) is attached to the backpack with its screen
facing out for the experimenter to choose and play the audio tracks. The haptic notifier is
worn on the participant’s wrist. Right: the participant answers the NASA-TLX questionnare
on a laptop after each trial pair.

(Karuei et al. 2014 [79]; and Chapter 4). We then determined the range and ac-

curacy with which walkers are able to synchronize their stepping cadence with VT

cues (Karuei and MacLean 2014 [76]; and Chapter 5), by asking the pedestrian to

walk to the cue beat, and to continue with this cadence after a cue stopped.

This brought us to the focus of the present chapter: how well can walkers

follow these cues during realistic auditory multitasking; and what is the magnitude

of the workload that VT cues impose on them?
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6.2 Approach
Human walking, like many other movements (running, swimming, rowing), is

repetitive and its speed is defined by stride frequency (cadence) and length. Typi-

cally, a walker controls both parameters, unconsciously, to achieve a desired speed;

however, when one parameter (stride length or frequency) is constrained to in-

crease/decrease – within the walker’s ability – speed also changes proportionally

[89]. We explore the potential to exploit this property of walking in three sequential

steps.

1. Periodic Vibrotactile Guidance (PVG): Our guidance scheme is driven by pe-

riodic tactile cues, which render a desired frequency to the walker through the skin

as a stepping target. This means of communicating rate information fits well with

known capabilities of the haptic channel and may be helpful to pedestrians and

athletes who want to closely but efficiently manage the timing of repetitive move-

ments. Direct-mapped, PVG should require minimal learning and have a lower

steady-state impact on cognitive processing than symbolic cues [68, 100, 156].

Periodic cues are also simple enough to be combined with other haptic communi-

cation such as navigational or higher-level activity information.

2. Evaluating PVG and Workload: In the study reported here, we found that most

pedestrians can continue to synchronize their cadence with the VT cue tempo, even

in the face of a variety of types of auditory tasks. As a result, PVG successfully

affected the walking speed of pedestrians in the cued direction. Workload measured

under various combinations of auditory stimuli and VT guidance further showed

that workload due to tactile guidance is noticeable, but the cue frequency does not

significantly change its amount. We found that workload increase due to auditory

input was small compared to that from PVG, and had only a small impact on the

user’s ability to follow stepping cues. On average, users required about 8 seconds

to achieve a steady cadence from a stationary start.

3. Control of PVG: Ultimately, we plan to incorporate PVG into feedback control

to maintain or adjust the walker’s locomotion speed according to an application’s

changing specifications. Tempo ( f ) and its inverse – the cue interval (T = 1/f )

– can be any positive real number which provides PVG a continuous spectrum to
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operate on. This characteristic affords many linear and non-linear feedback con-

trol configurations to achieve fast, smooth, efficient, and/or error-free regulation of

cadence and speed. While this manipulation is beyond our present scope, it has

informed the design of the present study.

6.2.1 Contributions

The present evaluation provides:

1. Data on the effect of PVG rate and auditory task on cadence, stride length,

and walking speed.

2. Data on the effect of PVG and auditory task on workload during walking.

3. Analysis of walkers’ ability to follow PVG cues during auditory multitasking,

comparing guidance rates and auditory tasks in terms of performance and

workload.

4. Experimental methodology for measuring walking performance and work-

load during auditory multitasking, for re-use in exploring other workload-

reducing stratagems.

5. Recommendations on how to incorporate PVG so as to minimize its workload-

related impact.

These findings will inform improved pedestrian guidance systems, which by re-

ducing guidance-related mental effort can be helpful without compromising safety.

Our experimental methodology can be re-used in similar settings to better under-

stand motor control and cognitive functions and their relationship to auditory and

tactile stimuli, particularly for development of tactile and/or guidance applications.

6.3 Related Work

6.3.1 Vibrotactile Guidance

As previously outlined in greater detail (Section 5.3.1), a secondary task that uses

audiovisual channels – e.g., via a Global Positioning System (GPS) device – com-

petes for resources required for an aurally or visually demanding primary task (e.g.,
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driving or walking). This contributes to overload and inefficiency in visual and au-

ditory perception [70, 101, 162], undermines primary task performance [163], and

can thereby endanger safety and cause substantial stress.

The two obvious approaches to reducing visual and auditory, and ideally cog-

nitive, load are (a) limiting the secondary task (which the user may find unaccept-

able), and (b) replacing audiovisual cues with a lower-effort alternative.

Guidance of movement in space is one activity where the tactile modality

has exhibited promise as a replacement or augmentation for visual and auditory

channels. Examples demonstrating its unloaded guidance potential include Ertan

et al.’s embedded tactor array for rendering cardinal directions and stop signals

[35], Bosman et al.’s wrist mounted tactors for guidance in indoor places [11], and

Tsukada and Yasumura’s tactor belt capable of communicating the four cardinal

and four intermediate directions through eight tactors around the waist [163]; for a

full review, see Section 2.1.6.

Temporal (or spatiotemporal) guidance has the additional challenge of time-

variant dynamics. Maruyama et al.’s P-Tour [104] and ten Hagen et al.’s Dynamic

Tour Guide (DTG) [159] are examples of spatiotemporal guidance which schedule

visiting of tourist attractions based on the user’s location. Both of these use graph-

ical interfaces; this presents a potential sensory conflict with problematic results.

Alternatively, the Haptic Notification System (HANS) by Tam et al. is an example

of temporal guidance for time management during oral presentations, delivering

interrupt-based cues to the presenter and the session chair at certain points in time

during the presentation [156]. While this application was found to present minimal

additional sensory load, by its nature it required cognitive processing to make use

of the cues which in turn required practice and training, and thus is not directly

comparable to our aims in pedestrian support.

We envision a system where time management, speed, and direction cues are

combined in a navigation tool to help users achieve their goals with safety and

efficiency.
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6.3.2 Guidance of Human Locomotion

Walking is a repetitive task with a variable speed controlled by cadence (or stride

frequency) and stride length [89] as shown in Equation 6.1.

walking speed = cadence× stride length (6.1)

When unconstrained, we tend to walk at a speed most comfortable for us; generally

one that minimizes energy expenditure per distance [130]. Increasing or decreasing

walking speed is achieved by changing stride frequency and stride length [83]. It

is possible to control walking speed through constraining stride length [89, 119,

170], stride frequency [89], speed, or both [10]. As these are all obviously related,

one might expect to see a compensatory effect from stride length (or frequency)

when altering stride frequency (or length). However, Laurent and Pailhous showed

that these parameters are relatively independent, while each one is instead strongly

correlated with speed [89] – hence, an opportunity to control walking speed by

constraining and controlling stride length or stride frequency.

Stride length guidance has generally been achieved by visual cues such as tape

markers [89, 119, 170]; stride frequency by auditory cues such as metronomic

beats [10, 29, 89]. Haptically, Ferber et al. tried different methods for guiding

workout speed on a stair climber. Their metronomic approach (taps on the user’s

feet at double the rate of the desired cadence) did not give promising results [37].

In Chapter 5 we evaluated the use of periodic vibrotactile cues to guide human

cadence, and ultimately speed. In our design, we emphasized perceptibility, com-

prehensibility, and low cognitive processing effort. Feet are not ideal for mobile

cueing (sensitivity is low in the feet and degrades with movement body-wide –

Chapter 3), so we used wrist-worn tactors [156]. We found a basic ability to follow

cues, as well as its limit: participants fell behind fast VT cues and walked faster

than slow cues, relative to their typical cadence (Chapter 5). That is, rather than

exactly matching the cued tempo, the cues appeared to exert upward or downward

pressure on actual walking tempo.

138



6.3.3 Temporal Guidance and Auditory Task

Multiple Resource Theory (MRT) posits that the interference between two tasks

depends on how much they share stages (cognitive vs response), sensory modal-

ity (auditory vs visual), codes (visual vs spatial), and channels (focal vs ambient)

[171]. In this regard, VT guidance (periodic or non-periodic) has little to no in-

terference with a pedestrian’s vision. However, PVG and any auditory task (e.g.,

listening to music or podcasts or conversing) could interfere with each other in two

areas: non-visual sensory perception and motor control.

Mammals (and humans in particular) may be subject to three temporal scales

and/or mechanisms: the circadian clock involved in metabolic rhythms; an inter-

val timer, flexible, cognitively controlled, and active at seconds to minutes; and a

millisecond clock for speech, music, motor control [17]. Ideally, PVG will engage

the millisecond clock and impact motor control, eventually reducing mental work-

load via downgraded reliance on the “cognitively controlled” interval clock in daily

tasks (e.g., deciding when to start or end a task based on temporal constraints). As

a result, the sensory perception of both the vibrotactile cues and auditory tasks that

are time-sensitive, such as listening to music, would share the millisecond clock.

On the other hand, movement timing depends on basal ganglia (involved in interval

timing) and cerebellum (millisecond timing). The latter is also heavily involved in

rhythm synchronization and music perception [176].

This suggests that listening to music, especially the rhythmic variety, will in-

terfere with/be most affected by PVG. To test this, we used auditory tasks with

obvious and subtle rhythms, or with verbal content.

6.3.4 Performance and Workload

Methods employed to evaluate mobile and handheld systems include qualitative

(interviews and observations) and quantitative (e.g., error rate and timing of events

with the help of video recording [123]). The active component of mobile use has

been considered via heart rate and deviation from preferred walking speed [84],

and cognitive workload [84, 123].

Rubio et al. group tools for evaluating physical and mental workload into

performance-based, physiological, and subjective measure categories [135]. They
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note the frequent use of subjective procedures due to ease of implementation, non-

intrusiveness, and sensitivity to operator load. Of the subjective workload measures

we employ – NASA Task Load Index (NASA-TLX), Subjective Workload Assess-

ment Technique (SWAT), and Workload Profile – the first [65] has seen the most use

in VT guidance research. Two of many research examples are Pielot & Boll’s use

of NASA-TLX to measure workload of their tactile navigation system “Wayfinder”

and compare it with a commercial pedestrian navigation system [122]; and Hoggan

et al’s investigation of perception of mobile multi-actuator tactile displays that use

rhythm and location [70].

In the present research, our primary concern is to observe performance and

workload as a result of our experimental conditions. Our quantitative performance

metrics includes cadence, cadence error % (i.e., divergence from the guidance

cue), stride length, and speed and we used the full NASA-TLX to measure per-

ceived workload, which includes mental demand, physical demand, temporal de-

mand, performance, effort, frustration, and total workload. We did not collect

other qualitative or subjective metrics at this stage (e.g., regarding participant pref-

erences) to keep experimental sessions to a manageable length and because they

will be more relevant in a setting where participants use PVG over longer periods

of time.

6.3.5 Measuring Cadence

Accurately and usably guiding cadence will require Closed-loop Control (CLC),

and concomitant accurate realtime measurement of actual step-rate. With only

open-loop control (no system access to resulting rate), the designer has little alter-

native to constant-level, ongoing cue output regardless of need, and this is bound

to cause user irritation and stimulus adaptation. While discussion of possible CLC

algorithms are beyond our present scope, the availability of adequate cadence mea-

surement technology is enabling to our larger aims as well as necessary to collect

the data reported here.

Cadence can be measured using many different technologies, from traditional

pedometers equipped with mechanical or piezoelectric sensors to accelerometer-

based instruments [43, 106, 174] (see Chapter 4 for a full review of these and
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several other methods). In order to be used in a guidance system, a cadence mea-

surement should be: (a) sufficiently accurate, (b) realtime, (c) robust to placement,

orientation, and user differences, and (d) portable. We previously presented RRACE

(Robust Realtime Algorithm for Cadence Estimation), which meets these require-

ments through a frequency-based approach, in Chapter 4. RRACE measures mo-

mentary cadence via frequency-domain analysis of accelerometer signals available

in smartphones. We used RRACE in our experiment (Section 6.4.5); however, its

development and cadence measurement in general are not key parts of the present

evaluation.

6.4 Experiment
We conducted an experiment to assess the effect of auditory task on a user’s per-

formance, and the amount of workload PVG imposes on the user in conditions with

and without several key types of auditory tasks. We hypothesized that:

H1 PVG will influence the user’s cadence, stride length, and walking speed in the

cued direction.

H2 Auditory task will interfere – variously – with the effect of PVG on cadence,

stride length, and walking speed, with greatest impact for highly rhythmic

music.

H3 Users will be able to synchronize step cadence with the guidance cue within

5-10 seconds.

H4 Presence of PVG will increase workload, with greatest impact for faster cues.

H5 Auditory task will add to workload during walking, with the effect greatest for

a verbal task (e.g., listening to a podcast).

6.4.1 Experiment Design

We used a within-subject repeated-measures design with two factors: guidance

tempo and auditory task. Each trial lasted 25 s, and was part of a two-trial, out-

/return repeated pair; i.e., the subject executed a given condition once in each di-

rection, finishing the return trial close to the starting point. An experiment session
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contained 24 trials: two instances of 3 guidance tempos × 4 auditory task condi-

tions.

6.4.2 Guidance Conditions

We used three guidance conditions: fast, slow, and no guidance. Because each

participant has a personal natural cadence, in an initial calibration step we mea-

sured the participant’s typical cadence by timing ten steps and measuring the aver-

age step interval, then matched the fast and slow guidance rates to 1.15 and 1/1.15

times his/her typical cadence, respectively. This ratio value was decided based

on the average range of participants’ cadences, as informed by our previous study

(Chapter 5). There, we set the fastest and slowest tempos to each participant’s

fastest and slowest cadence and distributed the other three rates between them; but

found that variance in how participants chose their fastest and slowest rates (narrow

vs broad range) reduced our data’s consistency. Here, we used the same fast/slow

ratio (i.e., 1.152) for all subjects.

Our current focus was workload and performance, and the effect on them of

auditory tasks. We therefore tested two rather than the five guidance rates of

Chapter 5, allowing us to include a range of auditory conditions for a reasonable

session length.

In Chapter 5 we used a baseline guided tempo near the participant’s natural

cadence, which turned out to be uninformative. Here we replaced this with a no-

guidance baseline that would permit comparison with guided conditions for ca-

dence, cadence error, overall movement speed, and subjective workload.

6.4.3 Auditory Tasks

We tested four auditory task conditions: podcast, techno, classical, silence (Ta-

ble 6.1).

Podcast examined the effect of verbal auditory tasks on participants’ perfor-

mance. Another option, an actual scripted phone conversation administered by a

confederate, was infeasible due to low controllability.

We sampled the diverse space of music, a key pedestrian diversion, by varying

rhythmic emphasis, on the premise that this will generate higher PVG interference
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Table 6.1: Auditory task conditions used in evaluation.

Type Task Comments
Verbal Podcast Engaging (but obscure) segment to fully hold

attention: “What Caused the Sabre-Tooth
Tiger Extinction”, produced and broadcasted
by CBC’s “As It Happens” [19]. All partici-
pants confirmed its novelty.

High Rhythm Techno Non-vocal techno song called “Supa-Dupa-
Fly” with a typical techno-trance structure,
and a simple and distinctive rhythm. We pro-
duced several samples with varying tempos.

Low Rhythm Classical Johann Sebastian Bach’s “Air on G String” –
consistent melodic elements devoid of strong
or repetitive rhythm. One version (conven-
tional tempo) was used.

Baseline Silence No auditory stimuli

than melodic variation. Factor levels were high (techno) and low (classical).

Choice of auditory rate: Techno music slower than a pedestrian’s typical ca-

dence would sound strange, whereas a beat faster than the fast VT cues would

reinforce, rather than conflict with, the VT cue – undermining experiment objec-

tives.

We resolved this by choosing a single auditory tempo near the geometric mean

of the participant’s typical cadence and the fast cue ( ftechno =
√

1.15× ftypical).

Modifying the music on the fly to match participants’ unique cadence and guidance

rates was impractical, so we prepared 14 versions in advance and chose the best-fit

at run time. The average of humans’ typical cadence is 2 Hz (120 BPM), so we

created a 120 BPM base version, plus eight faster and five slower versions. Each

rate was 1.036 (= 1.151/4) times faster/slower than the adjacent ones, ranging from

1.679 Hz (100.8 BPM) to 2.645 Hz (158.7 BPM).
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6.4.4 Metrics

The following metrics were computed for each sample, and an aggregate value

compiled for each trial.

Cadence

Stride frequency was sampled at 1 s intervals using RRACE (Chapter 4) running on

four Android phones.

Cadence Error %

The participant’s measured error (divergence from guidance rate) divided by guid-

ance rate at each sample. The sign of the error indicated whether the participant

was behind or ahead of the tempo.

Cadence Ratio

Measured cadence divided by walker’s natural cadence, at each sample. Normal-

ization was performed due to large individual differences in natural cadence.

Speed

The participant’s average walking speed during a single trial. We placed two

coloured flags, one about 2 m after the starting point and another ∼ 17 m from

the first. An experimenter (E2) timed participants as they passed the flags, going

away and coming back. Speed was post-computed as distance between the flags

divided by elapsed time.

Speed Ratio

Measured speed during a single trial divided by that participant’s speed during the

baseline condition (silence with no guidance). This parameter allows combination

of speed measurements from all the participants.
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Subjective Workload

Participants reported workload using two-part NASA-TLX questionnaires after each

trial pair (going away, coming back). In Part 1, the participant rates six subscales

addressing mental demand, physical demand, temporal demand, performance, ef-

fort, and frustration on a single page, in a 100-point range in 5-point steps (20

grades). In Part 2, the participant adds weights to these subscales via pair com-

parisons (e.g., physical demand versus frustration); as 15 questions, one per page.

Each NASA-TLX questionnaire took about 2 minutes to complete. We used the total

workload index and the six subscales in our analysis.

Figure 6.2: Data flow, throughout the experiment and after the experiment during data pro-
cessing.

6.4.5 Apparatus and Context

Our setup consisted of a wrist-worn VT display, cadence sensing (four Android

smartphones running a custom step-detection algorithm), a control laptop, an An-

droid phone to play audio files, a stopwatch, and a questionnaire laptop.

Experiment information flow is shown in Figure 6.2 (yellow area). Two exper-

imenters carried out the protocol. The control laptop managed study conditions by

informing Experimenter 1 (E1) which pre-chosen audio track should be selected

for each trial, and sending commands wirelessly to the VT display. The phones

constantly measured walking frequency. E2 administered the NASA-TLX question-
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Figure 6.3: The Haptic Notifier (top) and the Xbee USB radio (bottom).

naire after each trial and timed participants for speed measurement.

VT Cues – Android Wrist Display

To deliver tactile cues to the participant’s wrist, we used Tam et al.’s Haptic Notifier

[156] (Figure 6.3). We used three types of vibrations, as detailed in Table 6.3.

Table 6.2: Elements of Android wrist display [156].

Part Quant
Arduino Fio microcontroller [151] with XBee socket ×1
XBee series 2 radio to communicate with experimenter laptop ×1
synchronized eccentric-mass tactors (∼ 190 Hz – Chapter 3) ×3
lithium polymer battery ×1

The laptop and the Arduino were synchronized via timestamps at session start,

then operated independently during trials to avoid communication delays. The

Arduino logged the trial start / end, then communicated to the laptop at trial com-

pletion (Section 6.4.6).

146



Table 6.3: Vibrations used in study (∼ 190 Hz). T (turn) and S (stop) use similar vibrations, T
ends an odd trial and begins an even trial, S ends an even trial (and the trial pair).

Cue Occurrence Description Dur
C: count to 3 start of odd

trial
(0.5 s vibration +0.5 s silence) ×2 +1 s
vibration

3 s

G: guidance during trial 100 ms vibration, interval defined by guid-
ance tempo

1/f

T: turn end (start)
of odd
(even) trial

5 s of constant vibration 5 s

S: stop end of even
trial

5 s of constant vibration 5 s

Overall Experiment Control: Base Laptop

The main control code ran on a server laptop, responsible for: (a) Measuring the

participant’s fast and slow cadences, and deriving mid levels through the experi-

menter’s keypad entries which marked start, end, and number of strides. (b) Log-

ging synchronization times from the wrist-worn Arduino, and the Android phones.

(c) Reading the trial order from a pre-generated table. (d) Running the study step-

by-step and send the commands such as “start the trial” to the Arduino. (e) Send-

ing a request to the Arduino for logs at the end of each trial, receiving them, and

saving them to a file. This laptop remained in a stationary location while the par-

ticipant walked out/back, within continuous wireless range.

Smartphones – RRACE Cadence Measurement

For redundancy, we used four RRACE-equipped Android phones to measure walk-

ing frequency (Chapter 4). We placed two phones in participants’ front pockets and

the other two in a small backpack: while RRACE is robust to orientation and body

placement, here we used locations previously shown to provide the highest accu-

racy. These phones logged the 3-D acceleration of the user’s thighs and torso and

measured and recorded the user’s cadence every 200 milliseconds. Duplication

provided robustness to issues such as the Android operating system terminating

RRACE due to perceived CPU over-usage, or inadvertent button presses. We used

the median of all active cadence estimations (to discard outlier measurements) to
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improve measurement accuracy.

A fifth smartphone, used to play audio files, was mounted on the shoulder bag

with its display accessible to E1 (Figure 6.1).

6.4.6 Procedures

We recruited participants through university mailing lists and posters around the

campus. The experiment took about 60 minutes and participants were compen-

sated $15. The actual experiment had the following steps, where P indicates the

Participant and E1, E2 the experimenters.

1. Calibration and Instruction:

• Introduction and consent

• Cadence baseline: While P walked at his/her typical walking speed, E1 mea-

sured time required for twenty strides (t20) and computed average inter-step

interval (τ) and walking frequency ( f = 1/τ). Guidance tempos were set to

1.15× faster and slower than the typical cadence, and sent to the wrist-worn

Arduino client.

• Synchronization: Arduino and smartphone clocks were synchronized with the

control laptop.

• Instructions: E1 explained task, wrist display and trial format, then instructed

P to execute fast and slow practice trials. P was instructed to try to walk at the

cue tempo, and requested to practice until in full understanding of protocol.

• Equipage: E1 placed two smartphones in the participant’s front pockets, and

three in or on a small shoulder bag.

2. Trials, Run in Pairs:

The 24 trials were performed in 12 pairs; paired trials shared conditions (auditory

task and guidance tempo) but had different walking directions (odd numbered trial:

away from the starting point, even numbered trial: towards the starting point).

• Preparation: P stood at starting point near E1, who then started audio (except

in the silent mode).
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Figure 6.4: Flowchart of the experiment. Beginning in upper left, a single loop is one trial pair,
to be repeated 12 times (trial number i increments twice in each loop). Purple denotes
presence of VT cues (except in no-guidance conditions), and rectangles data collection.
The 100 ms vibration during trials is the same across all guided trials but the vibration
interval (and the silence) during trials is defined by the tempo of the guidance cue; here,
for a tempo of 2 Hz, the vibration interval is 500 ms and therefore, the silence is 400 ms.

• Odd trials: Following a VT count to three, P paced away from E1 for 25s.

• Turning around: When notified by a continous 5s vibration, P stopped and

turned around.

• Even trials: Without pause, P stepped towards E1 for 25s.

• End of trial pair: P received a continous 5s vibration and stopped. E1 stopped

audio (if not silent mode).

• NASA-TLX questionnaire: P sat down and completed the NASA-TLX question-

naire on a laptop administered by E2 while E1 wirelessly downloaded the start

and end timestamps from the haptic notifier to the computer.

6.4.7 Data Preparation

Cadence was measured every 200ms on all of the phones, and each datapoint times-

tamped with the phone clock. After converting phone timestamps to computer

time, data were analyzed at 1 s intervals. Figure 6.2 illustrates data flow through-

out the experiment and during data processing.
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• Cadence: We grouped cadence measurements from all four data-collection

phones at each timestep (i.e., four observations at t seconds after the start of

trial where t ∈ N and t ≤ 25) and used their median (to guard against outliers).

In subsequent analysis, we removed the first four seconds of each trial, where

the participant is transitioning from a stationary position to natural walking.

This procedure produced one datapoint / s in 20s of usable trial, yielding 21

datapoints / trial (i.e., t ∈ {5,6, ...,25}).

• Cadence error: We computed cadence error % from cadence measures and

guidance frequency for that sample.

• Speed and stride length: We added manually-measured speed (Section 6.4.4) to

cadence data, and computed stride length as speed divided by cadence (Equa-

tion 6.1).

6.4.8 Analysis Technique

We used Generalized Linear Models (GLM) for statistical analysis of performance

and workload data, followed by a Tukey post-hoc test for multiple pairwise com-

parisons.

When there was no interaction effect between factors, we conducted pairwise

comparisons on every significant main effect. Otherwise, we analyzed the interac-

tion in terms of simple effects (Rutherford 2): we divided the dataset by one factor

(n subsets for n levels of the factor), and analyzed the statistical significance of the

other factor. We then conducted pairwise comparisons of its levels on each of those

subsets separately and repeated this with the two factors switched.

For example, for physical demand, guidance emerged as the only significant

main effect. Thus, we only compared guidance conditions: fast vs slow guidance,

slow vs no guidance, and no vs fast. In contrast, cadence error % had three signif-

icant main effects (guidance, auditory task, and time) and an interaction between

guidance and auditory task. In this case, we first used pairwise comparison of

time because it did not interact with other factors; second, we split the dataset by

guidance condition into two subsets, and conducted pairwise comparisons of four

2 [138] Section 3.2.1, pg. 55; Section 9.3, pg. 169.
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Figure 6.5: All statistical effects visualized with p = 0.05 as significance level. The three
factors (auditory task, guidance tempo, and time) and their interactions (auditory task ×
guidance tempo and guidance tempo × time) are colour coded in red, violet, green, pink,
and cyan respectively. We omitted the interaction between auditory task and time because
it was never significant. Significant main effects and interactions are shown with three
types of arrows: (a) significant effects that cannot be interpreted because of presence of
interaction, (b) significant effects with no pairwise difference between any two of their
levels, and (c) significant effects with significant difference between some of their levels
are shown with dashed lines, thin solid lines, and thick solid lines, respectively.

auditory tasks on each of the two subsets; and third, we split the dataset by auditory

task into four subsets and compared fast with slow guidance for each.

6.5 Results
In this experiment 24 participants (11 female), aged 19-58 (mean = 25.96, SD =

10.2), 157− 190 cm tall (mean = 171.3, SD = 9.5), and weighing 43.5− 100 kg

(mean = 66.59, SD = 14.5) took part. 11, 7, and 6 participants respectively had

none, < 5 years, and ≥ 5 years of prior musical training. 14, 9, and 1 participants

respectively had none, < 5 years, and ≥ 5 years of prior performing arts training

including dance, ballet, and theatre.
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6.5.1 Presentation of Results

This study employed five guidance and seven workload metrics, with an analysis

based on GLM and Tukey pairwise comparisons. To visualize this complexity, we

focus on important common patterns and exceptions. Omnibus analysis results are

available in Appendix D.4, and Figure 6.5 displays significant main and interaction

effects.

Number of pairwise comparisons: Because cadence error % is only mean-

ingful when there is a guidance cue, the no guidance condition is omitted when

analyzing cadence error % but presented for other metrics. Therefore, cadence

error % has only the fast–slow comparison for guidance conditions. All other met-

rics have three guidance conditions and three pairwise comparisons: fast–slow,

slow–no guidance, and no guidance–fast. Auditory conditions are the same across

all metrics: four conditions and six pairwise comparisons. Because the number

of pairwise comparisons for time factor was significantly higher, we only report

the time after which there is no significant difference between any two times. In

summary: for a factor with n levels, there will be n(n−1)/2 pairwise comparisons

(n choices for the first condition and n−1 choice for the second condition divided

by two to account for symmetry). Tukey’s test subsequently compensates for the

increase in probability of making a type I error caused by multiple comparisons.

6.5.2 Cadence Error %

PVG suggests a stride frequency to users; it is up to users to follow this frequency.

Analyzing cadence error % shows us how successfully users of our system can

follow the cue. Indeed, guidance condition affects cadence error % regardless

of all other factors (Figure 6.6). Cadence error % is always negative under fast

guidance (mean=−18.9%, i.e., users fall behind the cue tempo) and its magnitude

is larger than error under slow guidance (mean = −12.7%). It is largely skewed

(magnitude of median is much smaller than the mean) by poor performance of

six users. Cadence error % is also affected by auditory task, but this effect is

small relative to that of guidance condition. Podcast–techno (mean = −18.2% vs

−12.5%), classical–silence (mean = −19.2% vs −13.3%), and techno–classical

are significantly different regardless of guidance condition; the results of pairwise
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comparisons in each guidance subset are shown in Table 6.4.

Table 6.4: Pairwise comparisons of cadence error % of auditory task levels per each guidance
condition. P, T, C, and S are podcast, techno, classical, and silence respectively. Auditory
tasks are sorted within each guidance subset by mean of cadence error % in the last column
(Order) from left to right; all means are negative with the largest magnitude to the left.

Guidance Subset P-S P-C P-T T-C T-S C-S Order
Slow No Yes Yes Yes Yes Yes CPST
Fast Yes No Yes Yes No Yes PCTS

Cadence error % only changes significantly during the first seven seconds after

start of trial.

6.5.3 Cadence

Can PVG affect participants’ cadence despite the error and in presence of auditory

task? Cadence values do track guidance cue rate (mean = 1.79Hz,1.70Hz,1.46 Hz

for fast, no, and slow guidance respectively; Figure 6.7). All guidance conditions

are significantly different from each other in terms of cadence regardless of au-

ditory task, with the exception of techno music (no significance for no–fast guid-

ance).

Podcast–techno (mean= 1.59 Hz vs 1.72 Hz), classical–silence (mean= 1.56 Hz

vs 1.69 Hz), and techno–classical, are significantly different from each other re-

gardless of guidance condition; Table 6.5 shows comparison results in each guid-

ance subset. Cadence stops changing significantly at 7, 8, and 10 seconds after the

start of trial under slow, fast, and no guidance condition respectively.

Table 6.5: Pairwise comparisons of cadence of auditory task levels per each guidance condi-
tion. Auditory tasks are sorted within each guidance subset by mean of cadence in the last
column (Order) from left to right.

Guidance Subset P-S P-C P-T T-C T-S C-S Order
None Yes No Yes Yes Yes Yes PCST
Slow No Yes Yes Yes Yes Yes CPST
Fast Yes No Yes Yes No Yes PCTS
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(main effects) as well as their interaction are significant.
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6.5.4 Speed, Stride length, and Speed Ratio

Is speed and/or speed ratio affected by PVG in presence of auditory task? Does

stride length play a role? Walking speed under slow guidance, mean = 1.20 m/s, is

significantly different from no (1.38 m/s) and fast guidance (1.44 m/s), regardless

of auditory task. Speed under podcast (1.29 m/s) is significantly different from

techno (1.38 m/s) and silence (1.36 m/s) and different between techno–classical

(1.33 m/s), regardless of guidance condition. Stride length completely follows the

pattern of speed. Speed ratio also follows speed with one exception: no guidance

is also different from fast guidance regardless of auditory task (Figure 6.8).

6.5.5 Workload

Patterns in NASA-TLX results are relatively simpler than cadence (Figure 6.5). No

guidance differs from both slow and fast guidance across all seven NASA-TLX

factors including total workload index, regardless of auditory task. In every factor

of the seven, fast guidance scores highest (most workload) and no guidance the

lowest.

Auditory task is a significant main effect for five NASA-TLX factors (mental

demand, performance, effort, frustration, and total workload) but the only signif-

icant difference between two auditory tasks is for mental demand and is between

podcast and every other auditory task regardless of guidance condition.

6.6 Discussion

6.6.1 Guidance Cue

H1: PVG will influence the user’s cadence, stride length, and walking speed in the

cued direction. All parts accepted.

Our results from this experiment confirm those of our previous experiment

(Chapter 5) in showing that most people can synchronize their stride frequency

with VT cues either very (here, 9/24 have median absolute error < 5%3) or reason-

ably well (13/24: < 10%). The two studies differ in that here, for consistency we

38 s after the cue starts to the end of trial.
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Figure 6.8: Speed (top), speed ratio (middle), and stride length (bottom) per guidance condi-
tion (left) and auditory task (right). Guidance and auditory task (main effects) are signifi-
cant for all the three metrics.

defined min/max walking tempos, resulting in more extreme (and more difficult)

tempos to follow than when participants set their own; and, we added sensory and

cognitive competition in the form of auditory tasks. As before, participants gen-

erally walk faster than slow guidance which produces a very small error and walk

slower than fast guidance with a moderately larger error. When participants did

not receive any cue they were inconsistent in their own typical walking frequency,

suggesting that the VT cue is useful even at the user’s typical cadence. Our analysis
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Figure 6.9: NASA-TLX results colour-coded by guidance condition (top) and auditory task
(bottom).

showed that PVG successfully affected participants’ cadence and speed regardless

of auditory task.

Stride length is obviously also an important component of speed. Our analysis

showed that slow VT cues cause participants to take significantly smaller strides

relative to their typical stride length, but under fast guidance, stride length remains

at a typical level. This could explain why fast cues impact speed relatively less

effectively than slow cues despite their effect on stride frequency. However, the ef-

fect of fast VT cues is still sufficiently large to increase speed ratio (the participant’s

speed relative to his/her own baseline speed). We employed VT cues 15% faster

and 15% slower than participants’ typical cadences and achieved 20% change in

speed from slowest to fastest.

6.6.2 Effect of Auditory Task on Performance

H2: Auditory task will interfere – variously – with the effect of PVG on cadence,

stride length, and walking speed, with greatest impact for highly rhythmic music.

First part accepted.
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Although the auditory tasks seemed to affect cadence, analysis of each audi-

tory task level revealed a strong interaction with guidance condition. It seems that

highly rhythmic music that is faster in tempo than a user’s typical cadence may in-

deed reinforce the fast guidance by encouraging the user to walk faster. In contrast,

listening to a podcast or classical music seems to slow down the user; in the case of

a faster than typical guidance cue, it slightly reduces the impact of guidance. How-

ever, the effect of auditory task on other metrics such as speed and stride length

is independent of guidance condition. Participants take smaller strides and walk

more slowly when listening to a podcast, and take longer strides and walk faster

under techno music. However, this difference in stride length and speed (7% in the

case of speed, speed ratio, and stride length) is much smaller than the difference

caused by the guidance cue (20-21%, from slow to fast).

6.6.3 The User’s Response Time

H3: Users will be able to synchronize step cadence with the guidance cue within

5–10s seconds. Accepted.

Elapsed time since the start of the trial also significantly affected cadence error

but the result was predicted: because participants started each trial from a station-

ary mode, cadence increased during the first few seconds (7-8s) and cadence error

decreased. After that, cadence and cadence error did not change significantly.

Furthermore, by comparing that response time with the time it takes partic-

ipants to start walking from a stationary position until getting a steady cadence

under no guidance (roughly 10s), we can conclude PVG can get pedestrians up to

speed significantly faster than a single notification would (e.g., the start signal at

the beginning of no guidance trials).

6.6.4 Effect of Guidance on Workload

H4: Presence of PVG will increase workload, with greatest impact for faster cues.

First part accepted, second rejected.

PVG adds to the total perceived workload measured by NASA-TLX by increas-

ing all six basis scores. However, fast and slow guidance rates were not associated

with significant changes in any workload score. This suggests that the workload
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caused by PVG is real but it is likely that the tempo of the recurring VT cue does

not change the amount of workload (Figure 6.9).

6.6.5 Effect of Auditory Task on Workload

H5: Auditory task will add to the workload during walking, with the effect greatest

for a verbal task (e.g., listening to a podcast). Partially accepted.

Auditory task has no effect on physical and temporal demand and very little to

no effect on the other NASA-TLX scores including total workload. While listening

to podcast seems to cause the most workload for participants, it is only significantly

different from silence and the two musical tasks in its effect on mental demand.

This suggests that the additional workload of auditory tasks similar to these are

small compared to the workload caused by guidance (Figure 6.9).

6.6.6 Interpreting Subjective Workload Measures

NASA-TLX scores in our experiment cannot be used to precisely compare auditory

and guidance workload (or to scores reported in other works) because of differ-

ences in how we encouraged participants to focus on the two tasks throughout the

protocol (not just at a NASA-TLX assessment time). It is possible that the partici-

pants were using different calibrations in their assessment of the two tasks.

In addition, there is a discretization aspect of NASA-TLX reports in that if par-

ticipants noticed a difference between two conditions at all (e.g., slow/no guidance)

they would give a nonzero score simply for noticing it, even if the impact was ex-

tremely minor.

As noted by Hart, these subjective workload measurements are relative (e.g.,

fast vs no guidance or listening to podcast vs silence) and lack a “redline” indicator

when workload is too high [65]. Statistical significance of their difference does not

necessarily translate to practical significance. If fast guidance caused less workload

than the techno auditory task, then if we consider listening to techno music to be a

low-workload task, we can easily argue that fast guidance is also a low-workload

task. However, having a workload that is higher than listening to techno cannot be

used for the opposite argument.
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6.7 Conclusion
In this chapter we presented a workload evaluation of periodic vibrotactile guid-

ance. PVG is a system that uses cadence synchronization to guide a pedestrian’s

walking speed without reliance on audiovisual channels, and it was important to

evaluate the degree to which this may indeed be helpful. We also presented a

framework for evaluating pedestrian cadence assistance in outdoor settings, with

experimental control over cue rates, guidance mode, and a diversity of auditory

tasks, and suitably accurate measurement of resultant step rate. We measured per-

formance metrics such as cadence, cadence error (i.e., divergence from the desired

cadence), stride length, and walking speed in addition to perceived workload mea-

sured through computerized NASA-TLX questionnaires.

We have proposed a series of successively more difficult goals addressed in this

evaluation. The first is simply that most people can follow stepping cues to a useful

accuracy (90% and above) in a reasonable amount of time (under 10 seconds). The

results reported here support this, and are also consistent with a non-workload

previous study (Chapter 5).

Next, we confirmed an impact on speed. We knew it was possible that under

increasing cue frequency, participants might take shorter strides. This would re-

duce the effect of faster cues, cancel them out, or even reduce walking speed. We

observed, however, that under faster guidance stride length remained the same but

cadence increased and both were lower under slower cues and thus the resultant

speed was guided in the right direction.

There will of course be a limit in this, and now we have also identified some

evidence for where it might lie, in the imperfect and somewhat skewed responses

we did see. It is reasonable to anticipate that when we increase cadence even

further, participants may stop increasing step rate altogether, and/or their stride

length could start to decline and eventually impact their speed management.

For PVG to really be useful, it needs some degree of robustness against auditory

task interference, along with the baseline visual load involved in walking: process-

ing auditory streams is something that pedestrians using this assistance will likely

wish to do at the same time. PVG depends on millisecond timing system of the

brain [17] and affects motor control, and does not depend on speech or complex

160



cognitive tasks. Further, rhythmic music might directly mask or compete with a

tactile cue. We therefore anticipated that PVG performance would be most dam-

aged by music and particularly rhythmic music, and less by a verbal task such as

listening to a conversation (a podcast in this experiment). Surprisingly, listening to

a podcast interfered most severely with guided walking. The auditory task’s effect

does not have a practical significance when compared with the workload effect of

guidance. However, our study only addressed tasks that involved processing of im-

posed auditory stimuli. It is possible that the workload caused by speech generation

– e.g., during a conversation or in recall of memories – could cause considerably

more workload.

Finally, while we cannot yet rate PVG workload in terms of its real world impli-

cations, it is evidently noticeable at minimum, and requires further investigation.

6.8 Future Work
There are two immediate major directions in which this work supports expansion:

a more in-depth understanding about inherent PVG merits, flaws, and limitations;

and design of integrated, practical guidance systems that incorporate the findings

of this work and others that come ahead.

The perceived increment in workload due to vibrotactile guidance is statisti-

cally significant. Future work needs to assess the practical significance of this

strain, which our methods could only register as perceptible relative to an absence

of guidance. With simple variations in experiment design, we can also generate

more comprehensive characterization data. For example, by increasing trial length

we can study learning effects and long term impact, and by considering generative

auditory tasks such as conversation or questions and answers over a phone call our

data will extend into other realistic scenarios. These were not possible within the

scope of a single study but are important. It may also be productive to consider

other cognitive impact metrics besides workload via the NASA-TLX; for exam-

ple, measuring attention, perhaps via the Stroop test [102]. Administering Stroop

during walking could be a challenge, and care must be taken not to introduce a con-

found. We have considered assessing a Stroop test immediately after a trial based

on the fact that the effect of guidance (and/or auditory tasks) on attention does not
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vanish right away.

We are also interested in extending our findings to the design of closed-loop

PVG systems that consider additional contextual information such as time of events,

geolocation of the user, traffic, and interruptions. Perhaps most interestingly, we

see Closed-loop Control as a means of mitigating the small but important strain we

have found that PVG can impose on the walker. A practical VT guidance system

with context as well as highly resolved cadence and speed presents several potential

advantages. It can choose a rate that is optimal based on spatiotemporal constraints

of the user (e.g., distance to destination and time of events) and task difficulty

(e.g., slope of the street and weather condition). It can selectively turn off the

cue for a period of time, to both reduce workload and prevent physical stimulus

adaptation [64]. Finally, now that we know that a fast cue does not necessarily

cause more cognitive workload than a slow cue, a control system knowledgeable

of the user’s larger context could lower workload when most needed – e.g., at

a street crossing, the system could turn off the cue and allow the user to go off

course, then adjust the guidance rate upward to compensate. Designing such a

system will be challenging but possible by pairing increasingly available context-

aware technology and algorithms with a close observation of pedestrian needs, and

cognitive, sensory, and physical abilities.

6.9 Acknowledgment
This work was funded by the Natural Sciences and Engineering Research Council

of Canada and the GRAND NCE. User data were collected under University of

British Columbia’s Research Ethics Board #H01-80470.

162



Chapter 7

Conclusion

All our knowledge begins with the senses,
proceeds then to the understanding, and ends with reason.

There is nothing higher than reason.
— Immanuel Kant, Critique of Pure Reason

In this dissertation we1 introduced periodic guidance which employs the tempo

of periodic cues in a fine-grained control setting. We provided evidence that showed

tactile sensation is a better fit than vision and audition for most applications of pe-

riodic guidance. On the other hand, among different types of tactile displays, vi-

brotactile displays were more readily available and generally more powerful than

others, therefore, we used vibrotactile displays and called our system Periodic Vi-

brotactile Guidance (PVG). We used PVG for guidance of human walking and

studied the user’s susceptibility to periodic cues, PVG’s workload, and the effect of

auditory multitasking on it. In this chapter we explain the primary contributions of

this work, reflect on the research approach taken, and suggest some directions for

future work.
1For a list of contributors and their level of involvement please refer to the Preface on page iv.
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7.1 Primary Research Contributions

7.1.1 Study of Sensitivity to Vibrations in Mobile Contexts

In the first phase of this work (Chapter 3), we wanted to find the best locations on

the human body for placement of vibrotactile displays, especially for mobile ap-

plications including our own PVG system. A considerable amount of research has

been done on sensitivity to vibrations [70, 73, 90] and the effect of movement on

tactile sensitivity [3, 22, 23, 124]. On one hand, the research on relative vibrotac-

tile sensitivity by site did not examine (a) movement and its interference with other

factors and (b) expectations about stimulus locus; on the other hand, the research

on effect of movement on sensitivity did not compare relative vibrotactile sensi-

tivity by site and for activities of interest here such as natural walking. Therefore,

we had to fill this gap with experiments that would examine body locations that

are of particular interest to wearable haptics and the effect of natural walking on

sensitivity. We also included the effect of visual workload and expectation of locus

of stimulus in our experiments.

Results from our two experiments, each with 16 participants, supported the

following findings:

1. Increasing vibration intensity improves Detection Rate (DR) and reduces

Reaction Time (RT).

2. Wrists and spine are the most sensitive in detecting vibrotactile signals,

whereas feet and thighs are least sensitive. However, response time is similar

across the body.

3. Walking significantly decreases DR and increases RT and it affects DR of

thighs and feet more than other body locations.

4. Visual workload does not have any apparent effect on DR but it significantly

impaired RT.

5. Expectation (i.e., a priori knowledge about locus of stimulus), surprisingly,

only reduced DR at wrists. However, it did significantly reduce RT.
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6. Male participants had higher DR than female participants on the chest, stom-

ach, wrists, and spine and females had better DR on thighs and feet. Also

male participants had faster RT on all body locations except feet.

7. Participants preferred spine and wrists.

Based on these findings we concluded several design guidelines for creating wear-

able vibrotactile systems. These include recommendations on location of vibro-

tactile displays and intensity of vibrotactile cues, as well as considerations about

movement, visual workload, and unexpectedness of cues; they are targeted at inter-

action designers, and generally anybody who wants to build a wearable vibrotactile

system. These guidelines help designers build systems that are more successful at

getting the user’s attention (i.e., increase Detection Rate) and faster response (i.e.,

reduce Reaction Time) both of which are critical in design of vibrotactile systems

(See Section 3.7.1).

Since we published this work in 2011 [78], it has been used in several areas

such as spatial [26, 75, 117, 142], temporal [156, 157], and spatiotemporal guid-

ance [99], as well as research on tactile sensation [2, 103, 108, 128, 129] and the

development of a new tactile display [179].

7.1.2 Development and Evaluation of Robust Realtime Algorithm for
Cadence Estimation (RRACE)

In the second phase of this work (Chapter 4), we developed a cadence measurement

algorithm that uses the 3-axis accelerometers that are available in smartphones

these days, and through analysis of the accelerometer signals in the frequency do-

main, estimates the cadence of the user carrying the device (almost anywhere on

his/her body). These are the main contributions from this phase:

1. We developed the RRACE algorithm, which is robust to user differences, ori-

entation, and placement and works out of the box with no a priori knowledge

or calibration.

2. We evaluated the performance of RRACE with four different window sizes

on six body locations and at five different walking speeds.
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3. We showed that RRACE can provide 95% or more accuracy on 4 out of the 6

body locations.

4. We compared RRACE with the readily available state-of-the-art time-based

cadence estimation method and showed comprehensive evidence for the su-

periority of our algorithm.

There are two challenges that activity-related mobile applications face: hard-

ware unpredictability and user differences; we developed RRACE with those in

mind. RRACE is a cadence estimation instrument that liberates software devel-

opers and interaction designers from low-level signal processing challenges and

helps them focus on high-level problems. This 2-year old work still stands as the

most successful basis for an extensible algorithm that can be used by reseachers.

In fact, researchers in our lab have already extended it to a realtime gait analysis

library called GaitLib [173] which is publicly available2. Many of the implemen-

tation issues are resolved in this library, which means that anybody with some

programming background can skip the headaches associated with those challenges

and easily build his/her creative ideas on top of the library. We believe RRACE

and GaitLib can be used in a multitude of areas: cadence estimation and classifica-

tion, guidance, activity monitoring, rehabilitation, and exercise games for kids and

adults.

7.1.3 Study of Periodic Vibrotactile Guidance of Human Walking

In the last phase of this research (Chapters 5 and 6), we studied Periodic Vibrotac-

tile Guidance (PVG) of human walking. First, we tested PVG in outdoor settings

with five different rates with the effect of repetition on its performance. We antic-

ipated that auditory multitasking would be the major source of problem for users’

performance and we wanted to know how much workload PVG would impose on

users, therefore, in the next experiment we added auditory task as a factor and used

NASA Task Load Index (NASA-TLX) as a new instrument to measure workload.

The contributions of this phase are the following:

1. The PVG system which uses tempo/interval between vibrotactile cues to

2https://github.com/m-wu/gaitlib
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guide a user’s cyclical movement (e.g., walking) to achieve a desired speed.

2. Our two experiments showed evidence that most people are able to follow

Periodic Vibrotactile Cues with 90% or above accuracy.

3. Our results showed that PVG successfully affected stride length and walking

speed in addition to cadence.

4. Our data showed that, within the time range of our experiment, repetition

did not significantly change the performance. This may mean that PVG is

sufficiently simple for users with a very gentle (or no) learning curve.

5. We measured the effect of three different auditory tasks and found that, sur-

prisingly, the auditory task most damaging to the performance of PVG was

the verbal one (podcast), not the rhythmic one (techno music). However, we

also found that the effect of auditory multitasking was not comparable to the

guidance rate and therefore, the guidance signal could override the effect of

auditory multitasking.

6. We also measured workload through self reports. Our findings suggest that

PVG adds to the workload of walkers but the rate of guidance does not matter

much. We also proposed a strategy to avoid harm to the user’s safety based

on our findings (See Section 6.7).

As far as we know, PVG of human walking is the first of its kind. Moreover, the

ability of most users to follow the tempo of PVG when walking make us hopeful

that it can be extended to other periodic movements such as cycling, swimming, or

rowing. In addition to spatiotemporal guidance of commuters, PVG’s applications

include athletic training and rehabilitation. Ultimately, PVG can become a medium

for sensory augmentation or substitution [74]; continuous usage may create an

autonomous sense of speed based on goals or a feeling of space and time relative

to future events. In fact, gadgets that create a sense of time have recently become

available to consumers; e.g., Tikker by Tikker Technologies LLC (Wilmington,

DE, USA), “a watch that counts down your life” with a graphical display [161],

and Durr by Skrekstore (Oslo, Norway), “a shivering bracelet that demonstrates

how time seems to speed up and down” with vibrations at 5-minute intervals [148].
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7.2 Secondary Research Contributions
The work presented in this dissertation made other contributions that might be

useful for the research community; we did not list these contributions as primary

because they were the by-product and not the main goal of the research. These con-

tributions can be organized into two groups: (a) experimental design, methodology,

and statistical analysis examples, and (b) the data.

7.2.1 Experimental Design and Methodology

This research is composed of six experiments. Most of these experiments had many

factors and multiple levels in some factors. While we do not see complexity as a

virtue, we hope that the methodologies we developed to deal with it here will be of

use to others. Some of the challenges we faced are the following:

1. More levels in factors means longer experiments with results which are

harder to interpret. However, if having more than two levels is necessary,

we should consider an appropriate method for comparing levels in pairs. In

our experiments we employed different pairwise comparisons such as Tukey

test (Section 6.4.8), unpaired Z-test (Section 4.4.4), and post-hoc pairwise

comparisons with Bonferroni adjustment (Section 5.4.6).

2. Counterbalancing the levels in repeated measures experiments is very impor-

tant. It is not a difficult task for simple experiments (e.g., 2× 2), however,

it can be challenging for complex experiments particularly because we do

not have access to a sufficiently large number of participants to test all the

combinations. In the last experiment for example, we had to use two Latin-

square designs crossed by each other to counterbalance both the order of

auditory tasks and the guidance conditions.

3. Analyzing the results of complex experiments is orders of magnitude harder

than simple experiments; the number of interaction effects grow exponen-

tially with number of factors (i.e., 2n− n− 1 for n factors) and the growth

of pairwise comparisons is cubic with regards to number of levels (i.e.,

m(m− 1)/2 for m levels). In addition, with presence of interaction, addi-

tional steps must be taken in order to compare different conditions as in the
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case of the last experiment in this work where we analyzed interactions in

terms of simple effects (see Section 6.4.8).

4. Simple statistical methods such as Analysis of Variance (ANOVA) and t-test,

which are widely taught and employed, are mostly not good matches for

complex experiments. Data which do not satisfy the limiting assumptions

of those tests (e.g., binomial DR data of our first two experiments), and data

which are missing not because of poor design but because of the nature of an

experiment (e.g., missing RT measurements when participants did not detect

stimuli in the first two experiments) are just two examples. Other methods

that are less known by the community should be employed in these situa-

tions.

5. Presenting the results of complex experiments is also a delicate matter. When

there are several dependent variables, main effects, interaction effects, and

pairwise comparisons, using the conventional methods of presenting the re-

sults of statistical tests (e.g., reporting means and p values) makes the in-

terpretation of the results and detecting high level patterns very hard. Each

of the experiments we conducted faced this challenge in a unique way. For

some examples of solutions see Figures 4.7 and 6.5 and Table 4.8.

7.2.2 Data

The six experiments that are presented in this dissertation involved vigorous data

collection and preparation; e.g., the Force Sensing Resistor (FSR) footfall detection

used in Phase 2 and the RRACE algorithm used in Phase 3, for the measurements

during experiments. On the other hand, because our data were collected from

several sources (e.g., accelerometer/cadence data from multiple phones in Phase

2 and 3), synchronizing and fusing multiple data sources took significant effort.

We believe the data we collected can be of value for the scientific community

and we have made our anonymized datasets public, and have likewise developed

ethics protocols for this purpose which can be shared. This practice is rarely done

which has contributed to our own challenges in examining our algorithm and more

importantly comparing its performance with other algorithms. Therefore, we have
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tried to contribute to a solution to this problem, by sharing carefully collected and

measured datasets that others can test their own algorithms/ideas on. Our datasets

are available for download at: http://www.cs.ubc.ca/labs/spin/data/.

In Phase 1 we produced Detection Rate (DR) and Reaction Time (RT) datasets:

1. DR and RT data of different vibration intensity, under different visual work-

load and movement conditions.

2. DR and RT data of different vibration intensity, under different expectation

and movement conditions.

These can be used to create models of sensitivity to vibrotactile stimuli, which

would enable designers to choose the appropriate intensity of vibration per location

and condition.

In Phase 2 we produced accelerometer and cadence datasets that were collected

by smartphones placed on six body locations:

1. Accelerometer, cadence, and Error Ratio (ER) data walking at different con-

strained speeds on treadmill.

2. Accelerometer, cadence, ER, and speed data of walking at different speeds

outdoors.

These can be used for improving the existing cadence measurement algorithms or

creating new ones.

In Phase 3 we produced two performance datasets and a workload dataset:

1. Cadence, speed, stride length, and ER data of walking under vibrotactile

guidance at different tempos.

2. Cadence, speed, stride length, and ER data of walking under vibrotactile

guidance and no guidance and during different auditory tasks.

3. NASA-TLX data for walking under vibrotactile guidance and no guidance

and during different auditory tasks.

The performance data can be used for modeling of human cadence during auditory

multitasking and under vibrotactile guidance. The workload data can be used for
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modeling of physical and cognitive workload under guidance or no guidance and

in presence or absence of auditory task during walking.

7.3 Reflections on Research Approach

7.3.1 Visual Workload

In our first experiment on sensitivity to vibrations of this dissertation we needed a

visual task for users during parts of the experiment to measure the effect of visual

workload on Detection Rate (DR) and Reaction Time (RT). The task we designed

was counting the number of times a highlighted block hit the walls of a three-

dimensional room on a large scale display (see 3.3.3). As shown in the results, the

visual workload did not have any apparent effect on DR but significantly impaired

RT.

We chose this task because (a) it was continuous, (b) had constant difficulty,

(c) required attention and memory, and (d) was not so distracting to cause partici-

pants to stumble. We also faced the limitation of running the experiment indoors,

therefore, we had to use a display screen.

At the higher level, we considered watching scenes that resembled walking in

the real world (e.g., video of cars and commuters) but we did not choose them

for two reasons: firstly, watching a video passively with no real consequences

would be too easy and we would have no control over users’ engagement; secondly,

the level of demand on users’ attention would change during the video and there

would be no way of keeping it constant. We even considered adding an extra task

to watching a scene such as counting certain types of cars but decided against it

because it no longer resembled a real world situation.

At the lower level, we used counting instead of immediate responses to visual

stimuli (i.e., requiring participants to react to every collision of the highlighted

box with the wall) because we already had a respond to stimuli scheme for the

vibrotactile signals and it would add unnecessary confusions in the experiment.

Also, counting had an added bonus of engaging participants’ memory.

It could be argued that the task we chose was not hard enough; while making

the visual task too hard, would probably enable us to achieve significant effect of
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visual workload on DR it would harm the external validity of our experiment by

being too much harder than real world situations. An alternative approach to our

abstract visual task would be to create a full-fledged walking simulation for engag-

ing participants visually. Such an environment would only work if the participant’s

walking on the treadmill was linked to his/her movement in the virtual world. Apart

from technical challenges of creating such a system which could drag us from our

main goal without any definite return on investment, it would make it almost im-

possible to decouple the effect of movement from visual workload; in other words

movement and visual workload would not be two separated factors because move-

ment would affect the level of difficulty of the visual task with a very easy passive

watching of a scene during the stationary condition and an active, relatively harder

visual task during the walking condition.

7.3.2 Sensory Adaptation, Learning, and Fatigue

Sensory adaptation is the change of responsiveness to a continuous stimulus over

time [169] and tactile sensation is not immune from it [64]. Four of our exper-

iments (out of six) were designed on the principle of responding to vibrotactile

stimuli. In the sensitivity to vibrations experiments we tried to capture sensory

adaptation by analyzing the relationship between DR and trial number. Our results

suggested that the odds of detecting a vibration decreased by 6% after 100 trials.

It is possible that learning has played a role by increasing the odds and canceling

some of the effect of adaptation. Fatigue could also a contributor. In the other two

experiments, we found no significance for trial number which could also mean the

overall effect of sensory adaptation, learning and fatigue has resulted in minimal

effect on performance.

We did not try to separate sensory adaptation from learning and fatigue because

they were out of the scope of this research; however, assuming that the length of

the experiment contributes mostly to fatigue, number of stimuli to learning, and

number of stimuli per locus of stimuli to sensory adaptation, we can propose an

experiment to decouple them with three subject groups, i.e., to solve the 3 un-

knowns with 3 equations. The three subject groups should be exposed to different

levels of adaptation, learning, and fatigue.
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Group A: 2×m×n stimuli on 2n body locations in time t.

Group B: 2×m×n stimuli on n body locations in time t.

Group C: 2×m×n stimuli on n body locations in time 2t.

Group A and B have equal length and equal number of stimuli but different

number of stimuli per site (A:m, B:2m). Group B and C have equal number of

stimuli and stimuli per site but different lengths. Comparing the effect of trial

number on DR in A and B will reveal the effect of sensory adaptation relative to

learning and fatigue, and the comparison between B and C will reveal the effect of

fatigue relative to learning and sensory adaptation.

7.3.3 Step Detection

In order to validate RRACE we needed to test it with actual users to see how well it

can estimate users’ cadence. This is only possible when you have the ground truth

for the cadence at each point in time. As explained in Chapter 4, we conducted

a short indoor experiment on a treadmill and a full experiment outdoors, and one

of the differences between the two was the cadence estimation that was used as

the ground truth. In the first experiment, one experimenter visually detected foot-

falls on the treadmill and recorded them on the computer with the press of a button

which registered the time of footfalls. In the second experiment, we placed FSR

sensors in the participant’s shoes and connected them to a small Arduino board

carried by the participant which registered the timestamps of footfalls by compar-

ing the force with a threshold that was determined during the calibration phase. In

both of these methods, we measured the interval between two consecutive footfalls

and inversed it to produce the gold standard cadence measurement, which was then

compared with the estimation from RRACE.

Each of these methods has advantages and disadvantages. The manual step

detection requires complete attentiveness of the experimenter and cannot be used

when the participant gets too far from the experimenter; it is also prone to exper-

imenter error. On the other hand, it is noninvasive and requires no setup for the

participant. In contrast, the FSR system is immune from experimenter error and

can be used outdoor where the participant can get very far from the experimenter;
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however, the FSR system requires a setup procedure that includes calibration of the

sensors for each user. Also, the FSR system (like any other invasive measurement

tool) is prone to wearing out and breaking which is why we had a spare system

during the experiment and eventually we had to replace one of the sensors with it.

Another problem that may happen with sensors in shoes is that despite taping them

inside the shoes, they may move inside which means that the range of the forces

they measure may change and they may require a new calibration. Unfortunately,

such incidents may not be known until after the experiment. In our post experi-

ment data processing, we compared the timestamps from both feet and in cases

where they did not match, we relied on the foot that seemed realistic and within a

humanly possible range of cadence (i.e., we ignored the data from the foot which

were too fast or too slow). It should be noted that the errors in the ground truth

cadence measurements in our experiments only made the performance results of

RRACE appear worse than they actually were.

Although at this point we have already achieved a relatively noninvasive, accu-

rate, and robust method for measuring cadence – i.e., RRACE – we believe the FSR

system is still of value in certain contexts, particularly when the temporal param-

eters such as time of footfalls are of interest and not just cadence; therefore, here

we propose a few solutions for improvement of the FSR step detection:

1. Employing multiple sensors in each shoe and registering a footfall when the

majority of sensors detect a threshold crossing (e.g., 3 out of 5, or 2 out of

3).

2. Using the extreme pressure points in the near past (e.g., last 10 seconds) to

calibrate the threshold for detecting footfalls.

3. Creating an error detection method which alarms the experimenter about the

possibility of a problem when the timing of footfalls (or the range of forces

measured) seem out of ordinary (e.g., too close or too far from each other).

4. Manual calibration of the sensors more frequently during the experiment.

We believe each of the above solutions, or a number of them combined, may

improve the accuracy of the FSR footfall detection system.
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7.3.4 Speed Measurement

Walking speed has been an important factor in all of our experiments. The first

three experiments were conducted indoor and on a treadmill where the participants’

walking speed was constrained by the speed of the treadmill (although chosen by

the participant at the beginning of the first two experiments), and the rest of the

experiments were conducted outdoor, where participants were given instructions

or guidance cues but their speed was not physically constrained.

Treadmill solves the problem of speed measurement by displaying the speed

but measuring the speed outdoor is not as trivial. Originally we planned to use

an external Global Positioning System (GPS) receiver (connected to a phone) for

measuring speed. However, the accuracy was not sufficiently high for measuring

walking speed. Therefore, we chose to measure speed manually, by placing flags

on the side of the sidewalk and measuring the elapsed time between the partici-

pant’s crossing one flag to the next one. We used the same method with minor

changes in the last experiment of this work too.

Unfortunately, the speed measurement method we used gives us the average

speed over a trial and not the momentary speed at each point in time; as a result,

the analysis on speed is based on the assumption that speed has remained constant

during a trial. The downside to this is that the changes in speed, particularly at the

beginning of a trial, will not be included in the speed analysis. This was not an is-

sue in the experiment for validation of RRACE because we only needed to report the

average speed of participants when instructed to walk at very slow, slow, typical,

fast, and very fast speeds. The second experiment on vibrotactile guidance of hu-

man walking, was mainly focused on evaluating the effect of guidance on cadence,

during auditory multitasking; speed was also analyzed to show the success of PVG

system in affecting walking speed. We would argue that showing that PVG could

affect the average speed over tens of seconds is sufficient for proving its success in

real world scenarios where users might go from point to point in tens or hundreds

of minutes.
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7.3.5 Robust Realtime Algorithm for Cadence Estimation

In Chapter 4 we introduced Robust Realtime Algorithm for Cadence Estimation

(RRACE), our in-house developed algorithm for cadence measurement. RRACE

owes its robustness to three design choices:

1. operating in frequency-domain,

2. using Fast Calculation of the Lomb-Scargle Periodogram (FASPER) for hand-

ling time sampling irregularities,

3. feeding vector magnitude into the algorithm.

Frequency-domain: We used frequency domain instead of time domain because

we were only interested in cadence and not timing of each footfall. In contrast with

the time domain, the frequency domain is less concerned about the shape of the sig-

nal and more about the frequency at which the signal repeats itself; therefore, user

differences and location on the body which mainly affect the shape and magnitude

of the accelerometer readings do not affect the frequency domain as much.

FASPER instead of Fast Fourier Transform (FFT): We were fortunate to find out

at a very early stage that the accelerometer data provided by most smartphones are

not sampled at a constant rate, and the irregularities in the rate of sampling makes

it impossible to do spectral analysis with FFT. Because trying to ‘repair’ the data

– e.g., with interpolation – could introduce new sources of uncertainty, we decided

to use FASPER to handle non-equispaced data.

Vector Magnitude: We assumed that users of our system would orient their phones

in different ways and the orientation of the phone would even change with move-

ment and the direction of the three accelerometer axes (x, y, z) would not have any

sort of consistency. The magnitude (Euclidean or L-2 norm) of the accelerometer

vector, on the other hand, is independent of the orientation of the phone which is

why we chose it for the spectral analysis instead of all of the axes.

The above design choices turned out to be successful in making RRACE work

with acceptable accuracy on most body locations without requiring any calibration

to account for user differences. Having said that RRACE has some imperfections

too.
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Weaknesses and Recommendations for Improvement
As we showed in Section 4.4.6, RRACE consumed 10 times more power than

Endomondo [33] and 5 times more than Runtastic Pedometer [137], the best ac-

tivity measurement apps at the time. Although computation power of smartphones

continues to increase and this problem will become less of a concern than it is

right now, we believe by adjusting the window size and sampling frequency we

can reduce the power consumption. For example, when the user is walking fast,

the interval between the user’s steps is shorter and therefore a smaller window

size would be sufficient. On the other hand, when the user is walking slowly, the

changes in acceleration are slower and therefore a less frequent sampling would

be sufficient. The downside to reducing window size and sampling frequency is

the negative effect on accuracy, therefore, the parameters of RRACE should be op-

timized to meet the requirements for both accuracy and power consumption. We

should note that window size also directly affects latency, therefore, latency should

also be considered in the trade-off between power consumption and accuracy.

When we developed RRACE we did not take advantage of any pre/post-processing

methods such as filters. However, based on the typical range of step frequencies

[88], we imagine that a 1-2.75Hz band-pass filter3 would reduce most of the noise

that is responsible for the error.

7.3.6 Choosing the Range for Cadence and Speed

In experiments that involve requiring participants to walk, the experiment designer

is faced with the question of how to choose the rate(s) in a way that reflects partic-

ipant differences and meets the requirements for answering the research questions.

In the six experiments we conducted we used five different methods (see Table 7.1).

Phase 1, Experiments 1 and 2: Constrained but Flexible Speed
Both experiments in Phase 1 were conducted indoors, using a treadmill. We asked

each participant to choose a comfortable speed on the treadmill which was used

during movement condition (i.e., constrained their walking speed). As a result,

some participants chose very slow speeds not to get too tired during the experiment.

3A band-pass filter is a device that only allows frequencies within a certain range to pass through
and blocks frequencies above and below that range.
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To avoid unrealistically slow walking speeds on the treadmill, we can request

participants to measure their typical walking speed prior to the experiment. An-

other suggestion is setting a lower limit on the walking speed which is less favourable

because it is too artificial and may hurt the external validity of the experiment.

Phase 2, Experiment 1: Constrained and Inflexible Speeds
In the first experiment of Phase 2, we wanted to test the RRACE algorithm at several

constant speeds in addition to transitions from one speed to another. To make sure

we have consistency among the participants we used the same selection of speeds

for everyone. Using the same selection of speeds for all participants does not reflect

the differences among them; the speed selection could be too slow for some and

too fast for others. To avoid pushing the participants beyound their physical ability

we had to choose the maximum speed conservatively.

Phase 2, Experiment 2: Unconstrained Speeds
We conducted the second experiment of Phase 2 outdoors. The goal of the experi-

ment was to examine our cadence estimation algorithm at a variety of speeds by a

number of users. Without a treadmill, it was very hard to constrain walking speed

of participants. We instructed participants to walk at five different speeds. By let-

ting participants choose their walking speeds we tested our algorithm at many more

levels which reflected the differences among the participants too.

Phase 3, Experiment 1: Cadence Guided with Unconstrained Range
To test walkers’ ability to follow vibrotactile cues we needed to use certain guid-

ance tempos. In the first experiment of Phase 3 we instructed participants to walk

at their fastest and slowest speeds first to measure the upper and lower bound for

the tempo of guidance cues. Then we distributed the middle rates between those

extremes. We believe this method reflects the diversity of participants better than

any other method. However, the problem that may arise from this setup is that the

guidance cues might end up being very close to each other (when the participant’s

fastest and slower speeds are not much different) or the opposite.

Phase 3, Experiment 2: Cadence Guided with Constrained Range
In the second experiment of Phase 3 we only used two guidance rates in addition to

a no guidance condition. In order to reflect the differences among participants to a
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possible extent but to have the same distance (on a logarithmic scale) between the

fast and slow guidance cues for everyone we decided to measure each participant’s

typical (medium) cadence and set the fast and slow guidance tempos at a fixed ratio

above and below it. This method allowed us to keep the same level of guidance

difficulty for everyone in terms of divergence from typical cadence.

To summarize, we used many different methods for choosing speed(s) or ca-

dence(s) during our experiments. Each of these methods tried to focus on different

sets of requirements; some of them leaned more towards consistency, some leaned

towards covering the differences among participants, and the rest tried to keep a

balance between the two. If the length of an experiment, or added complexity

were not an issue, one could even combine the above methods (e.g., have a two

part experiment with constrained and unconstrained speeds/cadences) to answer

his/her research questions with more confidence.

Table 7.1: Method of choosing speed or cadence rates in our experiments. V denotes a speed
rate (velocity) and F , a cadence rate (frequency).

Phase Experiment Location Parameter Rates Chosen By

1
1 Treadmill Speed V1 V1 Participant
2 Treadmill Speed V1 V1 Participant

2
1 Treadmill Speed V1..V10 V1..V10 Experimenter
2 Sidewalk Speed V1..V5 V1..V5 Participant

3
1 Sidewalk Cadence F1..F5 F1,F5 Participant
2 Sidewalk Cadence F1..F3 F2 Participant

7.3.7 Workload Measurement

In the second experiment of Phase 3 (Chapter 6) we used NASA-TLX to measure

workload during different guidance conditions and auditory tasks. NASA-TLX is

a subjective assessment that consists of two parts. Part 1 consisted of the six

subscales addressing mental demand, physical demand, temporal demand, per-

formance, effort, and frustration; the participant should rate each of these on a

100-points range with 5-points steps (discretized into 20 grades). Part 2 produces

weightings for the above subscales by comparing them in pairs.

Our biggest challenge during that experiment was keeping it less than 1-hour,

ideally at 45 minutes. We had to use NASA-TLX 12 times during the experiment.
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To be as efficient as possible, instead of using the paper version, we used a comput-

erized version of NASA-TLX which also made it easier for us to put the data from

the whole experiment together. Using the computerized version especially makes

the second part of the test easier. In fact, many researchers that do the test on paper

only use the first part. The second part, which consists of 15 comparisons, only

produces one total score and generally takes longer than the first part. As shown

in the results, the patterns seen in the total score is not very much different from

the subscales. Taking all these considerations into account, we believe the full

NASA-TLX was too costly for our experiment.

7.4 Future Directions
The work described in this dissertation can be expanded in various areas that will

be explain in this section.

7.4.1 Susceptibility to Periodic Guidance in Other Movements

Periodic guidance works on the premise of synchronizing a periodic movement

with a repetitive cue to control the speed of the movement (for achieving a cer-

tain goal) through manipulation of the tempo of the cue. In that regard, periodic

guidance does not necessarily rely on vibrotactile displays. As new tactile dis-

play technologies emerge, they can be used in periodic guidance too. As discussed

before, in addition to walking, periodic guidance – PVG in particular – can also

be used in other movements that are periodic too; examples are cycling, rowing,

swimming, and dancing. It is interesting to see if periodic guidance is as successful

for those applications as it is for walking. While these applications are more com-

plex than walking, their users (e.g., athletes or artists) would be more open to train

themselves to improve their performance. Consequently, it is very important that

for studying periodic guidance (or PVG) for those movements, we use longitudinal

studies that allow us to provide sufficient training to the participants.

7.4.2 Study of PVG in Medium and Long Term

Throughout this research we used several experiments to find answers to our re-

search questions. Often times we faced experimental design choices that were
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ultimately decided based on priority of research questions and our limitations. One

of these experimental design decisions was the length of trials for the study of PVG

which was explained in Chapters 5 and 6. Because we had various factors (e.g.,

guidance rate, auditory distraction) and each had several levels and we could not

allow each experiment to last longer than a certain amount of time, we had to limit

trials to 60 or 25 seconds. As a result, we could not study PVG during longer pe-

riods of time. However, it is evident that in most applications, PVG could be used

for several minutes or even hours. We believe a new set of experiment with as few

factors and levels as possible and longer trials would enable us to evaluate PVG

in more natural settings, where we can also see the effect of fatigue and learning

to some extent. On the other hand, we envision PVG to be used several times a

week or day; longitudinal studies of PVG that are conducted in several consecutive

sessions can also help us analyze learning effects over time and give us a more re-

alistic picture of how well users’ performance can get if they get used to PVG over

a longer period of time.

7.4.3 Effect of PVG on Attention

Another interesting expansion of our work is measuring the extent to which PVG

is taxing on the user’s attention. This can be done through three methods. The first

one is creating visual (or auditory) cues – e.g., a blinking light – which are hard to

detect and asking participants to respond to them [114, 120] at the same time that

they are being guided by PVG. Detection Rate and Reaction Time can then be used

to measure participants’ attention. The second method is using recall performance;

this can be done by planting objects along the route [110] or embedding words

in an audio track, and asking participants to count them. The third method is

using Stroop test [56, 102]; because both PVG and Stroop test compete for the

participant’s attention, lower score to the test under a certain condition indicates

that PVG is more taxing on attention during that condition. It is worth noting that,

since doing a Stroop test involves reading words (e.g., name of a colour printed in

the colour denoted or not denoted by the name), it cannot be used during walking

in its conventional way; in order to use a Stroop test, we can give it to participants

immediately after each trial (and when participants stop) or we can use an auditory
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Stroop test [57, 107].

7.4.4 Other Use Cases for RRACE

In Chapter 4 we introduced RRACE, our algorithm for cadence estimation which

uses the readily available accelerometer sensors in today’s smartphones to mea-

sure a walker’s stride frequency. RRACE works in frequency-domain, therefore, in

principle it only cares about the frequency components of the signal, not its shape

or phase. The downside of this characteristic is that RRACE, in its original form,

cannot detect individual foot steps; however, as long as the signal has a major fre-

quency component, RRACE can detect it. This means that RRACE can be used for

detecting the frequency of other periodic movements such as pedaling or rowing

too. By conducting experiments that are similar to the ones explained in Chapter 4

which focus on cycling, rowing, or swimming we might be able to verify this claim.

Another use case for RRACE is measuring speed and/or energy expenditure

based on cadence. By measuring cadence, speed and/or energy expenditure we can

create mathematical models that can estimate one factor based on one or two others.

After we create such models, we can combine them with RRACE to create a new

algorithm that estimates cadence from accelerometer signals and then computes

speed and/or energy expenditure. The RRACE algorithm with the ability to measure

speed can be used instead of or in addition to a GPS for improved accuracy of speed

measurement or increased usability (e.g., can measure speed even when there is no

GPS satellite reception); the RRACE algorithm with energy expenditure estimation

ability can be used for activity measurement applications.

7.4.5 PVG’s Performance in Closed-loop Control Settings

In Chapter 1 we suggested two closed-loop settings that could be used to improve

PVG’s performance by reducing and compensating for the user’s error. We also

provided the results of those control systems in simulation settings to show how

they differ in terms of dealing with error. The models we used for users were

over simplified. We know that users can be very unpredictable in terms of how

they react to cues, but we also know that they are much smarter than a simple

mathematical model and will probably try to understand the guidance system to
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respond better to it. Examining PVG in a control setting is a very interesting topic

but it requires more than just one or two experiments. In order to explore PVG

in a control setting, we need to design a controller that is stable and minimizes

error. We can use past data on the user’s cadence and speed and response to cues to

create a loosely defined model then start with a very conservative controller (i.e.,

imperfect in terms of error minimization but very stable) and improve it iteratively.

Or, we can use Fuzzy [168] or other controllers [77] that do not rely on a perfect

model of the system.

7.5 Closing Remarks
Today’s smartphones and other handheld devices are equipped with powerful com-

puters, many kinds of sensors, and connectivity to the Internet. Having all these

abilities in one very small package that can be taken virtually anywhere has opened

the doors to many new applications – and guidance systems in particular – whose

goal is making our lives easier. However, sometimes these applications become

new causes for problems as a result of inappropriate usage or overloading of the

audiovisual channels. In this dissertation, we proposed a new guidance method that

employs periodic cues for fine-grained control of human movement through the

tempo of the cues, which is very intuitive, does not abstract meanings, and works

with minimal reliance on memory. The simplicity of periodic guidance enables it

to use the tactile channel which has advantages over the audiovisual channels in

certain contexts. Our research examined the use of vibrotactile displays in mo-

bile contexts that are the focus of our guidance method, developed and verified a

cadence estimation method that was required for periodic guidance of human walk-

ing and analyzed the performance of PVG, the vibrotactile version of our guidance

system.
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Appendix A

Supporting Materials: Detecting
Vibrations Across the Body in
Mobile Contexts

This appendix contains the supporting materials regarding the experiments of Chapter 3.

A.1 Ethics Documents

207



Recruitment Email

208
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   THE UNIVERSITY OF BRITISH COLUMBIA 

 
Department of Computer Science 

2366 Main Mall 
Vancouver, B.C., V6T 1Z4 

 
April 9, 2010 
  

Consent Form (no videotaping) 
  

Human-Computer Interaction Course Projects (CPSC 444/544/543) 
UBC Ethics Approval B03-0490 

  
Principal* and Co-Investigators 
Dr. Kelly Booth, Prof., Dept. of Computer Science, UBC (604) 822-8193 
Dr. Karon MacLean, Asst. Prof., Dept. of Computer Science, UBC (604) 822-8169 
Dr. Joanna McGrenere*, Asst. Prof., Dept. of Computer Science, UBC (604) 827-5201 
Dr. Steven Wolfman, Asst. Prof., Dept. of Computer Science, UBC (604) 822-0407 
  
Student Investigators 
 
Mohamed El-Zohairy, UBC [zohairy@cs.ubc.ca] 
Zoltan Foley-Fisher, UBC [zoltan@ece.ubc.ca] 
Idin Karuei, UBC [idin@cs.ubc.ca] 
Sebastian Koch, UBC [skoch@cs.ubc.ca] 
Russ MacKenzie, UBC [rmacken1@cs.ubc.ca] 
 
  
Project Purpose and Procedures 
  
This course project is designed to investigate how people interact with certain types of 
interactive technology. Interactive technology includes applications that run on a standard 
desktop or laptop computer, such as a word processor, web browser, and email, as well as 
applications on handheld technology, such as the datebook on the Pocket PC, and also 
applications on more novel platforms such a SmartBoard (electronic whiteboard) or a Diamond 
Touch tabletop display. 
  
The purpose of this course project is to gather information that can help improve the design of  
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interactive technology. You will be asked to use one or more forms of interactive technology to 
perform a number of tasks.  We will observe you performing those tasks and analyze how the 
technology is used. You may be asked to complete a number of questionnaires and we may ask 
to interview you to find out your impressions of the technology. You will be asked to participate 
in at most 3 sessions, each lasting no more than 1 hour.   
  
Although only a course project in its current form, this project may, at a later date, be extended 
by one or more of the student investigators to form the basis of his/her thesis research. 
  
Confidentiality 
  
The identities of all people who participate will remain anonymous and will be kept confidential. 
Identifiable data will be stored securely in a locked metal filing cabinet or in a password 
protected computer account. All data from individual participants will be coded so that their 
anonymity will be protected in any project reports and presentations that result from this work.  
  
Remuneration/Compensation 
  
We are very grateful for your participation. However, you will not receive compensation of any 
kind for participating in this project. 
  
Contact Information About the Project 
  
If you have any questions or require further information about the project you may contact 
Professor Karon Maclean at (604) 822-8169. 
  
Contact for information about the rights of research subjects 
  
If you have any concerns about your treatment or rights as a research subject, you may contact 
the Research Subject Information Line in the UBC Office of Research Services at 604-822-8598. 
  
Consent 
  
We intend for your participation in this project to be pleasant and stress-free.  Your participation 
is entirely voluntary and you may refuse to participate or withdraw from the study at any time. 
  
Your signature below indicates that you have received a copy of this consent form for your own 
records. 
  
Your signature indicates that you consent to participate in this project.  You do not waive any 
legal rights by signing this consent form. 
  
  
I, ________________________________, agree to participate in the project as outlined above. 
My participation in this project is voluntary and I understand that I may withdraw at any time. 
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____________________________________________________ 
Participant’s Signature                                                     Date 
  
  
____________________________________________________ 

Student Investigator’s Signature                                       Date 
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Experiment 2 Consent Form - Participant’s Copy
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Experiment 2 Consent Form - Researcher’s Copy
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A.2 Questionnaires
We used a pre-study questionnaire to collect information about participants and a

post-study questionnaire to get their opinions after the experiment.

Pre-study Questionnaire

1. In what age group are you?

• 19 and under

• 20-25

• 26-30

• 31-40

• 40 and above

2. Gender

• Male

• Female

3. How many times in the last year did you use devices with tactile feedback

(vibrating devices)?

• Never

• Once a month

• Once a week

• Few times a week

• Once a day

• Few times a day

4. How many times in the last year did you use a treadmill?

• Never

• Once a month
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• Once a week

• Few times a week

• Once a day

5. Which hand is your dominant hand?

• Left

• Right

Post-study Questionnaire

1. Which vibration location was the most uncomfortable?

2. Which vibration location was the most comfortable?

3. For each location of vibration please choose the comfort level on a scale from

1 to 5; 1 being the most uncomfortable and 5 being the most comfortable.

Body location 1 - very uncomfortable 2 - uncomfortable 3 - neutral 4 - comfortable 5 - very comfortable
left shoulder
right shoulder
chest
upper spine
upper left arm
upper right arm
left wrist
right wrist
lower spine
stomach
left thigh
right thigh
left foot
right foot

4. If those motors were embedded in clothing items, which clothing item would

you prefer they are embedded in? and why?

5. Do you have any comments?
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Appendix B

Supporting Materials: Cadence
Measurement

This appendix contains the supporting materials regarding the experiments of Chapter 4.

B.1 Ethics Documents
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Consent Form Version 1.0 - Participant’s Copy
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Consent Form Version 1.0 - Researcher’s Copy
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Consent Form Version 2.1 - Participant’s Copy

219



Consent Form Version 2.1 - Researcher’s Copy
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Appendix C

Supporting Materials:
Susceptibility to Periodic
Vibrotactile Guidance of Human
Cadence

This appendix contains the supporting materials regarding the experiment of Chapter 5.

C.1 Ethics Documents
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Recruitment Email
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Recruitment Poster
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Consent Form - Participant’s Copy
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Consent Form - Researcher’s Copy
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Appendix D

Supporting Materials: Periodic
Vibrotactile Guidance of Human
Cadence, Performance during
Auditory Multitasking

This appendix contains the supporting materials regarding the experiment of Chapter 6.

D.1 Ethics Documents

226



Recruitment Email
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Recruitment Poster
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Consent Form - Participant’s Copy
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Consent Form - Researcher’s Copy
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D.2 Experiment Setup

Table D.1: Tempos used for techno music conditions.

Tempo (Hz) Tempo (BPM) Index
2.645 158.7 8
2.554 153.3 7
2.466 148.0 6
2.382 142.9 5
2.300 138.0 4
2.221 133.3 3
2.145 128.7 2
2.071 124.3 1
2.000 120.0 0
1.931 115.9 -1
1.865 111.9 -2
1.801 108.1 -3
1.739 104.3 -4
1.679 100.8 -5

D.3 NASA-TLX Screenshots
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Figure D.1: NASA-TLX Screenshots - Part 1.
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Figure D.2: NASA-TLX Screenshots - Part 2 - 1/4.
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Figure D.3: NASA-TLX Screenshots - Part 2 - 2/4 (blank space cropped).

234



Figure D.4: NASA-TLX Screenshots - Part 2 - 3/4 (blank space cropped).
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Figure D.5: NASA-TLX Screenshots - Part 2 - 4/4 (blank space cropped).

Figure D.6: NASA-TLX Screenshots - Results (blank space cropped).
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D.4 Descriptive Statistics

Table D.2: Descriptive statistics of all metrics.

mean median SD
age 25.958 24 10.187
weight (kg) 66.591 65.317 14.49
height (cm) 171.262 170.59 9.541
cadence error % -15.792 -4.849 30.821
cadence 1.645 1.813 0.593
speed (mps) 1.339 1.32 0.246
speed ratio 0.952 0.962 0.128
stride length 0.699 0.687 0.117
mental demand 35.052 30 25.049
physical demand 29.688 20 23.387
temporal demand 33.524 25 24.47
performance 30.851 25 21.798
effort 37.153 30 24.282
frustration 23.906 15 20.536
tlx overall 35.281 30 21.556
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Table D.3: Descriptive statistics of performance metrics by guidance condition.

guidance mean median SD

cadence error %
slow -12.674 -0.014 34.256
fast -18.911 -11.516 26.592

cadence (Hz)
none 1.695 1.844 0.545
slow 1.455 1.626 0.584
fast 1.785 1.939 0.6

speed (mps)
none 1.38 1.349 0.205
slow 1.195 1.15 0.195
fast 1.44 1.402 0.263

speed ratio
none 0.98 0.99 0.074
slow 0.851 0.847 0.104
fast 1.024 1.038 0.129

stride length
none 0.721 0.712 0.096
slow 0.622 0.61 0.079
fast 0.752 0.738 0.127
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Table D.4: Descriptive statistics of performance metrics by auditory task.

audio mean median SD

cadence error %

podcast -18.226 -5.802 32.369
techno -12.468 -4.948 28.604
classical -19.155 -7.332 33.335
silence -13.32 -3.209 28.097

cadence (Hz)

podcast 1.593 1.753 0.614
techno 1.717 1.815 0.537
classical 1.579 1.752 0.65
silence 1.691 1.844 0.553

speed (mps)

podcast 1.292 1.256 0.241
techno 1.38 1.355 0.242
classical 1.325 1.319 0.252
silence 1.359 1.335 0.242

speed ratio

podcast 0.918 0.914 0.115
techno 0.984 0.994 0.126
classical 0.94 0.94 0.133
silence 0.967 0.986 0.126

stride length

podcast 0.675 0.677 0.117
techno 0.719 0.705 0.11
classical 0.692 0.678 0.123
silence 0.709 0.691 0.113
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Table D.5: Descriptive statistics of workload scores by guidance condition.

guidance mean median SD

mental demand
none 21.823 15 18.283
slow 39.531 30 25.926
fast 43.802 35 24.791

physical demand
none 20.052 15 15.853
slow 31.615 25 24.639
fast 37.396 30 25.225

temporal demand
none 15.729 10 13.86
slow 36.875 30 22.91
fast 47.969 47.5 23.447

performance
none 20.312 15 18.336
slow 32.5 25 19.841
fast 39.74 35 22.599

effort
none 21.719 15 16.333
slow 40.625 35 23.789
fast 49.115 50 23.474

frustration
none 14.427 10 13.877
slow 24.531 17.5 20.145
fast 32.76 25 22.477

overall
none 20.694 17.333 13.586
slow 38.361 32.5 21.402
fast 46.788 48.333 20.068
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Table D.6: Descriptive statistics of workload scores by auditory task.

audio mean median SD

mental demand

podcast 45.278 37.5 26.121
techno 34.097 27.5 24.413
classical 31.458 25 22.098
silence 29.375 20 24.837

physical demand

podcast 33.125 22.5 26.649
techno 29.097 22.5 21.169
classical 28.194 20 23.002
silence 28.333 20 22.518

temporal demand

podcast 37.014 27.5 27.162
techno 33.75 25 23.493
classical 33.056 30 23.204
silence 30.278 22.5 23.852

performance

podcast 34.861 25 23.376
techno 30.556 25 21.421
classical 31.597 25 22.515
silence 26.389 20 19.269

effort

podcast 43.125 40 25.83
techno 37.222 30 23.793
classical 33.472 25 23.053
silence 34.792 30 23.727

frustration

podcast 27.569 20 22.782
techno 24.583 20 20.824
classical 22.5 17.5 18.576
silence 20.972 15 19.548

overall

podcast 41.528 38.167 23.469
techno 34.972 29.5 21.102
classical 33.176 29.833 19.989
silence 31.449 24.5 20.581
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Table D.7: Mean cadence error % per each level of auditory task guidance condition.

Slow Guidance Fast Guidance
Podcast -4.89% -18.37%
Techno 0.27% -14.83%
Classical -7.96% -17.00%
Silence -4.36% -13.37%

Table D.8: Mean cadence (Hz) per each guidance and auditory task condition.

No Guidance Slow Guidance Fast Guidance
Podcast 1.72 1.60 1.81
Techno 1.85 1.67 1.88
Classical 1.74 1.54 1.83
Silence 1.81 1.60 1.91

Table D.9: Statistical significance of all performance metrics. Yes and No denote statistical
significance and non-significance based on p < 0.05. GC and AT are short for guidance
condition and auditory task.

Main Effects Interaction Effects
Metric GC AT Time GC:AT GC:Time AT:Time
Cadence Error % Yes Yes Yes Yes No No
Cadence Yes Yes Yes Yes Yes No
Speed Yes Yes N/A No N/A N/A
Speed Ratio Yes Yes N/A No N/A N/A
Stride Length Yes Yes N/A No N/A N/A

Table D.10: Guidance condition’s significant effect on cadence and pairwise comparisons of
guidance conditions per each level of auditory task. Each two guidance conditions are
significantly different from each other under every auditory task except no guidance and
fast guidance under techno; cadence is fastest under fast guidance and slowest under slow
guidance regardless of the auditory task.

Audio Subset NG-SG NG-FG FG-SG Order
Podcast Yes Yes Yes SG,NG,FG
Techno Yes No Yes SG,NG,FG
Classical Yes Yes Yes SG,NG,FG
Silence Yes Yes Yes SG,NG,FG
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Table D.11: Statistical significance of all NASA-TLX scores and total workload. Significance
is based on p < 0.05. NG, SG, and FG are short for No Guidance, Slow Guidance, and
Fast Guidance respectively. P, S, C, and T are short for Podcast, Silence, Classical, and
Techno; Significant difference between pairs of conditions are shown in columns 3 to 5
(guidance conditions) and 7 to 12 (auditory tasks).

Guidance Condition Auditory task
Sig. NG-SG NG-FG FG-SG Sig. P-S P-C P-T T-C T-S C-S

Mental Demand Yes Yes Yes No Yes Yes Yes Yes No No No
Physical Demand Yes Yes Yes No No - - - - - -
Temporal Demand Yes Yes Yes No No - - - - - -
Performance Yes Yes Yes No Yes No No No No No No
Effort Yes Yes Yes No Yes No No No No No No
Frustration Yes Yes Yes No Yes No No No No No No
Total Workload Yes Yes Yes No Yes No No No No No No
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