
Arduino Camera Controller
Written by: Steven Stuber

What is it?

The Arduino Camera Controller is a means to control the Sony Handycam HD camcorders to take pictures

and perform functions such as record, pause, turn off and turn on. The controller is a command line

application that has been compiled and tested on Windows, Linux and Mac. The application controls a box

containing an Arduino and several 3.5mm audio jacks. These audio jacks are connected by a cable to the

Sony Handycam and carry the LANC Sony camera controller protocol signal. This device can handle cable

lengths of over 180 feet without signal degradation. Further statistics on the functionality or limitations of

the device can be found in the Appendix.

How to use it

A brief overview of the most common uses for the device will be discussed here. Several other specific

instructions and notes will be provided in the Appendix.

Plug the USB cable into the Arduino box and the other end into the computer.

If using several cameras, it is recommended to plug in the external power supply.

Plug the 3.5mm cables into the top and have the other ends converted to a 2.5mm plug and

plugged into the Sony Handycams.

Now that the cabling is set up, ensure that the cameras are in the On position to allow for proper

controlling.

Turn on the computer attached to the Arduino box and open a command line in which the

ArduinoCameraController or CameraController executable is accessible.

Run the application using the command line arguments “ –d find”. This will return the COM port

(in Windows) or tty device (in Unix) to which the Arduino is currently connected.

Now run the application again with “ –d ____” where ____ represents the value found in step 6;

for further functionality, we can add more commands or switches.

Steps 6 and 7 are optional but will significantly decrease the delay for the first command in each

application call.

Now, to specify a meta-command or another switch, we simply look at the list of available

commands and decide how we would like to proceed.

Ex1. “ArduinoCameraController.exe –d COM4 report” would be a simple command to display the

currently turned-on devices attached to the Arduino box (which would be on COM4 in this case) — mostly

used to double-check that all the cameras are in working order before issuing record or snap commands.

Ex2. “./CameraController –d /dev/ttyUSB0 record wait 1500 pause wait 1500 –r 5”; this call would be

made on a Unix machine and would issue the following commands: record, wait 1500, pause, wait 1500

and repeat five times on ALL cameras. Notice how, when no specific cameras are specified, all cameras are

automatically the default.

Ex3. “ArduinoCameraController.exe –d COM4 –c 1,4,5 snap” this is another Windows call specifying

cameras 1, 4 and 5 to take pictures. This will not affect any of the other cameras connected to the Arduino,

and is useful for making selective changes to specified cameras.

Meta-Commands

turnoff turns cameras off

turnon turns cameras on

report shows which cameras are on

snap takes a picture

record starts recording (slower than toggle but checks for proper state)

pause pauses recording (slower than toggle but checks for proper state)

toggle toggles the record/pause without checking for changes

video enters video mode

picture enters picture mode

query queries for camera status value

init zooms all the way out and changes to video mode

wait [time] waits [time] milliseconds (using sleep commands on computer side)

zoomin [speed(0-14)] zooms in

zoomout [speed(0-14)] zooms out

focus autofocus

ftog focus toggle from manual to automatic

fnear focuses nearer (not very precise)

ffar focuses farther (not very precise)

Command Line Argument Switches

Usage in Windows: ArduinoCameraController.exe [<options>...] <commands...>

Usage in Linux/Mac: ./CameraController [<options>...] <commands...>

Valid options:

 -h | --help Outputs a message similar to this section

 -r | --repeat <times> Send commands <times> number of times

 -l | --list Lists valid meta-commands

 -d | --device <device-string>

Specifies device path of Arduino, e.g., “COM4”, “COM5”,

“/dev/ttyUSB2” or “/dev/tty.usbserial”. Can also specify “find” and

have the program return which port it finds the Arduino on

 -c | --camera <camera-numbers...>

 Specifies which cameras will be affected (default = all);

 can list several together, e.g., “–c 5,6,7”

 -nw | --no-wait Bypasses regular delay after commands

Useful if you don’t care if the first camera is ready before you send the

next command. The built in delays ensure that the camera is in a ready

state before it continues with the next command.

 -rc | --raw-command | --raw

 Sends raw commands rather than meta-commands

 -v | --verbose Displays more status information

-db | --debug Displays a lot more status information, including how many bytes were

sent or received via serial communication

Raw Commands

Raw Commands follow the format “XY”, where X is the operation/command and Y is the camera number.

When Y is “z”, this specifies all cameras; otherwise we use “0” for camera 0, “1” for camera 1, etc.,

continuing up through the ASCII values. The character value for any given camera number N is: “0” + N.

The one-letter codes for the X portion of the raw command are as follows:

a – o control zooming in (a = speed 1 o = speed 15)
A - O control zooming out (A = speed 1 O = speed 15)

< zoom in (speed=14-15)
> zoom out (speed=14-15)
[zoom in (speed=6)
] zoom out (speed=6)

: autofocus
; turn autofocus on/off
(manually focus near
) manually focus far

@ backlight (doesn’t exist on new cameras)
& grid on/off (for new cams only)
turn off viewfinder (sometimes doesn’t work)

s shoot photo
R record (checks resulting state is recording)
P pause (checks resulting state is paused)
T record toggle (does not check result)

! turn camera on
x turn camera off
v change mode to video (checks resulting mode is video)
p change mode to picture (checks resulting mode is picture)

q query camera (cannot specify for all cameras)
r report cameras (camera number won’t do anything)
~ send hello to Arduino (camera number won’t do anything)

Appendix

Computer Side Flow Chart

Parse Arguments

Begin Program

End Program

Args Good?

Connect to

Arduino

Show Usage()No

Yes

Output Error

Send Commands

Succeeded

Failed

Computer Side Code Notes

The computer side application starts by parsing the arguments supplied. If either not enough or invalid

parameters were supplied, the program terminates after outputting the proper usage instructions. Once a

useful set of arguments is acquired, we attempt to connect to the Arduino by sending several “hello”

commands on the serial port. If we receive no response, we can skip that serial port if searching; or, if given

one, we should end with an error message notifying the user that no Arduino is on that port. Once the

Arduino is found, we can translate the meta-commands supplied and send the raw commands to the

Arduino. The Arduino returns various small messages back to the computer depending on the result of the

most recent command. If it failed to send properly, we receive an “F”. If it finished properly and was a

command that required camera status feedback, we receive “D”, telling the computer it is done and

allowing us to move on directly to the next command. If we receive “S”, it signifies that the command was

sent, but does not mean that the Arduino is finished; we need to wait a specific length of time (depending

on what was sent) to allow the particular command to finish. This delay can also be bypassed by specifying

“-nw” in the argument list. This delay is tuned so that by the time the delay is over the camera will be back

in a ready state and will respond to further commands. If you do not wait, the command you send may not

function. Skipping the delay is useful when you are sending commands to multiple cameras and don’t care

if the previous camera is ready before you send to the next one. Various outputs may be generated by the

Arduino in commands such as “query” or “report”. Report will actually output a total number of cameras

detected at the end (very useful in scripts to automate camera processes).

Arduino Side Flow Chart

Arduino Side Code Notes

The program begins by waiting for contact from the computer. Once first contact has been received, the

main loop begins. This initial contact loop helps to ensure that communication with the computer does not

fail. If contact was not initiated before entering the main loop, reliable communication was found to be very

difficult to achieve. To achieve communication properly it is recommended to just plug the USB cable in

and wait several seconds before trying to use the application. This allows the operating system time to set

the USB port up.

The main loop consists of checking camera plugs for a signal and periodically checking for a command

sent from the computer. If no commands are found, it simply checks all the camera lines and loops through

updating whether a camera is on or off. This explains in large part why sometimes you can report and find

fewer cameras than expected. This is simply because the program did not have enough time to detect every

camera, and usually reporting a few seconds later should fix the problem.

If a command is received, it is translated and executed. Translation turns the one-letter raw command and

one-letter raw camera number into a camera pin number, global command, global status and global mode.

Global command refers to the actual two-digit hex value for the LANC command we wish to send. The

global mode is the mode in which that command exists (normal or special). Normal or special mode refer to

another two-digit hex value used in the LANC protocol. Normal is 0x24 and special is 0x40. These two

modes allow the use of a separate set of commands. Global status is the status we wish to achieve, if

possible, when sending the command. This status is critical to how the “record” and “pause” meta-

commands function. They check if the status is reached for a particular camera. If it is, then they stop; if

not, they send the command and wait for any changes to the status. This status is used for the record, pause,

video and picture commands.

After the command is translated, it is executed. The execution starts by syncing up to whatever camera we

wish to send to. We sync to the camera’s LANC signal using a function called pulseIn(). This waits for a

signal to stay unchanged for a certain length of time. If we see this, we know we are in the long pause

between frames. This is what we are hoping to find. At this point, we wait for a stop bit and assume we are

at Bit 0. Then the specific command and mode are written to bytes 1 and 0. This is repeated six times, then

the program goes back to the camera-detection and command-monitoring loop.

Cable Limitations

So far, I successfully communicated across fifteen 12-foot extensions chained together along with a three-

foot cable plugging into the camera itself. This translates to immunity to signal degradation up to 180 or

more feet of cabling. However, extended testing has not been performed on cables of this length.

LANC Details

The LANC plug located on the back of the camera is a 2.5mm stereo audio jack with a pin out shown in the

figure at right.

GND is what we connect to all of the other cameras — and also the

Arduino — to ensure that all signals are using the same reference

voltage. The +5/+8 volt section is not used for anything in our

application. The LANC signal is fed directly into an Arduino digital I/O port.

The LANC protocol is a series of signals organized in the following fashion:

The figure above shows one “frame” that is sent at 9600 BAUD. Because the BAUD rate is 9600 and the

frame contains 8 bytes at 8 bits each, we have 150 frames per second coming out of the camera. The

pertinent information is in byte 5 (actually the sixth byte), and is where the status information is found for

determining if the camera is in record, pause, video or picture mode. The commands we send are imposed

onto bytes 0 and 1. In short, I sync up with the frames; then, once I know I am at the beginning of byte 0, I

start writing what I wish the camera to do.

When a command is being sent to the camera, I need to sync to the frame and write onto bytes 0 and 1 as

described before; however, the camera must also see this happen at least four times or it will not do

anything with it. I send six commands to deal with this issue, and this allows two of the commands to be

lost due to noise or the camera not looking at the right time. So far, this has been quite reliable.

The current set of usable commands is the full set I was able to find. No exposure or menu commands were

found to work. More information is available in the link below.

If the LANC signal is grounded for >140 ms, the cameras are turned on.

More information (and most of the information gathered) is available here.

COM Port Details

Some things I have noticed about the COM port are as follows.

It randomly hangs when you send one character at a time. To get around this, I sometimes send

“a ” when I desire to send an “a” character, because if I do not pad it with the space I will

eventually hang the port. This could be a Windows side issue, but the solution works in Linux,

Mac and Windows.

The serial port can cause the Arduino to reset by changing the value of the DTR line. I set the

DTR line to be unset on creating COM connections for this application because I do not wish the

Arduino to be resetting constantly as we ask it to perform operations. The default is to set the DTR

line on connect and on close. This can be either useful or annoying depending on the application.

Also, the ability to toggle the line in the middle of communication is possible for both operating

systems through the use of the ioctl() function in Linux/Mac or the EscapeCommFunction() in

Windows.

Com port communication is done at 4800 BAUD between the computer and the Arduino for

reliability.

Arduino Details

The Arduino used for this application is an Arduino Duemilanove using the ATmega168 and running at

16MHz. The compiler must be set to this processor type — and specifically the Atmega168 — or the

upload will not be successful. The Arduino compiler on which this application was developed was version

0015.

Downloading Camera File Notes

When downloading files from the camera’s hard drive, the first step is to attach the USB plug from the

computer to the camera. This will bring a blue screen up on the camera and a number of buttons from

which to select. This menu is not able to be skipped using LANC commands, and you are required to

physically press the computer button before the computer will recognize and mount the drive. On the other

hand, once downloading is complete, the cables can be removed; and although the cameras are stuck on a

connecting screen, a simple turnoff and turnon command sequence using the camera controller will set

them back to the idle state for further recording.

Camera Zoom Levels

The camera controller can cause the cameras to zoom in or out; however, the ability to be precise and

determine the exact level of zoom is absent. I have found through testing that the last five or six highest

speeds for zooming are somewhat unreliable. To perform zooms that are repeatable and accurate, you

would be best using the lowest five or so zoom speeds. These will not jump sporadically and should be a

repeatable (or at least somewhat repeatable) means of resetting zoom levels.

Parts and Circuitry Details

The 3.5mm audio connectors are stereo SWITCHCRAFT 35RAPC4BV4 and were purchased from Newark

Canada. This audio jack was screwed into a plate made with 36 holes and was made out of conductive

metal. Because the plate was conductive, the audio connectors all share a common ground (otherwise

soldering would have needed to be done on each one). Thus, if any happen to get loose and come out, it

should be noted that it would not function properly, if at all. The signal we are interested in is being carried

across a wire from the audio jack to the Arduino input directly. All of the audio jacks have one such wire

that connects them to the board. One special audio jack also takes its ground and connects it to the Arduino

ground, allowing the whole device to share the same ground. This is critical, as the Arduino would not be

able to see a proper signal if it was not sharing ground with the audio jacks.

The case, pin headers, Arduino and shrink tubing all came from Lee’s Electronics.

How to replace a Camera

A small recommendation would be to label the plug coming from the cable and connect it to the

corresponding labeled port on the camera controller box. Otherwise, any camera will work perfectly using

the camera controller. However, if you wish to automatically download the video and specify a camera

number using the USBDriveController application, you will need to refer to the manual for that application.

Troubleshooting

If a problem arises that deals with communication there are several lines in the software that may be

tweaked to try and fix it.

 In serial.h:

Lines 39,40 deal with serial port reads and if a lot of time outs occur then

increasing these values may help fix that problem.

 In serial.cpp

Line 463-542 is the serial delay function which will attempt to delay enough

time so that the camera is responsive again for further calls. If you are having

chains of commands fail or having various commands not work then try

increasing the delays in this function.

 In CameraController.pde

In the first several lines there are some defines and a set of uint16_t variables

defined that all correspond to special timeouts or delay times. The set of

uint16_t correspond to the 9600 baud LANC signal spacing between bits and

bytes. The various timeout defines can be increased if it is thought that it is the

Arduino that is failing to operate properly (should only happen if a totally new

camera was implemented or a different Arduino was being used). None of these

values should really need to be changes so do so with caution.

