Arduino Camera Controller

Written by: Steven Stuber
What isit?

The Arduino Camera Controller is a means to contrelSony Handycam HD camcorders to take pictures
and perform functions such as record, pause, tifiremd turn on. The controller is a command line
application that has been compiled and tested amd@wis, Linux and Mac. The application controls & bo
containing an Arduino and several 3.5mm audio jatkese audio jacks are connected by a cable to the
Sony Handycam and carry the LANC Sony camera ctetnorotocol signal. This device can handle cable
lengths of over 180 feet without signal degradatkurther statistics on the functionality or lintitans of

the device can be found in the Appendix.
How to useit

A brief overview of the most common uses for theicke will be discussed here. Several other specific

instructions and notes will be provided in the Apgie.

Plug the USB cable into the Arduino box and theep#nd into the computer.

If using several cameras, it is recommended to pluge external power supply.

Plug the 3.5mm cables into the top and have ther@hds converted to a 2.5mm plug and
plugged into the Sony Handycams.

Now that the cabling is set up, ensure that theecamare in the On position to allow for proper

controlling.

Turn on the computer attached to the Arduino bak@men a command line in which the

ArduinoCameraController or CameraController exelolatés accessible.

Run the application using the command line arguménrd find”. This will return the COM port

(in Windows) or tty device (in Unix) to which therduino is currently connected.

Now run the application again with “ —d " where _represents the value found in step 6;
for further functionality, we can add more commaadswitches.
Steps 6 and 7 are optional but will significantbcdease the delay for the first command in each

application call.

Now, to specify a meta-command or another switasimnply look at the list of available

commands and decide how we would like to proceed.

Ex1.“ArduinoCameraController.exe —d COM4 reportiould be a simple command to display the
currently turned-on devices attached to the Ardiiow (which would be on COM4 in this case) — mostly

used to double-check that all the cameras are king order before issuing record or snap commands.

Ex2.“./CameraController —d /dev/ttyUSBO record wait Tbpause wait 1500 —r %'this call would be
made on a Unix machine and would issue the follgugommands: record, wait 1500, pause, wait 1500
and repeat five times on ALL cameras. Notice hoWwemno specific cameras are specified, all camaas

automatically the default.
Ex3.“ArduinoCameraController.exe —d COM4 —c 1,4,5 sndpis is another Windows call specifying
cameras 1, 4 and 5 to take pictures. This willaffetct any of the other cameras connected to tlaieiAo,

and is useful for making selective changes to §igeloctameras.

M eta-Commands

turnoff turns cameras off

turnon turns cameras on

report shows which cameras are on

shap takes a picture

record starts recording (slower than toggledingtcks for proper state)
pause pauses recording (slower than togglehmdis for proper state)
toggle toggles the record/pause without checkinghanges

video enters video mode

picture enters picture mode

query gueries for camera status value

init zooms all the way out and changes to videale

wait [time] waits [time] milliseconds (using sfpeommands on computer side)
zoomin [speed(0-14)] zooms in

zoomout [speed(0-14)] zooms out

focus autofocus

ftog focus toggle from manual to automatic

fnear focuses nearer (not very precise)

ffar focuses farther (not very precise)

Command Line Argument Switches

Usage in Windows: ArduinoCameraController.exegians>...] <commands...>

Usage in Linux/Mac: .J/CameraController [<optiong>=<commands...>

Valid options:

-h | --help Outputs a message similar togbigion
-r | --repeat <times> Send commands <times>beuraf times
-l] --list Lists valid meta-commands

-d | --device <device-string>
Specifies device path of Arduino, e.g., “COM4”", “®1B",
“/dev/ttyUSB2” or “/dev/tty.usbserial”. Can alsoespfy “find” and
have the program return which port it finds the #ind on

-c | --camera <camera-numbers...>
Specifies which cameras will be affected (difa all);

can list several together, e.g., “—¢ 5,6,7”

-nw | --no-wait Bypasses regular delay aftenomnds
Useful if you don't care if the first camera is dgebefore you send the
next command. The built in delays ensure that #mera is in a ready

state before it continues with the next command.

-rc | --raw-command | --raw

Sends raw commands rather than metarands

-v | --verbose Displays more stafifsrimation

-db | --debug Displays a lot more status informmtincluding how many bytes were

sent or received via serial communication

Raw Commands

Raw Commands follow the format “XY”, where X is thperation/command and Y is the camera number.
When Y is “z”, this specifies all cameras; othemwse use “0” for camera 0, “1” for camera 1, etc.,
continuing up through the ASCII values. The chaagtlue for any given camera number N is: “0” + N.

The one-letter codes for the X portion of the raammand are as follows:

a-o control zooming in (a = speed 1 o = sdd®d
A-0O control zooming out (A = speed 1 O = gp&B)

< zoom in (speed=14-15)

> zoom out (speed=14-15)

[zoom in (speed=6)

] zoom out (speed=6)

: autofocus

; turn autofocus on/off

(manually focus near

) manually focus far

@ backlight (doesn’t exist on new cameras)

& grid on/off (for new cams only)

turn off viewfinder (sometimes doesn’t work)

s shoot photo

R record (checks resulting state is recording)

P pause (checks resulting state is paused)

T record toggle (does not check result)

! turn camera on

X turn camera off

\ change mode to video (checks resulting nisdéleo)
p change mode to picture (checks resultingensgbicture)
q query camera (cannot specify for all cameras

r report cameras (camera number won't do angdhi

~ send hello to Arduino (camera number won'adgthing)

Appendix

Computer Side Flow Chart

Begin Program

Parse Arguments

Args Good? No—»{ Show Usage()

Yes

!

Connect to
Arduino

Output Error | «——Failed

Succeeded

Send Commands

A

» EndProgram j¢—————

Computer Side Code Notes

The computer side application starts by parsingatigaments supplied. If either not enough or irdsali
parameters were supplied, the program terminates @iftputting the proper usage instructions. Gnce
useful set of arguments is acquired, we attempbtmect to the Arduino by sending several “hello”
commands on the serial port. If we receive no nasppwe can skip that serial port if searchingifa@iven
one, we should end with an error message notiffieguser that no Arduino is on that port. Once the
Arduino is found, we can translate the meta-commaaughplied and send the raw commands to the
Arduino. The Arduino returns various small messdupek to the computer depending on the resultef th
most recent command. If it failed to send propeslg,receive an “F". If it finished properly and was

command that required camera status feedback,eeévee”D”, telling the computer it is done and

allowing us to move on directly to the next commaiave receive “S”, it signifies that the commawds
sent, but does not mean that the Arduino is firdsinve need to wait a specific length of time (dejieg

on what was sent) to allow the particular commanfinish. This delay can also be bypassed by syiegif
“-nw” in the argument list. This delay is tunedtbiat by the time the delay is over the cameralvélback

in a ready state and will respond to further comatsaif you do not wait, the command you send may no
function. Skipping the delay is useful when you se&ading commands to multiple cameras and doré& car
if the previous camera is ready before you sertigémext one. Various outputs may be generatetidy t
Arduino in commands such as “query” or “report”.pRet will actually output a total number of cameras

detected at the end (very useful in scripts toraate camera processes).

Arduino Side Flow Chart

Begin Program

Wait for

Message

Yes

v

Detect Cameras

Nothing X

Check for
Commands

Translate
Command

Execute
Command

Valid

Arduino Side Code Notes

The program begins by waiting for contact from ¢benputer. Once first contact has been received, the
main loop begins. This initial contact loop helpehsure that communication with the computer dats
fail. If contact was not initiated before enterithg main loop, reliable communication was founteovery

difficult to achieve. To achieve communication pedp it is recommended to just plug the USB cahle i

and wait several seconds before trying to use ppécation. This allows the operating system timeet
the USB port up.

The main loop consists of checking camera plugs feignal and periodically checking for a command
sent from the computer. If no commands are fourglpiply checks all the camera lines and loopsutyho
updating whether a camera is on or off. This exyglan large part why sometimes you can report amdl f
fewer cameras than expected. This is simply becdugsprogram did not have enough time to deteatyeve

camera, and usually reporting a few seconds latauld fix the problem.

If a command is received, it is translated and etezt Translation turns the one-letter raw comreandi
one-letter raw camera number into a camera pin eangitobal command, global status and global mode.
Global command refers to the actual two-digit habue for the LANC command we wish to send. The
global mode is the mode in which that command sXisbrmal or special). Normal or special mode rider
another two-digit hex value used in the LANC praio®Normal is 0x24 and special is 0x40. These two
modes allow the use of a separate set of comm@&iadkal status is the status we wish to achieve, if
possible, when sending the command. This staterdtisal to how the “record” and “pause” meta-
commands function. They check if the status ishreddor a particular camera. If it is, then theypstf

not, they send the command and wait for any chatigee status. This status is used for the requadse,

video and picture commands.

After the command is translated, it is executede &kecution starts by syncing up to whatever canvera
wish to send to. We sync to the camera’s LANC digsang a function called pulseln(). This waits &or
signal to stay unchanged for a certain lengthroétilf we see this, we know we are in the long paus
between frames. This is what we are hoping to #idhis point, we wait for a stop bit and assurmeave
at Bit 0. Then the specific command and mode artenrto bytes 1 and 0. This is repeated six tirtemn

the program goes back to the camera-detection @mdhand-monitoring loop.

Cable Limitations

So far, | successfully communicated across fift2+ioot extensions chained together along withreeth

foot cable plugging into the camera itself. Thanslates to immunity to signal degradation up @ 4.8

more feet of cabling. However, extended testingriaseen performed on cables of this length.

LANC Details

The LANC plug located on the back of the camer2s5mm stereo audio jack with a pin out showrhén t

figure at right.

GND is what we connect to all of the other cameraand also the

Arduino — to ensure that all signals are usingséue reference

voltage. The +5/+8 volt section is not used fortaimg in our

application. The LANC signal is fed directly inta Arduino digital I1/O port.

The LANC protocol is a series of signals organizethe following fashion:

. O 1 2 3 4 o 6 7 0
CUTIIIT U OO U LT U U U LI

The figure above shows one “frame” that is sei6&0 BAUD. Because the BAUD rate is 9600 and the
frame contains 8 bytes at 8 bits each, we haverabes per second coming out of the camera. The
pertinent information is in byte 5 (actually th&tkibyte), and is where the status informatioroisn for
determining if the camera is in record, pause, widiepicture mode. The commands we send are imposed
onto bytes 0 and 1. In short, | sync up with ttaafes; then, once | know | am at the beginning ¢ By |

start writing what | wish the camera to do.

When a command is being sent to the camera, | teegyhc to the frame and write onto bytes O and 1 a
described before; however, the camera must alsthiseleappen at least four times or it will not do
anything with it. | send six commands to deal wWftis issue, and this allows two of the commandseto

lost due to noise or the camera not looking aritjte time. So far, this has been quite reliable.

The current set of usable commands is the full gets able to find. No exposure or menu commandg we

found to work. More information is available in tlek below.

If the LANC signal is grounded for >140 ms, the eaas are turned on.

More information (and most of the information gat® is availabléere

COM Port Details

Some things | have noticed about the COM port areliows.

It randomly hangs when you send one charactetiatea To get around this, | sometimes send
“a” when | desire to send an “a” character, beeafisdo not pad it with the space | will
eventually hang the port. This could be a Windoide &ssue, but the solution works in Linux,

Mac and Windows.

The serial port can cause the Arduino to resethayging the value of the DTR line. | set the
DTR line to be unset on creating COM connectiomgHis application because | do not wish the
Arduino to be resetting constantly as we ask igcform operations. The default is to set the DTR
line on connect and on close. This can be eithefulisr annoying depending on the application.
Also, the ability to toggle the line in the middiecommunication is possible for both operating
systems through the use of the ioctl() functiohimux/Mac or the EscapeCommFunction() in

Windows.

Com port communication is done at 4800 BAUD betwisencomputer and the Arduino for
reliability.

Arduino Details

The Arduino used for this application is an ArduDoemilanove using the ATmegal68 and running at
16MHz. The compiler must be set to this procesgme t— and specifically the Atmegal68 — or the
upload will not be successful. The Arduino compdarwhich this application was developed was versio
0015.

Downloading Camera File Notes

When downloading files from the camera’s hard drthe first step is to attach the USB plug from the
computer to the camera. This will bring a blue sorap on the camera and a number of buttons from
which to select. This menu is not able to be skifpging LANC commands, and you are required to
physically press the computer button before theprder will recognize and mount the drive. On theeot
hand, once downloading is complete, the cablebeaemoved; and although the cameras are stuck on a
connecting screen, a simple turnoff and turnon camarsequence using the camera controller will set

them back to the idle state for further recording.

Camera Zoom Levels

The camera controller can cause the cameras to goornout; however, the ability to be precise and
determine the exact level of zoom is absent. | liauad through testing that the last five or sighest
speeds for zooming are somewhat unreliable. Toparkooms that are repeatable and accurate, you
would be best using the lowest five or so zoom dpe€hese will not jump sporadically and shouldabe

repeatable (or at least somewhat repeatable) noéaasetting zoom levels.

Partsand Circuitry Details

The 3.5mm audio connectors are ste8¥8ITCHCRAFT 35RAPC4BV4And were purchased from Newark

Canada. This audio jack was screwed into a plattemdth 36 holes and was made out of conductive

metal. Because the plate was conductive, the auatinectors all share a common ground (otherwise
soldering would have needed to be done on each ©hae}, if any happen to get loose and come out, it
should be noted that it would not function propeifiat all. The signal we are interested in isnigetarried
across a wire from the audio jack to the Arduinmuindirectly. All of the audio jacks have one sudhe
that connects them to the board. One special gadkoalso takes its ground and connects it to tituiko
ground, allowing the whole device to share the sgroand. This is critical, as the Arduino would et

able to see a proper signal if it was not shariogigd with the audio jacks.

The case, pin headers, Arduino and shrink tubihgaahe fromLee’s Electronics

How to replacea Camera

A small recommendation would be to label the plaging from the cable and connect it to the
corresponding labeled port on the camera contrbbber Otherwise, any camera will work perfectlyngsi
the camera controller. However, if you wish to adically download the video and specify a camera
number using the USBDriveController applicationy yaill need to refer to the manual for that apgiima.

Troubleshooting

If a problem arises that deals with communicatloere are several lines in the software that may be

tweaked to try and fix it.

In serial.h:
Lines 39,40 deal with serial port reads and iftaofdime outs occur then

increasing these values may help fix that problem.

In serial.cpp
Line 463-542 is the serial delay function whichlwaitempt to delay enough
time so that the camera is responsive again féhduicalls. If you are having
chains of commands fail or having various commaratsvork then try

increasing the delays in this function.

In CameraController.pde

In the first several lines there are some defimesaaset of uintl6_t variables
defined that all correspond to special timeoutdeday times. The set of
uintl6_t correspond to the 9600 baud LANC signakspy between bits and
bytes. The various timeout defines can be incredses thought that it is the
Arduino that is failing to operate properly (shooldy happen if a totally new
camera was implemented or a different Arduino weiadpused). None of these

values should really need to be changes so dotbocadiition.

