
OhSnap: Helping Users Align Digital Objects on Touch
Interfaces

Jennifer Fernquist, Garth Shoemaker, Kellogg S. Booth
Department of Computer Science
University of British Columbia

201-2366 Main Mall, Vancouver, BC Canada V6T 1Z4
{adara, garths, ksbooth}@cs.ubc.ca

ABSTRACT
In this paper we describe...

Author Keywords
Alignment, snapping, multi-touch, touch input

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical user interfaces

INTRODUCTION
RELATED WORK
Baudisch [2] Lécuyer [4] Bier [3] Ahlström [1] Mandryk [5]

OHSNAP TECHNIQUE
OhSnap is a snapping technique designed specifically for
touch interfaces that does not require being toggled on or off
and maintains its relative position underneath a user’s finger.
Objects can be position both at and near lines with OhSnap
attraction. In addition, when objects that are snapped to an
OhSnap line become unsnapped, they are imperceptibly re-
turned to their original position underneath the user’s finger.

When dragging a digital object to a snap line, users experi-
ence the object moving normally towards the line and then
being stopped once reaching the line. With traditional snap-
ping, users would experience the object being pulled sud-
denly away from their finger to the line once the object posi-
tion was within some threshold distance from the line. With
OhSnap, if a user snaps an object and then drags their finger
beyond the line (intending the snapped object to follow), the
object remains snapped for a time and then “catches up” to
their finger.

When a user touches a digital object, the position of their
finger relative to the object is recorded. If the position of
the object becomes the same as a line with OhSnap attrac-
tion, that object is flagged as being snapped. As long as the

Submitted for review to CHI 2011.

position of the user’s finger (relative to its original position
in the object) is within a predefined snap width, the object
will remain snapped to the line. If the user’s finger posi-
tion goes beyond the snap width, in either direction, then
the object’s position is determined by a linear interpolation
function. This technique is visualized in Figure 1.

The linear interpolation function calculates the object’s po-
sition proportional to: the snap line position, the distance
between the original and current finger positions, the snap
width, and the catch-up width. Pseudo code for the algo-
rithm is presented in Listing 2.

Snap width and catch-up width
When the object position is computed via the linear interpo-
lation function, the object appears to move faster than one
pixel at a time so that it can catch up with the user’s finger.
In fact it moves (catch-up width + snap width) / (catch-up
width) pixels at a time. This ratio denotes a super pixel so
that a snapped object moves one super pixel at a time. The
object is flagged as snapped as long as the user’s finger posi-
tion is less than or equal to (catch-up width) + (snap width)
pixels distant from its original position. Once the finger po-
sition is beyond that, then the object is flagged as unsnapped
and it has returned back in its original position relative to the
user’s finger.

The (catch-up width + snap width) / (catch-up width) ratio
and, thus, the size of the super pixels, must be carefully cho-
sen. As the ratio approaches 1, the catching up of objects
to fingers is slower and less perceptible. When the ratio is
equal to 1, the objects never catch up. As the ratio increases,
the objects catch up faster. When the ratio approaches infin-
ity (i.e. the catch-up width is 0), then the object will jump
to its original position underneath the user’s finger when un-
snapped, emulating traditional snapping.

The (snap width) + (catch-up width) size should ideally be
less than the width of a typical finger (about (ref)). The snap
width should be large enough to handle users overshooting
a target. Plus, a balance must be struck with the ratio so that
the catching-up is imperceptible but occurs quick enough.
One issue if the ratio is too small is that certain positions near
the snap line are unreachable when the object is snapped.
For example, if the ratio (and super pixel size) is 2, then the
position 3 pixels away from the snap line is unreachable.

1

(a) Object is moved to
snap line.

(b) Object snapped to line. (c) Object snapped, finger
moves.

(d) Object catching up to
finger.

(e) Object has caught up.

Figure 1: Example of the OhSnap behaviour. A user moves an object towards a snap line (a) and it becomes snapped when its
right edge touches the line (b). As the user continues to drag their finger to the right, the object remains snapped to the line
while their finger keeps moving (c). Once their finger has travelled farther than the snap width from the starting point when
the object was first snapped, the object becomes unsnapped from the line and it starts to catch up to their finger (d). Once
the distance between the current finger position and the original snapped finger position is greater than (snap width + catch-up
width), the object returns to its original position underneath the user’s finger (e).

Benefits of the OhSnap technique
One benefit of the OhSnap technique over techniques such
as Snap-and-Go is that it retains the position of the user’s
touch point on a digital object relative to that object. This
feature is especially useful when users drag objects across
lines that have OhSnap attraction when they have no inten-
tion of aligning the object to those lines. Although the object
would be temporarily snapped to those lines as it got dragged
across them, due to the catch-up functionality of OhSnap,
the object would catch-up with the user’s finger and return
to its original relative position underneath it. This feature
is especially important for touch tables or other direct-input
interfaces.

Another benefit of the OhSnap technique is that it allows
users to place digital objects near snap lines as well as align-
ing them with snap lines without having to toggle the snap
capabilities off.

With the OhSnap technique, users of the multi-touch table-
top do not have to toggle the snap capabilities on and off
in order to place digital objects close to lines rather than
aligned with lines. This is especially important in collab-
orative environments where toolbars that may hold the snap
toggle function may be inaccessible to some users. In ad-
dition, snap toggling is a global action that would affect all
users and its use may cause interference or disruptions.

IMPLEMENTATION
We implemented OhSnap in C# for all movement types: 1D
translation, 2D translation, and rotation. For the translation
movements, the position of each edge of an object is checked
against the position of all environment lines it is parallel to.
Edges in the 2D environment can be snapped independently.
For rotation, the snap width is measured by angle rather than
pixel.

If a user snaps an object to a line and then lifts their fin-
ger from the screen, the object is no longer flagged as being
snapped, whether it is aligned with the line or within the
(snap width) + (catch up width) region. This is primarily

useful if a user wishes to place an object near a snap line but
has snapped the object and is having difficulty reaching their
destination due to the object moving along super pixels.

2

OhSnap(x, snapLine x, snapWidth, catchUp)
{

if (OhSnap active) // OhSnap
{

if (x == snapLine x)
isSnapped = true;

if (isSnapped)
{

if (x <= snapLine x + snapWidth)
return snapLine x;

else if (x > snapLine x + snapWidth &&
x <= snapLine x + snapWidth + catchUp)

return linearInterpolation(
x, snapLine x, snapWidth, catchUp);

else
isSnapped = false;

}
return x;

}
else // Traditional snapping
{

if (x >= snapLine x − snapWidth ||
x <= snapLine x + snapWidth)
return snapLine x;

else
return x;

}
}

Listing 1: Pseudo code fragment for the 1D OhSnap func-
tion. In this code x is (current finger position - original finger
position + snap line position) and snapLine x is the position
of the snap line.

linearInterpolation(x, snapLine x, snapWidth, catchUp)
{

return ((x − snapLine x − snapWidth) / catchUp) ∗
(snapWidth + catchUp);

}

Listing 2: Pseudo code fragment of the linear interpolation
function that returns the position of the object if the object is
snapped and the finger position is in the ‘catch-up’ area.

EXPERIMENTS
In order to objectively evaluate the performance of the OhSnap
technique, we performed two experiments. In the first exper-
iment, the participants carried out three alignment tasks: 1D
translation, 2D translation, and rotation. Participants were
asked to drag and align a digital rectangle with environment
lines. This experiment focused on evaluating the effective-
ness of OhSnap versus no snapping and traditional snapping.
The second experiment investigated participants’ ability to
drag a digital block close to a line with OhSnap attraction
on.

EXPERIMENT 1: COMPARISON OF SNAPPING TECHNIQUES
The purpose of this experiment was to evaluate the OhSnap
technique and compare its performance to traditional snap-
ping as well as no snapping. We investigated performance
with three movement types: 1D translation, 2D translation,
and rotation.

Task

The participants’ task was to move a digital blue square, as
fast as possible, so that it was adjacent to one or more target
lines. They were instructed to move the square with a sin-
gle finger on their right hand and align specific edges of the
square so that they were adjacent to one or more target lines
in the environment. The target lines were indicated with a
black arrow. When the square was adjacent to a target line,
the respective arrow turned green to indicate the square was
aligned, as in Figure 2. When the square was adjacent to all
target lines, the square turned green, informing a participant
that the square is successfully aligned.

(a) Square not aligned
with target line.

(b) Square aligned with
target line.

Figure 2: If, during a task, the square edge was not aligned
with its target line, the square remained blue and the arrow
remained black. When the square edge was aligned with its
target line, the square and arrow turned green.

At the start of a trial, a button labelled ‘GO’ at the bottom
of the screen was inactive for one second. When touched,
the button disappeared, the square became active (indicated
by changing its colour from grey to blue), and the partici-
pant could then begin the trial. The timer began when the
user first touched the square and it stopped when the appro-
priate edges of the square were aligned to the target lines
and the participant lifted their finger from the screen. Each
trial required successful alignment, so that if a participant
lifted their finger when the square was not fully aligned, they
would have to touch it and move it again to complete the
trial.

Participants were asked to conduct three different movement
types: 1D translation, 2D translation, and rotation. For the
1D translation task, participants moved the square so that its
right edge was aligned with a single target line. The right
edge of the square began at a distance of 305 pixels to the
left of the target line.

In the 2D translation task, the square was to be aligned so
that its top edge and left edge were both aligned to horizontal
and vertical target lines, respectively. At the start of a trial,
the top left corner of the square was 490 pixels from the
corner intersection of the target lines.

In the rotation task, participants rotated a rectangle, anchored
at one end, so that the center line protruding from it was par-
allel to the environment line. The target line was horizontal
and the anchored rectangle began vertically at the start of a
trial, 90 degrees from the target line.

3

Each of the tasks were designed so that their components
occupied the lower portion of the screen so that participants
could sit at the table and comfortably reach the digital ob-
jects. A screenshot of the start of each of the tasks (after the
‘GO’ button has been pressed) is shown in Figure 3.

Interfaces
There were three snapping interface conditions: no snap-
ping; OhSnap; and traditional snapping. The trials appeared
identical across conditions, but the attraction type of the tar-
get lines differed. In the no snapping condition, the target
line had no attraction and the edge of the square had to be
placed within +/- 2 pixels of the appropriate target line. Pi-
lot testing revealed that the no snapping tasks were nearly
impossible to complete without a small tolerance due to the
touch sensing limitations of the SMART Table.

In the OhSnap condition, the target lines had the OhSnap
attraction type with a snap width set to 10 pixels and the
catch-up width set to 10 pixels. In the traditional snapping
condition, the target lines had the traditional attraction type
with a snapping threshold of 10 pixels so that if the appropri-
ate square edge was within that threshold of the target line, it
would automatically be translated to the target line position.

Experimental Design
The study design was fully counter-balanced, within sub-
jects 3 x 3 (Snapping Technique x Movement Task) with 20
trials for each treatment. For each trial, we recorded the task
completion time and the number of times participants lifted
their finger from the table.

Participants were given training and the opportunity to prac-
tice each movement task (with no snapping) at the start of
their session. For the purposes of data analysis, we discarded
the first 5 trials of each treatment of 20 trials to reduce learn-
ing effects.

Participants
Eighteen volunteers (2 female) between the age of 21 and 40
(µ = 26.7) were recruited from our institution. Six partici-
pants had previously used a tabletop display, but only briefly
during demos or to play games. Each participant received
$10 for their time.

Apparatus
The experiment was conducted on a SMART Table from
SMART Technologies. The table has a screen with a size
of 57.2cm x 42.9cm, resolution of 1024 x 768 pixels, and
70Hz refresh rate. The application used for this experiment
was written in C# with the SMART SDK.

Hypotheses
We had two hypotheses: (1) Participants would perform faster
with OhSnap than with no snapping. (2) Participants would
be slightly slower with OhSnap than with traditional snap-
ping, but not significantly so.

Results
To compensate for learning effects and human response time,
we discarded the first 5 trials per treatment set of 20 and av-
erage the trial time over the remaining 15 trials.

Snapping vs. no snapping
We performed a 3 x 3 (Snapping Technique x Movement
Task) within-subjects repeated measures analysis of variance.
There was a significant main effect of both snapping tech-
nique (F(2,16)=16.078, p< .0005, η2=.668) and movement
task (F(2,16)=31.287, p< .0005, η2=.796). Pairwise com-
parisons of snapping techniques revealed additional signif-
icant effects between OhSnap and no snapping (p< .0005)
and traditional snapping and no snapping (p< .0005). Thus,
hypothesis 1 was supported (Figure 4). There were no sig-
nificant interaction effects.

Figure 4: Mean trial time by snapping technique across all
movement types.

Pairwise comparisons of movement types revealed signifi-
cant differences between all pairs: 1D and 2D (p<.005), 1D
and rotation (p< .0005), and 2D and rotation (p< .0005)
(Figure 5).

Multiple repeated-measures analysis of variance of snapping
techniques with individual movement types (3 x 1) revealed
a significant main effect for rotation (F(2,16)=17.634, p<.0005,
η2=.688), 1D translation (F(2,16)=14.411, p<.0005, η2=.643)
and 2D translation (F(2,16)=10.128, p<.001, η2=.559). Pair-
wise comparisons showed that there were significant differ-
ences between no snapping and OhSnap, no snapping and
traditional snapping for all movement types with p<.001.
Mean trial times for all snapping techniques across all and
individual movement types is shown in Table 1.

OhSnap performed 167% faster than no snapping overall,
145% faster for 1D, 211% faster for 2D, and 132% faster for
rotation.

OhSnap vs. traditional snapping
We performed a 2 x 3 (Snapping Technique x Movement
Task) within-subjects repeated-measures analysis of variance.
We did not find a significant difference between OhSnap and
traditional snapping (F(1,17)=2.522, p< .13), thus hypothe-
sis 2 was supported.

4

(a) 1D translation task (b) 2D translation task (c) Rotation task

Figure 3: Screenshots of each of the three tasks at the start of a trial in Experiment 1.

Mean Trial Time (seconds)

Snapping Technique Movement Type
All 1D 2D Rot.

No snapping 2.507 2.301 3.517 1.703
OhSnap 1.513 1.582 1.667 1.287
Traditional snapping 1.387 1.362 1.651 1.147

Table 1: Mean trial time for each of the snapping techniques
across all movement types.

Pairwise comparisons of repeated-measures analysis of snap-
ping techniques with specific movement types (3 x 1) re-
vealed no significant time differences between OhSnap and
traditional snapping for any of 1D translation, 2D transla-
tion, or rotation.

Figure 5: Mean trial time by movement type grouped by
snapping technique.

Number of touch-ups
We also conducted 3 x 3 (Snapping Technique x Movement
Task) within-subjects repeated-measures analysis of variance
for the average number of touch ups in a set of trials. There
was a significant main effect of both snapping technique
(F(2,16)=14.838, p<.0005, η2=.65) and movement task (F(2,16)

= 26.076, p<.0005, η2=.765). Pairwise comparisons showed
that participants lifted their finger up significantly more in no
snapping (µ=1.438) compared to both OhSnap (µ=1.19) and
traditional snapping (µ=1.185) with p<.0005. There was no
significant difference in the number of touch ups between
OhSnap and traditional snapping. There were no significant
interaction effects.

Questionnaire data
(TODO)

EXPERIMENT 2: VARIATION OF OHSNAP PARAMETERS
FOR SNAP LINE PROXIMITY
This experiment was designed to investigate the variation
of OhSnap parameters and their effect on user performance
for aligning digital objects in close proximity to a line with
OhSnap attraction. We also sought to compare the OhSnap
attraction variations with no snapping for the proximity tasks.

The apparatus and the participants were the same as in Ex-
periment 1.

Task
The participants’ task was to translate a square so that it was
close to a line with OhSnap attraction. The visuals for this
task were nearly identical to the 1D task in Experiment 1. A
dotted target line, with an arrow pointing down at it, was
placed just before or just after the OhSnap line. Partici-
pants were asked to drag the square so that its right edge
was aligned with the dotted line. As in Experiment 1, once
the square was adjacent to the target line both the arrow and
the square turned green to indicate a successful alignment.

A screenshot of the start of each of the tasks (after the ‘GO’
button has been pressed) is shown in Figure 6.

Interfaces
There were four sets of snapping parameters: no snapping,
1:3 ratio with 5 pixel snap width, 1:2 ratio with 10 pixel snap
width, and 1:3 ratio with 10 pixel snap width.

Experimental Design

5

(a) Target line before the snapping line.

(b) Target line after the snapping line.

Figure 6: Screenshots of each of the two tasks at the start of
a trial in Experiment 2.

The study design was partially counter-balanced, within sub-
jects 4 x 2 (Snapping Parameter Set x Proximity Task) with
20 trials for each treatment. One movement asked partici-
pants to align right edge of the square to the dashed target
line 5 pixels before the line with OhSnap attraction, and the
other task asked participants to align the right square edge
to the dashed line 5 pixels after the attraction line. For each
trial, we recorded the task completion time and the number
of times participants lifted their finger from the table.

As in Experiment 1, participants were given training and the
opportunity to practice each movement task (with no snap-
ping) at the start of their session. For the purposes of data
analysis, we discarded the first 5 trials of each treatment of
20 trials to reduce learning effects.

Hypotheses
We had one hypothesis: (1) Participants would perform fastest
with the largest catch-up size to snap width ratio and the
largest snap width. When the ratio is large (i.e. the catch-up
size is 3 times larger than the snap width) the size of the su-
per pixels is decreased thus it is most likely easier to perform
fine-grained movement of a digital object that is snapped.

Results
We conducted a 4 x 2 (OhSnap Parameter Set x Proximity
Task) repeated measures analysis of variance. There was a
significant main effect of both OhSnap parameter set and
proximity task (F(3,15)=22.797, p<.0005, η2=.82). Pair-
wise comparisons revealed that the no snapping condition
was significantly faster than all parameter sets (p<.002), but
participants did not complete trials significantly faster with
any OhSnap parameter set compared to the others (Figure 8.
There were significant interaction effects (F(3,15)=3.884, p<.031,
η2=.437) though the effect size was small. Mean trial times
for all OhSnap parameter sets and proximity types are pre-
sented in Table 2. Mean trial times for all parameter sets are

presented in Figure 7.

Surprisingly, the proximity task that asked participants to po-
sition the digital square just before the snap line took signif-
icantly longer than the task positioning the square just after
the line. We anticipated that since the objects could avoid
being snapped when placing them before the snap line, this
proximity task would be less difficult and faster as a result.
Squares positioned after the snap line must be snapped.

It is perhaps the case that participants knew the snapping
would occur in the ‘after’ task and learned how to adjust their
movements to accommodate it. Conversely, in the ‘before’
task, participants may have worked slower so that they did
not snap to the line. In addition, participants may have occa-
sionally overshot the target position, though not always, re-
sulting in inconsistent behaviour preventing them from mas-
tering the task.

Figure 7: Mean trial time for all OhSnap parameter sets over
both proximity types.

Figure 8: Mean trial time by proximity type grouped by
OhSnap parameter set.

Number of touch ups
We conducted a 4 x 2 (OhSnap Parameter Set x Proximity
Task) repeated measures analysis of variance for the average

6

Mean Trial Time (seconds)

OhSnap Parameter Set Proximity Type
Both Before After

No snapping 2.309 2.236 2.382
1:3 ratio, 5px snap width 3.350 3.689 3.012
1:2 ratio, 10px snap width 3.559 3.919 3.198
1:3 ratio, 10px snap width 3.662 4.128 3.196

Table 2: Mean trial time for each of the OhSnap parameter
sets across both proximity types (just before and just after
the snap line).

number of touch ups in each treatment. There was a signif-
icant main effect of both OhSnap parameter set (F(3,15) =
8.473, p<.002, η2=.629) and proximity task (F(3,15)=5.236,
p<.035, η2=.235). Pairwise comparisons revealed that the
no snapping condition had significantly fewer touch ups than
the 2nd parameter set (p<.002) and 4th parameter set (p<.008),
but not the 3rd.

Questionnaire data
(possibly TODO, check if there’s something interesting first)

DISCUSSION
REFERENCES
1. D. Ahlström, M. Hitz, and G. Leitner. An evaluation of

sticky and force enhanced targets in multi target
situations. In NordiCHI ’06: Proceedings of the 4th
Nordic conference on Human-computer interaction,
pages 58–67, 2006.

2. P. Baudisch, E. Cutrell, K. Hinckley, and A. Eversole.
Snap-and-go: helping users align objects without the
modality of traditional snapping. In CHI ’05:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 301–310, 2005.

3. E. A. Bier and M. C. Stone. Snap-dragging. SIGGRAPH
Comput. Graph., 20(4):233–240, 1986.

4. A. Lécuyer. Simulating haptic feedback using vision: A
survey of research and applications of pseudo-haptic
feedback. Presence: Teleoper. Virtual Environ.,
18(1):39–53, 2009.

5. R. L. Mandryk and C. Gutwin. Perceptibility and utility
of sticky targets. In GI ’08: Proceedings of graphics
interface 2008, pages 65–72, 2008.

7

	Introduction
	Related Work
	OhSnap Technique
	Snap width and catch-up width
	Benefits of the OhSnap technique

	Implementation
	Experiments
	Experiment 1: Comparison of Snapping Techniques
	Task
	Interfaces

	Experimental Design
	Participants
	Apparatus

	Hypotheses
	Results
	Snapping vs. no snapping
	OhSnap vs. traditional snapping
	Number of touch-ups
	Questionnaire data

	Experiment 2: Variation of OhSnap Parameters for Snap Line Proximity
	Task
	Interfaces

	Experimental Design
	Hypotheses
	Results
	Number of touch ups
	Questionnaire data

	Discussion
	REFERENCES

