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INTRODUCTION 
A central concern in the field of information visualization 
(infovis) is to characterize how abstract information can be 
effectively represented using different cues for visual 
encoding. For example, highlighting a subset of elements 
can be done by changing their color, increasing their size, 
moving them in small orbits, or controlling their 
transparency. Subgraph highlighting to support path tracing 
applies to many real-world uses of graph visualization. 
Imagine a medical genetics investigator exploring a graph 
where nodes represent people and edges represent kinship, 
with the nodes colored according to whether that person has 
inherited the genetic markers correlated with certain 
diseases. Highlighting the edges in a two-hop 
neighbourhood around a node corresponds to focusing 
attention on everybody within two generations of the target. 

Highlighting the set of shortest-paths between a person and 
all people with the markers for a particular disease focuses 
attention on potential inheritance routes. 

Determining the relative efficacy of visual cues has long 
been at the core of the infovis research agenda. While the 
traditional static cues such as position, color, size, and 
orientation have been under study for a long time 
[Cleveland 84], many open questions remain [Heer 09]. To 
date, the currently prevalent approach to subgraph 
highlighting is to use a combination of static color and size 
encoding (for an example of static highlighting, see Fig 3). 
More recently, a new class of highlighting technique has 
been proposed [CHI09]: ephemeral highlighting uses the 
temporal dimension to draw the user's attention to specific 
interface elements through a combination of abrupt onset 
and gradual fade-in (Figure 1). This class of technique has 
been studied in the context of an adaptive interface for 
menu selection [CHI09], and gained higher prominence 
when Google released a new home page featuring gradual 
onset in late 2009 [Mayer-2009]. 

Among the many data types used in infovis applications, 
node-link graphs are representative of the visual encoding 
and interaction issues faced in the field as a whole. For the 
purposes of testing highlighting techniques, we argue that 
the heavily studied area of interactive graph exploration 
(e.g. [van Ham 05]) is a good microcosm for infovis. Most 
graph exploration systems support highlighting subgraphs: 
a subset of the nodes and edges that are the elements of a 
graph. Tracing paths through the connections that make up 
the graph is a common task that users must perform when 
exploring this data type [Lee 06], and it has been previously 

Figure 1. Time lapse from left to right shows a combination of 
ephemeral and static path highlighting to aid visual search. 

The a subset of paths is appears first, while the remainder of 
the graph fades in over a short period of time. 
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studied in controlled experiments [Ware 04] [Ware 05].  

In this work, we explore the use of ephemeral techniques in 
an infovis setting, considering them as a type of visual cue 
to support path tracing in node-link graphs. We conducted 
experiments with 32 participants to compare path 
highlighting under three conditions: (1) an ephemeral 
encoding technique, (2) a static color and size coding, and 
(3) the combination of both techniques together. We chose 
static highlighting with color and size as the main 
competitor for ephemeral highlighting because, as 
mentioned above, it is the most commonly used approach in 
previous work. We included the combination of static and 
ephemeral because combining multiple redundant cues has 
often proved more effective than any single cue alone 
[Ware 05][Ware 08][Munzner 99].  We also included a 
control condition with no highlighting.  

In our exploration, we accounted for prediction accuracy: 
whether the prediction of what to highlight was correct and 
thus helped the user perform the task, or whether it was 
incorrect and attending to the highlighted items would not 
help the user, or even be a distraction. Although this factor 
has gained prominence in recent investigations of adaptive 
interfaces [somebody: need good ref here], it has not been 
explicitly considered in the infovis community before. The 
implicit assumption of previous studies has been perfectly 
accurate prediction, whereas the reality of interactive visual 
exploration is that the current needs of a user are often only 
partially understood [tm todo: think about good ref here]. 
We hypothesized that ephemeral techniques may capture 
the known benefits of highlighting for accurate predictions, 
while mitigating the costs of highlighting the wrong items 
when the prediction is inaccurate. 

Our results show that the combination of ephemeral and 
static encoding is overall the best option both in terms of 
performance, as well as self-reported workload and 
preference. We also found that when a neighbourhood 
subgraph is highlighted, the highlighting is beneficial 
regardless of whether it accurately captures the target node. 
In contrast, highlighting the set of shortest-paths to nodes of 
interest only offered a benefit when the target node itself 
was highlighted. 

Our contribution is two-fold: (1) we are the first to propose 
the use of an ephemeral technique for an infovis task; and 
(2) to study it in the context of a multi-factor controlled 
experiment. In addition to the specific results for 
highlighting techniques that we present below, we hope to 
encourage the infovis community to follow in the footsteps 
of the adaptive interface community and include predictive 
accuracy as a factor in future experiments. <something 
about impact of work, not just that we were first> 

RELATED WORK 
We divide the related work into previous studies of 
adaptive interfaces, and those in the infovis domain.     

Adaptive Interfaces 
Using an ephemeral technique to focus the user’s attention 
on a subset of items in the display was first discussed in the 
context of adaptive interfaces. Adaptive interfaces, which 
automatically tailor the interaction to suit an individual 
user’s needs, cover a broad range of tasks and contexts; see 
Jameson [jameson09] for an overview. A familiar 
commercial example is the Microsoft Windows XP Start 
menu, which moves a small number of predicted programs 
to the first level to ease their selection. Although spatially 
adaptive interfaces such as the Start menu are theoretically 
beneficial, evaluations have reported mixed results (e.g., 
[sears94][gajos06][findlater08]). Another line of research is 
to draw the user’s visual attention to adaptively predicted 
elements, thus reducing visual search time in a complex 
interface. Most efforts have focused on color highlighting 
[gajos05][tsandilas05][tsandilas07], but ephemeral 
adaptation has recently offered more promising results 
[findlater09]. Among the more important factors impacting 
the effectiveness of adaptive interfaces is the level of 
predictive accuracy; that is, the accuracy with which the 
adaptive algorithm can predict the user’s needs. Higher 
predictive accuracy can improve performance and 
satisfaction [findlater08][gajos06]. 

Information Visualization 
Many interactive systems support path tracing in node-link 
graphs by highlighting subgraph regions. A number of these 
tools show the one-hop neighbourhood of direct 
connections to a node in response to clicking or hovering 
(e.g. Cerebral [Barsky 08]). Highlighting neighbourhoods 
of two or three hops is also common, whereas larger 
neighbourhoods are not usually shown unless the graph is 
very sparse. Similarly, many previous tools support 
highlighting the subgraph of all edges between some target 
node and a set of other nodes of interest (e.g. Tulip [Auber 
03]). 

Much of the previous work on characterizing visual 
channels for encoding information has focused on static 
channels [Cleveland 84][Ware 04]. We focus here on 
studies of dynamic channels. Bartram et al. characterized 
the effectiveness of different simple motions for a visual 
search task [Bartram 02], found that motion coding 
outperformed color and shape coding for detectability 
[Bartram 03], and found that anchored motions are less 
distracting than travelling motions [Bartram 03]. 

Ware and Bobrow studied motion highlighting of subgraphs 
within a complex node-link graph. While a first study found 
that motion highlighting outperformed static highlighting 
with color and size [Ware 04], a second study that took 
interaction times into account found no difference between 
the two, but slight improvements when they were combined 
to redundantly code the information [Ware 05]. 

Although these studies shed light on the utility of the 
specific dynamic cues involving motion, the use of gradual 
onset as a dynamic visual cue has not been explicitly 
studied in an infovis context. Findlater et al. [Findlater09] 
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discuss the rationale of why abrupt and gradual onset hold 
promise as perceptually appropriate techniques, which we 
do not repeat here.     

EXPERIMENTAL METHODOLOGY 
We conducted a controlled experiment to compare 
variations of ephemeral subgraph highlighting, static 
subgraph highlighting and a control condition using path 
tracing tasks: participants reported the path length from a 
source node to the closest node of a certain colour. We 
expected the effectiveness of the techniques would differ 
depending on the subgraph region highlighted, and whether 
or not that subgraph contained the target node (accurate vs. 
inaccurate predictions). Returning to the neighbourhood 
and shortest-path example from the Introduction, we might 
expect users to respond differently to mispredictions in 
these two cases, causing more difficulty in the shortest-path 
case. Thus, we included both of these subgraphs conditions 
in our investigation, which allowed us to more fully capture 
the range of performance across this space.   

To refine the tasks and experimental design, we first 
conducted 12 informal sessions with 8 users, for 
approximately 14 hours of observation. Our goal was to 
understand the impact of several factors including graph 
size, graph density, task difficulty, and ephemeral onset 
length on a user’s ability to do the task. Infovis experiments 
often require fairly extensive pre-piloting because the 
parameter space of possibilities has not been characterized 
in previous work; for example, understanding the factors 
that affected task difficulty required significant 
experimentation, whereas Findlater et al. [Findlater 09] 
already knew many of these factors in advance for menu 
selection.   

Participants 
We recruited 32 participants from fliers posted on campus 
(20 female, aged 19–56, median = 25). All had normal or 
corrected-to-normal vision and regular color vision, and all 
were regular computer users (minimum 3 hours/week). 
They received $10 per hour of participation.  

Task  
The experimental task was a series of path-finding trials 
where participants were presented with a laid-out small-
world graph and asked to answer the question "How many 
hops from the source node is the closest blue node?" Each 
trial used a different synthetic 300-node graph with colored 
nodes and grey edges. See Figure 2 for an example trial. 

A black node (source) appeared first, giving participants 2 
seconds to locate it before the start of the trial. Blue (target) 
and green (distracter) nodes had a frequency of 1% each; 
the remaining nodes were red or yellow, with equal 
frequency. There was only one nearest blue node and its 
distance (h) from the source was between 2 and 5 hops.  
Participants could only answer once, and were not told if 
their answer was correct. After a time limit of 60 seconds, 
the screen was blanked and the participant was prompted 
for their best guess.  

This task was designed to compare the effectiveness of 
visual cues for subgraph highlighting, rather than being 
ecologically valid in and of itself. In a real usage scenario, 
users would not typically directly count hops, but rather use 
the highlighted subgraph in service of their main task. For 
the purposes of a laboratory experiment, however, we 
needed task with a simple answer space (i.e., one for which 
the time to communicate the answer would not dominate in 
the results). Moreover, we needed to ensure that users could 
not answer the question based on preattentive popout alone; 
for example by spotting a node of a particular color, rather 
than actually tracing paths. We drew inspiration from the 
approach of Ware and Bobrow [Ware 05], who used 
questions such as "Is there a red node within two links of 
the target?" In our case we asked the user to give the 
numerical answer of the number of hops to a colored node, 
rather than the true/false answer for a given number of 
hops, to decrease the chance of a guess being correct.  

We did extensive testing during pre-piloting of the 
parameters for factors that had a large impact on task 
difficulty: how large of a neighbourhood to highlight, and 
how many hops to use for the target distance. We 

 
Figure 2. Ephemeral subgraph highlighting of a 3-hop neighbourhood subgraph region. Time span is from left to right as the full 

graph fades in; an onset delay of 10 seconds was used in our study. 
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eliminated distances of 6 hops or more from consideration 
because participants often gave up or had very high error 
rates. Unsurprisingly, the task was easier at distances of 2 
or 3 hops from the source node than at distances of 4 or 5 
hops, and easier for nodes directly connected to the 
highlighted subgraph via 1 hop than those that were 2 or 
more hops away. A more subtle issue is that the amount of 
intersection between the target path and highlighted area 
varies; for example, for the SPaths/WrgP case, sometimes 
the wrong path to the green nodes intersects with what 
would be the path to the blue nodes for a few hops. The task 
is then easier than if there were no intersection.  

Dataset and Graphs 
While we considered using real-world data, we wanted to 
use a fresh graph for each trial to avoid undesired learning 
effects. Since would also have been difficult to find 
sufficiently isomorphic datasets for this type of repetitious 
laboratory experiment, we chose to use synthetic data. 
Although some previous experiments have used random 
synthetic graphs [Ghoniem 04]), we wanted to use graphs 
with properties more characteristic of real infovis 
applications. Following the arguments of Auber et al. and 
others [Auber 04], we used the Watts-Strogatz model to 
create small-world graphs [Watts 04]. Many real-world 
graphs have the small-world property, namely short average 
path lengths and high clustering coefficients, including gene 
networks, social networks, and the Internet. The Watts-
Strogatz [Wts98] algorithm parameters were degree-4 edges 
in the initial circle lattice, and a 10% probability of random 
reattachment. 

In pre-piloting, we tested graphs ranging in size from 200 to 
1000 nodes. We wanted to avoid the problem reported by 
Ware and Bobrow [Ware 05], where the difficult tasks were 
too difficult, and had shorter times than the easier tasks 
because the users gave up. In the difficult cases, error rates 
tended to be no better than chance with graphs of more than 
500 nodes, and users would often quickly give up 
completely for graphs of over 750. Conversely, participants 
sometimes found the easy cases too trivial for graphs of 200 
nodes. We thus chose a graph size of 300 nodes and 600 
edges as the best balance of difficulty and density, as it 
typically allowed participants to complete the task in the 
most difficult control case in under 1 minute with a cap of  
25% for the error. For this size, in the easier cases where 
the answer was highlighted in some  way, users could 
typically find it within 20 seconds and with much smaller 
rate of error. 

Experimental Factors 
We included three experimental factors: subgraph region, 
highlighting technique, and predictive accuracy.  

Subgraph Region 
With the neighbourhood subgraph (Nhood), nodes and edges 
within three hops of the source were highlighted (Figure 2). 
In the shortest-path subgraph (Spaths) condition, the nodes 

and edges between the source and nodes of a particular 
color were highlighted (Figure 3).  

Highlighting Technique 
We included four highlighting techniques: Control (Ctrl) 
had no highlighting; Static (Stc) emphasized the predicted 
area by circling nodes and making edges thicker and darker; 
Ephemeral (Eph) emphasized by having the predicted area 
appear first, with the rest of the graph appearing gradually 
over 10 seconds; and Ephemeral+Static (Eph+Stc) 
combined the two cues. Figure 1 an example of Eph+Stc, 
Figure 2 shows Eph, and Figure 3 shows Stc. The onset 
time of 10 seconds was determined through pre-piloting; 
onset times of 12 to 15 seconds were found to be disruptive 
because the subgraph took too long to become visible 
enough to distinguish, and onset times of less than 8 
seconds caused users to complain that the fading was too 
fast to be helpful. 

Predictive Accuracy 
In the accurate prediction (AccP) condition, the highlighted 
subgraph contained all information required to complete the 
task, and for the wrong prediction condition (WrgP), the 
answer was outside the subgraph. Thus, for SPath, an 
accurate prediction meant that all paths to blue nodes were 
highlighted, whereas all paths to green nodes were 
highlighted for a wrong prediction. For an accurate 
predicition with NHood, the blue node was within the 
highlighted 3-hop neighbourhood.  

Design 
We ran two parallel experiments, assigning half the 
participants to each of the subgraph conditions (Nhood, 
SPaths). Each experiment was a 2-factor within-subjects 
design with four levels of highlighting technique (Ctrl, 
Stc, Eph, Eph+Stc) and two levels of predictive accuracy 

 
Figure 3. Static highlighting, where the entire graph appeared 

at once. This example highlights a shortest-path subgraph. 
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(AccP, WrgP). We ran these two experiments in parallel 
because we wanted to gather data for multiple subgraph 
conditions, but were not interested in making statistical 
comparisons between them. Presentation order of the 
highlighting techniques was counterbalanced using a 
balanced Latin square, and an order was randomly assigned 
to each participant. Target nodes were spread evenly across 
an answer space from 2 to 5 hops from the source node.  

Measures 
Our quantitative measures were task completion time and 
errors. Time was recorded as the median time from the 
initial graph appearance to the keystroke entry of an 
answer. We also recorded the amount of time that 
arrowheads were visible. Error rate was calculated as the 
percentage of incorrect answers. Our qualitative measures 
were self-reported confidence, workload, and a comparative 
ranking. After each trial, confidence was recorded using a 
scale from 1-low to 3-high. was assessed after each 
highlighting technique using the 20-point NASA TLX 
subscales for mental demand, physical demand, temporal 
demand, effort, performance and frustration. At the end of 
the study, participants were asked to comparatively rank the 
four highlighting techniques.  

Analysis 
We analyzed trial completion time using a 2×4×4 
(accuracy × highlighting × presentation order) 
repeated measures ANOVA for each subgraph condition. 
For the error data, ANOVAs were not appropriate because 
the data violated assumptions of normality. Thus, for error 
data and confidence data we performed separate non-
parametric analyses for each factor of interest, using 
Friedman tests with Wilcoxon Signed Ranks tests for 
pairwise comparisons. We applied Bonferroni adjustments 
to all pairwise comparisons to protect against Type I errors. 
In addition to statistically significant results (p < .05), we 
note areas where a possible trend (p < .10) warrants further 
investigation. We also report partial eta-squared (η2), a 
measure of effect size. As a guideline, .01 < η2 ≤ .06 is a 
small effect; .06 < η2 ≤ .14 medium; and η2 ≥ .14 large 
[cohen-73]. 

The notion of predictive accuracy does not apply to Ctrl 
because it provides no highlighting. In the SPaths 
condition, target node distances were evenly spread across 
AccP and WrgP trials, so we used the overall average of 
Ctrl when comparing it to the highlighting conditions. For 
the NHood subgraphs, AccP and WrgP trials used different 
path lengths, so we averaged only those Ctrl trials with the 
corresponding path lengths for each level of predictive 
accuracy: AccP (2-3 hops) and WrgP (4-5 hops).  

Procedure 
The study was designed to take no more than 2.5 hours. To 
start, participants filled out a background questionnaire. 
They were then given an overview of the task. For Spaths, 
participants were told that the system would highlight the 
shortest-path to either all the blue nodes or to all the green 

nodes. For Nhood, they were told that the system would 
always highlight a 3-hop neighbourhood around the source 
and that target node may or may not be inside this 
neighbourhood. Participants were not told how frequently 
these behaviors would occur, but were told that the answer 
would always be between 2 and 5.  

The experimenter then briefly explained the highlighting 
behavior for each condition, and had participants perform 
two training trials with each highlighting technique. After 
each practice trial, participants were told whether or not 
they answered correctly, and were shown the correct path(s) 
to the answer. After training, participants completed 4 
blocks of trials with each technique. Before each new 
highlighting technique, participants were given an 
additional 2 practice trials as a refresher. Within each block, 
trials consisted of 2 trials for each possible distance, h, for a 
total of 8 randomly ordered trials. Each participant thus did 
32 trials per highlighting technique, 128 trials in total.  

Participants took a 1-minute break halfway through each 
highlighting technique condition, and a 2-minute break at 
the end of the condition. Between techniques they also 
completed the subjective questionnaires, including the 
NASA TLX. At the end of the study, they ranked all four 
highlighting techniques, and completed a post-experiment 
interview.   

Interface 
To lay out the graph data, we used the very straightforward 
force-directed placement built into the Prefuse toolkit [Heer 
06]. Although many more sophisticated methods have been 
proposed, such as multilevel [Archambault 07] or 
constraint-based [Dwyer 06] approaches, for data sets of 
sufficiently large size even the most cutting-edge 
techniques still suffer from extreme visual clutter from 
overlaps and crossings between the nodes and edges. Our 
usage scenario is that the laid-out graph suffers from 
enough visual clutter that highlighting a subgraph helps the 
user track some path of interest through the graph. This 
scenario holds for both large graphs laid out with 
sophisticated methods, or for smaller graphs laid out with 
more straightforward methods. We chose the latter to 
simplify the experiment. We ran the force-directed layout 
for 5 seconds for each graph. To ensure all graphs were 
similarly sized on the display, we accepted only those with 
an aspect ratio of 0.8–0.12, discarding the rest. 

Users were not allowed to interact with the graph at all, for 
example by zooming or panning, because we did not want 
interaction time to be a confounding variable in the 
experiment. Pre-piloting tests showed that node-edge 
crossings caused confusion because it was ambiguous 
whether the edge terminated at the node or continued 
underneath it. In many interactive graph exploration 
systems, this well-known visual ambiguity is resolved by 
the user briefly moving the nodes to see whether the edges 
stay attached to them, or are left behind. To resolve the 
ambiguity without introducing interaction time costs, we 
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for both views into a single measure of workload 
(Cronbach’s alpha = .815) and applied an RM ANOVA 
(highlighting technique × order). We found a main effect of 
highlighting technique on workload for (p < .001), and a 
main effect of subgraph (p < .001). Pairwise comparisons 
showed that Ctrl had a significantly higher workload than 
all of the highlighting conditions (Stc, p < .001; Eph, p = 
.005; Eph+Stc, p < .001). In addition, Eph had a higher 
workload than Stc (p = .001) and Eph+Stc (p < .001). 
There was no significant difference between Stc and 
Eph+Stc (p = .288). The average workload for Spaths was 
3 points higher than the average workload for Nhood. 

Summary 
We summarize the results in terms of our hypotheses. 

Nhood: 

H1. Supported. Replicating previous work [refs], Stc 
resulted in better performance than Ctrl in terms of 
speed and error rate, regardless of predictive accuracy. 

H2. Supported. When the target node was within the 
subgraph, Eph+Stc and Eph were faster than Stc and 
no different in terms of errors. As predicted, there were 
no differences for the inaccurate case. 

Spath: 

H3. Partially supported. As hypothesized, when the target 
node was within the subgraph Stc was faster and had 
lower error rates than Ctrl. Although we had expected 
differences in the inaccurate case, none were found. 

H4. Partially supported. Eph was fastest in the accurate 
case, but contrary to our hypothesis, Eph-Stc was not 
different from Stc. Although we had expected 
differences in the inaccurate case, none were found. 

DISCUSSION 
Our results are encouraging, showing that ephemeral 
highlighting can improve performance with visual search 
tasks in complex graphs. Overall, the combination of 
ephemeral and static highlighting (Eph+Stc) showed the 
most promise, since it performed no worse than static 
highlighting in any condition, and offered an improvement 
in terms of speed when the target node was within the 
Nhood subgraph. Confidence and preference also favour 
combining ephemeral and static highlighting. We also 
replicated previous findings [ref?], showing that static 
highlighting improves performance over no highlighting. 

We have introduced predictive accuracy as a concept that 
infovis researchers should explicitly consider, and we have 
demonstrated that whether or not the highlighting is 
accurate impacts performance, even with static 
highlighting. Our study examined an effective predictive 
accuracy of 50%. Future work should explore not only to 
what degree the benefits of the highlighting conditions we 
studied here will improve with higher predictive accuracy, 

but also how much benefit may even be retained for lower 
accuracy.  

Studies on predictive accuracy and adaptive user 
highlighting techniques have shown that incorrect 
predictions can negatively impact performance compared to 
no predictions at all [refs], and we had expected this to be 
the case with the shortest-path subgraphs. Unlike the 
neighbourhood subgraphs, if the target node was not in the 
highlighting shortest-path subgraph, the highlighting 
seemed unlikely to aid the task and could potentially cause 
distraction. However, the fact that our hypotheses were 
unsupported in this respect is a positive finding. Further, 
although we did not explicitly set out to examine 
differences between different types of subgraph 
highlighting in our study, the varying impact of predictive 
accuracy depending on the subgraph chosen is noteworthy. 

Although the combination of ephemeral and static 
highlighting is the most effective of the techniques we 
studied, static highlighting may already be in use in an 
infovis setting. As such, ephemeral highlighting would 
often need to be used on its own. This is an important 
consideration, because despite the performance 
improvements that ephemeral highlighting offered in some 
conditions, ephemeral on its own did not fare as well on 
subjective measures.  Further, although reported confidence 
suggested users were in general aware of their actual 
performance, this was not always the case with the 
ephemeral highlighting (with accurate highlighting of 
shortest-path subgraphs, ephemeral offered the best 
performance but not the highest confidence). 

Application / generalizability to other infovis tasks? 

The combination of ephemeral and static highlighting 
should also have implications for adaptive GUIs as well. 
Findlater et al. [CHI2009] ephemerally highlighted a subset 
of items in pull-down menus and found the technique 
improved performance over a standard menu and over 
persistent color highlighting of menu items. Our results 
suggest that a combination of ephemeral and persistent 
highlighting would be even more effective than ephemeral 
on its own for adaptive GUIs. 

One limitation of our study is that users did not interact 
with the graphs, unlike in many infovis tasks. Static 
highlighting, for example, often appears when the user 
clicks on a node of interest as they are exploring the graph. 
Although our results should generalize to the visual search 
aspect of highlighting even with more user interaction with 
the visualization, potential improvements to the techniques 
could be explored. For example, in our experiments, the 
user had no control over the speed of onset for the 
ephemeral conditions, but allowing the user to pause or 
complete the fade-in could be useful. 

Another limitation of our study? 
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CONCLUSIONS 
We have presented ephemeral highlighting as a viable 
technique for use in information visualization. Through a 
controlled laboratory study we examined the effect of static 
and ephemeral techniques on two seperate types of 
subgraph highlighting. In both cases we found strong 
evidence that a combination of ephemeral and static 
highlighting improves both performance and user 
satisfaction over static highlighting alone.  
 
We also directly considered the impact of prediction 
accuracy in an infovis setting. We were surprised to find 
that static highlighting did not negatively influence 
performance as we had expected. However, the consistent 
differences between accurate and inaccurate conditions 
provide evidence that predictive accuracy should be given 
stronger consideration by the infovis community. 
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