Submission ID: a187b567
sp_woada_degeree_origin
Processed: 21-06-11. Download link: a187b56799de0f20-degree.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Weiyue Zhao (contact)
- Keypoint: sp
- Descriptor: sp (256 float32: 1024 bytes)
- Number of features: 2048
- Summary: we use degree and DEGENSAC to filter raw match on the original images. It is trained on the MegaDepth training data without the test data in Phototourism.
- Paper: N/A
- Website: N/A
- Processing date: 21-06-11
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.50253 (±0.00000 over 1 run(s) / ±0.13623 over 9 scenes)
Rank (per category): 46 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 1171.7 | — | 239.7 | 0.404 Rank: 82/87 |
0.861 Rank: 69/87 |
0.31744 (±0.00000) Rank: 29/87 |
0.46246 (±0.00000) Rank: 36/87 |
FCS | 1729.5 | — | 409.6 | 0.361 Rank: 68/87 |
0.823 Rank: 67/87 |
0.57777 (±0.00000) Rank: 40/87 |
0.71284 (±0.00000) Rank: 40/87 |
LMS | 950.0 | — | 264.6 | 0.336 Rank: 82/87 |
0.653 Rank: 69/87 |
0.53799 (±0.00000) Rank: 43/87 |
0.67330 (±0.00000) Rank: 40/87 |
LB | 1081.4 | — | 199.9 | 0.318 Rank: 82/87 |
0.660 Rank: 72/87 |
0.36772 (±0.00000) Rank: 29/87 |
0.49471 (±0.00000) Rank: 54/87 |
MC | 1263.5 | — | 254.6 | 0.359 Rank: 81/87 |
0.802 Rank: 76/87 |
0.22376 (±0.00000) Rank: 29/87 |
0.36320 (±0.00000) Rank: 67/87 |
MR | 848.2 | — | 194.2 | 0.373 Rank: 79/87 |
0.855 Rank: 66/87 |
0.20244 (±0.00000) Rank: 65/87 |
0.29284 (±0.00000) Rank: 67/87 |
PSM | 1492.0 | — | 272.2 | 0.288 Rank: 79/87 |
0.574 Rank: 52/87 |
0.21586 (±0.00000) Rank: 33/87 |
0.37075 (±0.00000) Rank: 33/87 |
SF | 1504.0 | — | 366.7 | 0.337 Rank: 72/87 |
0.743 Rank: 68/87 |
0.43796 (±0.00000) Rank: 46/87 |
0.58887 (±0.00000) Rank: 45/87 |
SPC | 1426.1 | — | 280.2 | 0.319 Rank: 82/87 |
0.742 Rank: 68/87 |
0.38725 (±0.00000) Rank: 50/87 |
0.56380 (±0.00000) Rank: 47/87 |
Avg | 1274.1 | — | 275.7 | 0.344 Rank: 81/87 |
0.746 Rank: 71/87 |
0.36313 (±0.00000) Rank: 47/87 |
0.50253 (±0.00000) Rank: 46/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.11083 over 9 scenes)
Rank (per category): 41 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 1171.7 | 242.24 | 99.87 Rank: 32/87 |
1353.27 Rank: 56/87 |
4.943 Rank: 34/87 |
0.37940 Rank: 38/87 |
0.57066 (±0.00000) Rank: 36/87 |
0.71490 (±0.00000) Rank: 33/87 |
FCS | 1729.5 | 416.29 | 98.57 Rank: 9/87 |
2370.98 Rank: 46/87 |
4.889 Rank: 43/87 |
0.24268 Rank: 27/87 |
0.73476 (±0.00000) Rank: 36/87 |
0.79890 (±0.00000) Rank: 32/87 |
LMS | 950.0 | 281.98 | 99.13 Rank: 48/87 |
1147.56 Rank: 71/87 |
5.556 Rank: 37/87 |
0.31870 Rank: 60/87 |
0.81454 (±0.00000) Rank: 52/87 |
0.87508 (±0.00000) Rank: 52/87 |
LB | 1081.4 | 235.75 | 98.36 Rank: 1/87 |
1253.11 Rank: 60/87 |
4.998 Rank: 55/87 |
0.51975 Rank: 69/87 |
0.65090 (±0.00000) Rank: 57/87 |
0.76973 (±0.00000) Rank: 55/87 |
MC | 1263.5 | 252.77 | 99.79 Rank: 53/87 |
1536.66 Rank: 59/87 |
4.788 Rank: 55/87 |
0.38507 Rank: 52/87 |
0.50948 (±0.00000) Rank: 54/87 |
0.65790 (±0.00000) Rank: 54/87 |
MR | 848.2 | 191.76 | 94.40 Rank: 39/87 |
989.91 Rank: 76/87 |
4.936 Rank: 14/87 |
0.56179 Rank: 61/87 |
0.36193 (±0.00000) Rank: 60/87 |
0.49060 (±0.00000) Rank: 56/87 |
PSM | 1492.0 | 272.28 | 99.16 Rank: 32/87 |
2037.62 Rank: 53/87 |
4.351 Rank: 43/87 |
0.35384 Rank: 31/87 |
0.61659 (±0.00000) Rank: 43/87 |
0.71086 (±0.00000) Rank: 41/87 |
SF | 1504.0 | 359.26 | 99.33 Rank: 44/87 |
2163.21 Rank: 57/87 |
4.931 Rank: 33/87 |
0.30603 Rank: 50/87 |
0.76451 (±0.00000) Rank: 39/87 |
0.84632 (±0.00000) Rank: 38/87 |
SPC | 1426.1 | 290.16 | 100.00 Rank: 1/87 |
1808.34 Rank: 55/87 |
4.882 Rank: 55/87 |
0.42650 Rank: 19/87 |
0.71151 (±0.00000) Rank: 45/87 |
0.81930 (±0.00000) Rank: 44/87 |
Avg | 1274.1 | 282.50 | 98.73 Rank: 31/87 |
1628.96 Rank: 59/87 |
4.919 Rank: 48/87 |
0.38819 Rank: 44/87 |
0.63721 (±0.00000) Rank: 41/87 |
0.74262 (±0.00000) Rank: 41/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.71979 (±0.00000 over 1 run(s) / ±0.02730 over 3 scenes)
Rank (per category): 37 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 2000.2 | — | 272.4 | 0.032 Rank: 47/87 |
0.010 Rank: 31/87 |
0.58502 (±0.00000) Rank: 20/87 |
0.72275 (±0.00000) Rank: 15/87 |
Pond | 2048.0 | — | 262.0 | 0.046 Rank: 70/87 |
0.047 Rank: 42/87 |
0.53547 (±0.00000) Rank: 38/87 |
0.68497 (±0.00000) Rank: 37/87 |
Tree | 2048.0 | — | 155.7 | 0.027 Rank: 69/87 |
0.021 Rank: 54/87 |
0.62781 (±0.00000) Rank: 42/87 |
0.75166 (±0.00000) Rank: 40/87 |
Avg | 2032.1 | — | 230.0 | 0.035 Rank: 64/87 |
0.026 Rank: 60/87 |
0.58277 (±0.00000) Rank: 37/87 |
0.71979 (±0.00000) Rank: 37/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.15681 over 3 scenes)
Rank (per category): 7 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 2000.2 | 290.51 | 85.70 Rank: 2/87 |
961.78 Rank: 43/87 |
3.369 Rank: 42/87 |
14.63083 Rank: 70/87 |
0.59396 (±0.00000) Rank: 12/87 |
0.67686 (±0.00000) Rank: 11/87 |
Pond | 2048.0 | 307.70 | 66.87 Rank: 57/87 |
731.42 Rank: 60/87 |
2.695 Rank: 68/87 |
0.41306 Rank: 8/87 |
0.26933 (±0.00000) Rank: 45/87 |
0.29471 (±0.00000) Rank: 48/87 |
Tree | 2048.0 | 154.68 | 72.49 Rank: 8/87 |
411.69 Rank: 57/87 |
2.958 Rank: 45/87 |
5.98127 Rank: 32/87 |
0.48247 (±0.00000) Rank: 2/87 |
0.51927 (±0.00000) Rank: 2/87 |
Avg | 2032.1 | 250.96 | 75.02 Rank: 27/87 |
701.63 Rank: 51/87 |
3.007 Rank: 58/87 |
7.00839 Rank: 63/87 |
0.44859 (±0.00000) Rank: 5/87 |
0.49694 (±0.00000) Rank: 7/87 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.30827 (±0.00000 over 1 run(s) / ±0.12681 over 17 scenes)
Rank (per category): 42 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 1182.2 | — | 163.4 | 0.14732 (±0.00000) Rank: 44/87 |
0.26562 (±0.00000) Rank: 43/87 |
Bangkok (BGK) | 797.2 | — | 191.9 | 0.05608 (±0.00000) Rank: 32/87 |
0.15161 (±0.00000) Rank: 36/87 |
Barcelona (BCN) | 804.9 | — | 137.9 | 0.08425 (±0.00000) Rank: 44/87 |
0.15348 (±0.00000) Rank: 45/87 |
Buenos Aires (BAR) | 825.3 | — | 137.8 | 0.16256 (±0.00000) Rank: 44/87 |
0.29817 (±0.00000) Rank: 42/87 |
Cambridge (CAM) | 788.9 | — | 119.4 | 0.19932 (±0.00000) Rank: 44/87 |
0.34623 (±0.00000) Rank: 42/87 |
Cannes (CAN) | 805.5 | — | 134.7 | 0.26636 (±0.00000) Rank: 46/87 |
0.36544 (±0.00000) Rank: 46/87 |
Chicago (CHI) | 751.5 | — | 61.4 | 0.07910 (±0.00000) Rank: 44/87 |
0.14939 (±0.00000) Rank: 43/87 |
Helsinki (HEL) | 923.3 | — | 257.1 | 0.26649 (±0.00000) Rank: 45/87 |
0.46031 (±0.00000) Rank: 44/87 |
Madrid (MAD) | 923.8 | — | 109.8 | 0.07112 (±0.00000) Rank: 36/87 |
0.17751 (±0.00000) Rank: 35/87 |
Mountain View (MTV) | 759.8 | — | 123.8 | 0.15430 (±0.00000) Rank: 41/87 |
0.27598 (±0.00000) Rank: 40/87 |
New Orleans (NOR) | 618.0 | — | 82.5 | 0.21065 (±0.00000) Rank: 42/87 |
0.29556 (±0.00000) Rank: 39/87 |
San Francisco (SF) | 686.7 | — | 124.0 | 0.12913 (±0.00000) Rank: 46/87 |
0.25039 (±0.00000) Rank: 44/87 |
Singapore (SG) | 956.1 | — | 128.7 | 0.25759 (±0.00000) Rank: 39/87 |
0.37785 (±0.00000) Rank: 39/87 |
Sydney (SYD) | 1017.4 | — | 163.6 | 0.23144 (±0.00000) Rank: 39/87 |
0.38996 (±0.00000) Rank: 39/87 |
Tokyo (TOK) | 1119.9 | — | 204.4 | 0.53480 (±0.00000) Rank: 37/87 |
0.67794 (±0.00000) Rank: 38/87 |
Toronto (TOR) | 861.3 | — | 131.9 | 0.17280 (±0.00000) Rank: 36/87 |
0.30280 (±0.00000) Rank: 37/87 |
Zurich (ZRH) | 792.5 | — | 156.5 | 0.20825 (±0.00000) Rank: 44/87 |
0.30241 (±0.00000) Rank: 41/87 |
Average (Avg) | 859.7 | — | 142.9 | 0.19009 (±0.00000) Rank: 44/87 |
0.30827 (±0.00000) Rank: 42/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.15857 over 17 scenes)
Rank (per category): 39 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 1182.2 | 110.28 | 90.93 Rank: 33/87 |
954.67 Rank: 44/87 |
3.713 Rank: 38/87 |
26.88603 Rank: 43/87 |
0.30636 (±0.00000) Rank: 38/87 |
0.41677 (±0.00000) Rank: 37/87 |
BGK | 797.2 | 134.26 | 95.20 Rank: 39/87 |
1184.81 Rank: 44/87 |
3.713 Rank: 12/87 |
11.91037 Rank: 13/87 |
0.02124 (±0.00000) Rank: 44/87 |
0.06535 (±0.00000) Rank: 46/87 |
BCN | 804.9 | 87.02 | 81.68 Rank: 33/87 |
653.52 Rank: 43/87 |
3.672 Rank: 33/87 |
22.72249 Rank: 10/87 |
0.07910 (±0.00000) Rank: 44/87 |
0.13782 (±0.00000) Rank: 42/87 |
BAR | 825.3 | 85.97 | 77.93 Rank: 40/87 |
587.95 Rank: 43/87 |
3.375 Rank: 27/87 |
15.09855 Rank: 17/87 |
0.13659 (±0.00000) Rank: 36/87 |
0.23180 (±0.00000) Rank: 36/87 |
CAM | 788.9 | 79.86 | 76.45 Rank: 42/87 |
547.30 Rank: 48/87 |
3.519 Rank: 24/87 |
20.17505 Rank: 10/87 |
0.12896 (±0.00000) Rank: 41/87 |
0.20094 (±0.00000) Rank: 40/87 |
CAN | 805.5 | 78.83 | 66.70 Rank: 42/87 |
281.11 Rank: 47/87 |
3.101 Rank: 47/87 |
11.31266 Rank: 8/87 |
0.03670 (±0.00000) Rank: 37/87 |
0.06757 (±0.00000) Rank: 39/87 |
CHI | 751.5 | 55.42 | 72.00 Rank: 45/87 |
159.84 Rank: 49/87 |
3.910 Rank: 42/87 |
39.98000 Rank: 5/87 |
0.01377 (±0.00000) Rank: 48/87 |
0.04801 (±0.00000) Rank: 47/87 |
HEL | 923.3 | 187.63 | 93.07 Rank: 40/87 |
1210.76 Rank: 47/87 |
4.094 Rank: 8/87 |
13.60546 Rank: 18/87 |
0.32117 (±0.00000) Rank: 32/87 |
0.44194 (±0.00000) Rank: 34/87 |
MAD | 923.8 | 76.38 | 89.29 Rank: 31/87 |
810.09 Rank: 42/87 |
3.206 Rank: 42/87 |
4.28295 Rank: 8/87 |
0.07721 (±0.00000) Rank: 36/87 |
0.17225 (±0.00000) Rank: 34/87 |
MTV | 759.8 | 91.66 | 89.48 Rank: 39/87 |
732.38 Rank: 44/87 |
3.808 Rank: 28/87 |
17.30575 Rank: 45/87 |
0.20401 (±0.00000) Rank: 39/87 |
0.31592 (±0.00000) Rank: 39/87 |
NOR | 618.0 | 57.88 | 72.97 Rank: 40/87 |
394.59 Rank: 45/87 |
3.178 Rank: 39/87 |
9.93089 Rank: 14/87 |
0.12936 (±0.00000) Rank: 41/87 |
0.19341 (±0.00000) Rank: 41/87 |
SF | 686.7 | 87.02 | 93.13 Rank: 33/87 |
721.55 Rank: 46/87 |
3.753 Rank: 19/87 |
19.70007 Rank: 23/87 |
0.16831 (±0.00000) Rank: 40/87 |
0.28792 (±0.00000) Rank: 40/87 |
SG | 956.1 | 82.30 | 69.43 Rank: 41/87 |
486.66 Rank: 47/87 |
3.213 Rank: 38/87 |
16.41656 Rank: 19/87 |
0.14513 (±0.00000) Rank: 39/87 |
0.19464 (±0.00000) Rank: 39/87 |
SYD | 1017.4 | 104.06 | 85.67 Rank: 34/87 |
869.39 Rank: 40/87 |
3.412 Rank: 35/87 |
19.49271 Rank: 21/87 |
0.20026 (±0.00000) Rank: 40/87 |
0.28828 (±0.00000) Rank: 40/87 |
TOK | 1119.9 | 128.54 | 91.80 Rank: 37/87 |
1292.25 Rank: 42/87 |
3.640 Rank: 40/87 |
14.07809 Rank: 15/87 |
0.63796 (±0.00000) Rank: 36/87 |
0.71162 (±0.00000) Rank: 35/87 |
TOR | 861.3 | 89.78 | 85.93 Rank: 37/87 |
888.36 Rank: 38/87 |
3.251 Rank: 14/87 |
16.86623 Rank: 24/87 |
0.13788 (±0.00000) Rank: 38/87 |
0.25460 (±0.00000) Rank: 37/87 |
ZRH | 792.5 | 100.29 | 85.51 Rank: 36/87 |
948.29 Rank: 42/87 |
3.467 Rank: 22/87 |
16.38848 Rank: 15/87 |
0.09331 (±0.00000) Rank: 31/87 |
0.16746 (±0.00000) Rank: 30/87 |
Avg | 859.7 | 96.31 | 83.36 Rank: 39/87 |
748.44 Rank: 44/87 |
3.531 Rank: 37/87 |
17.42073 Rank: 12/87 |
0.16690 (±0.00000) Rank: 39/87 |
0.24684 (±0.00000) Rank: 39/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —