Submission ID: 9fd9f211
SuperPoint_SuperGlue_Adapt5_Baseline
Processed: 21-05-15. Download link: 9fd9f21106d7ed35-superpoint-superglue-adapt5-baseline.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Downey (contact)
- Keypoint: superpointmaskadapt5
- Descriptor: superglueoutdoor (256 float32: 1024 bytes)
- Number of features: 2048
- Summary: SuperPoint with Adaptions,Superglue trained on Megadepth, Degensac t1.2 ,extra mask for Phototoursim dataset
- Paper: N/A
- Website: N/A
- Processing date: 21-05-15
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.53812 (±0.00000 over 1 run(s) / ±0.13214 over 9 scenes)
Rank (per category): 39 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 2039.7 | — | 369.5 | 0.420 Rank: 71/87 |
0.865 Rank: 67/87 |
0.33521 (±0.00000) Rank: 25/87 |
0.48644 (±0.00000) Rank: 25/87 |
FCS | 2048.0 | — | 525.1 | 0.409 Rank: 32/87 |
0.861 Rank: 50/87 |
0.64411 (±0.00000) Rank: 34/87 |
0.76431 (±0.00000) Rank: 34/87 |
LMS | 2043.1 | — | 362.9 | 0.373 Rank: 65/87 |
0.699 Rank: 15/87 |
0.38283 (±0.00000) Rank: 71/87 |
0.47454 (±0.00000) Rank: 74/87 |
LB | 2048.0 | — | 396.4 | 0.385 Rank: 52/87 |
0.677 Rank: 64/87 |
0.47745 (±0.00000) Rank: 25/87 |
0.59545 (±0.00000) Rank: 33/87 |
MC | 2048.0 | — | 428.5 | 0.410 Rank: 53/87 |
0.839 Rank: 70/87 |
0.33552 (±0.00000) Rank: 25/87 |
0.48449 (±0.00000) Rank: 37/87 |
MR | 2040.4 | — | 366.1 | 0.407 Rank: 54/87 |
0.878 Rank: 63/87 |
0.22245 (±0.00000) Rank: 53/87 |
0.32859 (±0.00000) Rank: 47/87 |
PSM | 2048.0 | — | 345.5 | 0.308 Rank: 66/87 |
0.583 Rank: 49/87 |
0.23111 (±0.00000) Rank: 32/87 |
0.39461 (±0.00000) Rank: 27/87 |
SF | 2048.0 | — | 504.4 | 0.369 Rank: 48/87 |
0.769 Rank: 63/87 |
0.50471 (±0.00000) Rank: 28/87 |
0.64762 (±0.00000) Rank: 28/87 |
SPC | 2048.0 | — | 415.4 | 0.364 Rank: 64/87 |
0.778 Rank: 64/87 |
0.49973 (±0.00000) Rank: 35/87 |
0.66704 (±0.00000) Rank: 32/87 |
Avg | 2045.7 | — | 412.7 | 0.383 Rank: 64/87 |
0.772 Rank: 62/87 |
0.40368 (±0.00000) Rank: 39/87 |
0.53812 (±0.00000) Rank: 39/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.10655 over 9 scenes)
Rank (per category): 40 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 2039.7 | 371.50 | 99.35 Rank: 70/87 |
2152.53 Rank: 23/87 |
4.691 Rank: 66/87 |
0.33777 Rank: 9/87 |
0.57100 (±0.00000) Rank: 35/87 |
0.71072 (±0.00000) Rank: 34/87 |
FCS | 2048.0 | 530.41 | 98.21 Rank: 24/87 |
2646.65 Rank: 30/87 |
5.090 Rank: 26/87 |
0.25225 Rank: 39/87 |
0.74947 (±0.00000) Rank: 20/87 |
0.80843 (±0.00000) Rank: 18/87 |
LMS | 2043.1 | 378.41 | 98.73 Rank: 64/87 |
2046.86 Rank: 21/87 |
4.701 Rank: 74/87 |
0.38513 Rank: 76/87 |
0.70225 (±0.00000) Rank: 74/87 |
0.77720 (±0.00000) Rank: 75/87 |
LB | 2048.0 | 473.58 | 98.36 Rank: 1/87 |
2159.11 Rank: 17/87 |
5.271 Rank: 33/87 |
0.48775 Rank: 39/87 |
0.71473 (±0.00000) Rank: 31/87 |
0.81084 (±0.00000) Rank: 28/87 |
MC | 2048.0 | 423.79 | 100.00 Rank: 1/87 |
2187.74 Rank: 37/87 |
5.140 Rank: 31/87 |
0.34392 Rank: 16/87 |
0.56075 (±0.00000) Rank: 15/87 |
0.70889 (±0.00000) Rank: 14/87 |
MR | 2040.4 | 357.89 | 93.24 Rank: 57/87 |
1826.39 Rank: 50/87 |
4.668 Rank: 51/87 |
0.56369 Rank: 64/87 |
0.36816 (±0.00000) Rank: 58/87 |
0.48717 (±0.00000) Rank: 58/87 |
PSM | 2048.0 | 342.16 | 98.91 Rank: 40/87 |
2415.18 Rank: 36/87 |
4.396 Rank: 39/87 |
0.36009 Rank: 34/87 |
0.64943 (±0.00000) Rank: 18/87 |
0.73756 (±0.00000) Rank: 21/87 |
SF | 2048.0 | 497.69 | 99.80 Rank: 27/87 |
2777.82 Rank: 31/87 |
5.035 Rank: 26/87 |
0.27737 Rank: 13/87 |
0.78407 (±0.00000) Rank: 10/87 |
0.86444 (±0.00000) Rank: 18/87 |
SPC | 2048.0 | 425.51 | 100.00 Rank: 1/87 |
2352.98 Rank: 27/87 |
5.046 Rank: 45/87 |
0.47360 Rank: 49/87 |
0.74962 (±0.00000) Rank: 32/87 |
0.84361 (±0.00000) Rank: 31/87 |
Avg | 2045.7 | 422.33 | 98.51 Rank: 44/87 |
2285.03 Rank: 35/87 |
4.893 Rank: 53/87 |
0.38684 Rank: 42/87 |
0.64994 (±0.00000) Rank: 40/87 |
0.74987 (±0.00000) Rank: 40/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.74202 (±0.00000 over 1 run(s) / ±0.04548 over 3 scenes)
Rank (per category): 28 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 2048.0 | — | 301.0 | 0.034 Rank: 44/87 |
0.012 Rank: 16/87 |
0.57476 (±0.00000) Rank: 26/87 |
0.71387 (±0.00000) Rank: 26/87 |
Pond | 2048.0 | — | 308.0 | 0.049 Rank: 36/87 |
0.046 Rank: 49/87 |
0.55311 (±0.00000) Rank: 31/87 |
0.70601 (±0.00000) Rank: 28/87 |
Tree | 2048.0 | — | 196.1 | 0.029 Rank: 57/87 |
0.022 Rank: 42/87 |
0.68742 (±0.00000) Rank: 26/87 |
0.80618 (±0.00000) Rank: 25/87 |
Avg | 2048.0 | — | 268.3 | 0.037 Rank: 47/87 |
0.027 Rank: 43/87 |
0.60509 (±0.00000) Rank: 30/87 |
0.74202 (±0.00000) Rank: 28/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.15228 over 3 scenes)
Rank (per category): 20 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 2048.0 | 323.28 | 85.30 Rank: 19/87 |
1027.31 Rank: 35/87 |
3.445 Rank: 12/87 |
14.16676 Rank: 32/87 |
0.58662 (±0.00000) Rank: 23/87 |
0.67128 (±0.00000) Rank: 22/87 |
Pond | 2048.0 | 347.26 | 70.27 Rank: 10/87 |
891.48 Rank: 34/87 |
2.914 Rank: 34/87 |
0.43442 Rank: 47/87 |
0.26171 (±0.00000) Rank: 50/87 |
0.29856 (±0.00000) Rank: 46/87 |
Tree | 2048.0 | 188.47 | 72.19 Rank: 13/87 |
487.38 Rank: 38/87 |
2.961 Rank: 43/87 |
6.16181 Rank: 59/87 |
0.45824 (±0.00000) Rank: 13/87 |
0.49746 (±0.00000) Rank: 12/87 |
Avg | 2048.0 | 286.34 | 75.92 Rank: 5/87 |
802.06 Rank: 33/87 |
3.107 Rank: 24/87 |
6.92100 Rank: 44/87 |
0.43553 (±0.00000) Rank: 27/87 |
0.48910 (±0.00000) Rank: 20/87 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.39354 (±0.00000 over 1 run(s) / ±0.13689 over 17 scenes)
Rank (per category): 26 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 2048.0 | — | 251.9 | 0.23571 (±0.00000) Rank: 26/87 |
0.40580 (±0.00000) Rank: 18/87 |
Bangkok (BGK) | 2048.0 | — | 322.5 | 0.05509 (±0.00000) Rank: 35/87 |
0.16079 (±0.00000) Rank: 33/87 |
Barcelona (BCN) | 2048.0 | — | 223.5 | 0.11429 (±0.00000) Rank: 27/87 |
0.19817 (±0.00000) Rank: 30/87 |
Buenos Aires (BAR) | 2048.0 | — | 258.0 | 0.22100 (±0.00000) Rank: 26/87 |
0.36986 (±0.00000) Rank: 25/87 |
Cambridge (CAM) | 2048.0 | — | 218.7 | 0.30000 (±0.00000) Rank: 26/87 |
0.43938 (±0.00000) Rank: 30/87 |
Cannes (CAN) | 2048.0 | — | 289.0 | 0.38525 (±0.00000) Rank: 32/87 |
0.50184 (±0.00000) Rank: 30/87 |
Chicago (CHI) | 2048.0 | — | 175.9 | 0.20396 (±0.00000) Rank: 17/87 |
0.33641 (±0.00000) Rank: 17/87 |
Helsinki (HEL) | 2048.0 | — | 420.5 | 0.36443 (±0.00000) Rank: 29/87 |
0.56418 (±0.00000) Rank: 30/87 |
Madrid (MAD) | 2048.0 | — | 186.2 | 0.08267 (±0.00000) Rank: 23/87 |
0.18936 (±0.00000) Rank: 26/87 |
Mountain View (MTV) | 2048.0 | — | 240.7 | 0.22031 (±0.00000) Rank: 29/87 |
0.36934 (±0.00000) Rank: 31/87 |
New Orleans (NOR) | 2048.0 | — | 195.8 | 0.28521 (±0.00000) Rank: 15/87 |
0.38757 (±0.00000) Rank: 22/87 |
San Francisco (SF) | 2048.0 | — | 266.7 | 0.21417 (±0.00000) Rank: 10/87 |
0.36115 (±0.00000) Rank: 16/87 |
Singapore (SG) | 2048.0 | — | 225.9 | 0.31329 (±0.00000) Rank: 32/87 |
0.43133 (±0.00000) Rank: 32/87 |
Sydney (SYD) | 2048.0 | — | 288.9 | 0.35022 (±0.00000) Rank: 13/87 |
0.49563 (±0.00000) Rank: 19/87 |
Tokyo (TOK) | 2048.0 | — | 331.0 | 0.60441 (±0.00000) Rank: 17/87 |
0.74387 (±0.00000) Rank: 17/87 |
Toronto (TOR) | 2048.0 | — | 218.9 | 0.20320 (±0.00000) Rank: 33/87 |
0.37120 (±0.00000) Rank: 27/87 |
Zurich (ZRH) | 2048.0 | — | 306.0 | 0.26323 (±0.00000) Rank: 24/87 |
0.36426 (±0.00000) Rank: 22/87 |
Average (Avg) | 2048.0 | — | 260.0 | 0.25979 (±0.00000) Rank: 26/87 |
0.39354 (±0.00000) Rank: 26/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.16178 over 17 scenes)
Rank (per category): 24 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 2048.0 | 165.99 | 92.40 Rank: 20/87 |
1215.58 Rank: 35/87 |
3.841 Rank: 14/87 |
25.26212 Rank: 29/87 |
0.34156 (±0.00000) Rank: 29/87 |
0.47540 (±0.00000) Rank: 19/87 |
BGK | 2048.0 | 224.71 | 96.80 Rank: 22/87 |
1869.31 Rank: 35/87 |
3.722 Rank: 10/87 |
14.95564 Rank: 44/87 |
0.02476 (±0.00000) Rank: 33/87 |
0.07718 (±0.00000) Rank: 38/87 |
BCN | 2048.0 | 137.46 | 82.49 Rank: 30/87 |
951.05 Rank: 31/87 |
3.659 Rank: 35/87 |
27.30463 Rank: 28/87 |
0.14735 (±0.00000) Rank: 11/87 |
0.23998 (±0.00000) Rank: 8/87 |
BAR | 2048.0 | 148.87 | 81.37 Rank: 37/87 |
879.71 Rank: 33/87 |
3.305 Rank: 38/87 |
14.61034 Rank: 13/87 |
0.11669 (±0.00000) Rank: 39/87 |
0.20112 (±0.00000) Rank: 39/87 |
CAM | 2048.0 | 138.41 | 85.76 Rank: 30/87 |
1037.43 Rank: 33/87 |
3.422 Rank: 38/87 |
27.04935 Rank: 31/87 |
0.22053 (±0.00000) Rank: 4/87 |
0.31132 (±0.00000) Rank: 5/87 |
CAN | 2048.0 | 158.68 | 77.54 Rank: 24/87 |
656.26 Rank: 35/87 |
3.503 Rank: 26/87 |
21.27783 Rank: 35/87 |
0.08257 (±0.00000) Rank: 14/87 |
0.13866 (±0.00000) Rank: 18/87 |
CHI | 2048.0 | 154.76 | 87.49 Rank: 29/87 |
433.23 Rank: 30/87 |
4.517 Rank: 24/87 |
46.89713 Rank: 24/87 |
0.11753 (±0.00000) Rank: 25/87 |
0.21231 (±0.00000) Rank: 24/87 |
HEL | 2048.0 | 300.93 | 95.60 Rank: 5/87 |
2031.87 Rank: 33/87 |
3.998 Rank: 31/87 |
16.46006 Rank: 52/87 |
0.39899 (±0.00000) Rank: 1/87 |
0.54927 (±0.00000) Rank: 1/87 |
MAD | 2048.0 | 121.97 | 89.22 Rank: 32/87 |
1197.29 Rank: 31/87 |
3.299 Rank: 18/87 |
5.25592 Rank: 17/87 |
0.07807 (±0.00000) Rank: 34/87 |
0.17060 (±0.00000) Rank: 35/87 |
MTV | 2048.0 | 173.05 | 91.65 Rank: 25/87 |
1362.60 Rank: 29/87 |
3.819 Rank: 22/87 |
17.11132 Rank: 39/87 |
0.29829 (±0.00000) Rank: 10/87 |
0.44034 (±0.00000) Rank: 6/87 |
NOR | 2048.0 | 129.03 | 84.50 Rank: 29/87 |
950.13 Rank: 30/87 |
3.319 Rank: 29/87 |
12.06292 Rank: 24/87 |
0.22510 (±0.00000) Rank: 31/87 |
0.30082 (±0.00000) Rank: 32/87 |
SF | 2048.0 | 171.35 | 92.40 Rank: 35/87 |
1348.09 Rank: 31/87 |
3.616 Rank: 37/87 |
20.67493 Rank: 34/87 |
0.29439 (±0.00000) Rank: 15/87 |
0.44336 (±0.00000) Rank: 13/87 |
SG | 2048.0 | 141.44 | 78.35 Rank: 18/87 |
961.63 Rank: 30/87 |
3.330 Rank: 27/87 |
17.68842 Rank: 33/87 |
0.24614 (±0.00000) Rank: 14/87 |
0.31366 (±0.00000) Rank: 15/87 |
SYD | 2048.0 | 176.93 | 88.57 Rank: 22/87 |
1421.52 Rank: 26/87 |
3.558 Rank: 26/87 |
17.52818 Rank: 13/87 |
0.26962 (±0.00000) Rank: 28/87 |
0.35792 (±0.00000) Rank: 28/87 |
TOK | 2048.0 | 205.53 | 93.20 Rank: 18/87 |
1894.87 Rank: 30/87 |
3.678 Rank: 37/87 |
14.82607 Rank: 48/87 |
0.67415 (±0.00000) Rank: 14/87 |
0.74362 (±0.00000) Rank: 18/87 |
TOR | 2048.0 | 140.30 | 88.40 Rank: 24/87 |
1370.03 Rank: 26/87 |
3.220 Rank: 24/87 |
19.20573 Rank: 51/87 |
0.19647 (±0.00000) Rank: 25/87 |
0.32337 (±0.00000) Rank: 25/87 |
ZRH | 2048.0 | 188.56 | 89.91 Rank: 21/87 |
1649.02 Rank: 27/87 |
3.473 Rank: 20/87 |
23.14630 Rank: 49/87 |
0.13442 (±0.00000) Rank: 9/87 |
0.21444 (±0.00000) Rank: 8/87 |
Avg | 2048.0 | 169.29 | 87.98 Rank: 30/87 |
1248.80 Rank: 30/87 |
3.605 Rank: 32/87 |
20.07746 Rank: 29/87 |
0.22745 (±0.00000) Rank: 23/87 |
0.32432 (±0.00000) Rank: 24/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —