Submission ID: dde8fce9
sp_woada_degeree_resize
Processed: 21-06-11. Download link: dde8fce910dedce6-degree.json
This page ranks the submission against all others using the same number of keypoints, regardless of descriptor size. Please hover over table headers for descriptions on metrics and full scene names.
- Phototourism dataset: Stereo track / Multiview track
- Prague Parks dataset: Stereo track / Multiview track
- Google Urban dataset: Stereo track / Multiview track
Metadata
- Authors: Weiyue Zhao (contact)
- Keypoint: sp
- Descriptor: sp (256 float32: 1024 bytes)
- Number of features: 2048
- Summary: we use degree and DEGENSAC to filter raw match on the resized images. It is trained on the MegaDepth training data without the test data in Phototourism.
- Paper: N/A
- Website: N/A
- Processing date: 21-06-11
Phototourism dataset / Stereo track
mAA at 10 degrees: 0.56743 (±0.00000 over 1 run(s) / ±0.13329 over 9 scenes)
Rank (per category): 30 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
BM | 2023.7 | — | 412.8 | 0.415 Rank: 76/87 |
0.859 Rank: 71/87 |
0.31654 (±0.00000) Rank: 30/87 |
0.47104 (±0.00000) Rank: 28/87 |
FCS | 2041.1 | — | 514.7 | 0.374 Rank: 58/87 |
0.864 Rank: 42/87 |
0.65092 (±0.00000) Rank: 30/87 |
0.76778 (±0.00000) Rank: 30/87 |
LMS | 2010.4 | — | 439.3 | 0.389 Rank: 54/87 |
0.690 Rank: 25/87 |
0.58027 (±0.00000) Rank: 28/87 |
0.71431 (±0.00000) Rank: 24/87 |
LB | 2008.3 | — | 373.8 | 0.369 Rank: 58/87 |
0.688 Rank: 53/87 |
0.46659 (±0.00000) Rank: 30/87 |
0.58775 (±0.00000) Rank: 35/87 |
MC | 2043.6 | — | 479.5 | 0.399 Rank: 60/87 |
0.843 Rank: 62/87 |
0.31826 (±0.00000) Rank: 30/87 |
0.47053 (±0.00000) Rank: 40/87 |
MR | 2005.7 | — | 422.1 | 0.376 Rank: 72/87 |
0.882 Rank: 53/87 |
0.26893 (±0.00000) Rank: 32/87 |
0.37981 (±0.00000) Rank: 32/87 |
PSM | 2043.2 | — | 380.6 | 0.295 Rank: 71/87 |
0.603 Rank: 41/87 |
0.23738 (±0.00000) Rank: 23/87 |
0.40133 (±0.00000) Rank: 19/87 |
SF | 2047.1 | — | 490.1 | 0.337 Rank: 73/87 |
0.774 Rank: 55/87 |
0.50384 (±0.00000) Rank: 29/87 |
0.64719 (±0.00000) Rank: 29/87 |
SPC | 2047.5 | — | 440.3 | 0.360 Rank: 66/87 |
0.792 Rank: 54/87 |
0.50519 (±0.00000) Rank: 30/87 |
0.66717 (±0.00000) Rank: 28/87 |
Avg | 2030.1 | — | 439.2 | 0.368 Rank: 67/87 |
0.777 Rank: 54/87 |
0.42755 (±0.00000) Rank: 30/87 |
0.56743 (±0.00000) Rank: 30/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Phototourism dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.10190 over 9 scenes)
Rank (per category): 28 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
BM | 2023.7 | 413.77 | 99.81 Rank: 46/87 |
2369.51 Rank: 11/87 |
4.782 Rank: 60/87 |
0.37101 Rank: 32/87 |
0.57209 (±0.00000) Rank: 34/87 |
0.70751 (±0.00000) Rank: 36/87 |
FCS | 2041.1 | 519.94 | 97.60 Rank: 46/87 |
2852.59 Rank: 8/87 |
4.827 Rank: 52/87 |
0.23404 Rank: 19/87 |
0.75437 (±0.00000) Rank: 15/87 |
0.80690 (±0.00000) Rank: 21/87 |
LMS | 2010.4 | 457.00 | 99.60 Rank: 11/87 |
1923.77 Rank: 39/87 |
5.341 Rank: 51/87 |
0.33792 Rank: 68/87 |
0.83689 (±0.00000) Rank: 35/87 |
0.89114 (±0.00000) Rank: 35/87 |
LB | 2008.3 | 440.12 | 98.23 Rank: 32/87 |
2230.90 Rank: 14/87 |
5.053 Rank: 49/87 |
0.49083 Rank: 45/87 |
0.70931 (±0.00000) Rank: 37/87 |
0.80600 (±0.00000) Rank: 34/87 |
MC | 2043.6 | 472.62 | 100.00 Rank: 1/87 |
2518.09 Rank: 13/87 |
5.122 Rank: 39/87 |
0.35090 Rank: 26/87 |
0.55113 (±0.00000) Rank: 33/87 |
0.69624 (±0.00000) Rank: 32/87 |
MR | 2005.7 | 413.18 | 95.17 Rank: 20/87 |
2380.94 Rank: 25/87 |
4.713 Rank: 43/87 |
0.51347 Rank: 31/87 |
0.42698 (±0.00000) Rank: 32/87 |
0.54936 (±0.00000) Rank: 30/87 |
PSM | 2043.2 | 377.68 | 99.21 Rank: 30/87 |
2704.18 Rank: 14/87 |
4.394 Rank: 40/87 |
0.33350 Rank: 20/87 |
0.64720 (±0.00000) Rank: 21/87 |
0.73794 (±0.00000) Rank: 20/87 |
SF | 2047.1 | 482.19 | 99.95 Rank: 10/87 |
2981.16 Rank: 9/87 |
4.815 Rank: 52/87 |
0.26938 Rank: 1/87 |
0.79090 (±0.00000) Rank: 1/87 |
0.87255 (±0.00000) Rank: 1/87 |
SPC | 2047.5 | 450.15 | 100.00 Rank: 1/87 |
2543.44 Rank: 10/87 |
5.042 Rank: 47/87 |
0.46552 Rank: 44/87 |
0.75882 (±0.00000) Rank: 17/87 |
0.85102 (±0.00000) Rank: 16/87 |
Avg | 2030.1 | 447.41 | 98.84 Rank: 22/87 |
2500.51 Rank: 17/87 |
4.899 Rank: 52/87 |
0.37407 Rank: 34/87 |
0.67196 (±0.00000) Rank: 29/87 |
0.76874 (±0.00000) Rank: 28/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— British Museum —
— Florence Cathedral Side —
— Lincoln Memorial Statue —
— London Bridge —
— Milan Cathedral —
— Mount Rushmore —
— Piazza San Marco —
— Sagrada Familia —
— Saint Paul's Cathedral —
Prague Parks dataset / Stereo track
mAA at 10 degrees: 0.73160 (±0.00000 over 1 run(s) / ±0.04191 over 3 scenes)
Rank (per category): 30 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
Rep. @ 3 px. | MS @ 3 px. | mAA(5o) | mAA(10o) |
Lizard | 1883.7 | — | 278.1 | 0.032 Rank: 48/87 |
0.010 Rank: 25/87 |
0.57226 (±0.00000) Rank: 28/87 |
0.71401 (±0.00000) Rank: 25/87 |
Pond | 2048.0 | — | 288.6 | 0.047 Rank: 63/87 |
0.046 Rank: 61/87 |
0.54429 (±0.00000) Rank: 34/87 |
0.69138 (±0.00000) Rank: 35/87 |
Tree | 2048.0 | — | 180.5 | 0.028 Rank: 67/87 |
0.024 Rank: 35/87 |
0.66269 (±0.00000) Rank: 35/87 |
0.78940 (±0.00000) Rank: 33/87 |
Avg | 1993.2 | — | 249.0 | 0.035 Rank: 55/87 |
0.027 Rank: 49/87 |
0.59308 (±0.00000) Rank: 31/87 |
0.73160 (±0.00000) Rank: 30/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches, and use the depth estimates to determine whether they are correct. We draw matches above a 5-pixel error threshold in red, and those below are color-coded by their error, from 0 (green) to 5 pixels (yellow). Matches for which we do not have depth estimates are drawn in blue. Please note that the depth maps are estimates and may contain errors.
— Lizard —
— Pond —
— Tree —
Prague Parks dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.14274 over 3 scenes)
Rank (per category): 37 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
Lizard | 1883.7 | 306.21 | 85.30 Rank: 19/87 |
1005.72 Rank: 38/87 |
3.399 Rank: 26/87 |
14.22687 Rank: 40/87 |
0.57987 (±0.00000) Rank: 36/87 |
0.66682 (±0.00000) Rank: 36/87 |
Pond | 2048.0 | 324.90 | 68.53 Rank: 33/87 |
845.20 Rank: 43/87 |
2.877 Rank: 40/87 |
0.42811 Rank: 39/87 |
0.28351 (±0.00000) Rank: 34/87 |
0.31908 (±0.00000) Rank: 24/87 |
Tree | 2048.0 | 175.98 | 69.64 Rank: 58/87 |
403.50 Rank: 59/87 |
2.986 Rank: 31/87 |
5.85543 Rank: 18/87 |
0.42633 (±0.00000) Rank: 39/87 |
0.46152 (±0.00000) Rank: 41/87 |
Avg | 1993.2 | 269.03 | 74.49 Rank: 50/87 |
751.47 Rank: 46/87 |
3.088 Rank: 31/87 |
6.83680 Rank: 22/87 |
0.42990 (±0.00000) Rank: 37/87 |
0.48247 (±0.00000) Rank: 37/87 |
Google Urban dataset / Stereo track
mAA at 10 degrees: 0.34793 (±0.00000 over 1 run(s) / ±0.12850 over 17 scenes)
Rank (per category): 36 (of 87)
Scene | Features | Matches (raw) |
Matches (final) |
mAA(5o) | mAA(10o) |
Amsterdam (AMS) | 1570.3 | — | 184.9 | 0.16161 (±0.00000) Rank: 41/87 |
0.30759 (±0.00000) Rank: 38/87 |
Bangkok (BGK) | 1120.8 | — | 204.6 | 0.04963 (±0.00000) Rank: 40/87 |
0.14367 (±0.00000) Rank: 41/87 |
Barcelona (BCN) | 1042.9 | — | 151.9 | 0.09744 (±0.00000) Rank: 37/87 |
0.18059 (±0.00000) Rank: 37/87 |
Buenos Aires (BAR) | 1125.8 | — | 154.8 | 0.16895 (±0.00000) Rank: 41/87 |
0.31416 (±0.00000) Rank: 40/87 |
Cambridge (CAM) | 1076.6 | — | 133.2 | 0.25068 (±0.00000) Rank: 41/87 |
0.39760 (±0.00000) Rank: 37/87 |
Cannes (CAN) | 1032.1 | — | 162.3 | 0.33641 (±0.00000) Rank: 40/87 |
0.46590 (±0.00000) Rank: 38/87 |
Chicago (CHI) | 1056.1 | — | 93.6 | 0.16325 (±0.00000) Rank: 35/87 |
0.28429 (±0.00000) Rank: 34/87 |
Helsinki (HEL) | 1203.1 | — | 271.4 | 0.29588 (±0.00000) Rank: 42/87 |
0.49665 (±0.00000) Rank: 42/87 |
Madrid (MAD) | 1121.2 | — | 116.4 | 0.06930 (±0.00000) Rank: 37/87 |
0.18267 (±0.00000) Rank: 29/87 |
Mountain View (MTV) | 987.7 | — | 135.2 | 0.19414 (±0.00000) Rank: 34/87 |
0.32812 (±0.00000) Rank: 34/87 |
New Orleans (NOR) | 911.1 | — | 103.3 | 0.22071 (±0.00000) Rank: 36/87 |
0.32278 (±0.00000) Rank: 35/87 |
San Francisco (SF) | 1036.7 | — | 153.6 | 0.18425 (±0.00000) Rank: 34/87 |
0.33885 (±0.00000) Rank: 30/87 |
Singapore (SG) | 1066.2 | — | 140.5 | 0.26076 (±0.00000) Rank: 38/87 |
0.39082 (±0.00000) Rank: 38/87 |
Sydney (SYD) | 1203.5 | — | 179.8 | 0.27598 (±0.00000) Rank: 35/87 |
0.43581 (±0.00000) Rank: 34/87 |
Tokyo (TOK) | 1224.6 | — | 212.7 | 0.55294 (±0.00000) Rank: 36/87 |
0.70123 (±0.00000) Rank: 36/87 |
Toronto (TOR) | 1166.0 | — | 141.5 | 0.16160 (±0.00000) Rank: 38/87 |
0.30040 (±0.00000) Rank: 38/87 |
Zurich (ZRH) | 1028.5 | — | 178.4 | 0.22543 (±0.00000) Rank: 38/87 |
0.32371 (±0.00000) Rank: 30/87 |
Average (Avg) | 1116.1 | — | 159.9 | 0.21582 (±0.00000) Rank: 38/87 |
0.34793 (±0.00000) Rank: 36/87 |
We show the inliers that survive the robust estimation loop (i.e. RANSAC), or those supplied with the submission if using custom matches. As the dataset does not contain depth, we color them based on the symmetric epopilar distance on normalized coordinates: from 0 (green) to 2e-4 (yellow), and in red above it. Note that these occasionally contain false positives.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —
Google Urban dataset / Multiview track
mAA at 10 degrees: N/A (±0.00000 over 1 run(s) / ±0.15837 over 17 scenes)
Rank (per category): 35 (of 87)
Scene | Features | Matches (input) |
RegistrationRatio (%) | Number of Landmarks |
Track Length | ATE | mAA(50) | mAA(100) |
AMS | 1570.3 | 123.28 | 90.27 Rank: 37/87 |
1029.39 Rank: 43/87 |
3.685 Rank: 39/87 |
25.59253 Rank: 36/87 |
0.31117 (±0.00000) Rank: 36/87 |
0.42948 (±0.00000) Rank: 36/87 |
BGK | 1120.8 | 144.83 | 95.33 Rank: 36/87 |
1297.19 Rank: 41/87 |
3.634 Rank: 32/87 |
15.08163 Rank: 46/87 |
0.02195 (±0.00000) Rank: 43/87 |
0.06720 (±0.00000) Rank: 44/87 |
BCN | 1042.9 | 95.73 | 81.46 Rank: 36/87 |
737.68 Rank: 35/87 |
3.629 Rank: 37/87 |
25.57977 Rank: 18/87 |
0.10275 (±0.00000) Rank: 37/87 |
0.17713 (±0.00000) Rank: 36/87 |
BAR | 1125.8 | 95.39 | 78.98 Rank: 39/87 |
718.14 Rank: 41/87 |
3.218 Rank: 40/87 |
14.79307 Rank: 15/87 |
0.14730 (±0.00000) Rank: 31/87 |
0.24060 (±0.00000) Rank: 35/87 |
CAM | 1076.6 | 88.50 | 79.69 Rank: 40/87 |
608.05 Rank: 47/87 |
3.401 Rank: 41/87 |
20.97776 Rank: 12/87 |
0.14347 (±0.00000) Rank: 38/87 |
0.21725 (±0.00000) Rank: 38/87 |
CAN | 1032.1 | 93.26 | 72.77 Rank: 32/87 |
419.86 Rank: 40/87 |
3.226 Rank: 41/87 |
14.46497 Rank: 12/87 |
0.05621 (±0.00000) Rank: 33/87 |
0.09983 (±0.00000) Rank: 32/87 |
CHI | 1056.1 | 83.26 | 85.20 Rank: 33/87 |
255.27 Rank: 44/87 |
4.190 Rank: 32/87 |
45.49907 Rank: 16/87 |
0.08225 (±0.00000) Rank: 32/87 |
0.16145 (±0.00000) Rank: 32/87 |
HEL | 1203.1 | 198.01 | 93.73 Rank: 32/87 |
1462.97 Rank: 43/87 |
3.957 Rank: 37/87 |
13.97641 Rank: 23/87 |
0.34127 (±0.00000) Rank: 23/87 |
0.48403 (±0.00000) Rank: 15/87 |
MAD | 1121.2 | 80.45 | 89.37 Rank: 30/87 |
891.43 Rank: 38/87 |
3.192 Rank: 44/87 |
5.25822 Rank: 18/87 |
0.08210 (±0.00000) Rank: 33/87 |
0.18060 (±0.00000) Rank: 32/87 |
MTV | 987.7 | 99.69 | 90.93 Rank: 34/87 |
867.87 Rank: 39/87 |
3.742 Rank: 39/87 |
16.79368 Rank: 29/87 |
0.24121 (±0.00000) Rank: 36/87 |
0.36382 (±0.00000) Rank: 36/87 |
NOR | 911.1 | 71.96 | 72.41 Rank: 41/87 |
435.27 Rank: 43/87 |
3.057 Rank: 44/87 |
9.62067 Rank: 13/87 |
0.13339 (±0.00000) Rank: 39/87 |
0.20538 (±0.00000) Rank: 39/87 |
SF | 1036.7 | 105.23 | 91.60 Rank: 37/87 |
919.55 Rank: 38/87 |
3.584 Rank: 38/87 |
18.73615 Rank: 16/87 |
0.22974 (±0.00000) Rank: 35/87 |
0.37006 (±0.00000) Rank: 36/87 |
SG | 1066.2 | 90.53 | 72.00 Rank: 38/87 |
526.25 Rank: 45/87 |
3.337 Rank: 24/87 |
18.95091 Rank: 43/87 |
0.15315 (±0.00000) Rank: 38/87 |
0.21120 (±0.00000) Rank: 37/87 |
SYD | 1203.5 | 113.97 | 84.81 Rank: 37/87 |
993.40 Rank: 35/87 |
3.264 Rank: 41/87 |
19.90979 Rank: 25/87 |
0.24387 (±0.00000) Rank: 35/87 |
0.33860 (±0.00000) Rank: 35/87 |
TOK | 1224.6 | 134.26 | 93.07 Rank: 20/87 |
1357.46 Rank: 40/87 |
3.643 Rank: 39/87 |
14.49551 Rank: 32/87 |
0.66325 (±0.00000) Rank: 25/87 |
0.73563 (±0.00000) Rank: 24/87 |
TOR | 1166.0 | 95.73 | 87.27 Rank: 31/87 |
981.51 Rank: 37/87 |
3.182 Rank: 35/87 |
16.45334 Rank: 18/87 |
0.16166 (±0.00000) Rank: 35/87 |
0.29197 (±0.00000) Rank: 35/87 |
ZRH | 1028.5 | 114.71 | 85.53 Rank: 35/87 |
1043.42 Rank: 36/87 |
3.383 Rank: 36/87 |
16.76542 Rank: 16/87 |
0.11302 (±0.00000) Rank: 19/87 |
0.19030 (±0.00000) Rank: 18/87 |
Avg | 1116.1 | 107.58 | 84.97 Rank: 37/87 |
855.57 Rank: 40/87 |
3.490 Rank: 40/87 |
18.40876 Rank: 16/87 |
0.18987 (±0.00000) Rank: 35/87 |
0.28027 (±0.00000) Rank: 35/87 |
In the multi-view track we reconstruct the scene with Structure-from-Motion (Colmap) with small sets of images. We show the results for one bag of 10 images. Keypoints are drawn in blue if they are part of the model, and in red otherwise.
— Amsterdam —
— Bangkok —
— Barcelona —
— Buenos Aires —
— Cambridge —
— Cannes —
— Chicago —
— Helsinki —
— Madrid —
— Mountain View —
— New Orleans —
— San Francisco —
— Singapore —
— Sydney —
— Tokyo —
— Toronto —
— Zurich —