Lab 1: Object Oriented Programming

1 Introduction

Our urban forest is important for many reasons; trees provide shade, store car-
bon and prevent runoff, and their presence is known to improve our collective
mental health. In this lab and several others we will be looking at information
about trees that has been gathered by our city’s policy makers and forestry
researchers. As a first step, we will be representing trees as software Objects
in Java and associating them with attributes and methods. Along the way, we
will be overriding some methods from the Object class and exploring the Com-
parable interface.

We'’ve provided some tests to help guide your software implementation, but
remember that we will be testing your submissions on other tests as well. So,
make sure to test comprehensively.

To begin, log into MarkUs and click on the assignment called ”Lab 17. Pull
the starter files so that you can edit them on your local machine. You should
find a folder within your Lab01 folder and five java files therein: Main.java,
WhiteAsh.java, WhiteAshTest.java, Forest.java and ForestTest.java.

2 Programming Task

The code for this assignment relates to White Ash Trees, which can be found
around Mississauga and, among other things, are used to make baseball bats.
Ash trees are carbon rich and the amount of carbon in each tree can be esti-
mated based on its diameter using allometric equations. Allometric equations
provide biomass estimates for specific species of tree from tree measurements
such as diameter at breast height (DBH). The percentage of carbon in a given
tree can then be calculated based on the tree’s biomass.

Your first task is to implement a WhiteAsh class to represent the White Ash
species of tree. You will include the following methods in the WhiteAsh class:

e The method grow. This will increment the diameter of the tree based on
time that has elapsed (in years). The growth rate for an Ash tree has been
provided as a default attribute, and is 0.3 cm in diameter per year.

e The method carbonContent. This will calculate the carbon content in
the wood of any given White Ash tree. The formula to calculate this is
based on an allometric equation; the parameters for this equation have
been provided in your starter code.



e The method fellTree. A tree that is felled (or chopped down) will have
its 'diameter’ attribute set to zero, and its ’living’ attribute set to false.

e The method equals. This will compare two trees. If the two trees are both
living and have the same diameter, you can consider them to be ’equal’.

e The method hashCode. Two equal trees should have the same hashCode!!
Unequal trees should not. Create a hash function that guarantees ’equal’
trees will land in the same bucket when hashed.

e The method compareTo. This method is derived from the Comparable
interface and implemented by the WhiteAsh class. Consider one tree to
be ”greater” than another if it is alive and the other is dead. If both are
alive or dead, call the one with the larger diameter ”greater”.

Once you've completed the tasks above, implement the following methods in
the class Forest:

e The method currCarbonContent. This will return the sum of all the
carbon content in all the wood of all trees in a given forest of White Ash
trees.

o harvest(WhiteAsh target). This will ’fell’ every tree in the forest with a
diameter greater than or equal to a target input tree (i.e. all trees that
are ”greater” than whatever target is supplied).

3 Testing your Classes

A small number of test cases have been provided to help you test your imple-
mentations. Make sure you pass these tests! And, as ever, make sure you write
your own tests, too.

4 What to Submit

1. WhiteAsh.java

2. Forest.java

HAVE FUN AND GOOD LUCK!



