Draft version 1.1: 8/25/2007

Evaluation of a Role-Based Approach for Customizing a Complex Development Environment
	
	

[image: image1.png]Roles

|

Capabilties

!

Perspectives

P it

Editors Views Action sets
(menus and
toolbar items)

Coarse-grained fiktering

Fine-grained fittring

[image: image2.png]Enable roles:
Select ane or mare user roles
most appropriate for your work

2 U &Be
5,0

ABSTRACT

Coarse-grained approaches to customization allow the user to enable or disable groups of features at once, rather than individual features. While this could reduce the complexity of customization and encourage more users to customize their interfaces, the research challenges of designing such approaches have not been fully explored. To address this limitation, we conducted an interview study with 14 professional software developers who use an integrated development environment that provides a role-based, coarse-grained approach to customization. From the results, we identify challenges that are inherent in designing coarse-grained customization models, including issues of functionality partitioning, presentation, and individual differences.

Author Keywords

Role-based interface, adaptable and adaptive interfaces, customization, interview study.
ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI): Miscellaneous.

INTRODUCTION

Complex software applications often provide more features than are used even by expert individual users [4,7]. To manage this complexity, methods for customizing the interface by reducing functionality have been proposed by several researchers, either for regular usage or for a limited training period. Evaluations have shown that such reduced-functionality approaches can make novice users faster, more accurate and more satisfied with the interface [1], and that they can be preferred by a large proportion of intermediate and advanced users [6]. Despite these advances, evaluations have been limited in number and scope and have focused on the benefits of such designs, while drawbacks have largely been ignored.
In particular, research on coarse-grained approaches, where large groups of features are enabled or disabled at once, has been mostly limited to simple applications, and evaluations have been small and informal [2,3,8,10]. Layered interfaces, for example, provide an interface with a small, core set of features for novice users, and allow the user to transition to increasingly feature-rich layers as needed [10]. A role-based approach, such as that found in IBM Rational Application Developer 6.0, allows the user to specify a set of roles which apply to his or her work, and only features which are applicable to those roles are enabled in the interface. Since lack of time and difficulty are among the factors that inhibit customization [5], coarse-grained approaches have the potential to provide the benefits of customization while reducing the burden on the user. However, we do not fully understand the effectiveness of using such approaches, and, specifically, there has been no published evaluation of using user roles to reduce functionality.
To address this specific limitation, but also to provide a richer understanding of how users work with and perceive reduced-functionality interfaces, we conducted semi-structured interviews with 14 users of IBM Rational Application Developer 6.0 (RAD), an integrated development environment. RAD’s role-based approach, shown in Figure 1, allows the user to select from a set of user roles, such as Java Developer and Web Developer, and only functionality associated with those roles is enabled in the user interface. Although user roles are commonly found in groupware applications to facilitate collaboration among users, and have been proposed to support task-based context switching for the user [9], the research literature does not contain examples of applying roles to general functionality filtering of complex user interfaces.
IBM Rational Application Developer
IBM Rational Application Developer 6.0 (RAD) extends and inherits all user interface components from the Eclipse platform, a popular integrated development environment (IDE). The key components of RAD’s customization model are shown in Figure 2, and are as follows:

Workspaces hold one or more development projects. Users may create more than one workspace, but can only work in a single workspace at a time within a single instance of RAD.
Perspectives group functionality by task and are containers for different views on the code, along with relevant menu and toolbar actions. For example, the Java Perspective contains functionality tailored to writing Java applications. The user generally controls switching between perspectives.
Capabilities are groups of features that correspond to user tasks on a higher level than perspectives. The features associated with a capability can range from entire perspectives to individual menu and toolbar items within a perspective. When a capability is disabled, the features associated with it are no longer visible. For example, enabling the Java Development capability will enable features for creating and testing Java projects, such as a Java-specific text editor, and a menu item to create a new class.
Roles are groups of capabilities that are potentially overlapping. As shown in Figure 1, RAD provides 11 roles on a Welcome screen when the user creates a new workspace. By default, two roles are enabled (Java Developer and Web Developer), but the user can disable these and/or enable additional roles. When the user enables a role, this enables the set of capabilities associated with that role; in turn, the specific interface elements associated with those capabilities are made available in the interface (e.g., menu and toolbar items, views on the code). For example, enabling the Tester role will enable three capabilities: Core Testing Support, Probekit, and Profiling and Logging.

[image: image3.png]Rational Software Development Platform

Roles determine a base set of functionality to include in the interface, and, as the user works, additional functionality can be exposed or hidden by manipulating capabilities. This can be done both manually, through a user preference dialog that lists all available capabilities, or automatically, through trigger points in the interface. Trigger points offer a small amount of adaptive prompting in an otherwise largely adaptable (user-controlled) customization model: for example, when creating a new project the user can choose to “show all” types of possible projects; if the new project is associated with a disabled capability, the system will prompt the user to enable that capability. Customization changes imposed through roles and capabilities are persistent within a workspace but not across workspaces.

Interview Methodology

Each semi-structured interview was one hour long, with 32 questions to understand overall customization practice, and use of perspectives, roles, and capabilities. Participants were told beforehand only that the interviews were to understand how people customized their IDE and to look at simplifying the user interface. At the end of the interview there was a debriefing and unstructured discussion period on managing user interface complexity. Participants also completed a brief background questionnaire.

All interviews were conducted by the same researcher and were recorded, transcribed and coded for analysis. We used an iterative coding process, where the categories of interview data were developed and refined at each level of analysis. While some of these categories ultimately matched the focus of specific interview questions, the iterative process allowed us to identify additional emergent themes. We separated pure usability issues from what we consider to be the more generalizable benefits and challenges of reducing functionality. While we asked the same questions of all participants, almost all questions were open ended, and participants were encouraged to speak freely. As a result, the number of people who mentioned a point should be considered in many cases to be a minimum.

Through a combination of developer mailing lists and word of mouth, we recruited and interviewed 14 professional software developers (11 male, 3 female). They had on average over 11 years of software development experience (SD = 9) and reported spending over 30 hours per week using an Eclipse-based development platform (SD = 13). Experience with RAD varied, ranging from less than a month for three participants to 12 months for another participant (M = 4.1, SD = 3.2). Participants reported using RAD to develop a variety of applications, including: Web applications (7 participants), J2EE applications (4 participants), Java applications or plug-ins for Eclipse (6 participants), and database applications (1 participant). Participants did not necessarily use RAD as their main IDE: almost all used RAD or a RAD-based IDE as their main platform (i.e., RAD’s predecessor or a superset of the base RAD), but three participants used Eclipse. Note that some interview questions were not asked of the Eclipse users (this is noted when applicable in the next section).
Results

We first briefly discuss overall customization practice to provide context for the general findings.
Overall Customization Practice

RAD provides 11 perspectives by default, though users can increase this by saving custom perspectives and installing additional plug-ins. On average, participants made use of four to five perspectives. Most participants (11) had multiple development workspaces, with the median being two to three workspaces. All participants generally made at least minor customization changes to each workspace, including opening and closing different views on the code, changing the layouts of perspectives, and changing code formatting preferences, but none of the participants customized their menus and toolbars individually. A reset feature is provided for perspectives, and six participants reported occasional use of this feature when they had changed their perspective significantly. Users can also to create new perspectives by first customizing a perspective, then saving it under a new name. Only one participant used this feature.

Challenges in Reducing Functionality

As expected based on our participants’ varied exposure to RAD, we found that people had different degrees of understanding about how roles and capabilities technically worked. While almost all participants (12) were aware of capabilities, only 8 of the 11 participants who used a RAD-based IDE as their main development platform were aware of roles, and only 6 of those knew how to change them. Interpretation of results is done in this context.

The majority of participants (8) explicitly stated they liked roles or capabilities in principle, that is, their potential to reduce features in the interface. When asked if they would remove roles and/or capabilities from the interface, only one participant suggested removing both. While this positive response from participants should motivate further work on roles and capabilities, several design issues affected the participants’ experience and can be broadly grouped into three areas.
Partitioning functionality

Effectively partitioning features should result in relatively independent, cohesive, and meaningful groups. Two issues that arose in this respect are: at what granularity to group features, and on what basis to do so.
Roles and capabilities offer two differing levels of granularity for customization. Participants generally chose to enable and disable the finer-grained capabilities rather than enabling roles, and part of the reason was that they felt that it was difficult to define roles. We asked the 11 participants who used a RAD-based IDE as their main development platform which roles they would categorize themselves under, and we compared this to the roles which were actually enabled in the workspace they had accessible during or after the interview. All but two people identified with several more roles than were enabled in their workspaces.

Five of the 6 participants who knew how to change roles generally left the default roles when they created a new workspace even though three of them had changed their roles at some point in an earlier workspace. They found it easier to enable functionality automatically through trigger points or by manually enabling capabilities, and three of those participants considered roles to be irrelevant because instead, they could simply change their capabilities. Only one participant used roles as his primary method of enabling functionality. This was not necessarily because the role matched his work practice better than it did for other participants: he stated he had chosen this specific role (Advanced J2EE) because it appeared to be the most comprehensive. Thus, it made it easy to enable a large set of features with a single click.

Our analysis also suggests that the criteria by which roles are defined impacts the effectiveness of the customization model. All 11 of the roles in RAD group functionality in a task-oriented manner; for example, the Java Developer role is associated with functionality that is likely to be needed by that type of developer. However, four of the roles were also distinguished by expertise level: Web Developer Typical versus Web Developer Advanced and Enterprise Java versus J2EE Developer. The former role in each of these pairings represents only a subset of the functionality of the latter. Eight participants expressed concern over the difficulty of distinguishing between the expertise-oriented roles. This suggests that it may be more difficult to define distinct feature sets appropriate for levels of expertise, like intermediate versus expert, than between novice and advanced users.

Presentation

Effective communication of the customization model to the user is also an important challenge with a reduced-functionality design. Three themes which arose in this respect were: how best to expose the structure of the model to the user, how to reduce perceived and actual problems of hiding functionality, and how to design for changing needs.

Many participants (8) found it difficult to map from a name or short description of a role or capability to actual features in the interface, thus making it difficult to know how to effectively customize their interface. While some of this may be attributable to issues with partitioning functionality, it also highlights the challenge of effectively communicating the customization model to the user when the model is complex, such as RAD’s, and contains multiple levels of granularity.

Another presentation issue was that more than half the participants (8) were concerned about hiding functionality and not being able to find features when some roles or capabilities were disabled, a finding similar to previous work with word processor users [7]. Because of this concern, four participants mentioned that they generally enabled all functionality to ensure that they would be able to find what they needed. Although this may be due to individual differences (see below), it defeats the purpose of having roles and capabilities in the first place. The concern over hiding features stemmed from both: (1) the need to locate functions of which the user is already aware, and (2) the ease with which users can learn about and use new features in the user interface.

Concerns about dynamically changing functionality requirements also need to be addressed. Our participants identified three situations in which they would be concerned about only having a filtered set of the features in the interface: when their role evolved, such as from a developer to a manager; when they temporarily needed a set of features associated with another role; and when they wanted to engage in exploratory behaviour of the interface for a short period of time.

Individual differences

Finally, we found that different participants had different reactions to reducing functionality in the user interface. Some felt overwhelmed by having many features while others were not bothered by extra functionality and preferred not to filter any features. As such, we need to cater to both feature-keen and feature-shy users [7], and to increase system trust, especially for those users who may be reluctant to customize even when a reduced-functionality interface could be more efficient. Four participants immediately enabled all functionality when creating a new workspace. This behaviour supports the inclusion of a toggle mechanism, such as that provided in the multiple interfaces approach [6], to provide quick access to the full functionality set for this type of user.

Summary and design implications
We summarize what we consider to be the most salient implications for designers and researchers.

Participants found it easier to understand the more narrowly defined capabilities than the broader roles. Possible reasons for this include:
1. Variation in tasks performed by users in the same work role (e.g., Java developer), made it difficult to define generalized roles.

2. While still offering high-level feature grouping, capabilities allowed participants to more finely tune their interface than they could with roles.
3. Capabilities more closely matched concrete tasks, so were easier to interpret.
It will be interesting to explore whether communicating the underlying mapping of roles to features more effectively would increase their adoption relative to capabilities.
Although partitioning by expertise has been shown to be effective for novice users [1], the problem of distinguishing between “typical” and “advanced” roles suggests that it may not be as effective for differentiating between the tasks of more experienced users.
The majority of participants were concerned about not being able to find disabled features. This stresses the need to promote the ability to discover unknown or unused features while still filtering what is presented to the user for those who prefer to work in a reduced-functionality interface.
Conclusion

An interview study with 14 users of a complex development environment that provides role-based customization identified several open issues in designing coarse-grained customization mechanisms, which are especially applicable for role-based or layered interfaces. Further research is needed on how best to address these challenges, which include issues of partitioning functionality, presentation of the customization model to the user, and the impact of individual user differences.
Note. The opinions expressed are those of the authors and do not necessarily represent the opinions of IBM. IBM, Rational, and WebSphere are registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both. Other company, product or service names may be trademarks or service marks of others.
REFERENCES

1. Carroll, J. M., & Carrithers, C. Training wheels in a user interface. CACM, 27(1984):8, 800–806.

2. Christiernin, G.L., Lindahl, F., and Torgersson, O. Designing a multi-layered image viewer. Proc. NordiCHI ’04, (2004), 181–184.

3. Clark, B. and Matthews, J. (2005). Deciding layers: Adaptive composition of layers in a multi-layer user interface. Proc. HCI International.
4. Linton, F., Joy, D., Schaefer, H.-P., & Charron, A. Owl: A recommender system for organization-wide learning. Educational Technology & Society, 3(2000):1, 62-76.

5. Mackay, W. E. Triggers and barriers to customizing software. Proc. CHI ‘91, (1991), 153-160.

6. McGrenere, J., Baecker, R., & Booth, K. An evaluation of a multiple interface design solution for bloated software. Proc. CHI 2002, (2002), 163-170.

7. McGrenere, J., & Moore, G. Are we all in the same “bloat”? Proc. Graphics Interface, (2000), 187-196.

8. Plaisant, C., Kang, H., and Shneiderman, B. Helping users get started with visual interfaces: Multi-layered interfaces, integrated initial guidance and video demonstrations. Proc. HCI International, (2003), 790-794.

9. Shneiderman, B., & Plaisant, C. The future of graphic user interfaces: Personal role managers. Proc. HCI ’94: People and computers IX, (1994), 3-8.
10. Shneiderman, B. Promoting universal usability with multi-layer interface design. Proc. CUU 2003, (2003), 1-8.

Figure 2. Customization mechanisms in RAD. Specific settings at each level are associated with a workspace.

Figure 1. Screenshot of RAD’s mechanism to change user role. A short description is presented for each role on mouse over.

1

