
 1

Parameter Selection in Keyboard-Based Dialog Boxes 
First Author Name (Blank if Blind Review) 

 
Second Author Name  (Blank if Blind Review) 

 
 

ABSTRACT 
Recent keyboard-based alternatives to WIMP interfaces do 
not have good support for commands that require multiple 
parameters. We remedy this by extending a previous design 
by mimicking dialog boxes to provide good visual feedback 
while still keeping the advantages of keyboard input. A 
laboratory study showed the new technique to be 
competitive with dialog boxes on speed and error rate, but 
strongly preferred to dialog boxes by experienced command 
line users. This is a marked improvement over the previous 
design, which was also preferred by the target user group 
but did not compete performance-wise with dialog boxes. 

Author Keywords 
Command-line interfaces, dialog boxes, WIMP 

ACM Classification Keywords 
Blah blah blah 

INTRODUCTION 
Many systems have been introduced to allow keyboard 
input to augment or replace standard WIMP interfaces, 
which have well-documented benefits and drawbacks 
[2,7,8,9,10]. The goal of these keyboard-based systems is to 
increase satisfaction and performance for experienced 
command line users. Examples include Quicksilver [1], 
Enso [4], Inky [5], GEKA [3], and Ubiquity [6]. They 
provide well thought out ways to specify commands, but 
not as much work has gone into how parameters are 
specified, especially for commands with multiple 
parameters. In WIMP interfaces, parameters are often 
specified through dialog boxes, especially multiple 
parameters. Evidence suggests that experienced command 
line users strongly dislike dialog boxes [3]. Quicksilver and 
Enso support only one parameter. Ubiquity and Inky 
support multiple parameters, but use imprecise syntaxes 
that can make parameter entry confusing, and they are 
designed specifically for simple web-based commands, 
which have smaller and simpler sets of parameters. GEKA 
has a keyword-based parameter system in which any 
number of parameters can be precisely input in any order, 
but it showed lower performance than existing WIMP 
dialog boxes [3]. 

We describe a new keyboard-based method, DBOX++, for 

specifying parameters that allows the input of any number 
of parameters in any order. Our goal is to increase 
performance, improve experience, and minimize cognitive 
load by providing graphical feedback that looks and 
behaves very much like the dialog boxes users are familiar 
with, but which has the speed of a command line interface. 
Our laboratory experiment with experienced command line 
users showed that our new method is preferred to and 
performs competitively with WIMP dialog boxes.  

DBOX++ DESIGN 
DBOX++ is based on GEKA. It makes minor changes to 
the GEKA command language and replaces its graphical 
feedback with a modified version of the command’s 
existing dialog box. These changes should give DBOX++ a 
strong performance advantage over GEKA and make it 
competitive with WIMP dialog boxes. 

Command language 
Multiple parameter entry utilizes auto-completion to 
quickly specify parameter name and value pairs. Example 
parameter specifications for the print command include: 

pages 2 – set the value of pages to 2 
printer downstairs – set the value of printer 

to downstairs 
downstairs – because downstairs can only be a 

value for printer, this sets printer to 
downstairs 

For parameter name selection, a ranked list of possible 
matches is generated after each character is typed. Typing 
more characters refines the list. Pressing SPACE accepts the 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada. 
Copyright 2011 ACM  978-1-4503-0267-8/11/05...$5.00. 

Figure 1: DBOX++ graphical feedback. The characters “a 3 c 2 y
re” have been entered. This sets the values of Number of adults (to
3), Number of children (2), and Type of seating (Balcony). The final
bit of input, “re”, is selecting which parameter will be set next. 



 

 2

top-ranked match and moves on to value entry. If a 
parameter has a discrete set of possible values, the value is 
selected using the same auto-complete mechanism. 
Otherwise, the value is typed in its entirety. Pressing 
SPACE again accepts the value and allows the user to 
specify another parameter. If the top-ranked parameter 
name has a Boolean value, pressing SPACE toggles the 
value and immediately moves on to another parameter. 

Additionally, each parameter has a short name, which is a 
short sequence of characters that unambiguously identifies 
the desired parameter name. 

Auto-completion uses the same four categories described 
by Hendy et al. for GEKA to order possible matches: exact 
match, prefix match, substring match, subsequence match. 
Matches within each category are sorted alphabetically. The 
up and down arrow keys scroll through the ranked list. 
Graphical feedback 
There are two components to DBOX++ graphical feedback, 
the input window, which closely resembles the graphical 
feedback in GEKA, and a new dialog box representation, 
which provides additional visual feedback. Figure 1 shows 
these two components. The input window has a text box 
where input is typed and a list of possible matches to the 
input is shown. The best match is highlighted and appears 
first. For all entries, the matching characters are in red. The 
short name is underlined. The dialog box representation 
provides graphical feedback identical to a command’s 
WIMP dialog box. Because users are already familiar with 
this dialog box, we expect that displaying it will allow users 
to quickly identify parameter names they want to use. 

The best matching parameter highlighted in the input 
window is also shown with a blue circle in the dialog box. 
The dialog box also has the short name for each parameter 
underlined and characters that match the entered text are in 
red. This gives users the same information whether they 
look for feedback at the parameter list or the dialog box. 
Highlighting also allows users to quickly verify that the 
parameter they want is selected. If the best matching 

parameter is located in a sub-dialog box or a different tab 
within the dialog box, the dialog box representation is 
automatically updated to show the location with that 
parameter. 

LABORATORY EXPERIMENT 
We conducted a laboratory experiment to evaluate 
DBOX++ against the goals of high performance and 
preference by experienced command line users when 
compared to dialog boxes. We included a GEKA condition 
to compare DBOX++ to existing keyboard-based interfaces. 

Experimental tasks 
The tasks were to specify parameters for one of four 
commands. This was done in three conditions: DBOX++, 
GEKA as implemented by Hendy et al. [3], and traditional 
dialog boxes. With traditional dialog boxes participants 
could use any combination of mouse clicks, TAB key 
navigation, or keyboard mnemonics. 

The experiment tested both familiar commands from a 
standard application and unfamiliar commands that we 
invented. It also tested simple commands, specified in a 
single dialog box, and complex commands, which involved 
multiple tabs and sub-dialog boxes. The four commands are 
listed in Table 1. 

Familiar Unfamiliar
Simple Insert table Order tickets

Complex Print Order food

Table 1: Four commands used in the experiment 

For the two familiar commands we implemented Word 
2003 replica dialog boxes (including parameter names). All 
of our participants reported that they had used these dialog 
boxes in Word 2003. Order tickets was created for 
this experiment; it has the same number of parameters and a 
similar dialog box layout to insert table. Order 
food was similarly analogous to print. The two 
respective dialog boxes are shown in Figures 1 and 2. 

For each command in the experiment, we created a short 
task, in which only one parameter value was to be specified, 
and a long task, in which four values were to be specified. 
For the complex commands, both the short and long tasks 
required the use of at least one sub dialog. Thus, there were 
eight different task combinations. 

As in the GEKA study [3], all tasks were prompted using 
image-based descriptions to avoid biases introduced by 
using text descriptions. Figure 2 shows the prompts for the 
long order food trial. For each task, the command was 
pre-selected in the interface. The participant needed only to 
select the specified parameter values. This was done to 
isolate parameter selection times. 

Participants 
There were 12 participants (3 females). In a pre-screening 
questionnaire all reported having command line experience 
and correctly answered at least two of three command line 

Figure 2: Experimental environment in the dialog box
condition. This is the short task for the order food command.
The left window shows that the parameter “beverage” must be
set to “coffee.” The beverage options are located in a sub-
dialog accessed by the “Menu” button. 



 3

knowledge questions. Participants received $20. A $5 
bonus was offered to the top third fastest participants to 
motivate quick and accurate performance. 

Procedure 
Each participant completed a single two-hour session. A 
session began with an introduction to the experiment. 
Participants then completed all eight tasks in a particular 
condition before moving on to the next condition. The 
presentation order of the three conditions was 
counterbalanced. Each condition began with an introduction 
to the interaction method used in that condition and a 
practice block in which each task was completed once. 
During a practice block, participants could ask questions 
and refer to printouts of which parameter each of the task 
images referred to. No aids were permitted during 
experimental blocks. 

Presentation order of the four commands was randomized 
but remained constant across the three conditions for each 
participant. The order of the two task lengths was similarly 
randomized across participants. During each condition, 
participants completed one trial for each of the two task 
lengths for a command and then repeated this pair four 
more times before moving on to the next command.  
Completion time was recorded for each trial from when the 
participant dismissed a begin-task prompt (by clicking the 
mouse or pressing a keyboard button) to when the task was 
successfully completed. 

An error occurred if a participant selected OK in the dialog 
box condition or pressed ENTER in the GEKA or DBOX++ 
condition with an incorrect set of parameter values selected. 
If a participant made an error during a trial, a dialog 
notified the participant that an error was made and the task 
had to be repeated until it was successfully completed. 
After all trials for a one command, participants took a 30 
second break. Between conditions, participants took a 2 
minute break. 

To end, a questionnaire and interview completed the study. 

Design 
The experiment used a mixed factor design: 3 (interface) x 
2 (command complexity) x 2 (command familiarity) x 2 
(task length) x 5 (repetition) x 6 (presentation order). All 
factors were within-participant except for presentation 
order, which was between-participant control variable. 
Bonferroni corrections were used for all pairwise 
comparisons. When sphericity was an issue, Greenhouse-
Geisser corrections were used, which can be identified by 
non-integer df. 

Note on experimental design and participants 
The focus of the DBOX++ design and the evaluation was 
on experienced command line users, but we were also 
interested in exploring how DBOX++ would be received by 
users without command line experience. Our initial design 
thus included experience as a factor; we ran 12 participants 
with no command line experience. We saw potential trends 

due to experience level, but there was very high variance in 
the data from inexperienced users. We would have needed 
to run many more participants to expose any significant 
differences that existed. We thus only discuss the data from 
experienced users. 

RESULTS 
Completion Time 
An RM ANOVA indicated no main effect or interactions of 
presentation order; thus it was dropped as a factor. Figure 3 
shows that participants got faster over time: a main effect of 
repetition (F(1.51, 16.58) =77.812, p<.000, η2=.876) with 
significant differences (p < .05) between all pairs of 
repetitions except repetitions 4 and 5 (p=.20) indicates that 
performance was plateauing. The ANOVA we report 
eliminates repetition as a factor by using the mean times of 
just repetitions 4 and 5 to eliminate the learning affect. 

Overall, DBOX++ and dialog boxes are not significantly 
different. There was a main effect of interface (F(2, 22) = 
20.476, p<.001, η2 = .654) with mean times for dialog boxes, 
DBOX++, and GEKA respectively being 5.76s, 6.19s, and 
9.69s. Pairwise comparisons showed no significant 
difference between DBOX++ and dialog boxes (p=1.0). All 
other pairs had significant differences (p < .05). 

For simple commands, dialog boxes are fastest. The 
interfaces were impacted differently by the different 
command complexities (an interaction effect between 
interface and complexity, F(2,22) = 5.969, p=.008, η2 = 

.352). For simple commands, a trend (p = .072) suggested 
that dialog boxes (4.09s) were faster than DBOX++ (5.73s), 
but no different for complex commands (p=1.0). GEKA 
was slower than dialog boxes for both complexities (p < 
.003). 

For short tasks, DBOX++ is fastest. An interaction 
between interface and task length (F(2,22) = 30.88, p=.000, 
η2 = .737) indicated that for short tasks, DBOX++ (2.64s) 
was faster (p=.007) than dialog boxes (3.74s). There was no 
difference between the two for long tasks (p=.355). GEKA 
was slower than DBOX++ for both lengths (p < .007). 

Figure 3: Mean completion times for each interface in 
each repetition (N=12) 



 

 4

There was no interaction between interface and command 
familiarity (F(2,2)=.867, p=.434, η2 =.073) 

Errors 
Figure 4 shows that participants made fewer errors as the 
study progressed. While there was a borderline effect of 
interface (F(2,22) = 3.01, p=.07, η2 =.215) across all 
repetitions, by repetition 5, errors had nearly disappeared 
for all three interfaces. In repetition 5 dialog boxes, 
DBOX++, and GEKA had 3, 3, and 4 errors respectively 
out of the 96 total trials for each interface. 

Questionnaire and interview 
Overall, participants rated DBOX++ the highest, with a 
mean of 17.00 on a scale of 0 (“I really dislike it”) to 20 (“I 
really like it”) vs. 10.50 for dialog boxes and 12.25 for 
GEKA. There was no significant difference between dialog 
boxes and GEKA (p=.392) all other pairs were significant 
(p<.004). When asked to explain why they preferred 
DBOX++, the most common reasons cited were being able 
to set parameter values without first having to specify the 
parameter name (7/12), liking the graphical feedback from 
the dialog box representation (6/12) (especially for 
verifying that the correct parameters were set (4/12)), and 
being able to only use the keyboard (5/12). 

Participants said they were faster with DBOX++, with a 
mean of 18.17 on a scale of 0 (“very slow”) to 20 (“very 
fast”) vs. 11.75 for dialog boxes and 13.25 for GEKA. 
There was no significant difference between dialog boxes 
and GEKA (p=1.0) all other pairs were significant (p<.03). 
Explanations offered were that they sometimes were able to 
skip specifying the parameter name (4/12) or they believed 
that typing was faster than using a mouse (3/12). 

Participants said they made fewer errors with dialog boxes, 
with a mean of 2.17 on a scale of 0 (“very few errors”) to 
20 (“many errors”) vs. 6.58 for DBOX++ and 9.08 for 
GEKA. The only significant difference was between dialog 
boxes and GEKA (p=.002). While they did not necessarily 
like using the mouse, they felt that using one made it harder 
to make an error (5/12). 

Ten of the 12 participants said that DBOX++ was easier to 
learn than GEKA and gave reasons similar to why they 
preferred DBOX++ overall. However, dialog boxes were 
felt to be the easiest to learn because participants were 
already familiar with them. 

Eleven of the 12 participants said they would like to 
continue to use DBOX++, whereas only one would chose to 
use dialog boxes and only two said they would use GEKA. 

DISCUSSION AND CONCLUSIONS 
DBOX++ showed speed and error rates in the final 
repetitions nearly identical to dialog boxes. Yet participants 
reported a very strong preference for DBOX++. This 
suggests that DBOX++ should be included as an option for 
parameter specification: it makes experienced users more 
satisfied and does not impede their performance. 

We identified one case (simple commands) where 
DBOX++ is slower than dialog boxes and one case (short 
tasks) where it is faster. We expect that with practice users 
will quickly learn which tasks benefit from using DBOX++ 
and which do not, which will increase overall performance. 
Performance could potentially be further improved using a 
mixture of DBOX++ text input and standard WIMP 
interaction for a single task. 

Despite the very similar speeds between dialog boxes and 
DBOX++, participants felt that they were much faster with 
DBOX++. Hendy et al. found a similar contradiction while 
evaluating GEKA, an interesting perceptual finding that 
bears further investigation. 

DBOX++ significantly outperforms GEKA in speed under 
almost all conditions. This suggests that the dialog box-like 
graphical feedback of DBOX++ is a major improvement 
over the feedback in GEKA. Another major improvement 
over GEKA is that DBOX++ can support a wide variety of 
parameter types. Hendy et al. [3] lists several types of 
commands that GEKA is not able to accommodate because 
of its restrictive graphical feedback. DBOX++ overcomes 
most of these limitations. 

GEKA has previously been shown to be an effective 
general interaction method for specifying many types of 
commands, including those with multiple parameters; it 
only fell short compared to dialog boxes. We have shown 
that DBOX++ outperforms GEKA and is highly 
competitive with dialog boxes. Application designers 
looking to improve their interfaces for experienced 
command line users could incorporate DBOX++ style 
graphical feedback into a keyboard-based command 
selection similar to GEKA. 

REFERENCES 
[1] Blacktree. (2009). Retrieved March 31. 

http://www.blacktree.com 
[2] Gentner, D., and Nielson, J. (1996). The anti-Mac interface. 

In Communications of the ACM 39(8):70-82. 
[3] Hendy, J., Booth, K., McGrenere, J. (2010). Graphically 

Enhanced Keyboard Accelerators for GUIS. Graphics 
Interface 2010. 

[4] Humanized. (2009). Retrieved March 31. 
http://humanized.com 

Figure 4: Error rates for each interface in each 
repetition (N=12) 



 5

[5] Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van 
Kleek, M., Karger, D., and schraefel, m. (2008). Inky: a 
sloppy command line for the web with rich visual feedback. 
In Proc. UIST 2008, 131-140. 

[6] Mozilla Labs. (2009). Ubiquity. Retrieved December 12. 
https://mozillalabs.com/ubiquity/ 

[7] Norman, D. (2007). The next UI breakthrough: command 
lines. In Interactions, 14(3):44-45. 

[8] Raskin, J. (2000). The humane interface: New directions for 
designing interactive systems. Addison-Wesley. 

[9] Shneiderman, B. and Plaisant, C. 2004 Designing the User 
Interface: Strategies for Effective Human-Computer 
Interaction (4th Edition). 

[10] Stone, D., Jarrett, C., Woodroffe, M., Minoca, S. (2005). 
User interface design and evaluation. 

 


