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ABSTRACT

We describe our experience developing and introducing visual
analytics tools from within a large industrial work context.
We focus on visual analytics for in-car communication net-
works in the domain of automotive engineering. From a three-
year field study we provide insight into the types of data and
challenges inherent in debugging the sensor networks of cars
and discuss a set of 11 recommendations for visual analyt-
ics tool development. We focus not only on domain-specific
recommendations but also integrate recommendations based
on the large industrial context in which our domain experts
worked. The recommendations are applied and discussed in
context of two novel visual analytics applications including
evidence that their usage led to tools which now effectively
support engineers in understanding and debugging masses of
data and in turn improve the safety of cars and passengers.
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INTRODUCTION
The field of visual analytics (VA) is continuously growing
with research efforts expanding into many different domains.
Visual analytics tools address the challenge of analyzing over-
whelming amounts of data by combining methods from vari-
ous disciplines, including information visualization (InfoVis),
HCI and data analysis techniques from statistics, data mining,
and others [33]. One very crucial aspect for the future of
the field is to bridge the gap from research to application as
the success of the field may eventually be measured by how
many people will actively be using solutions in their everyday
work [5]. In this paper, we present the results of a three-
year research endeavor with the goal to develop, connect, and
integrate visual analytics tools directly within an industrial
work context. We worked closely with domain experts in a
large automotive company to support data analysis challenges
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encountered during the debugging of sensor networks in mod-
ern automobiles. We provided analysts with several solutions
for problems encountered in their everyday real-world work
context. In order to ensure that our tools would meet the
requirements of the industrial work context, we engaged in a
long-term problem characterization phase [18], designed and
tested various tool designs, and finally adopted and integrated
some of them into the engineers’ daily working practices.
This process required careful consideration as our industry
contacts had not been previously exposed to visual analytics
research and solutions and mostly relied on purely textual rep-
resentations which could not provide insight into more com-
plex data relationships. In this paper, we describe the findings
of our explorative field study, design requirements we derived
from it, and introduce two of our novel visual analytics tools,
Cardiogram and AutobahnVis, as exemplary approaches be-
ing adopted and integrated into tool sets currently in use by
analysts.

Our work in this domain makes three primary contributions:
We first discuss the results of our explorative field analysis.
We closely cooperated with domain experts and used several
analysis methods to gain a deep understanding of the problem
domain. We summarize the results of this exploration as a set
of 11 design recommendations and want to provide them as
guidance for other visual analytics tool designers in similar
contexts. This type of problem characterization in its own
right has increasingly been called for in the areas of visual
analytics and information visualization [4, 13, 18] in order
to help researchers gain a better understanding of everyday
data analysis practices across domains and to guide the design
of visual analytics tools targeted towards real-life analysis
needs. Our collection of characteristics is the first for this
domain with a specific focus on visual analytics challenges.
Second, we introduce two novel visual analytics tools, Car-
diogram and AutobahnVis, that we built based on these design
recommendations and discuss how we integrated them with
real end users. Finally, we take a step back and review our
experience from the domain-specific aspects of the project
and discuss the aspects that led to our successful integration of
visual analytics tools in a large industrial context. While the
description of the characteristics of our application domain
are meant to guide practitioners and developers in the same
or similar domains, the description of our process may prove
to be useful for visual analytics practitioners in many areas
who wish to form closer connections to industrial partners.
To our knowledge, our reflection on challenges encountered
in developing visual analytics solutions in an industrial work
context is the first in this domain.
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INDUSTRIAL BACKGROUND
Our work is situated in the domain of automotive engineering
where we worked with engineers involved in the development
of sensory networks in cars. The concentration of electronics
and software in automobiles has increased enormously over
the last years and has brought a variety of novel challenges
such as intricate error diagnosis and recovery to automotive
engineers [3, 7, 8, 23]. High-performance cars, for example,
are equipped with several hundred sensors which can deliver
information at speeds of more than 1,000 readings per second
over a large interconnected sensory network. For example, in
order to detect whether an airbag should be triggered in a car,
accelerometers send information to a microprocessor at 10ms
intervals and the evaluation of this data determines whether
and how to inflate an airbag [1]. In order to transport all
relevant information, up to 15,000 messages per second are
distributed over a typical sensory network. To verify the cor-
rectness of these sensor networks, engineers log the messages
via specific hardware that is installed in test cars. Logging
one hour results in approx. 2 GB of data and roughly 50 mil-
lion recorded messages. Thus, a lot of time and experience
is needed to understand in-car communication processes and
their complex correlations in order to detect sources of er-
rors. These data related challenges make this work domain a
prime candidate for dedicated visual analytics tools and—not
least—providing effective tools for the analysis of this data is
of highest importance as the safety of the automobile and its
passengers hinges on the ability of automotive engineers to
understand and debug this sensor data.

RELATED WORK
In the following, we review related work of previous pre-
design field studies in information visualization and visual
analytics, and also on visualization in our target domain, au-
tomotive engineering

End User Integration in Visual Analytics
Recently, information visualization researchers have explic-
itly called for a closer integration of end-users in InfoVis/VA
tool development and for the dissemination of qualitative re-
ports on data analysis practices in real-life work contexts to
ground both design and/or subsequent evaluation [4, 13, 18].
Indeed, more and more InfoVis/VA projects focus on solu-
tions for real-world, data-intensive application domains and
integrate users into their development processes, such as a
recent visual analytics tool for patent specialists [15] and a
financial data analysis tool [32]. In our work, we used ethno-
graphic field analysis of current practices to inform the design
of our systems. While the need to base system design on an
in-depth understanding of an domain has been understood in
HCI (e. g., [Does sb know a good paper for this?]) for a long
time, few examples of such studies exist in the information
analysis and visualization area. Tory et al. [34], for instance,
conducted a qualitative analysis in the building design field,
Isenberg et al. [12] studied the work of traditional collabora-
tive data analysis, as well as McLachlan et al. [17] and Henry
and Fekete [9] who based their visualization system designs
on a qualitative field analysis with system management pro-
fessional and social science researchers respectively. None of
these studies so far, however, have been conducted in a large
industrial setting or in our application domain.

Visualization in the Automotive Domain
Visualization in the automotive domain is most commonly
used in the context of computer-aided-design, virtual reality,
and scientific visualization [31]. Within scientific visual-
ization, many techniques have focused on the analysis of
physically based (often simulated) data, such as the flow of
particles for car body development [24]. Such techniques
have also been integrated with information visualizations
such as scatterplots and histograms for the analysis of, for ex-
ample, a Diesel exhaust system [6]. While some of this work
(e. g.,[16]) shows increasing interest in integrating informa-
tion visualization as in our work, considerably less work has
been dedicated to the support of electronic engineering for car
development and testing. In our previous work, we presented
several point-solutions for visualizing in car communication
networks, including an approach for visualizing large catalogs
for vehicles’ electronic specifications [25], for gaining insight
into dependency chains from message traces [26], and to
help engineers in better understanding correlations between
mechanical and electronic information via a 3d model vi-
sualization of a car [29]. We also explored solutions for
time-based trace visualization [28] which formed the basis
for AutobahnVis presented in this paper. These previous
systems presented prototypical solutions for specific analysis
challenges and helped us to gain more general insights into
the problems faced by automotive engineers. In this paper,
we build on this work and present extended insights, fully
integrated solutions and in-depth evaluations of our tools.

METHODOLOGY
Our methodology was chosen based on two main objectives:
(1) Learning about the field including current practices, prob-
lems and challenges, and (2) learning about how to design
and integrate successful VA tools in our target domain. For
this purpose, we primarily focused on working closely with
experts in our target domain. Both the complexity of data
and analysis tasks as well as the time-constraints of the in-
dustrial work context influenced the study methods we chose
and how we adopted them to these specific requirements. In
spirit, our approach is similar to MILCs (Multi-dimensional
In-depth Long-term Case Studies) as advocated previously
for information visualization for addressing the specific needs
of this domain with its complex, exploratory and ill-defined
tasks [30]. Similar to the traditional MILC approach, we used
a multi-dimensional set of study methods, and carried out
in-depth and long-term investigations over a period of three
years. We carried out our investigation on the data analysis
practices of a large number of 50 expert analysts using both,
their own, currently used tools and our novel tools, and did not
focus on studying any tool in particular. We, thus, conducted
an “ambitious” MILC as proposed for future work in [30].
Approx. 90% of the analysts we worked with were male and
had been working in the problem domain for 2–16 years.

In the following, we describe the various methods we used for
studying current practices for introducing VA in our domain.
We also briefly reflect our objectives and experience using
these methods for InfoVis/VA in a large company setting in
order to provide other researchers with guidance for such un-
dertakings. Our study is among one of the first in-depth en-
deavors of studying the complex pattern of data analysis using
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Figure 1: Overview over our development process. Black lines indicate
work reported on in this paper. Grayed out lines indicate phases re-
ported on earlier.

long-term MILCs. The time investment of three years was
substantial but essential to our success later. Figure 1 provides
a temporal overview over our studies as well as the differ-
ent participatory tool design and evaluation phases where we
closely cooperated with our target users.

Methods for Explorative Field Analysis
Interviews: Especially early on, we relied on semi-structured
interviews to gain insights into technical aspects beyond what
we could derive from technical documentation. Interviews
provided us with a rough understanding of work practices,
and showed engineers’ estimations on challenges and prob-
lems as well as their ideas and approaches to overcome them.
Overall, we conducted 30 1h-long interviews with both, an-
alysts and tool designers. From our notes and recordings we
derived main categories of tasks and analysis challenges.

User Observation and Contextual Inquiries: In order to col-
lect more real-life data of our experts’ work practices, we
started observational studies with a fly-on-the-wall technique
in which we followed but did not interfere with the daily
practices of the engineers. However, due to task complexity
and high expertise in our domain it was not possible for a non-
domain-expert to derive meaningful results through observa-
tion alone. Therefore, we chose to use a variant of contextual
inquiries [11] which we conducted with 14 analysts in up to
five 1h-long sessions per participant. Due to IPR restrictions,
we solely used note-taking for data logging purposes. We
used 2–3 note takers to counterbalance the lack of recording
equipment. We used these results to broaden our understand-
ing of the diversity of working practices in our domain and to
verify or falsify our prior findings.

Focus Groups: To evaluate, improve and focus our findings
from interviews and user observations we conducted approx.
20 focus groups of 3–10 participants. We chose focus groups
because we frequently encountered diverse and even opposed
practices and statements during individual interviews. Our
major goal in bringing experts together was, therefore, to
form a common understanding—not just between the end
users and us but also among the end users themselves. The
groups consisted of varying groups of analysts, tool designers
and also invited decision makers, an important group to
address in large company settings as they usually decide
whether a novel solution will be integrated and funded or
not. As our goal was to reach adoption of our solutions, we
decided to integrate decision makers early in the process and
this proved to be essential to our success.

Participatory Design and Tool Evaluation
We augmented the methods used above with a tight collab-
orating with end users during the design and evaluation of
our own VA tools. This helped us to gain additional insights
into applying VA in our domain, specific challenges for VA
tools and their integration into the end users’ work environ-
ment. Our long-term process was, therefore, an iterative mix
of field studies, tool design and tool evaluation—each of them
informing another by providing us but also our end users with
new insights. For designing and evaluating our tools we used
the following methods:

Design Workshops and Personal Feedback: We designed all
our tools in close cooperation with end users applying a par-
ticipatory design approach [14]. During several exploratory
design workshops we introduced engineers to visual analytics
techniques, discussed ideas and fine-tuned possible solutions
(paper mockups, system designs, features, etc.), and finally
developed a basic concept. Subsequently, we started develop-
ing interactive tools and provided a group of carefully chosen
test engineers with frequent iterative releases and encouraged
them to provide us with feedback in personal meetings. We
also conducted heuristic usability evaluations, basically with
outside testers in order to save valuable time of our domain
experts. This approach has been previously lead to success in
the data analysis domain [17].

Think Aloud Protocols, Lab Studies and Field Studies: To
evaluate the domain value of our tools we used both lab as
well as field studies. We studied our early systems using
think-aloud protocols and lab studies, investigating domain
experts using our tools in artificial lab settings. While we
received valuable feedback about the potentials and improve-
ments of our tools, we did not gain insight into their usage
under real-world conditions (cf. [20]). A major hindrance
to gaining real-world insight on tool use was the close in-
tegration of our tools into current systems already in use at
the company [27]. We report on how this hindrance was
overcome in later sections.

Informal Collaboration
Besides our formal studies, we found it invaluable for our
successful integration to engage in frequent informal conver-
sations with engineers. These conversations were, for in-
stance, meetings at the company’s cafeteria, a joint lunch, or
casual discussions at the workplace. We improved our under-
standing of the various facets of our target domain, iteratively
refined our requirements for visual analysis tools, and es-
tablished successful collaborations. A drawback of informal
conversations, however, is the restricted opportunity to log
data for scientific rigor. In order to allow for some direct data
collection we always carried notepads in case spontaneous
conversations would occur. Over the three year period we
collected information from roughly 80 of these spontaneous
encounters, with approx. 50 different engineers.

RESULTS OF EXPLORATIVE FIELD ANALYSIS
In the following, we summarize the understanding we have
gained of our domain and its data analysis challenges by us-
ing this variety of study methods. In order to provide other
researchers with a profile of our end users, we organized our
results by data, task, current tools, and a more detailed de-
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scription of practices and challenges—all of them relevant
parameters for designing visual analytics tools in this domain.
Our summarization is the first in the area of visual analytics
for automotive engineering. It is meant both as such a de-
scription to enlighten our general understanding of real-life
data analysis but also as a guide to practitioners in the field.

Data
Automotive engineers in this domain work with large test
files called traces—temporally ordered lists of all messages
logged during a test drive. Traces come in different formats
(depending on the recording hardware) and are not necessar-
ily complete (e. g., failure of recording hardware). Engineers
use journals as specific, pre-filtered formats to reduce the
trace data to a few specific message types such as error frames
or fault memory entries, and manually add information such
as markers, triggers or predefined events.

Main Task
If an error has been detected during a test drive, it is the task of
the analysis engineer to locate the error source and to initiate
further steps to solve the problem.

Current Tools
Several special-purpose analysis tools were in use by our en-
gineers. The most important ones are an in-house tool called
Carmen as well as Canalyzer [35]. Both of them were consid-
ered most relevant and powerful due to their scalability and
compatibility to various data formats and the availability of
special-purpose plugins and data interpreters. Both tools are
based on the combination of different digital modules that al-
low an individual configuration of a tailored measuring setup.
Available modules include those for data loading, interpreta-
tion, filtering, or visual representation. Typical representation
modules can show dynamically interpreted lists of messages,
temporal signal plots, or rudimentary overviews. To analyze
traces, our experts often used one or several of these tools in
combination with general-purpose tools such as text editors.

Data Analysis: Practices, Problems and Challenges
Engineers typically began their error analysis with a first hy-
pothesis about the error source. Using their analysis tools they
then attempted to (a) verify this hypothesis, (b) iteratively
refine the hypothesis, or (c) dismiss the hypothesis and start
anew. Based on their initial hypothesis, the analysts took
different approaches to finding an error. If a clear hypothesis
about the error source existed, engineers commonly started to
check interpreted or even raw values directly. If the hypothe-
sis was not solid from the beginning, the error description was
rather vague or if the error source was estimated to be more
complex, our participants preferably started with an overview
using journals and then iteratively filtered and analyzed inter-
preted message lists and signal plots.

Our studies showed that engineers had to track errors of vary-
ing degrees of complexity which tremendously influenced the
process of finding these errors in terms of processing time,
costs, and engineers involved. Simple errors outnumbered
complex errors but complex errors could take weeks or even
months to find and solving them was often a highly collabora-
tive undertaking. One engineer commented ”I can track down

a simple error in several minutes, but solving a complex prob-
lem can take weeks or even months” (quote from a contextual
interview, translated from German). In close cooperation with
engineers we identified three main origins of complexity:

Reproducibility: Reasons for low reproducibility of errors
include external circumstances such as temperature, extreme
driving situations, or incorrectly specified error conditions.
For example: After ending a test run, our engineers detected
that all car windows would open unexpectedly. Engineers
spent several weeks analyzing and trying to reproduce this er-
ror. The actual reason was a specific test case in which all four
doors were simultaneously slammed shut which activated an
overpressure sensor that opened the windows.

Dispersion: Many highly distributed and inter-related hard-
and software systems exist in a vehicle and errors often prop-
agate over several systems before they are automatically de-
tected and logged. The interplay between two or more intrin-
sically and separately correct subsystems can lead to com-
plex, unpredictable errors. The more dispersed errors or in-
volved systems are, the higher the chance that they might be
complex. This is also true for the above example where the
actual reason was not located in the window system but in the
accident security system.

Degree of trace preparation: Not every bus system or
recording hardware supports journals to reduce and abstract
the recorded data. Without any abstraction it can become
complex and laborious to analyze message traces especially
when exact error timings are not available, for example for
manually recorded errors. Additionally, engineers have to
be aware of the fact that measurement hardware can be the
source of errors and inaccuracies in the data.

As a result of these complexities, our engineers relied on an
array of different tools. One engineer used 14 different tools
in an hour-long analysis session. He liked all of these tools but
was burdened by the additional work of switching between
them: ”Analyzing alone is a complex task, but handling the
entire overhead of using so many incoherent tools is overkill
[...] each tool is a valuable part of my work but they are
not well coordinated and integrated, this means a lot of addi-
tional, redundant work to me [...]”.

DESIGN RECOMMENDATIONS
Based on the in-depth understanding of our industrial work
context, we provide several design recommendations for vi-
sual analytics. These recommendations helped us in design-
ing our own tools and are meant to guide other tool designers
in this or similar domains. Some of these requirements are
known from general information visualization advice (e. g.,
provide overviews) but we provide them for a complete de-
scription of necessary enhancements to current approaches.

New Perspectives on the Data
In our specific domain, complex errors posed the greatest
analysis challenges to our engineers. The detection of com-
plex errors requires dedicated data representations to show
correlations between error sources.
OVERVIEW: Visual Overview Techniques
Most current overviews are restricted to the representation of
journal data. To provide overviews of message traces without
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journals, to broaden the understanding of global aspects in
general, and to support handling of complete traces, novel
overview techniques based on time, messages, and signal
values are necessary.
NEWPERS: Perspectives Beyond Raw Data and Signal Plots
In our study, most data representation were based on lists
and simple signal value plots. Beyond the capabilities of
these tools, engineers need to analyze timing aspects and
message propagation, detect outliers and see correlation
between messages and between mechanical behavior and
electronic data.
TIMLOG: Equal Representation of Time and Logic
This recommendation is an important sub-component of
NEWPERS. For engineers it was extremely important to
see correlations between the temporal (when has a message
been sent) and the logical layer (who sent it, who received
it, what software components were involved, etc.). Current
technique could not support this requirement.
MODULAR: Multiple, Modular, and Coordinated Solutions
Engineers require multiple different perspectives on the data
to detect complex errors. Which perspectives were most
relevant relied on an engineer’s knowledge, preferences, as
well as the underlying problem. Therefore, an unrestricted
and modular combination of perspectives is useful. Per-
spectives should support coordination over time and data
linking according to known techniques (e. g., as in [19]), but
also the opportunity to work without coordination (e. g., for
comparing behavior at different time stamps).
FASTACC: Fast Access to Raw Data
Engineers were used to working with hexadecimals and
regularly had to check single bytes and bits during their
work. For them, raw data must always be ready at hand in
order to immediately prove or discard hypotheses based on
raw values. “Fast access to raw data” was one of our most
requested requirements.

Handling the Masses of Data
Handling the masses of data produced in automobile testing is
a huge practical challenge. While data storage is no longer a
pressing problem, analyzing all data in detail is nearly impos-
sible for engineers. The following requirements reflect this
challenge.
ABSTRACT: Data Abstraction and Automated Filtering
Understanding comprehensive aspects in traces is essential
for complex error detection but difficult to retrieve directly
from raw data. Novel data abstraction techniques are required
for reproducing behavioral aspects, comprehensive correla-
tions and functional dependencies in the data. Additionally,
automated filtering of data is desirable as often only a very
small subset of the data is involved in the error finding pro-
cess. The reduced data can then be used as input for novel
representation techniques (see OVERVIEW and NEWPERS).
AUTOMAT: Support for Automated Error Detection
Error analysis depends in large parts on an engineer’s ex-
pertise as common error sources are often checked manually
by one specific person. Current analysis procedures rely on
sample testing and a lot of recorded traces are never analyzed.
Trying to automate this process would help (a) to rapidly test
a set of hypotheses, (b) to speed up the detection of common
errors, and (c) to allow analyzing much more data than is
achievable via manual inspection.

AVOREP: Avoid Repetitive Work and Unnecessary Iterations
Due to the size and complexity of recorded trace data, engi-
neers used a large array of tools that each only supported parts
of the analysis. Unnecessary time was spent converting data
manually and importing/exporting formats. Missing features
are often tedious and annoying and hinder the acceptance of
novel solutions. Engineers frequently demanded a powerful
basic tool for handling all the configuration tasks such as data
loading and interpretation plus a collection of embedded mod-
ules for specific problems to avoid redundant steps.

Engineer-centered Solutions
From previous research we know that a novel solution’s value
is directly correlated to its interplay with current technologies,
and its close integration into the current engineering work
flow [27]. This was also important in our domain.
EMBED: Embed Solutions in Current Work Environments
Tools currently used by engineers can be very powerful in
terms of flexibility, compatibility, scalability, and in provid-
ing specific features for specific problems. Re-implementing
all of these features for a new visual analytics system may
not be possible within realistic time and budget requirements.
Instead, closely integrated solutions can be immediately used
by engineers in the context of their familiar work environ-
ments, take advantage of already supported data formats, be
combined with conventional solutions and extend engineers’
current work processes without any extra costs. This may
have additional benefits in terms of adoption.
FAM: Take Familiarity into Account
Message sequence charts, state machine diagrams, as well as
network representations are frequently used for system spec-
ification, communication between different groups of engi-
neers and supported by frequently used tools such as Mat-
lab Simulink for related tasks. To support communication
with and between engineers it is advantageous to reuse these
common representation techniques as they are well-known
mental models and metaphors from the engineering domain.
Similarly, supporting known interactions and work flows can
help engineers to adopt a new tool.
COLLAB: Support Collaboration
Our target group is located in a large company setting where
thousands of employees work on highly specified tasks. To
form a greater understanding based on individual expertise
and to master comprehensive challenges collaboration is in-
dispensable. This is particularly true for complex error anal-
ysis. Tools in this application area should actively support
collaboration around the data.

VISUAL ANALYSIS MODULES
Based on our field analysis and design recommendations we
implemented several new interactive visualization modules.
In this paper, we focus on two of these modules, Cardiogram
and AutobahnVis, briefly discuss their design and explain the
main choices we made in relation to our design recommenda-
tions. Both systems are additionally described in the accom-
panying video explaining their features in more depth.

We spent considerable effort to closely integrate our mod-
ules with a comprehensive in-house analysis software envi-
ronment, Carmen, which supports valuable back-end features
such as data storage, interpretation, and filtering (EMBED).
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This tool is widely used by our target users and provides a
well-known, accepted platform (FAM). Integrating our tools
with Carmen helped (a) our engineers to avoid unnecessary
data conversions and repetitive tasks (AVOREP) but also (b)
us to study them analyzing data with our tools under realistic
conditions (cf. [30, 27]).

The main analytics objective of the two modules was to pro-
vide a better understanding of temporal, logical, and behav-
ioral aspects within the data (NEWPERS & TIMLOG). These
aspects are crucial to detect the causes of or influences on
complex errors and novel tools are urgently needed. Both ap-
plications are centered around a zoomable timeline (inspired
by [21]), multiple coordinated views (MODULAR, inspired by
[19]), and use consistent representation and interaction tech-
niques. Our solutions were also inspired by work on previous
trace visualization design studies (most importantly [22] and
[10]). Similar to these solutions we chose to focus on the
temporal aspect of trace data. Besides, the state machine anal-
ysis technique we use in Cardiogram is based on model-based
automotive software testing [2].

Cardiogram Module
Our main analytics objective of Cardiogram was to reduce
engineers’ information load by automated data reduction and
analysis (AUTOMAT) and to provide a better understanding
of temporal, logical, and behavioral aspects within the data
(NEWPERS & TIMLOG). For this purpose we set up two
major software components: (1) A Data Preprocessing and
Storage Component and (2) a Visualization Component.

Data Preprocessing and Storage: Based on our main goals,
this unit contains three components:

State Machine Specification: We provided engineers with
the ability to specify vehicle behavior into state machines.
To do so, they define a set of logical vehicle states such as
“window front left open”, transitions between states such
as “open window”, and what events in a trace result in
which transitions, e. g., “message xy opens window”. To
test predefined conditions, each state can be additionally
annotated as error, warning, okay.

Data Storage: Together with a description, all these state
machines are stored in a central database using a common
XML format, and are subsequently available to all anal-
ysis engineers. This supports collaborative data analysis
(COLLAB) and reduces redundant work (AVOREP).

Automatic Trace Preprocessing: The State Machine Eval-
uation Engine is the heart of Cardiogram and is directly in-
tegrated as a module in Carmen (EMBED). It supports load-
ing specific state machines for analysis and imports traces
by utilizing other modules in Carmen, such as a Trace Re-
play Module (AVOREP). Using all loaded state machines,
the State Machine Evaluation Engine reduces the traces to a
temporal ordered list of transitions in these state machines.
For each analyzed state machine, an additional global tag,
called aggregated state machine result, indicates the occur-
rences of error and warning states which can be used for
later analysis. The engine thus reduces and preprocesses
the data to be analyzed by an engineer (ABSTRACT) and
makes novel overview techniques possible (OVERVIEW).

Visualization: The main purpose of Cardiogram’s visualiza-
tion (cf. Figure 2) is to support the exploration of errors,
warnings, or other hints which may require further inspection,
i. e., that have not been automatically detected. In such situ-
ations, Cardiogram visualizes all state transitions and helps
to provide insight into incorrect vehicle states and into timing
correlations between state machines. Together with the three
data preparation steps presented above, we allow engineers
to gain a novel perspective on complex dependencies of in-
car networks (NEWPERS) and correlate logical with timing
aspects (TIMLOG).

Our basic decisions in designing the visualization component
can be summarized as follows:

Prioritization: A State Machine View lists all state ma-
chines tested on a specific trace (OVERVIEW). As re-
quested by our target group, this list is sorted according
to priority based on aggregated state machine results (first
those with at least one error state, then the ones with at
least one warning, etc.).

Familiarity: Due to their familiarity (FAM), we used traf-
fic light icons next to each state machine entry in the
State Machine View that encoded the aggregated state
machine outcomes error, warning, okay using the colors
red, yellow, green, and no color coding for other outcomes
(ABSTRACT). By selecting a state machine from the State
Machine View a familiar state/time plot (FAM) is shown
in the Visualization View showing all transitions of this
state machine according to its transition table. Detailed
information about transitions can be retrieved by hovering
the mouse pointer over these dots and a fast access to the
underlying trace file is given by an integrated backlink to
Carmen’s list presentation of the trace (FASTACC).

Time Reduction: By default all selected state machines are
subsumed according to a time slot size pre-defined by the
user. Therefore, each time slot shows a bar whose height
encodes the overall number of transitions in the selected
state machines and in doing so provides an indication about
busy, calm, steady and void areas (ABSTRACT). Moreover,
changes in error and warning states are indicated with red
and yellow dots in time/state plots and with accordingly
colored, domain specific symbols (FAM) in the overview
bar. This supports fast readability of transitions that could
be relevant for bugfixing.

Collaboration: Interactive annotation of the data is also
supported. Each analyst can freely attach colored notes
directly into a state/time plot. Symbols for notes are also
shown in the state machine list and in the overview bar
where they indicate the position within the global timeline.
These annotations can be exported together with the data
and sent to a colleague for further inspection or inquiry
(COLLAB & AVOREP).

Convenience Features: According to engineers’ requests
during our user-centered design process, we integrated a
variety of other interactive features, including: keyboard
short-cuts for all features (FAM), unrestricted vertical
scaling of state machine plots (OVERVIEW), minimization
and closing of state machine plots, drag& drop positioning
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Figure 2: Screenshot of the Cardiogram Visualization. (a) State Machine View showing all tested state machines ordered by relevance for bugfixing; (b)
Visualization View with several detailed state/time plots showing transitions via vertical and horizontal lines and additional glyphs at target states; (c)
a combined range slider/ overview bar showing the sum of all transitions within discrete time intervals; (d) shows an annotation which can be used for
collaboration purposes.

of the state machine plots to allow side-by-side comparison
(both NEWPERS), dynamic adding or subtractions of state
machines to or from the overview bar (OVERVIEW), and
the free configuration of nearly all system features and
settings.

Evaluation: In order to ensure Cardiogram’s successful adop-
tion and integration we engaged in a two-phase evaluation
separately for (1) the semi-automatic data preparation and
(2) the visualization. To test our novel automation and
abstraction approach using state machine data preparation,
we first implemented a graphical state machine editor, the
state machine database and the state machine engine and
integrated all components as a single module in Carmen.
Together with a textual representation of statistical results (#
of errors/warnings) and transition lists for detailed inspection
on demand (FAM), this approach was validated in a 12-month
field study with 15 domain experts. During these 12 months,
experts used the tool in their data analysis procedures and
created state machines on their own. The length of the
individual real-world usage sessions varied from several
minutes up to three hours. During bi-weekly meetings
we discussed their experiences with our tools and elicited
feedback on their benefits and areas for improvement. The
Cardiogram visualization was qualitatively evaluated with six
domain experts each during a one-hour think-aloud session in
which they used the visualization on their own data and/or on
test data sets we provided. Additionally we received feedback
from two test users who used Cardiogram for eight weeks
during their daily work. The results of the study uncovered
several main categories of benefits for our new approach
which aided in adoption and acceptance of the tool:

Externalization of Expert Knowledge: Analysis experts
created state machines to capture their expertise for ver-
ification and abstraction of complex behavior. Many of
the state machines were specified to reproduce highly
distributed procedures such as booting a car, starting the
motor, or shutting down the vehicle. Externalizing this
knowledge into state machines made it widely available
for other engineers who benefited even without specific

knowledge about this particular behavior.

Mass Analysis Instead of Sample-Tests: Our abstraction
and automation techniques facilitated a broad analysis of
a great number of traces. One engineer used the core
components to automatically analyze 12,000 traces with
50,000 messages on average within one day. Previously,
testing of this data relied on analyzing and debugging
samples of the data, our approach however allowed the
analysis of hundreds to tens of thousands traces, and to test
or verify hypotheses on a broad testing basis.

Show Data Correlations and Overviews: All of our par-
ticipants stated that the Cardiogram visualization was
enormously helpful to understand and explore correlations
between dependent state machines in cases an error or
a warning appeared in the automatic data preparation.
For example, we saw the Cardiogram visualization being
used to compare timings, to verify correctness of temporal
order, and to correlate the transitions of the state machines
for several parallel procedures involved in shutting down a
car. This in-depth analysis was not possible previously.

In summary, the analysis of the Cardiogram core components
and visualization showed that the tool successfully supported
the engineer’s analysis requirements and addressed known
challenges, most importantly ABSTRACT, AUTOMAT, COL-
LAB, EMBED AVOREP, OVERVIEW, NEWPERS, and TIM-
LOG. At the time of writing, the tool has spread within the
company and is now widely used by more than 30 engineers
on a daily and weekly basis. We recently transferred our soft-
ware to the Carmen tool developers who are now extending
our solutions and directly embed the tool into Carmen’s core
components.

AutobahnVis Module
While abstraction techniques such as Cardiogram are valuable
tools for data reduction and overview purposes, in many
trace analysis processes it is still necessary to investigate
the raw message information (FASTACC). For this purpose,
we designed AutobahnVis in order to extend the current
state-of-the-art technology for raw data analysis used by
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our engineers and to address shortcomings of the popular
text-based representations. AutobahnVis focuses on timing
aspects within traces’ raw data and is based on our experience
with a former prototype [28] which was not used by engineers
in their daily analysis activities because of missing integration
into current tools (EMBED) and insufficient compatibility and
scalability to real-world traces. Like Cardiogram, we now
designed AutobahnVis to be directly integrated as a module
into Carmen (EMBED) and to closely interact with several
of its other modules, most importantly the Replay Module
inputting traces into the AutobahnVis module and existing
filter modules to preprocess traces data in the familiar way
(MODULAR & FAM). In doing so, engineers can use our
AutobahnVis module directly for the data they currently work
on without any extra costs (AVOREP).

Visualization: The basic idea behind AutobahnVis is to pro-
vide the user with a zoomable network visualization which
represents raw messages (as diamonds) according to two main
dimensions: time on the x-axis and the transporting bus sys-
tem or sending ECU on the y-axis (TIMLOG). In addition to
this basic concept and in line with our design recommenda-
tions, we added the following components and features:

Embedding with Traditional Views: In our problem char-
acterization phase, we learned that productive work with
AutobahnVis would require a close connection to textual
trace representations, message filters, and signal plots. For
fast access (FASTACC) to this data, we designed these
views and functions in resemblance to other tools used by
engineers, directly integrated them with the AutobahnVis
module, and coordinated all views based on common
information visualization techniques ([19]). Figure 3
shows AutobahnVis’ different views and their functions.

Convenience Features: Similar to Cardiogram we inte-
grated several additional usability features after close
collaboration with our target users. Of those, the most im-
portant, frequently demanded, feature was the Multi-Color
Search which allows the engineers to concurrently search
for varying messages, to brush them with different colors
in the Message View and to see systematic comparison of
message timings (NEWPERS).

Evaluation: To evaluate AutobahnVis, we collected informal
feedback during our user-centered design approach and fre-
quently engaged in discussions with domain experts. Five
lead automotive analysts used AutobahnVis for six weeks and
provided us with feedback via telephone or in personal meet-
ings. During this time, the engineers used the tool once or
twice a week for analyzing traces from their daily work. The
usage duration of the tools ranged between five minutes and
one hour. Additionally, we received qualitative feedback from
seven domain experts during a one-hour think-aloud observa-
tional session with our tool. Based on these evaluations, we
improved our tool and discuss its main benefits:

Novel Insights for Complex Error Detection: AutobahnVis
allowed for several instances of complex error detection
during the analysts’ daily work. Three of our lead analysts
used AutobahnVis, for example, to track messages disper-
sion over various bus systems. Differing bus characteristics
often caused errors and AutobahnVis helped them to

better understand the correlations between time shifts
over gateways and dispersion of messages over several
bus systems. Four of our test users stated that they saw a
major advantage of AutobahnVis in gaining novel insights
on message bursts. Filtering and zooming can help to
detect when one or more ECUs “spam” a bus system
and other messages might have been displaced. One lead
analyst also successfully applied AutobahnVis to identify
a measuring hardware breakdown. Several automatic
errors had been indicated and important messages were
missing. By zooming out in the Message View a break
on all bus systems was recognized immediately and the
error could be assigned to a measuring hardware defect.
All these examples resulted in the detection of errors that
would have been complex and extremely time-consuming
to detect with current techniques.

Simplifying Current Practices: Along with novel insights,
our participants particularly pointed out the simplification
of some analysis tasks compared to previous tools. Ex-
amples include the possibility for side-by-side comparison
especially the close link between signal value changes in
the SignalView and messages in the MessageView, and the
usage of AutobahnVis to validate request/response mes-
sage pairs and cyclic messaging for correctness and timing
conditions. We, for instance, observed one analyst using
the Multi-Color search and filters and reporting to be much
faster than with traditional tools. Engineers appreciated the
reduced work, and attention shifts required to perform the
analysis.

Following our initial design recommendation, our studies
showed that our design decisions did indeed support engi-
neers with several of their analysis needs using AutobahnVis
(most importantly, OVERVIEW, NEWPERS, MODULAR,
FASTACC, EMBED and FAM). When we asked our par-
ticipants about the adoption of AutobahnVis several months
after our studies, all of them were still using AutobahnVis
on an occasional basis in a similar frequency as they used it
during our studies (once or twice a week). The basic reason
for using it not more often is a current limitation of our
module that restricts to showing messages solely separated
by bus systems but not by ECUs. Adding this functionality is
difficult as interpretation of this information is currently not
supported by Carmen’s connection technology for external
modules (such as AutobahnVis). To make this possible, we
recently—similar to Cardiogram—transferred the tool to the
Carmen tool developers who are now working on overcoming
this restriction and on making AutobhanVis available as a
Carmen core component.

DISCUSSION
The evaluations of both Cardiogram and AutobahnVis re-
vealed valuable information on the performance of both
modules in real-world analysis situations. Overall, the rec-
ommendations from our exploratory field analysis together
with a user-centered design process helped us to design
tools that found their way into everyday routines of our
analysis experts. We learned that the core ingredients to a
successful deployment of our visual analytics techniques in
this industrial setting were (a) the visualizations’ simplicity,
(b) strong user integration throughout the entire design
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Figure 3: Screenshot of AutobahnVis. (a) Selection View: allows to select and filter messages, bus systems and signals; (b) Message View: shows
messages sent over the bus systems ordered by time, a Multi-Color search shows four request/response pairs; (c) Signal View: shows signal value plots
for selected signals; and (d) List View: provides a traditional text based representation of message details.

process, and (c) most importantly a tight integration into
existing tools and workflows.

Simplicity: Our target users had demanded tools that “sim-
plify [my] work, not complicate it with intricate visualizations
that have to be learned upfront.” Preferred were solutions
with high automation and simple, easy to understand rep-
resentations with an immediately apparent benefit that were
explicitly tailored to their needs. Therefore, we found it im-
portant (a) to start with easy to understand solutions, (b) to
iteratively extend them, and (c) to verify the value of a novel
approach as soon as possible (e.g., through prototyping). This
approach also generally integrated very well with the modular
working practice of automotive engineers.

User Integration: Engineering is a complex area that requires
expertise and background knowledge. As outsiders to the area
we found it invaluable to counterbalance our little domain
knowledge through an exploratory study of analysis practices
in the domain and a user-centered design processes. Allowing
end-users to closely participate in the design process helped
us to implement tailored, well-directed, and valuable solu-
tions. Besides, we especially see a large part of our successful
integration in our in-depth and long-term field evaluation of
current data analysis practices and needs, the usage of infor-
mal methods that helped us to form a close connection to our
target users, and the early integration of stakeholders in our
studies as they finally decided to integrate our tools as core
components into daily practices.

Tool Integration: We also learned that in our domain tight in-
tegration of final tools with domain data and process is a cru-
cial factor to success, adoption and an essential requirement
for better understanding the value of our tools. Especially in
large companies, often a set of traditional tools already exist
for a data analysis problem at hand. These tools are usually
integrated into a well-defined process and re-implementing
them for a research project is too expensive. However, ne-
glecting these practices can pose additional costs for employ-
ees, for instance, due to additional data transformation efforts
or tool-flipping costs. In our case, it turned out that such

additional time costs were not acceptable for engineers and
poorly integrated tools were disapproved of in daily work.
Though integrating VA tools into daily practices was a labor-
intensive process, it eventually helped us to study our tools
under realistic conditions leading to additional research value.

With a focus on simple solutions, iterative design and test-
ing, and tight integration we deviated from our earlier visual-
ization prototypes which tended to be feature-rich, but were
never properly connected to support real-world problem solv-
ing in real environments with real data. Consequently, eval-
uating earlier prototypes had always been restricted to expert
estimation within more or less artificial conditions. Indeed,
this provided valuable and helpful feedback, however, it did
not help us to gain insight into the long term nature of analysis
processes. Our new approach to providing visual analytics
solution in this domain, however, lead to new and extended
insights and better adoption rates. Most of our test engineers
continued using our modules after the evaluation phase was
completed and also recommended it to their colleagues.

While our experience so far is solely based on working in one
large company setting, our findings can serve as reference for
others who are planning to closer cooperate with industrial
partners in their VA research. We encourage other researchers
to report their own experience in order to broaden our general
understanding about such projects and to help VA“move from
research to practice” [33].

CONCLUSION
In 2006, Broy [3] wrote: “The increase of software and
functionality in cars is not close to an end. In the contrary,
we can expect a substantial growth in the future”. This
holds unchanged even four years later and is probably the
strongest motivation behind the work presented in this paper.
Analyzing in-car communication is already very difficult
and will soon become entirely infeasible without the help
of visualization and automation techniques. In this paper,
we contribute general recommendations for visual analytics
tools in this domain that we derived during a three year
exploratory field evaluation. We further show how we applied
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the recommendations in two specific visual analytics modules
to help automotive engineers analyze in-car communication
traces. Both modules were integrated tightly into engineers
daily work processes and evaluated with domain experts and
their own data. Evaluations showed that our recommenda-
tions helped us to design highly valued tools that addressed
practical data analysis needs of automotive engineers. Our
work is one of the first which reports on a long-term field
evaluation of both requirements in this domain as well as the
work necessary to ensure continued adoption and future use.
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