Submission ID: 5af4c9b2
HarrisZ improved, Blob DTM
Processed: 21-06-15. Download link: 5af4c9b258d9fb50-harrisz-2k-blobdtm.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Fabio Bellavia and Dmytro Mishkin (contact)
- Keypoint: hzbnn22l05m2k2l
- Descriptor: hardnet (128 float32: 512 bytes)
- Number of features: 2048
- Summary: Baseline submission for HarrisZ detector evaluation with Blob DTM matcher (descriptor: AffNet+HardNet8, RANSAC: DEGENSAC)
- Paper: https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2009.0127
- Website: N/A
- Processing date: 21-06-15
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.44492 (±0.00000 over 1 run(s) / ±0.15117 over 9 scenes)
Rank (per category): 58 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 2048.0 | — | 248.9 | 0.470 Rank: 32/87 |
0.873 Rank: 63/87 |
0.16176 (±0.00000) Rank: 62/87 |
0.25660 (±0.00000) Rank: 62/87 |
FCS | 2048.0 | — | 230.9 | 0.348 Rank: 79/87 |
0.879 Rank: 13/87 |
0.53777 (±0.00000) Rank: 53/87 |
0.66312 (±0.00000) Rank: 53/87 |
LMS | 2025.2 | — | 231.9 | 0.329 Rank: 83/87 |
0.662 Rank: 64/87 |
0.49994 (±0.00000) Rank: 54/87 |
0.63115 (±0.00000) Rank: 53/87 |
LB | 2046.5 | — | 192.2 | 0.336 Rank: 76/87 |
0.712 Rank: 23/87 |
0.37172 (±0.00000) Rank: 62/87 |
0.48147 (±0.00000) Rank: 59/87 |
MC | 2047.5 | — | 227.2 | 0.401 Rank: 56/87 |
0.899 Rank: 28/87 |
0.28896 (±0.00000) Rank: 62/87 |
0.42716 (±0.00000) Rank: 55/87 |
MR | 2048.0 | — | 230.1 | 0.355 Rank: 81/87 |
0.903 Rank: 26/87 |
0.21575 (±0.00000) Rank: 57/87 |
0.31118 (±0.00000) Rank: 58/87 |
PSM | 2048.0 | — | 149.1 | 0.289 Rank: 76/87 |
0.505 Rank: 66/87 |
0.11139 (±0.00000) Rank: 61/87 |
0.20650 (±0.00000) Rank: 61/87 |
SF | 2048.0 | — | 220.8 | 0.320 Rank: 82/87 |
0.827 Rank: 12/87 |
0.41304 (±0.00000) Rank: 55/87 |
0.54611 (±0.00000) Rank: 56/87 |
SPC | 2043.3 | — | 184.7 | 0.344 Rank: 72/87 |
0.806 Rank: 26/87 |
0.33654 (±0.00000) Rank: 60/87 |
0.48098 (±0.00000) Rank: 64/87 |
Avg | 2044.7 | — | 212.9 | 0.355 Rank: 75/87 |
0.785 Rank: 41/87 |
0.32632 (±0.00000) Rank: 58/87 |
0.44492 (±0.00000) Rank: 58/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.13342 over 9 scenes)
Rank (per category): 55 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 2048.0 | 248.09 | 99.48 Rank: 69/87 |
1065.90 Rank: 68/87 |
4.858 Rank: 53/87 |
0.52128 Rank: 58/87 |
0.43657 (±0.00000) Rank: 59/87 |
0.58068 (±0.00000) Rank: 59/87 |
FCS | 2048.0 | 240.14 | 98.13 Rank: 29/87 |
1577.80 Rank: 71/87 |
4.575 Rank: 60/87 |
0.24570 Rank: 32/87 |
0.73304 (±0.00000) Rank: 37/87 |
0.79583 (±0.00000) Rank: 36/87 |
LMS | 2025.2 | 250.07 | 98.61 Rank: 67/87 |
1154.35 Rank: 70/87 |
4.962 Rank: 69/87 |
0.38552 Rank: 77/87 |
0.81044 (±0.00000) Rank: 55/87 |
0.86621 (±0.00000) Rank: 56/87 |
LB | 2046.5 | 232.45 | 97.45 Rank: 64/87 |
1003.98 Rank: 72/87 |
4.766 Rank: 63/87 |
0.47259 Rank: 16/87 |
0.68497 (±0.00000) Rank: 49/87 |
0.77886 (±0.00000) Rank: 47/87 |
MC | 2047.5 | 222.66 | 99.66 Rank: 58/87 |
1214.35 Rank: 66/87 |
4.763 Rank: 58/87 |
0.37837 Rank: 49/87 |
0.53495 (±0.00000) Rank: 40/87 |
0.68057 (±0.00000) Rank: 42/87 |
MR | 2048.0 | 229.68 | 90.69 Rank: 69/87 |
1307.04 Rank: 65/87 |
4.173 Rank: 72/87 |
0.53094 Rank: 43/87 |
0.39271 (±0.00000) Rank: 44/87 |
0.50393 (±0.00000) Rank: 49/87 |
PSM | 2048.0 | 146.96 | 91.13 Rank: 65/87 |
1695.96 Rank: 67/87 |
3.261 Rank: 66/87 |
0.55117 Rank: 56/87 |
0.41447 (±0.00000) Rank: 60/87 |
0.50563 (±0.00000) Rank: 60/87 |
SF | 2048.0 | 217.63 | 98.39 Rank: 50/87 |
1565.37 Rank: 73/87 |
4.417 Rank: 73/87 |
0.31036 Rank: 55/87 |
0.72775 (±0.00000) Rank: 51/87 |
0.81392 (±0.00000) Rank: 51/87 |
SPC | 2043.3 | 190.54 | 99.46 Rank: 55/87 |
1218.47 Rank: 71/87 |
4.529 Rank: 64/87 |
0.42721 Rank: 20/87 |
0.71372 (±0.00000) Rank: 44/87 |
0.81649 (±0.00000) Rank: 46/87 |
Avg | 2044.7 | 219.80 | 97.00 Rank: 63/87 |
1311.47 Rank: 69/87 |
4.478 Rank: 66/87 |
0.42479 Rank: 54/87 |
0.60540 (±0.00000) Rank: 53/87 |
0.70468 (±0.00000) Rank: 55/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.61764 (±0.00000 over 1 run(s) / ±0.05509 over 3 scenes)
Rank (per category): 43 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 2048.0 | — | 297.8 | 0.024 Rank: 68/87 |
0.009 Rank: 45/87 |
0.45908 (±0.00000) Rank: 44/87 |
0.59029 (±0.00000) Rank: 44/87 |
Pond | 2048.0 | — | 293.3 | 0.047 Rank: 58/87 |
0.048 Rank: 36/87 |
0.44770 (±0.00000) Rank: 43/87 |
0.56814 (±0.00000) Rank: 47/87 |
Tree | 2048.0 | — | 204.7 | 0.029 Rank: 53/87 |
0.022 Rank: 45/87 |
0.59470 (±0.00000) Rank: 43/87 |
0.69448 (±0.00000) Rank: 43/87 |
Avg | 2048.0 | — | 265.3 | 0.034 Rank: 68/87 |
0.026 Rank: 54/87 |
0.50049 (±0.00000) Rank: 43/87 |
0.61764 (±0.00000) Rank: 43/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.14807 over 3 scenes)
Rank (per category): 49 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 2048.0 | 351.90 | 85.30 Rank: 19/87 |
751.74 Rank: 51/87 |
3.387 Rank: 32/87 |
14.17298 Rank: 34/87 |
0.55740 (±0.00000) Rank: 46/87 |
0.64986 (±0.00000) Rank: 42/87 |
Pond | 2048.0 | 440.34 | 71.70 Rank: 4/87 |
750.70 Rank: 56/87 |
3.040 Rank: 15/87 |
0.43717 Rank: 51/87 |
0.26331 (±0.00000) Rank: 49/87 |
0.28927 (±0.00000) Rank: 52/87 |
Tree | 2048.0 | 231.44 | 70.17 Rank: 50/87 |
386.61 Rank: 62/87 |
2.949 Rank: 48/87 |
6.05405 Rank: 37/87 |
0.39411 (±0.00000) Rank: 54/87 |
0.43581 (±0.00000) Rank: 53/87 |
Avg | 2048.0 | 341.23 | 75.72 Rank: 11/87 |
629.68 Rank: 57/87 |
3.125 Rank: 22/87 |
6.88806 Rank: 35/87 |
0.40494 (±0.00000) Rank: 49/87 |
0.45831 (±0.00000) Rank: 49/87 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.29814 (±0.00000 over 1 run(s) / ±0.12041 over 17 scenes)
Rank (per category): 43 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 2048.0 | — | 163.9 | 0.15714 (±0.00000) Rank: 43/87 |
0.27857 (±0.00000) Rank: 41/87 |
Bangkok (BGK) | 2026.9 | — | 212.9 | 0.05658 (±0.00000) Rank: 30/87 |
0.15682 (±0.00000) Rank: 35/87 |
Barcelona (BCN) | 2048.0 | — | 120.2 | 0.10403 (±0.00000) Rank: 35/87 |
0.16777 (±0.00000) Rank: 40/87 |
Buenos Aires (BAR) | 2048.0 | — | 167.9 | 0.15616 (±0.00000) Rank: 43/87 |
0.25799 (±0.00000) Rank: 46/87 |
Cambridge (CAM) | 2044.9 | — | 171.5 | 0.23219 (±0.00000) Rank: 43/87 |
0.34384 (±0.00000) Rank: 44/87 |
Cannes (CAN) | 2048.0 | — | 200.5 | 0.33548 (±0.00000) Rank: 41/87 |
0.42350 (±0.00000) Rank: 42/87 |
Chicago (CHI) | 2042.0 | — | 101.7 | 0.12199 (±0.00000) Rank: 38/87 |
0.19727 (±0.00000) Rank: 40/87 |
Helsinki (HEL) | 2043.3 | — | 311.3 | 0.35052 (±0.00000) Rank: 31/87 |
0.55361 (±0.00000) Rank: 32/87 |
Madrid (MAD) | 2046.3 | — | 108.8 | 0.05775 (±0.00000) Rank: 42/87 |
0.14438 (±0.00000) Rank: 42/87 |
Mountain View (MTV) | 2047.9 | — | 110.3 | 0.14297 (±0.00000) Rank: 43/87 |
0.23711 (±0.00000) Rank: 43/87 |
New Orleans (NOR) | 2038.9 | — | 133.4 | 0.22012 (±0.00000) Rank: 37/87 |
0.29320 (±0.00000) Rank: 40/87 |
San Francisco (SF) | 2041.1 | — | 184.1 | 0.15801 (±0.00000) Rank: 40/87 |
0.28635 (±0.00000) Rank: 39/87 |
Singapore (SG) | 2033.1 | — | 198.1 | 0.21139 (±0.00000) Rank: 42/87 |
0.30095 (±0.00000) Rank: 43/87 |
Sydney (SYD) | 2019.0 | — | 182.0 | 0.20524 (±0.00000) Rank: 45/87 |
0.30568 (±0.00000) Rank: 45/87 |
Tokyo (TOK) | 2039.4 | — | 233.4 | 0.44706 (±0.00000) Rank: 43/87 |
0.58554 (±0.00000) Rank: 43/87 |
Toronto (TOR) | 2041.5 | — | 90.5 | 0.13040 (±0.00000) Rank: 43/87 |
0.23440 (±0.00000) Rank: 45/87 |
Zurich (ZRH) | 2043.6 | — | 184.4 | 0.22818 (±0.00000) Rank: 37/87 |
0.30137 (±0.00000) Rank: 43/87 |
Average (Avg) | 2041.2 | — | 169.1 | 0.19501 (±0.00000) Rank: 42/87 |
0.29814 (±0.00000) Rank: 43/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.12614 over 17 scenes)
Rank (per category): 45 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 2048.0 | 103.65 | 63.25 Rank: 50/87 |
525.62 Rank: 49/87 |
3.036 Rank: 51/87 |
16.22494 Rank: 4/87 |
0.13632 (±0.00000) Rank: 48/87 |
0.18790 (±0.00000) Rank: 49/87 |
BGK | 2026.9 | 144.08 | 88.29 Rank: 49/87 |
1109.81 Rank: 48/87 |
3.415 Rank: 50/87 |
10.62532 Rank: 4/87 |
0.02420 (±0.00000) Rank: 37/87 |
0.07763 (±0.00000) Rank: 37/87 |
BCN | 2048.0 | 75.78 | 70.31 Rank: 46/87 |
451.59 Rank: 47/87 |
3.197 Rank: 49/87 |
22.34365 Rank: 7/87 |
0.09210 (±0.00000) Rank: 39/87 |
0.14257 (±0.00000) Rank: 40/87 |
BAR | 2048.0 | 96.89 | 60.67 Rank: 47/87 |
377.35 Rank: 47/87 |
2.838 Rank: 49/87 |
10.23222 Rank: 6/87 |
0.05684 (±0.00000) Rank: 47/87 |
0.10046 (±0.00000) Rank: 47/87 |
CAM | 2044.9 | 104.36 | 69.79 Rank: 47/87 |
689.27 Rank: 40/87 |
2.986 Rank: 50/87 |
15.29802 Rank: 6/87 |
0.11042 (±0.00000) Rank: 43/87 |
0.16196 (±0.00000) Rank: 44/87 |
CAN | 2048.0 | 110.59 | 54.27 Rank: 48/87 |
264.02 Rank: 49/87 |
3.116 Rank: 45/87 |
8.10924 Rank: 2/87 |
0.02560 (±0.00000) Rank: 43/87 |
0.04350 (±0.00000) Rank: 47/87 |
CHI | 2042.0 | 89.97 | 72.57 Rank: 44/87 |
236.29 Rank: 46/87 |
3.892 Rank: 43/87 |
45.24161 Rank: 14/87 |
0.05047 (±0.00000) Rank: 38/87 |
0.10194 (±0.00000) Rank: 39/87 |
HEL | 2043.3 | 223.17 | 91.41 Rank: 43/87 |
1354.16 Rank: 46/87 |
3.536 Rank: 50/87 |
12.63634 Rank: 11/87 |
0.27857 (±0.00000) Rank: 40/87 |
0.42265 (±0.00000) Rank: 36/87 |
MAD | 2046.3 | 72.75 | 73.63 Rank: 48/87 |
467.74 Rank: 48/87 |
3.051 Rank: 50/87 |
4.30299 Rank: 9/87 |
0.01870 (±0.00000) Rank: 49/87 |
0.04797 (±0.00000) Rank: 49/87 |
MTV | 2047.9 | 84.08 | 75.60 Rank: 46/87 |
454.93 Rank: 51/87 |
3.243 Rank: 50/87 |
9.49516 Rank: 2/87 |
0.12028 (±0.00000) Rank: 47/87 |
0.19333 (±0.00000) Rank: 47/87 |
NOR | 2038.9 | 89.66 | 56.42 Rank: 46/87 |
233.04 Rank: 51/87 |
2.881 Rank: 48/87 |
7.21398 Rank: 8/87 |
0.05729 (±0.00000) Rank: 48/87 |
0.08347 (±0.00000) Rank: 49/87 |
SF | 2041.1 | 113.63 | 79.48 Rank: 44/87 |
718.46 Rank: 47/87 |
3.272 Rank: 45/87 |
14.40589 Rank: 8/87 |
0.12047 (±0.00000) Rank: 45/87 |
0.20570 (±0.00000) Rank: 44/87 |
SG | 2033.1 | 126.18 | 66.87 Rank: 43/87 |
569.41 Rank: 43/87 |
3.065 Rank: 48/87 |
14.32111 Rank: 9/87 |
0.10876 (±0.00000) Rank: 42/87 |
0.15200 (±0.00000) Rank: 43/87 |
SYD | 2019.0 | 111.95 | 65.96 Rank: 48/87 |
457.72 Rank: 47/87 |
2.973 Rank: 47/87 |
8.13362 Rank: 4/87 |
0.08200 (±0.00000) Rank: 48/87 |
0.13202 (±0.00000) Rank: 48/87 |
TOK | 2039.4 | 143.33 | 83.67 Rank: 45/87 |
990.49 Rank: 47/87 |
3.380 Rank: 49/87 |
10.74593 Rank: 7/87 |
0.46837 (±0.00000) Rank: 43/87 |
0.53438 (±0.00000) Rank: 43/87 |
TOR | 2041.5 | 58.07 | 65.38 Rank: 45/87 |
336.65 Rank: 47/87 |
2.947 Rank: 49/87 |
6.94978 Rank: 2/87 |
0.05696 (±0.00000) Rank: 44/87 |
0.10100 (±0.00000) Rank: 45/87 |
ZRH | 2043.6 | 110.11 | 70.92 Rank: 45/87 |
803.81 Rank: 47/87 |
3.071 Rank: 48/87 |
13.57117 Rank: 8/87 |
0.03846 (±0.00000) Rank: 43/87 |
0.07530 (±0.00000) Rank: 44/87 |
Avg | 2041.2 | 109.31 | 71.09 Rank: 46/87 |
590.61 Rank: 47/87 |
3.170 Rank: 50/87 |
13.52064 Rank: 4/87 |
0.10858 (±0.00000) Rank: 44/87 |
0.16257 (±0.00000) Rank: 45/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —