Submission ID: ca499f58
sp_degree_sg
Processed: 21-06-16. Download link: ca499f58fb924163-degree.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Weiyue Zhao (contact)
- Keypoint: sp
- Descriptor: sp (256 float32: 1024 bytes)
- Number of features: 2048
- Summary: we use degree and DEGENSAC to filter raw match on the resized images. It is trained on the MegaDepth training data without the test data in Phototourism.
- Paper: N/A
- Website: N/A
- Processing date: 21-06-16
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.56903 (±0.00000 over 1 run(s) / ±0.14802 over 9 scenes)
Rank (per category): 29 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 1965.4 | — | 403.5 | 0.492 Rank: 28/87 |
0.898 Rank: 31/87 |
0.30413 (±0.00000) Rank: 37/87 |
0.46272 (±0.00000) Rank: 34/87 |
FCS | 2048.0 | — | 612.5 | 0.447 Rank: 3/87 |
0.893 Rank: 7/87 |
0.67863 (±0.00000) Rank: 1/87 |
0.78822 (±0.00000) Rank: 1/87 |
LMS | 1431.7 | — | 598.4 | 0.543 Rank: 5/87 |
0.698 Rank: 16/87 |
0.57158 (±0.00000) Rank: 33/87 |
0.68378 (±0.00000) Rank: 37/87 |
LB | 1943.1 | — | 445.0 | 0.428 Rank: 18/87 |
0.708 Rank: 27/87 |
0.53220 (±0.00000) Rank: 37/87 |
0.63727 (±0.00000) Rank: 4/87 |
MC | 2043.6 | — | 479.5 | 0.399 Rank: 60/87 |
0.843 Rank: 62/87 |
0.31826 (±0.00000) Rank: 37/87 |
0.47053 (±0.00000) Rank: 40/87 |
MR | 2005.7 | — | 422.1 | 0.376 Rank: 72/87 |
0.882 Rank: 53/87 |
0.26893 (±0.00000) Rank: 32/87 |
0.37974 (±0.00000) Rank: 34/87 |
PSM | 2025.7 | — | 407.8 | 0.368 Rank: 18/87 |
0.578 Rank: 50/87 |
0.20146 (±0.00000) Rank: 37/87 |
0.34834 (±0.00000) Rank: 38/87 |
SF | 1970.5 | — | 485.2 | 0.367 Rank: 49/87 |
0.783 Rank: 43/87 |
0.49549 (±0.00000) Rank: 34/87 |
0.63537 (±0.00000) Rank: 33/87 |
SPC | 2023.6 | — | 470.4 | 0.409 Rank: 24/87 |
0.793 Rank: 52/87 |
0.56315 (±0.00000) Rank: 1/87 |
0.71527 (±0.00000) Rank: 1/87 |
Avg | 1939.7 | — | 480.5 | 0.426 Rank: 23/87 |
0.786 Rank: 39/87 |
0.43709 (±0.00000) Rank: 29/87 |
0.56903 (±0.00000) Rank: 29/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.09096 over 9 scenes)
Rank (per category): 31 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 1965.4 | 403.64 | 100.00 Rank: 1/87 |
1945.05 Rank: 38/87 |
4.852 Rank: 55/87 |
0.35500 Rank: 26/87 |
0.57805 (±0.00000) Rank: 30/87 |
0.72136 (±0.00000) Rank: 27/87 |
FCS | 2048.0 | 620.65 | 98.33 Rank: 16/87 |
2660.99 Rank: 26/87 |
5.187 Rank: 11/87 |
0.25399 Rank: 41/87 |
0.75151 (±0.00000) Rank: 19/87 |
0.80332 (±0.00000) Rank: 28/87 |
LMS | 1431.7 | 633.50 | 99.13 Rank: 48/87 |
1454.00 Rank: 56/87 |
7.037 Rank: 3/87 |
0.27922 Rank: 22/87 |
0.82321 (±0.00000) Rank: 44/87 |
0.87745 (±0.00000) Rank: 49/87 |
LB | 1943.1 | 537.92 | 98.23 Rank: 32/87 |
2102.53 Rank: 30/87 |
5.462 Rank: 16/87 |
0.46643 Rank: 8/87 |
0.72569 (±0.00000) Rank: 17/87 |
0.81380 (±0.00000) Rank: 20/87 |
MC | 2043.6 | 472.62 | 100.00 Rank: 1/87 |
2521.88 Rank: 11/87 |
5.123 Rank: 36/87 |
0.35279 Rank: 27/87 |
0.55730 (±0.00000) Rank: 23/87 |
0.70135 (±0.00000) Rank: 28/87 |
MR | 2005.7 | 413.18 | 95.07 Rank: 23/87 |
2380.95 Rank: 24/87 |
4.758 Rank: 38/87 |
0.47992 Rank: 6/87 |
0.44507 (±0.00000) Rank: 15/87 |
0.56855 (±0.00000) Rank: 14/87 |
PSM | 2025.7 | 409.19 | 98.88 Rank: 41/87 |
2408.87 Rank: 37/87 |
4.662 Rank: 6/87 |
0.34960 Rank: 28/87 |
0.64011 (±0.00000) Rank: 33/87 |
0.72598 (±0.00000) Rank: 32/87 |
SF | 1970.5 | 474.90 | 99.33 Rank: 44/87 |
2587.43 Rank: 42/87 |
4.869 Rank: 47/87 |
0.30702 Rank: 52/87 |
0.75033 (±0.00000) Rank: 43/87 |
0.83520 (±0.00000) Rank: 43/87 |
SPC | 2023.6 | 483.99 | 100.00 Rank: 1/87 |
2224.83 Rank: 39/87 |
5.264 Rank: 15/87 |
0.47671 Rank: 52/87 |
0.76279 (±0.00000) Rank: 11/87 |
0.84856 (±0.00000) Rank: 24/87 |
Avg | 1939.7 | 494.40 | 98.77 Rank: 29/87 |
2254.06 Rank: 37/87 |
5.246 Rank: 14/87 |
0.36897 Rank: 28/87 |
0.67045 (±0.00000) Rank: 31/87 |
0.76617 (±0.00000) Rank: 31/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.71642 (±0.00000 over 1 run(s) / ±0.04260 over 3 scenes)
Rank (per category): 38 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 1856.8 | — | 308.4 | 0.042 Rank: 13/87 |
0.009 Rank: 55/87 |
0.55229 (±0.00000) Rank: 34/87 |
0.69598 (±0.00000) Rank: 34/87 |
Pond | 2045.1 | — | 338.7 | 0.059 Rank: 17/87 |
0.048 Rank: 30/87 |
0.53948 (±0.00000) Rank: 35/87 |
0.67756 (±0.00000) Rank: 39/87 |
Tree | 2043.2 | — | 210.7 | 0.036 Rank: 18/87 |
0.024 Rank: 30/87 |
0.64547 (±0.00000) Rank: 39/87 |
0.77572 (±0.00000) Rank: 37/87 |
Avg | 1981.7 | — | 285.9 | 0.046 Rank: 17/87 |
0.027 Rank: 34/87 |
0.57908 (±0.00000) Rank: 38/87 |
0.71642 (±0.00000) Rank: 38/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.15119 over 3 scenes)
Rank (per category): 10 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 1856.8 | 334.17 | 85.30 Rank: 19/87 |
1069.38 Rank: 26/87 |
3.365 Rank: 44/87 |
14.23819 Rank: 47/87 |
0.58784 (±0.00000) Rank: 21/87 |
0.67108 (±0.00000) Rank: 23/87 |
Pond | 2045.1 | 370.88 | 67.37 Rank: 48/87 |
906.33 Rank: 30/87 |
2.837 Rank: 49/87 |
0.41930 Rank: 19/87 |
0.27182 (±0.00000) Rank: 43/87 |
0.30177 (±0.00000) Rank: 44/87 |
Tree | 2043.2 | 204.36 | 71.93 Rank: 18/87 |
519.54 Rank: 34/87 |
3.044 Rank: 18/87 |
5.98803 Rank: 34/87 |
0.47167 (±0.00000) Rank: 6/87 |
0.51021 (±0.00000) Rank: 6/87 |
Avg | 1981.7 | 303.14 | 74.87 Rank: 33/87 |
831.75 Rank: 25/87 |
3.082 Rank: 34/87 |
6.88184 Rank: 34/87 |
0.44378 (±0.00000) Rank: 13/87 |
0.49435 (±0.00000) Rank: 10/87 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.38913 (±0.00000 over 1 run(s) / ±0.16178 over 17 scenes)
Rank (per category): 27 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 2048.0 | — | 370.8 | 0.28839 (±0.00000) Rank: 1/87 |
0.45714 (±0.00000) Rank: 1/87 |
Bangkok (BGK) | 1910.9 | — | 406.4 | 0.07792 (±0.00000) Rank: 1/87 |
0.19429 (±0.00000) Rank: 2/87 |
Barcelona (BCN) | 1953.9 | — | 360.8 | 0.14359 (±0.00000) Rank: 2/87 |
0.24322 (±0.00000) Rank: 2/87 |
Buenos Aires (BAR) | 2027.5 | — | 322.1 | 0.25388 (±0.00000) Rank: 1/87 |
0.41553 (±0.00000) Rank: 1/87 |
Cambridge (CAM) | 1990.8 | — | 357.0 | 0.33836 (±0.00000) Rank: 1/87 |
0.49863 (±0.00000) Rank: 1/87 |
Cannes (CAN) | 1948.2 | — | 405.0 | 0.40369 (±0.00000) Rank: 10/87 |
0.52673 (±0.00000) Rank: 10/87 |
Chicago (CHI) | 1884.6 | — | 221.7 | 0.26175 (±0.00000) Rank: 1/87 |
0.40840 (±0.00000) Rank: 1/87 |
Helsinki (HEL) | 2038.2 | — | 598.0 | 0.00206 (±0.00000) Rank: 50/87 |
0.00567 (±0.00000) Rank: 50/87 |
Madrid (MAD) | 1887.9 | — | 229.3 | 0.09119 (±0.00000) Rank: 14/87 |
0.20000 (±0.00000) Rank: 16/87 |
Mountain View (MTV) | 1891.7 | — | 314.7 | 0.25742 (±0.00000) Rank: 2/87 |
0.41758 (±0.00000) Rank: 2/87 |
New Orleans (NOR) | 1902.6 | — | 266.8 | 0.28225 (±0.00000) Rank: 17/87 |
0.39467 (±0.00000) Rank: 13/87 |
San Francisco (SF) | 1978.4 | — | 376.4 | 0.24199 (±0.00000) Rank: 1/87 |
0.39055 (±0.00000) Rank: 1/87 |
Singapore (SG) | 1947.0 | — | 323.6 | 0.35063 (±0.00000) Rank: 5/87 |
0.47943 (±0.00000) Rank: 3/87 |
Sydney (SYD) | 2002.9 | — | 354.2 | 0.35284 (±0.00000) Rank: 7/87 |
0.51310 (±0.00000) Rank: 8/87 |
Tokyo (TOK) | 2026.0 | — | 430.1 | 0.61667 (±0.00000) Rank: 3/87 |
0.76005 (±0.00000) Rank: 1/87 |
Toronto (TOR) | 1999.0 | — | 272.5 | 0.21200 (±0.00000) Rank: 21/87 |
0.38680 (±0.00000) Rank: 17/87 |
Zurich (ZRH) | 1880.5 | — | 353.1 | 0.23368 (±0.00000) Rank: 33/87 |
0.32337 (±0.00000) Rank: 31/87 |
Average (Avg) | 1959.9 | — | 350.7 | 0.25931 (±0.00000) Rank: 27/87 |
0.38913 (±0.00000) Rank: 27/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.17152 over 17 scenes)
Rank (per category): 29 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 2048.0 | 246.92 | 91.87 Rank: 29/87 |
1508.08 Rank: 7/87 |
3.897 Rank: 3/87 |
26.87317 Rank: 42/87 |
0.34638 (±0.00000) Rank: 24/87 |
0.45450 (±0.00000) Rank: 32/87 |
BGK | 1910.9 | 279.57 | 97.60 Rank: 6/87 |
2313.26 Rank: 26/87 |
3.673 Rank: 20/87 |
14.19016 Rank: 40/87 |
0.03370 (±0.00000) Rank: 4/87 |
0.09388 (±0.00000) Rank: 15/87 |
BCN | 1953.9 | 222.87 | 87.53 Rank: 5/87 |
1460.89 Rank: 2/87 |
3.847 Rank: 7/87 |
30.58342 Rank: 49/87 |
0.14902 (±0.00000) Rank: 9/87 |
0.24900 (±0.00000) Rank: 5/87 |
BAR | 2027.5 | 192.11 | 88.14 Rank: 13/87 |
1403.91 Rank: 2/87 |
3.464 Rank: 9/87 |
16.67680 Rank: 37/87 |
0.17956 (±0.00000) Rank: 3/87 |
0.28686 (±0.00000) Rank: 10/87 |
CAM | 1990.8 | 226.06 | 88.80 Rank: 17/87 |
1288.96 Rank: 19/87 |
3.735 Rank: 1/87 |
28.37487 Rank: 39/87 |
0.20579 (±0.00000) Rank: 7/87 |
0.29226 (±0.00000) Rank: 11/87 |
CAN | 1948.2 | 226.61 | 81.38 Rank: 9/87 |
1088.52 Rank: 3/87 |
3.545 Rank: 19/87 |
21.90996 Rank: 40/87 |
0.09830 (±0.00000) Rank: 9/87 |
0.16921 (±0.00000) Rank: 6/87 |
CHI | 1884.6 | 196.57 | 90.28 Rank: 12/87 |
705.60 Rank: 7/87 |
4.185 Rank: 33/87 |
47.35272 Rank: 27/87 |
0.11919 (±0.00000) Rank: 24/87 |
0.21243 (±0.00000) Rank: 23/87 |
HEL | 2038.2 | 425.27 | 96.80 Rank: 2/87 |
2452.80 Rank: 5/87 |
4.023 Rank: 23/87 |
13.06405 Rank: 13/87 |
0.00241 (±0.00000) Rank: 50/87 |
0.02384 (±0.00000) Rank: 50/87 |
MAD | 1887.9 | 149.89 | 91.57 Rank: 12/87 |
1398.79 Rank: 22/87 |
3.401 Rank: 3/87 |
8.01152 Rank: 50/87 |
0.10962 (±0.00000) Rank: 8/87 |
0.22581 (±0.00000) Rank: 2/87 |
MTV | 1891.7 | 227.95 | 92.83 Rank: 9/87 |
1476.65 Rank: 19/87 |
3.982 Rank: 4/87 |
17.01144 Rank: 35/87 |
0.30536 (±0.00000) Rank: 5/87 |
0.44493 (±0.00000) Rank: 4/87 |
NOR | 1902.6 | 173.50 | 92.06 Rank: 1/87 |
1315.03 Rank: 9/87 |
3.613 Rank: 2/87 |
14.79839 Rank: 50/87 |
0.37492 (±0.00000) Rank: 1/87 |
0.47181 (±0.00000) Rank: 1/87 |
SF | 1978.4 | 248.39 | 96.93 Rank: 4/87 |
1810.20 Rank: 8/87 |
3.878 Rank: 2/87 |
22.67217 Rank: 52/87 |
0.35032 (±0.00000) Rank: 1/87 |
0.50415 (±0.00000) Rank: 1/87 |
SG | 1947.0 | 203.01 | 81.44 Rank: 7/87 |
1244.71 Rank: 8/87 |
3.508 Rank: 3/87 |
19.13003 Rank: 44/87 |
0.24314 (±0.00000) Rank: 16/87 |
0.32166 (±0.00000) Rank: 10/87 |
SYD | 2002.9 | 223.16 | 90.50 Rank: 13/87 |
1524.96 Rank: 20/87 |
3.657 Rank: 6/87 |
19.82429 Rank: 24/87 |
0.26762 (±0.00000) Rank: 29/87 |
0.35383 (±0.00000) Rank: 30/87 |
TOK | 2026.0 | 272.90 | 93.73 Rank: 6/87 |
2100.91 Rank: 16/87 |
3.898 Rank: 4/87 |
14.80177 Rank: 46/87 |
0.68656 (±0.00000) Rank: 1/87 |
0.75896 (±0.00000) Rank: 1/87 |
TOR | 1999.0 | 168.76 | 89.73 Rank: 9/87 |
1544.10 Rank: 6/87 |
3.277 Rank: 6/87 |
18.63594 Rank: 45/87 |
0.20114 (±0.00000) Rank: 19/87 |
0.32709 (±0.00000) Rank: 21/87 |
ZRH | 1880.5 | 221.12 | 90.12 Rank: 20/87 |
1818.72 Rank: 13/87 |
3.483 Rank: 17/87 |
20.81605 Rank: 36/87 |
0.08782 (±0.00000) Rank: 33/87 |
0.15503 (±0.00000) Rank: 33/87 |
Avg | 1959.9 | 229.69 | 90.67 Rank: 2/87 |
1556.24 Rank: 14/87 |
3.710 Rank: 3/87 |
20.86628 Rank: 50/87 |
0.22123 (±0.00000) Rank: 29/87 |
0.31443 (±0.00000) Rank: 29/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —