
Arduino Strobe Controller
Written By: Steven Stuber

What is it?

The Arduino Strobe Controller is a box that outputs a differential signal on a DMX XLR cable to drive a

set of daisy-chained LED strobe panels. The input to this box is the USB cable that receives messages sent

by the Windows, Linux or Mac side command line application. The application deals with handshaking,

transferring data and error-checking between itself and the Arduino. By supplying a port, frequency and

width, a strobe signal can be generated between the ranges of 0.5Hz and 10kHz at any desired duty cycle.

The main algorithm used to generate the signal is performed solely in assembly and is accurate to within

one operation, taking 1/16th of a microsecond.

How to use it

The strobe controller is very simple to use. An example is shown below.

Ex1. ArduinoStrobeController.exe –d COM4 –f NTSC –w 6600

This statement contains a –d command that expects the next string to be the device location. On Linux or

Mac, the location is in the form /dev/tty…or similar, and on Windows it is COM1, COM2…etc. The –d

command is completely optional, but does improve the speed of the command taking effect. This is

because, if not supplied, the program has to search through all connected COM ports until it finds the

Arduino. This can take upwards of two to six seconds. Another use for –d is to supply the port as “find”;

this will cause the regular program flow to be bypassed, and the application will instead simply return the

string of the port name on which the Arduino was found. This same string can then be used for future calls

with “–d xxxxx”, where xxxxx is the string found using “-d find”.

The –f command specifies frequency; in this case we see the string NTSC. NTSC encodes 29.97Hz, which

corresponds to the frame rate of the cameras. This –f command needs to be supplied unless either the Off or

On command is used. More strings like NTSC are listed further down.

The –w command specifies width in microseconds, width being the amount of time the LEDs are on for

during each period. The width can also be specified as a percent, enabling duty cycles to be converted

automatically for convenience to the user. The –w command is also required unless the Off or On

command has been given.

Ex2. ArduinoStrobeController.exe on

This example shows how little we actually need to supply to the program in order to achieve results. The

On command will automatically generate the –f and –w commands so that the Arduino will be on 100% of

the time. This works the same way for the Off command.

The special built in frequency values are as follows: (NTSC = 29.97003)

 NTSC NTSCx2 NTSCx4

 NTSCx8 NTSCx16 NTSC/2

 NTSC/4 NTSC/8 NTSC/16

How Communication Works

The Arduino waits for a message from the computer before initiating any strobe patterns. In this initial

state, the LEDs are off. The computer sends a “hello” message until the Arduino responds with a “ready”

message. At this point, the computer tells the Arduino the desired frequency and width. After several copies

of this have been sent, the Arduino compares them and decides to continue — that is, if they are all the

same and no errors have been introduced due to noise or bad cabling — or it retries until a clean signal is

received.

The Arduino then becomes unresponsive and strobes until reset. This requires us to toggle the DTR line to

reset the Arduino if we want to specify new parameters. By resetting the Arduino, we see the LEDs come

full-on for a short pulse and then off again. This is a result of the way the Arduino resets. Eliminating this

flash, if desired, would require switching the position of the two signal pins inside the box (however may

introduce some other flash due to transience). This would change a digitalwrite or fastwrite HIGH to turn

the LED off, and a write LOW to turn the LEDs on. A change in all instances of these functions would be

required in the Arduino side code.

Appendix

Computer Side Flow Chart

Parse Arguments

Begin Program

End Program

Args Good?

Connect to

Arduino

Show

Usage()
No

Yes

Output Error

Send Strobe Data

Succeeded

Failed

Display Data

Computer Side Code Notes

The computer side application begins by parsing the arguments that were supplied. If bad or not enough

arguments were found, we show the usage function and end the program. Once good arguments have been

received, we attempt to connect to the Arduino. Hello commands are sent to the port specified or, if no port

was specified, we will slowly attempt to connect to and say hello on every available port that could be an

Arduino. If no response is found, we send an error message to the screen and warn the user that the

Arduino may not be plugged in. Once connected to the Arduino, we formulate the data to be sent by

padding it with characters in the format: “ssXXXXccYYYYff”, where XXXX refers to frequency and

YYYY refers to width in cycles. “ss” means we are starting a set of data, “cc” means we are changing to

the next item in the set, and “ff” means we have finished the set of data. The frequency could be 23.5 or

0.785 and is specified in Hz. The frequency can be specified up to a precision of around 4-5 decimal places

as this is then converted to a period in cycles. The period can be specified up to a precision of 6.25E-8

seconds. The width is sent in terms of the number of cycles of a clock at 16MHz; therefore, no fractional

values will affect the final result (they will be truncated). The computer will keep sending data sets until it

reaches a limit and fails. Usually the first three sets will succeed and be sent to the Arduino, but sometimes

more will fail, and this would indicate a faulty USB cable, or possibly noise or some other interference or

driver issue. Three sets are required so that the Arduino can make a comparison to ensure they are all equal

before continuing and initiating the strobe sequence.

Arduino Side Flow Chart

Wait for

Message

Yes

Wait for Data

Begin Program

Hello?

No

Three Sets?

No

Compare SetsYes

Failed

Passed

Strobe

Calculate

Delays

Arduino Side Code Notes

The Arduino program starts with a loop waiting for initial contact. Once contact is made, it expects data

sets to be sent to it in the form “ssXXXXccYYYYff,” where XXXX and YYYY are frequency and width

respectively. It expects groups of three data sets that are then compared. If they match exactly, the data set

passes and they can move on to preparation for strobing. If the data sets fail, it simply waits for more data

sets until a pass is achieved.

Upon passing a set of data, the Arduino calculates several loop values. These are 8-bit loop values that will

be used in the assembly language code block inserted into the C++ code in the final loop entered. This loop

uses a few sets of assembly loops to delay the amount of time needed until the exact number of cycles is

met.

A special section of code in the assembly was added to allow a partial operation to be added for further

accuracy. This was achieved by undertaking an operation only every certain number of cycles, or by doing

one less operation every certain number of cycles. This was an attempt to get close to the actual frame rate

of the cameras, but it was later found out that tuning to exactly the right frequency would be impossible due

to heat and frequency drift on the crystal oscillators. The current code contains this loop, and it may be

removed if desired (although it is small enough to be considered harmless). To remove this loop, you would

need to modify some of the cycle offsets in the calculation functions.

Arduino Details

The Arduino used for this application is an Arduino Mega using the ATmega1280 and running at 16MHz.

The compiler must be set to this processor type or the upload will not be successful. The Arduino compiler

on which this application was developed was version 0015.

Circuitry Details

On top of the Arduino is a circuit board that was salvaged from another project. Pin headers were soldered

onto it to enable it to be pressed into the Arduino (so as to essentially sit on top). This allows the Arduino to

be reused easily by simply unplugging the top layer. The circuit board on top also has a differential bus and

a connection to the DMX XLR port. The circuit used is almost identical to a DMX shield that can be seen

here. The only difference is the presence of many pin headers. If the connections are followed past these

pin headers, it is identical with the exception of my connection of the output to digital 4.

Parts

We used the SWITCHCRAFT E3FSC, a high-quality DMX XLR female jack, and the TEXAS

INSTRUMENTS SN65176BP, the RS485-compatible differential bus. This differential bus converts a

logic signal from a microcontroller (0–5 volts for logic 0 and 1) to a differential voltage signal; logic 1 is

where one pin is +V volts and the other is –V, and logic 0 is where the same first pin is –V and the next is

+V volts. In our case, V is half of our old logic 1 signal: 2.5 volts.

Com Port Details

Some things I have noticed about the COM port are as follows.

Usually, several messages are lost immediately after resetting of the Arduino. This is dealt with by

sending approximately 20 commands to the Arduino and expecting three or four of them to fail

before any are received. If I detect that ten or more have failed before a response is received, I

consider the Arduino unresponsive and toggle the DTR line to reset it manually.

Camera Details

The cameras are running on some type of processor that most likely uses a crystal oscillator. Because of

this, the timing it generates is subject to a slight drift. This drift can cause the images to see a strobe light in

slightly different positions, and can also cause the boundary or beginning of the strobe to drift upward or

downward. This drift is due to heat, and therefore perfect synchronization cannot be achieved between the

cameras without using feedback. Because of this, I have tuned my strobe to be close to the frame rate of

two cameras; this should ensure that it is close enough to the other camera’s average frame rate to render

the issue inconsequential.

Frequency Modification

Due to the above, a correction factor is divided to the frequency before the strobing cycles are calculated.

This will ensure that any frequency specified will be very accurate. If a new Arduino is used, a new

constant needs to be found. This constant can be found through trial and error by simply looking at the drift

of the strobe in the image through a camera and modifying the factor (perfectly tuned would have no drift).

Tuning should be done for a frequency of 29.97003Hz as that is the frequency used most often (also, it is

impossible to tune at any other frequency other than the cameras frame rate).

Troubleshooting

If a problem arises that deals with communication there are several lines in the software that may be

tweaked to try and fix it.

 In strobeSerial.h:

Lines 36 and 37 – deals with serial port reads and if a lot of time outs occur then

increasing these values may help fix that problem.

Line 35 if a lot of data sets fail when attempting to set the strobe frequency and

width, increase MAX_TRIES or find a new USB cable.

In StrobeController.pde

The setLoopVariables() function contains basically all of the delays used for the

strobing. If the strobe on time or off time is wrong this is the place where you

could fix it. Do not attempt to make changes if you do not fully understand what

this function is doing. This will not affect connectivity problems between the

Arduino and the computer.

