Submission ID: 89348c8b
HarrisZ improved, Blob DTM + AdaLAM
Processed: 21-06-15. Download link: 89348c8bf1b717ea-harrisz-8k-blobdtmadalam.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Fabio Bellavia and Dmytro Mishkin (contact)
- Keypoint: hzbnn22l05m8k2l
- Descriptor: hardnet (128 float32: 512 bytes)
- Number of features: 8000
- Summary: Baseline submission for HarrisZ detector evaluation with Blob DTM matcher and then AdaLAM filtering (descriptor: AffNet+HardNet8, RANSAC: DEGENSAC)
- Paper: https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2009.0127
- Website: N/A
- Processing date: 21-06-15
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.55214 (±0.00000 over 1 run(s) / ±0.15283 over 9 scenes)
Rank (per category): 21 (of 51)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 5924.1 | — | 956.4 | 0.641 Rank: 20/51 |
0.889 Rank: 40/51 |
0.24624 (±0.00000) Rank: 25/51 |
0.36040 (±0.00000) Rank: 29/51 |
FCS | 7673.2 | — | 1297.4 | 0.522 Rank: 14/51 |
0.898 Rank: 24/51 |
0.63231 (±0.00000) Rank: 22/51 |
0.74919 (±0.00000) Rank: 23/51 |
LMS | 5167.7 | — | 966.7 | 0.519 Rank: 20/51 |
0.676 Rank: 28/51 |
0.58374 (±0.00000) Rank: 16/51 |
0.70633 (±0.00000) Rank: 13/51 |
LB | 7137.0 | — | 838.0 | 0.531 Rank: 24/51 |
0.757 Rank: 18/51 |
0.51214 (±0.00000) Rank: 25/51 |
0.61332 (±0.00000) Rank: 20/51 |
MC | 7683.4 | — | 1384.1 | 0.627 Rank: 20/51 |
0.914 Rank: 28/51 |
0.39547 (±0.00000) Rank: 25/51 |
0.54658 (±0.00000) Rank: 26/51 |
MR | 7601.6 | — | 1270.4 | 0.536 Rank: 25/51 |
0.915 Rank: 30/51 |
0.29970 (±0.00000) Rank: 28/51 |
0.41225 (±0.00000) Rank: 28/51 |
PSM | 7643.2 | — | 767.9 | 0.476 Rank: 20/51 |
0.675 Rank: 16/51 |
0.16864 (±0.00000) Rank: 26/51 |
0.28846 (±0.00000) Rank: 27/51 |
SF | 7832.8 | — | 1435.7 | 0.513 Rank: 22/51 |
0.852 Rank: 16/51 |
0.53404 (±0.00000) Rank: 20/51 |
0.65678 (±0.00000) Rank: 21/51 |
SPC | 7118.8 | — | 1026.8 | 0.568 Rank: 20/51 |
0.843 Rank: 22/51 |
0.48321 (±0.00000) Rank: 19/51 |
0.63599 (±0.00000) Rank: 18/51 |
Avg | 7086.9 | — | 1104.8 | 0.548 Rank: 20/51 |
0.824 Rank: 27/51 |
0.42839 (±0.00000) Rank: 21/51 |
0.55214 (±0.00000) Rank: 21/51 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.11134 over 9 scenes)
Rank (per category): 13 (of 51)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 5924.1 | 956.27 | 99.47 Rank: 43/51 |
2885.54 Rank: 34/51 |
5.388 Rank: 15/51 |
0.44067 Rank: 20/51 |
0.52530 (±0.00000) Rank: 17/51 |
0.66579 (±0.00000) Rank: 15/51 |
FCS | 7673.2 | 1356.56 | 98.07 Rank: 21/51 |
6007.94 Rank: 18/51 |
4.884 Rank: 18/51 |
0.22814 Rank: 17/51 |
0.77020 (±0.00000) Rank: 11/51 |
0.82387 (±0.00000) Rank: 13/51 |
LMS | 5167.7 | 1043.79 | 99.13 Rank: 27/51 |
3117.46 Rank: 25/51 |
5.299 Rank: 12/51 |
0.27588 Rank: 6/51 |
0.85144 (±0.00000) Rank: 8/51 |
0.90307 (±0.00000) Rank: 10/51 |
LB | 7137.0 | 1026.30 | 98.36 Rank: 1/51 |
3554.90 Rank: 28/51 |
5.093 Rank: 17/51 |
0.46121 Rank: 5/51 |
0.76239 (±0.00000) Rank: 3/51 |
0.83660 (±0.00000) Rank: 3/51 |
MC | 7683.4 | 1359.54 | 100.00 Rank: 1/51 |
4948.51 Rank: 20/51 |
5.426 Rank: 16/51 |
0.32949 Rank: 13/51 |
0.58587 (±0.00000) Rank: 3/51 |
0.71919 (±0.00000) Rank: 4/51 |
MR | 7601.6 | 1269.10 | 94.60 Rank: 24/51 |
5357.13 Rank: 23/51 |
4.641 Rank: 20/51 |
0.50363 Rank: 28/51 |
0.47688 (±0.00000) Rank: 11/51 |
0.59003 (±0.00000) Rank: 14/51 |
PSM | 7643.2 | 759.59 | 98.49 Rank: 19/51 |
6416.56 Rank: 19/51 |
3.828 Rank: 21/51 |
0.51184 Rank: 25/51 |
0.50500 (±0.00000) Rank: 22/51 |
0.59481 (±0.00000) Rank: 22/51 |
SF | 7832.8 | 1408.81 | 99.68 Rank: 13/51 |
6508.63 Rank: 21/51 |
4.926 Rank: 19/51 |
0.29172 Rank: 14/51 |
0.77163 (±0.00000) Rank: 14/51 |
0.85330 (±0.00000) Rank: 13/51 |
SPC | 7118.8 | 1064.82 | 100.00 Rank: 1/51 |
4504.16 Rank: 25/51 |
5.101 Rank: 18/51 |
0.43612 Rank: 15/51 |
0.74564 (±0.00000) Rank: 10/51 |
0.83593 (±0.00000) Rank: 12/51 |
Avg | 7086.9 | 1138.31 | 98.64 Rank: 18/51 |
4811.20 Rank: 23/51 |
4.954 Rank: 16/51 |
0.38652 Rank: 17/51 |
0.66604 (±0.00000) Rank: 10/51 |
0.75807 (±0.00000) Rank: 13/51 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.74239 (±0.00000 over 1 run(s) / ±0.05488 over 3 scenes)
Rank (per category): 9 (of 51)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 8000.0 | — | 1284.9 | 0.084 Rank: 34/51 |
0.010 Rank: 23/51 |
0.57503 (±0.00000) Rank: 9/51 |
0.70749 (±0.00000) Rank: 9/51 |
Pond | 8000.0 | — | 1331.0 | 0.108 Rank: 29/51 |
0.049 Rank: 29/51 |
0.58357 (±0.00000) Rank: 5/51 |
0.69980 (±0.00000) Rank: 6/51 |
Tree | 8000.0 | — | 948.1 | 0.084 Rank: 34/51 |
0.022 Rank: 7/51 |
0.73245 (±0.00000) Rank: 14/51 |
0.81987 (±0.00000) Rank: 14/51 |
Avg | 8000.0 | — | 1188.0 | 0.092 Rank: 34/51 |
0.027 Rank: 29/51 |
0.63035 (±0.00000) Rank: 9/51 |
0.74239 (±0.00000) Rank: 9/51 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.14003 over 3 scenes)
Rank (per category): 20 (of 51)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 8000.0 | 1517.80 | 85.30 Rank: 4/51 |
3133.12 Rank: 11/51 |
3.432 Rank: 12/51 |
14.05358 Rank: 18/51 |
0.56116 (±0.00000) Rank: 18/51 |
0.64581 (±0.00000) Rank: 17/51 |
Pond | 8000.0 | 1956.09 | 69.87 Rank: 20/51 |
3365.37 Rank: 8/51 |
3.114 Rank: 10/51 |
0.43248 Rank: 21/51 |
0.27129 (±0.00000) Rank: 16/51 |
0.30299 (±0.00000) Rank: 17/51 |
Tree | 8000.0 | 1067.71 | 70.14 Rank: 33/51 |
1613.60 Rank: 15/51 |
2.900 Rank: 27/51 |
6.01573 Rank: 20/51 |
0.43004 (±0.00000) Rank: 26/51 |
0.46459 (±0.00000) Rank: 26/51 |
Avg | 8000.0 | 1513.87 | 75.10 Rank: 21/51 |
2704.03 Rank: 10/51 |
3.149 Rank: 13/51 |
6.83393 Rank: 18/51 |
0.42083 (±0.00000) Rank: 20/51 |
0.47113 (±0.00000) Rank: 20/51 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.33278 (±0.00000 over 1 run(s) / ±0.11928 over 17 scenes)
Rank (per category): 15 (of 51)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 4306.7 | — | 391.9 | 0.22589 (±0.00000) Rank: 15/51 |
0.37634 (±0.00000) Rank: 13/51 |
Bangkok (BGK) | 3087.8 | — | 339.7 | 0.06898 (±0.00000) Rank: 12/51 |
0.17519 (±0.00000) Rank: 15/51 |
Barcelona (BCN) | 4576.9 | — | 306.3 | 0.14799 (±0.00000) Rank: 4/51 |
0.23810 (±0.00000) Rank: 5/51 |
Buenos Aires (BAR) | 3994.0 | — | 334.8 | 0.17626 (±0.00000) Rank: 15/51 |
0.30502 (±0.00000) Rank: 17/51 |
Cambridge (CAM) | 2981.6 | — | 239.0 | 0.25890 (±0.00000) Rank: 15/51 |
0.37397 (±0.00000) Rank: 15/51 |
Cannes (CAN) | 3345.9 | — | 352.9 | 0.40829 (±0.00000) Rank: 11/51 |
0.49816 (±0.00000) Rank: 9/51 |
Chicago (CHI) | 4274.9 | — | 192.1 | 0.15956 (±0.00000) Rank: 14/51 |
0.24617 (±0.00000) Rank: 14/51 |
Helsinki (HEL) | 3348.7 | — | 514.3 | 0.37062 (±0.00000) Rank: 14/51 |
0.57474 (±0.00000) Rank: 13/51 |
Madrid (MAD) | 3668.0 | — | 168.4 | 0.05897 (±0.00000) Rank: 18/51 |
0.14225 (±0.00000) Rank: 18/51 |
Mountain View (MTV) | 3896.6 | — | 191.8 | 0.17422 (±0.00000) Rank: 15/51 |
0.29082 (±0.00000) Rank: 14/51 |
New Orleans (NOR) | 3534.6 | — | 212.8 | 0.23018 (±0.00000) Rank: 15/51 |
0.31065 (±0.00000) Rank: 13/51 |
San Francisco (SF) | 3314.3 | — | 310.6 | 0.16745 (±0.00000) Rank: 14/51 |
0.30472 (±0.00000) Rank: 13/51 |
Singapore (SG) | 2854.6 | — | 276.6 | 0.21392 (±0.00000) Rank: 21/51 |
0.31646 (±0.00000) Rank: 20/51 |
Sydney (SYD) | 3081.6 | — | 257.1 | 0.21223 (±0.00000) Rank: 23/51 |
0.32096 (±0.00000) Rank: 24/51 |
Tokyo (TOK) | 3047.8 | — | 328.7 | 0.46275 (±0.00000) Rank: 16/51 |
0.59044 (±0.00000) Rank: 17/51 |
Toronto (TOR) | 3514.5 | — | 144.2 | 0.14800 (±0.00000) Rank: 16/51 |
0.26880 (±0.00000) Rank: 17/51 |
Zurich (ZRH) | 4168.4 | — | 387.1 | 0.25086 (±0.00000) Rank: 13/51 |
0.32440 (±0.00000) Rank: 15/51 |
Average (Avg) | 3588.0 | — | 291.1 | 0.21971 (±0.00000) Rank: 14/51 |
0.33278 (±0.00000) Rank: 15/51 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.12801 over 17 scenes)
Rank (per category): 12 (of 51)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 4306.7 | 234.16 | 82.93 Rank: 15/51 |
1415.11 Rank: 21/51 |
3.536 Rank: 15/51 |
22.82415 Rank: 14/51 |
0.30424 (±0.00000) Rank: 11/51 |
0.40061 (±0.00000) Rank: 11/51 |
BGK | 3087.8 | 221.60 | 92.13 Rank: 18/51 |
1675.75 Rank: 24/51 |
3.523 Rank: 14/51 |
12.16021 Rank: 9/51 |
0.02234 (±0.00000) Rank: 15/51 |
0.07869 (±0.00000) Rank: 14/51 |
BCN | 4576.9 | 170.85 | 77.77 Rank: 18/51 |
1062.66 Rank: 18/51 |
3.499 Rank: 7/51 |
26.80487 Rank: 17/51 |
0.15232 (±0.00000) Rank: 8/51 |
0.23149 (±0.00000) Rank: 9/51 |
BAR | 3994.0 | 181.52 | 72.57 Rank: 15/51 |
804.64 Rank: 21/51 |
3.072 Rank: 15/51 |
13.97361 Rank: 16/51 |
0.08281 (±0.00000) Rank: 16/51 |
0.14596 (±0.00000) Rank: 15/51 |
CAM | 2981.6 | 139.78 | 75.02 Rank: 18/51 |
795.21 Rank: 24/51 |
3.148 Rank: 15/51 |
17.98827 Rank: 6/51 |
0.11446 (±0.00000) Rank: 17/51 |
0.17180 (±0.00000) Rank: 16/51 |
CAN | 3345.9 | 186.89 | 66.01 Rank: 15/51 |
516.04 Rank: 19/51 |
3.211 Rank: 16/51 |
14.05078 Rank: 13/51 |
0.03906 (±0.00000) Rank: 13/51 |
0.06543 (±0.00000) Rank: 15/51 |
CHI | 4274.9 | 168.37 | 82.66 Rank: 15/51 |
424.50 Rank: 21/51 |
4.494 Rank: 15/51 |
40.41243 Rank: 8/51 |
0.09509 (±0.00000) Rank: 13/51 |
0.16626 (±0.00000) Rank: 15/51 |
HEL | 3348.7 | 361.02 | 90.57 Rank: 20/51 |
1938.58 Rank: 23/51 |
3.609 Rank: 9/51 |
12.43809 Rank: 11/51 |
0.28621 (±0.00000) Rank: 10/51 |
0.41507 (±0.00000) Rank: 17/51 |
MAD | 3668.0 | 105.96 | 81.12 Rank: 16/51 |
762.53 Rank: 25/51 |
3.196 Rank: 16/51 |
4.72843 Rank: 12/51 |
0.03447 (±0.00000) Rank: 21/51 |
0.08264 (±0.00000) Rank: 21/51 |
MTV | 3896.6 | 135.95 | 83.98 Rank: 15/51 |
809.49 Rank: 25/51 |
3.425 Rank: 16/51 |
14.68425 Rank: 18/51 |
0.18438 (±0.00000) Rank: 13/51 |
0.28312 (±0.00000) Rank: 12/51 |
NOR | 3534.6 | 134.11 | 67.60 Rank: 14/51 |
494.55 Rank: 21/51 |
2.918 Rank: 17/51 |
8.31867 Rank: 11/51 |
0.09756 (±0.00000) Rank: 16/51 |
0.13710 (±0.00000) Rank: 17/51 |
SF | 3314.3 | 184.78 | 80.63 Rank: 16/51 |
1038.01 Rank: 21/51 |
3.319 Rank: 12/51 |
14.69975 Rank: 10/51 |
0.16500 (±0.00000) Rank: 13/51 |
0.25570 (±0.00000) Rank: 14/51 |
SG | 2854.6 | 165.83 | 65.32 Rank: 17/51 |
642.37 Rank: 25/51 |
3.213 Rank: 6/51 |
14.93220 Rank: 15/51 |
0.13419 (±0.00000) Rank: 10/51 |
0.17744 (±0.00000) Rank: 12/51 |
SYD | 3081.6 | 150.84 | 72.14 Rank: 18/51 |
687.15 Rank: 21/51 |
3.114 Rank: 13/51 |
11.41929 Rank: 10/51 |
0.09002 (±0.00000) Rank: 24/51 |
0.13765 (±0.00000) Rank: 24/51 |
TOK | 3047.8 | 199.90 | 85.15 Rank: 14/51 |
1331.96 Rank: 22/51 |
3.550 Rank: 7/51 |
11.87460 Rank: 14/51 |
0.45931 (±0.00000) Rank: 15/51 |
0.53557 (±0.00000) Rank: 15/51 |
TOR | 3514.5 | 84.04 | 72.27 Rank: 20/51 |
504.22 Rank: 22/51 |
3.172 Rank: 10/51 |
12.55558 Rank: 13/51 |
0.06561 (±0.00000) Rank: 18/51 |
0.12694 (±0.00000) Rank: 18/51 |
ZRH | 4168.4 | 227.66 | 79.14 Rank: 15/51 |
1500.04 Rank: 18/51 |
3.323 Rank: 4/51 |
14.35881 Rank: 10/51 |
0.07932 (±0.00000) Rank: 11/51 |
0.13259 (±0.00000) Rank: 12/51 |
Avg | 3588.0 | 179.60 | 78.06 Rank: 16/51 |
964.87 Rank: 23/51 |
3.372 Rank: 14/51 |
15.77788 Rank: 11/51 |
0.14155 (±0.00000) Rank: 12/51 |
0.20847 (±0.00000) Rank: 12/51 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —