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(a) Cylinders vs. MPG (b) Cylinders vs. Origin (c) MPG vs. MPG

Figure 1. Multiple gatherplots show dataset related to cars, which created overplotting in scatterplots. The gatherplot in (a) shows Cylinders vs. MPG,
which are a categorical and an continuous variable. The gatherplots show the overall distribution of MPG values of cars with different cylinders. The
brackets on the X-axis are used to indicate that the space within brackets represent same value in the data. The gatherplot in (b) shows Cylinders vs.
origin, which is a categorical vs. categorical variable case. The gatherplots partition the graphical axes into intervals and stacks points into groups for
each interval. In (c), both X-axis and Y-axis show same continuous variable, MPG. In scatterplots, all these cases create an overplotting, which results
in lines (a, c) or dots (b)

ABSTRACT
Scatterplots have been used for exploration of multi-
dimensional dataset, especially in the form of scatterplot ma-
trices (SPLOM). However there is an overplotting in SPLOM,
when categorical variables are mapped to one or two axes
or the same continuous variables are used for both axes. To
ameliorate this, we propose gatherplots, an extension of scat-
terplots to handle these cases better. In gatherplots every
data point that maps to the same position coalesces to form
a stacked entity, thereby making it easier to see the overview
of data groupings. The size and aspect ratio of data points can
also be changed dynamically to make it easier to compare the
composition of different groups. In the case of a categori-
cal variable vs. a categorical variable, we propose a heuris-
tic to decide bin sizes for optimal space usage. The gather-
plots and the resulting gatherplot matrices (GPLOM) show
enhanced utilization of spaces to show the overall distribu-
tion. Our evaluation shows that gatherplots enable users from
the general public to judge the relative portion of subgroups
more quickly more correctly than when using conventional
scatterplots with jittering.
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INTRODUCTION
Scatterplots—one of the most widely used types of statistical
graphics [5, 11, 31]—are commonly used to visualize two
continuous variables using visual marks mapped to a two-
dimensional Cartesian space, where the color, size, and shape
of the marks can represent additional dimensions. Recently
it has been used for the exploration of multi-dimensional
dataset. The scatterplot matrices (SPLOM), where all the
possible combination of axes are iterated in table form, is fre-
quently used to show overview of multi-dimensional datasets.

However, realistic multidimensional datasets often contain
categorical variables, such as nominal variables or discrete
data dimensions with small domain. Even if a dataset is com-
posed of entirely continuous variables, the SPLOM shows an
overplotting along the diagonal axis, where the same vari-
ables are assigned to the both axes. As can be seen in Fig-
ure 2, there are three situations, when the overplotting is in-
evitable.

• When nominal variables have been used for both axes, the
scatterplots results in dots pattern such as figure 2(d).



(a) 

(b) Acceleration vs Cylinders 

(c) Weight vs Weight 

(d) Cylinder vs Origin 

Fig. 1: Scatterplot matrix navigation for a digital camera dataset. The user is building queries for maximum camera resolution against price
ranges and then studies them in relation to release year. The transition is performed using an animated 3D rotation.

Fig. 2: Example of a scatterplot matrix for a 7-dimensional car dataset.

exploring the data. A similar approach could be employed for other
simple visual representations, such as sets of one-dimensional visual-
ization widgets.

2.2 Grand Tour

As we have seen, high-dimensional datasets pose a problem for 2D
scatterplots. To visit such dataset using a scatterplot limited to show-
ing two dimensions at a time, Asimov describes a method called the
“grand tour” [4]. His idea is that a multidimensional dataset is fully
visited when all the possible 2D projections have been seen, ignoring
the symmetries and rotations. Therefore, a grand tour should visit a
dense subset of all the possible 2D projections. This set is built ac-
cording to criteria such as density, uniformity, continuity, linearity of
the motion path, and some degree of user control.

Asimov describes several methods to compute approximations of a
grand tour. However, Huber shows that it would require prohibitive
time to extensively explore a high-dimensional dataset [15] so he ad-
vocates the projection pursuit method [21]. Projection pursuit has

been designed to only show “interesting” aspects of high-dimensional
spaces and has been adapted for visualization of such data [9].

2.3 Finding Interesting Planes

Several statistical methods have been designed to find the most in-
teresting 2D planes and to create 2D views that best summarize a
high-dimensional dataset; they are globally called dimensional reduc-
tion methods. Among these methods, Principal Component Analysis
(PCA) is the simplest and most popular. The axis that maximizes the
variance of all the projected points of the dataset is called the first
component. The second component is orthogonal to the first and max-
imizes the variance of the projected dataset and so forth for all the
other components up to n for an n-dimensional dataset. The plane de-
fined by the first two components is frequently considered as the “most
interesting” plane since it provides the best overview of the dataset in
the sense of the largest variance. Furthermore, since PCA only con-
siders linear projections, it fits well with the grand tour and projection
pursuit ideas of important planes, whereas some other dimensional re-
duction methods find non-linear projections.

However, PCA suffers from several pitfalls, as described by Ko-
ren [20]: it is very sensitive to outliers and to artifacts in the data.
Therefore, Koren proposes several variants of PCA that correct some
of the issues but introduce parameters. Overall, all of these statistical
methods find 2D planes. but have a very specific and restricted inter-
pretation of the notion of “interest” and thus provide no guarantee that
all the interesting planes will be found, nor that all planes found will
actually be interesting.

Furthermore, and more importantly for our purpose, methods that
compute 2D projections of high-dimensional spaces are beyond the
understanding of casual information visualization users. As explained
by Matthew Ericson during his keynote address at IEEE InfoVis 2007,
scatterplots are considered too difficult to understand for readers of the
New York Times, except when one of the axes is time. Understand-
ing general scatterplots when the axes are meaningful is one thing, but
understanding the meaning of axes that are linear combinations of at-
tributes is beyond the skills of most people. Therefore, much research
has focused on optimizing the navigation and selection of attributes.
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Figure 2. Limitations of scatterplots for managing discrete variables.
(a) The scatterplot matrix for 7-dimensional car dataset. (b) The accel-
eration vs. cylinders scatterplot looks like a horizontal line because the
cylinders variable works as a categorical variable, which causes over-
plotting. (c) The weight vs. weight scatterplot shows diagonal line be-
cause the values are mapped one single line. This problem is shown
at all diagonal subfigures in the scatterplot matrices. (d) The cylinders
vs. origin scatterplot shows dotted patterns because discrete dimensions
have been mapped onto both the X and Y axis.

• When a nominal variable and an ordinal variable have been
used together, the scatterplots shows overdrawing patterns
with horizontal lines or vertical lines such as figure 2(b).

• When a same ordinal variable has been used for both axes,
the resulting scatterplots shows a diagonal line, such as fig-
ure 2(c). This pattern is shown along the diagonal axis of
the SPLOM.

Several approaches have been proposed to address this prob-
lem [10], the most prominent transparency, jittering, and clus-
tering techniques. The first of these, changing transparency,
does not so much address the problem as sidestep it by mak-
ing the visual marks semi-transparent so that an accumula-
tion of overlapping points in the same are still visible. How-
ever, this will not scale well for large datasets, and also
causes blending issues if color is used to encode additional
variables. Jittering perturbs visual marks using a random
displacement [29] so that no mark falls on the exact same
screen location as any other mark, but this approach is still
prone to overplotting for large datasets. Jittering also in-
troduces uncertainty in the data that is not aptly communi-
cated by the scatterplot since marks will no longer be placed
at their true location on the Cartesian space. Clustering, on
the other hand, attempts to organize overlapping marks into
visual groups that summarize the distribution [14, 22, 20].
However these clustering create histogram or kernel density
estimation(KDE), which does not follow the visual grammar
of scatterplots. Especially they lose the concept of the in-
dividual object, which can be problematic in the filtering or
search tasks.

In this paper, we propose the gatherplots to overcome these
limitations. Gatherplots generalizes the linear mapping used
by scatterplots. And it partitions the graphical axis into seg-
ments based on the data dimension. Then it organizes points
into stacked groups for each segment that avoids overplotting.
This means that the gatherplots relaxes the continuous spatial

mapping traditionally used for a graphical axis; instead, each
discrete segment occupies a certain amount of screen space
that is all defined to map to the exact same data value. This is
also visually communicated using graphical brackets on the
axis that show the value for each segment (Figure 1(b)).

The contributions of our paper are the following: (1) the gath-
erplots which extends scatterplots to categorical variables,
maintaining individual objects; (2) the heuristic way to set
the optimal dot size when there are a continuous variable and
a categorical variable; and (3) results from a crowdsourced
user study on the effectiveness of different modes of gather-
plots. In the remainder of this paper, we first review the litera-
ture on scatterplots and overplotting. We then present gather-
plots and discusse various design choices. This is followed by
our crowdsourced evaluation. We close with implementation
notes, conclusions, and our future plans.

BACKGROUND
Our goal with gatherplots is to generalize scatterplots to a rep-
resentation that maintains its simplicity and familiarity while
eliminating overplotting. With this in mind, below we review
prior art that generalizes scatterplots for mitigating overplot-
ting. We also discuss related visualization techniques specif-
ically designed for nominal variables.

Characterizing Overplotting
While there are many ways to categorize visualization tech-
niques, a particularly useful classification for our purposes is
one introduced by Fekete and Plaisant [13], which splits vi-
sualization into two types:

• Overlapping visualizations: These techniques enforce no
layout restrictions on visual marks, which may lead to them
overlapping on the display and causing occlusion. Exam-
ples include scatterplots, node-link diagrams, and parallel
coordinates.

• Space-filling visualizations: A visualization that restricts
layout to fill the available space and to avoid overlap. Ex-
amples include treemaps, adjacency matrices, and choro-
pleth maps.

Fekete and Plaisant [13] investigated the overplotting phe-
nomenon for a 2D scatterplot, and found that it has a sig-
nificant impact as datasets grow. The problem stems from
the fact even with two continuous variables that do not share
any coordinate pairs, the size ratio between the visual marks
and the display remains more or less constant. Furthermore,
most datasets are not uniformly distributed. This all means
that overplotting is bound to happen for realistic datasets.

Ellis and Dix [10] survey the literature and derive a general
approach to reduce clutter. According to their treatment, there
are three ways to reduce clutter in a visualization: by chang-
ing the visual appearance, through space distortion, or by pre-
senting the data over time. Some trivial but impractical mech-
anisms they list include decreasing mark size, increasing dis-
play space, or animating the data. Below we review more
practical approaches based on appearance and distortion.

Appearance-based Methods



Practical appearance-based approaches to mitigate overplot-
ting include transparency, sampling, kernel density estima-
tion (KDE), and aggregation. Transparency changes the
opacity of the visual marks, and has been shown to convey
overlap for up to five occurrences [34]. However, there is
still an upper limit for how much overlap is perceptible to the
user, and the blending caused by overlapping marks of dif-
ferent colors makes identifying specific colors difficult. Sam-
pling uses stochastic methods to statistically reduce the data
size for visualization [9]. This may reduce the amount of
overplotting, but since the sampling must be random, it can
never reliably eliminate it. Furthermore one of fundamental
strength in scatterplots is its ability to show outliers effec-
tively. However with sampling the outliers will be removed
from the visual space.

KDE [27] and other binned aggregation methods [12, 14, 22,
?] replace a cluster of marks with a single entity that has
a distinct visual representation. Splatterplots [22] overcome
this by overlaying individual marks side-by-side with the ag-
gregated entities, using marks to show outliers and aggregated
entities to show the general trends. This remedies the prob-
lem with KDE and sampling, for it maintains the outliers
while showing overviews. However, as pointed by authors,
even with only few aggregated entities, the resulting color-
blended image becomes visually complex and challenging to
read and understand. Also these technique can not be ap-
plied for the cases when there are categorical variables, for
KDE method tend to smooth out the granularity of datasets.
Generalized plot matrix(GPLOM) is proposed to solve this
problem. This pioneering work solves the overplotting by
adopting non-homogeneous plots into matrix. GPLOM uses
a histogram for categorical vs. continuous variables and a
treemap for categorical vs. categorical variables. While ef-
fective in providing overview, it loses logical compatibility
with scatterplots, for scatterplots operate on the principle of
object identity, meaning that each visual mark is supposed to
represent a single entity.

Distortion-based Methods
Distortion-based techniques provides advantage that it keeps
individual object. The canonical distortion technique is jit-
tering, where a random displacement is used to subtly mod-
ify the exact screen space position of a data point. This has
the effect of spreading data points apart so that they are eas-
ier to distinguish. However, most naı̈ve jittering mechanisms
apply the displacement indiscriminately to all data points, re-
gardless of whether they are overlapping or not. This has the
drawback of distorting all points away from their true location
on the visual canvas, and still does not completely eliminate
overplotting.

Bezerianos et al. [2] use a more structured approach to dis-
placement, where overlapping marks are organized onto the
perimeter of a circle. The circle is grown to a radius where
all marks fit, which means that its size is also an indication of
the number of participating points. However, this mechanism
still introduces uncertainty in the spatial mapping, and it is
also not clear how well it scales for very dense data. Never-

theless, it is a good example of how deterministic displace-
ment can be used to great effect for eliminating overplotting.

Trutschl et al. [29] propose a deterministic displacement
(“smart jittering”) that adds meaning to the location of jit-
tering based on clustering results. Similarly, Shneiderman et
al. [26] propose a related structured displacement approach
called hieraxes, which combines hierarchical browsing with
two-dimensional scatterplots. In hieraxes, a two-dimensional
visual space is subdivided into rectangular segments for dif-
ferent categories in the data, and points are then coalesced
into stacked groups inside the different segments. This in-
spiration laid the foundation for our extensions that will re-
fine the layouts and design. Especially according to Haroz et
al. [15], grouping nodes of similar visual feature helps per-
forming tasks such as finding outliers, number of different
classes and so on.

Visualizing Categorical Variables
While we have already ascertained that scatterplots are not
optimal for categorical variables, there exists a multitude of
visualization techniques that are [1, 18, 21]. Simplest among
them are histograms, which allows for visualizing the item
count for each categorical value [28], but much more com-
plex representation are possible. While hieraxes, histograms
or treemap are effective in dealing with nominal variables,
it is difficult to extends these to continuous variable vs cat-
egorical variables. One way to extend is applying binning
to continuous variables to create groups of values. However
the optimal number of bin depends on statistical characteris-
tics of data and required task. Dot plots by Wilkinson [32]
shows continuous univariate variable without overplotting by
stacking nodes within dot size. Dang et al. [8] extended this
to scatterplots by stacking nodes whose values are similar in
3D visual space. These pioneering work provided theoretical
background for the determination of the optimal bin size for
the gatherplots.

One particular usage for visualizing categorical data that is
of practical interest is for making inferences based on statis-
tical and probabilistic data. Cosmides and Toody [7] used
frequency grids as discrete countable objects, and Micallef et
al. [24] extend this with six different area-proportional rep-
resentations of nominal data organized into different classes.
Huron et al. [19] suggested sedimentation as metaphor where
individual objects coming from data stream gradually trans-
forms into aggregated areas or strata.

DESIGN OF GATHERPLOTS
Here we explain the design of gatherplots and rationale be-
hind each design choices. Gatherplots alleviate overplotting,
focusing on optimal layouts of gathered entities, graphical
representations of chart elements, and novel interactions. Es-
pecially gatherplots deal with overplotting when there are one
or two nominal variables in the dataset. There are many open
design possibilities for aspect ratio, layout, and item shapes.
We discuss these design parameters in the treatment below.

Categorical Variable vs. Categorical Variable
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Figure 3. Main layout modes for gatherplots: (a) absolute mode with constant aspect ratio, which arranges items following the aspect ratio of given
area; (b) relative mode of (a). The rate of survivors in each male passenger class is not each to compare. Figure (c) shows the streamgraph mode, where
each cluster maintains the number of element in the shorter edge, making it easier to see the distribution of the subgroups along the Y axis.

Previous works such as hieraxes [26] or frequency grids [24,
7] organize entities into stacked groups according to a dis-
crete variable to eliminate overplotting. Gatherplots follows
this approach and applies the gathering of nodes with similar
visual properties. According to Haroz and Whitney [15], a
cluttered randomly organized arrangement lowers the search
speed for the target. However there are many design pos-
sibilities organizing visual representation depending on the
context, especially on the size distribution of each groups, the
aspect ratio of assigned space, and the task at hand. As a re-
sult, we derive the following three layout modes (examples in
Figure 3):

• Absolute mode. Here stacked groups are sized to fol-
low the aspect-ratio of the assigned region. The node size
of the items are determined by the maximum length dots
which can fill the assigned region without overlapping.
This means with the same assigned space, the groups with
the maximum number of members determines the overall
size of the nodes (Figure 3(a)).

• Relative mode. In this mode, the node size and aspect
ratio is adapted so that every stacked group has equal di-
mensions. This is a special mode to make it easier to in-
vestigate ratios when the user is interested in the relative
distributions of subgroups rather than the absolute number
of members. Items also change their shape from a circle
(absolute mode) to a rounded rectangle (Figure 3(b)).

• Streamgraph mode. Here stacked groups are reorganized
so that the maintain the same number of elements in their
shorter edge. This mode is used for regions where the ratio
of width and height are drastically different (in our proto-
type implementation, we use a heuristic value of 3 for as-
pect ratio to be a threshold for activating this mode). This
means there are usually many times more groups in the
axis in parallel with shorter edges. A good example can
be when we want to see the distribution of population with
regards to the gender variable and the age variable. The re-
sulting graphic resembles ThemeRiver [17] as the number
of entities increase (Figure 3(c)).

The choice between absolute mode and streamgraph mode
happens automatically based on the aspect ratio of assigned
space and without user intervention. Therefore only interac-
tive option is required to toggle between absolute mode and
relative mode. Our intuition is that the absolute mode should
be good enough for most of the time, and when very specific
tasks are required, the user can switch to the relative mode.

However, gatherplots involve many more possibilities beyond
than these layout functions. Below follows our treatment of
these design possibilities and our rationale for our decisions.

Area vs. Length Oriented Layout
Maintaining the aspect ratio of all stacked groups means that
the size of the group is represented by its area. The length of
the group is only used in special cases when the aspect ratio
is very high or low. According to Cleveland and McGill [6],
length is far more effective than the area for graphical percep-
tion. However, Figure 4 shows the three problems associated
with layout to enable length-based size comparison. In this
view, the items are stacked along the vertical axis to make the
size comparison along the horizontal axis easier. The width
of rectangle is all set to be equal to so that the length can rep-
resent the size of subgroups. However, they show drastically
different shape of line vs. rectangle, which may cause users to
lose concept of equality. Furthermore, to make length-based
comparison easier, the stacking should be aligned to one side
of the available space: left, right, top, or bottom.

In this case, the bottom is selected to make it easier to com-
pare along the X axis. However, this creates additional two
problems. The first problem is that the center of mass of each
stacked group is too different that the concept of belonging to
the same value can be misleading. The second problem is that
choosing alignment direction is arbitrary and depends on the
task. For example, in this view it is more difficult to compare
along the Y axis. In this sense, this layout is biased to the X
axis, while sacrificing the performance along the Y axis. For
this reason, the most general choice is to use center alignment
with aspect ratio resembling the assigned range to avoid bias.

Uniform vs. Variable Area Allocation
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Figure 4. Stacked group layouts for gathering. This layout supports
comparison group sizes. Because the height of stacked groups is all fixed
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In gatherplots, we assign uniform range to different values
of overlappable variables. For some cases, assigning variable
area can make sense and create interesting visualizations. As
a simple example, we can argue that assigning the range of
output for gather transfer function to be proportional to the
numbers of items that belong that value uses the space most
efficiently. This will result in the following layout shown
in Figure 5, which can be reduced to a mosaic plot [16] or
treemaps [1]. The use of variable area allocation generally
makes better use of given display space. But in gatherplots we
choose uniform area allocation because the scheme of scatter-
plot assumes uniform space among entities.
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Figure 5. Variable area for a gatherplot. The chart uses space efficiently.
Items which belong to same place should belong to the same value. How-
ever, as can be shown in the Y axis tick marker, this results in a violation
of the scatterplot concept.

Role of Relative Mode
Since gathering assigns a discrete noncontinuous range to
each graphical axis, each stacked group can be grown to fill
all available space. This relative mode is useful for two spe-
cific tasks:

• Getting a relative percentage of the subgroups in the group
(Figure 3). Because groups of different size is normalized
to the same size, any comparison in area results in a rela-
tive comparison. This can aid the statistical bayesian rea-
soning [24].

• Finding the distribution of outliers. When there are many
items on the screen for absolute mode, all node sizes must
be reduced. This can make outliers hard to locate. When
relative mode is used, the outliers are expanded to fill the
assigned space, making it easier to notice it.

Continuous ordinal Variable vs. Categorical Variable

To create organized stacking of values over continuous or-
dinal variables, binning is applied in gatherplots. The bin
size is important because it determines the spatial accuracy
and viewing affordance. Pioneering work by Wilkinson [32]
provides theoretical background for the optimal size of bins.
Wilkinson proposed the .25n−1/2 as the optimal dot size for
dot plots. This is based on the assumption of normal distribu-
tion of data and aspect ratio of chart to be about 5.

However gather plot requires two different assumption. First
the maximum width of dot plot is limited by space allocation
by nominal variables. Second the dot size or bin size is de-
termined by global maximum in dataset, which may not be in
same nominal. For example, when we assume the gender Vs.
height, and the male group is more packed than female group,
the bin size of female group is determined by the maximum
bin size of male group. To get the optimal bin size under these
conditions, we propose following algorithm.

1. We begin with the number of bins to be 1.

2. The dot size or bin size becomes assigned height divided
by number of bins.

3. Given the bins, find the maximum number of members in
each bin for the entire dataset.

4. Calculate the required width by multiplying maximum
number of members by dot size.

5. If the required width exceeds assigned width, increase the
number of bins by 1 and go to step 2. Otherwise, use the
dot size for the optimal bin size.

In practice, there is heuristic value of maximum dot size,
where the dot size larger than that does not increase the view-
ing comfortability. And initial value of number of bins can
be assigned height divided by maximum dot size to reduce
computation times.
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Figure 6. This diagram shows the steps for getting optimal bin size. In
(a) the dot size is too large. The required width, which are the maximum
number of nodes in the bin multiplied by dot size, exceeds the assigned
width. In (b) the dot size is optimal, meaning the space is utilized fully.
In (c) the dot size is too small, which results in the waste in the visual
space.

Also the case of scatterplots with the same continuous vari-
ables can be treated as the special case of the continuous vs



nominal variable, where nominal variable is whole. The gath-
erplots are rotated to maintain integrity with scatterplots as in
Figure 1 (c).

Visual Design and Interactions for gatherplots
Here we discuss the visual design choices such as shape and
tick marks. Also we explain the novel interaction for the gath-
erplots called axis folding.

Continuous Color Dimension
The gatherplot sorts items according to a data property, such
as a variable also assigned for coloring items. This removes
the scattered color patterns in the stacked groups that is com-
mon in other techniques such as Gridl [26]. This is also par-
ticularly useful for continuous color scales, making the vari-
ation of colors are easier to perceive (Figure 7).
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Figure 7. Continuous color scale used in a gatherplot. The X axis is the
number of cylinders and and the Y axis is the origin of cars. The color
scale is MPG.

Shape for Items
Scatterplots typically use a small circle or dot as a visual rep-
resentation for items, but many variations exist that use glyph
shapes to convey multidimensional variables[23, 30, 3, 5, 4].
However, in the relative mode, sometimes the aspect ratio of
nodes changes according to the aspect ratio of box assigned
to that value. Also, as gathering changes the size of nodes
to fit in one cluster, sometimes node size becomes too small,
or too large compared to other nodes. This results in several
unique design considerations for item shapes. After trying
various design alternatives, we recommend using a rectangle
with constant rounded edge without using stroke lines. Using
constant rounded edge allows the nodes to be circular when
the node is small, as in Figure 3(b), and a rectangle to show
the degree of stretching, as shown in Figure 3(b). Figure 8
shows some previous trials with various shapes.

Design of Tick Marks
The single line type tick marks for scatterplots are not ap-
propriate for gatherplots. Because we are representing a
range rather than a single point, a range tick marker will be
better. Without this visual representation, when the user is
confronted with a number, it can be confusing to determine
whether adjacent nodes with different offset has same value
or not. After considering a few visual representation, we rec-
ommend a bracket type marker for this purpose. Figure 9

Figure 8. Stroke line problems where the circle consumes ample white
space between adjacent nodes, which contributes to clutter as it grows.
The rectangle does not have space between nodes, however, it must have
a stroke border to show stretching. But this borderline creates problems
when the items are very small.

shows various types of markers for range representation. The
bracket is optimal in that it uses less ink and creates less den-
sity with adjacent ticks.

Minimize
Maximize

(a) (b)

(f)(e)(d)

(c)

Figure 9. Various tick marks types. The blue dotted region represents
the area between adjacent tick marks. (a) is a typical line type tick mark
for the scatterplots. (b) lacks guide lines, which will make anchoring
easier. (c) creates a packed region between adjacent marks. (d) uses less
crowded region in this region, but (e) is the least crowded. (f) is the final
recommendation, with the data label in the orange region.

Applications for Continuous Variables
Gatherplots can be used to mitigate overplotting caused by
continuous variables as well. Figure 10 (a) shows how gather-
plots handle the overplotting caused by continuous variables.
The plot is using relative mode with two random variables.
The relative mode makes it easier to identify the outliers and
the distribution of outliers.

One limitation of gatherplots is that it requires binning to
manage a continuous variable, yet binning creates arbitrary
boundaries. In this sense, gatherplots can be misleading.
However, combining gatherplots with scatterplots makes this
problem less severe.

Axis Folding Interaction
As an exploration tool for real-world dataset, it is crucial to
have means to filter unwanted data. To aid this process with
gather transform, we provide an optional mechanism to go
back to the original continuous linear scale function. We al-
low each axis tick have an interactive control to be filtered out
(minimize) or focused (maximized). This is called axis fold-
ing, because it can be explained mentally by a folding paper.
When minimized or folded, the visualization space is shrunk
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Figure 10. Using gatherplots to manage overplotting. (a) shows a scatterplot with 5,000 random numbers with severe overplotting in the center area. In
(b), gathering is applied to create a more organized view. However, the gathering resizes the items so small that it becomes difficult to detect outliers.
(c) shows relative mode, where the outliers are enlarged. This makes identifying the distribution of sparse regions easier.

by applying linear scales instead of nonlinear gather scales.
This results in overplotting as if a scatterplot was used for
that axis. A maximization is simply folding all other values
except the value of the interest in order to assign maximum
visual space to that value. Figure 11 shows the axis folding
applied to third class adult passengers in the Titanic dataset.

FirstMinimize
Maximize

SecondMinimize
Maximize

ThirdMinimize
Maximize

CrewMinimize
MaximizeClass

Adult Minimize Maximize

Child Minimize Maximize

Cherbourg
Belfast
Southhampton
Queenstown

Port

Figure 11. Survivors of the Titanic using gatherplots. The X axis is class
of passengers, where second class passengers and crew are minimized.
The Y axis is age, where the adult value is maximized. This view makes it
easy to compare first class adults and third class adults. Note that even in
the minimized state, we can get an overview about the second class and
crew by the color line, which communicates the underlying distribution.
This is due to the sorting over the color dimension.

EVALUATION OF GATHERPLOTS
The purpose of this study is to examine the effectiveness of
gatherplots especially to see how different modes of gather-
plots influence certain types of tasks for the crowdsourced
workers. We have conducted the study for one of the par-
ticular cases, categorical variable vs. categorical variable.
Crowdsourcing platforms have been widely used and have
shown to be reliable platforms for evaluation studies [25, 33].
Therefore, we conducted our experiment on Amazon Me-
chanical Turk 1 .

Experiment Design
1https://www.mturk.com

Gatherplots was developed to overcome limitations of con-
ventional scatterplots. Jittered scatterplots were selected as
baseline condition, as it is widely accepted standard tech-
nique maintaining same consistency with scatterplots. We
also wanted to measure how different modes of gatherplots
were effective. Therefore we designed the experiment to have
four conditions such as scatterplots with jittering (jitter), gath-
erplots with absolute mode (absolute), gatherplots with rela-
tive mode (relative), and gatherplots with one check button
to switch between absolute and relative mode (both). We
adopted between-subject design to eliminate learning effect
by experiencing other modes. The exact test environment is
available for review 2. Note the questions for each conditions
were generated randomly.

Participants
A total of 240 participants (103 female) completed our sur-
vey. Because some questions asked a concept of abso-
lute numbers and probability, we limited demographic to be
United States to remove the influence of language. Also to
ensure the quality of the workers, qualification of workers
were the approval rate of more than 0.95 with number of hits
approved to be more than 1,000. Only three of 240 partic-
ipants did not use English as their first language. 119 peo-
ple had more than bachelor’s degree, with 42 people having
high school degree. We filtered random clickers, if the time to
complete one of questions was shorter than a reasonable time,
5 seconds. Eventually, we have a total of 211 participants.

Task
As scatterplots can support various types of tasks, it is dif-
ficult to come up with a representative task. After review-
ing tasks for categorical variables, we selected three types of
tasks such as retrieving value as a low-level task; compar-
ing and ranking as a high-level task. For the comparing and
ranking task, two different types of questions were asked: the
tasks to consider absolute values such as frequency and tasks
that consider relative values such as percentage. Therefore,
for one visualization 5 different questions were generated.

2https://purdue.qualtrics.com/SE/?SID=SV_
9YX7LCgsiwv0Voh

https://www.mturk.com
https://purdue.qualtrics.com/SE/?SID=SV_9YX7LCgsiwv0Voh
https://purdue.qualtrics.com/SE/?SID=SV_9YX7LCgsiwv0Voh


For gatherplots, our interest is more about the difference be-
tween questions considering absolute values and relative val-
ues. The five types of questions are as follows:

• Type 1: retrieve value considering one subgroup

• Type 2: comparing of absolute size of subgroup between
groups

• Type 3: ranking of absolute size of subgroup between
groups

• Type 4: comparing relative size of subgroup between
groups

• Type 5: ranking relative size of subgroup between groups

To reduce the chance of one chart being optimal by luck for
specific task, two charts of same problem structure were pro-
vided. Eventually, the resulting questions were 10 for each
participant. Each question was followed by the question ask-
ing confidence of estimation with a 7-point Likert scale, and
the time spent for each question was measured.

Hypotheses
We believe that different types of tasks will favor from differ-
ent type of layouts. Therefore our hypotheses are as follows:

H1 For retrieving value considering one subgroup (Type 1),
absolute, relative, both mode reduces the occurrence of the
error than jitter mode.

H2 For tasks considering absolute values (Type 2 and 3), the
absolute mode reduces the error.

H3 For tasks considering relative values (Type 4 and 5), the
relative mode reduces the error.

Results
The results were analyzed with respect to the accuracy (cor-
rect or incorrect), time spent, and confidence of estimation.
Based on our hypotheses, we analyzed the different modes
of layout for each type of question: retrieve value, absolute
value task, and relative value task.

Accuracy
The number and percentage of participants who answered
correct and incorrect answers are shown in Figure 12. Even-
tually, we had 42 participants for jitter, 56 participants for
absolute, 56 participants for relative, and 57 participants fro
both mode.

As the measure for each question was either correct or incor-
rect, a logistic regression was employed using PROC LOGIS-
TICS in SAS. For the retrieving-value task (Type 1), both the
the absolute mode and relative mode had significant main ef-
fects (Wald Chi-Square = 18.58, p < 0.01, Wald Chi-Square
= 21.05, p < 0.01, respectively) with a significant interaction
effect (Wald Chi-Square = 19.53, p = 0.03) (H1 confirmed).
For absolute-value tasks (Type 2 and 3), both the the absolute
mode and relative mode had significant main effects (Wald
Chi-Square = 10.35, p < 0.01, Wald Chi-Square = 10.35,
p < 0.01, respectively) with a significant interaction effect
(Wald Chi-Square = 4.31, p = 0.03) (H2 confirmed). For
relative-value tasks (Type 4 and 5), only the relative mode
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Figure 12. (a) The percentage of participants who have got the answer
correct for retrieving value task. (b) The percentage of participants who
have got the answer correct for absolute type tasks for comparing and
ranking. (c) The percentage of participants who have got the answer
correct for relative type tasks for comparing and ranking.

had a significant effect (Wald Chi-Square= 5.10, p = 0.02 )
(H3 confirmed).

Time spent
The time spent (in seconds) for each question was compared
using mixed-model ANOVA with repeated measures. For
the retrieving-value task, on average, the time spent (sec) for
each interface was for jitter (44.26), absolute (56.84), relative
(52.45), and both (56.57). There was no significant difference
between interfaces (p > 0.05 for all cases).

For the absolute-value task (Type 2 and 3), on average, the
time spent (sec) for each interface was for jitter (30.74), ab-
solute (32.3), relative (33.6), and both (47.91). The interface
had a significant main effect (F (3, 207) = 11.5, p < 0.01).
However, when we conducted pairwise comparisons with ad-
justed p-values using simulation, the only significant differ-
ence in time spent was when using the both interface which
took longer (p < 0.01 for all comparisons).

For relative-value task (Type 4 and 5), on average, the time
spent for each interface was for jitter (26.6), absolute (31.12),
relative (31.38), and both (46.78). The interface had a sig-
nificant main effect (F (3, 207) = 10.12, p < 0.01). How-
ever, when we conducted pairwise comparisons with adjusted
p-values using simulation, the only significant difference in
time spent was when using the both interface which took
longer (p < 0.01 for all comparisons).



Confidence
The 7-point Likert-scale rating was used for the level of confi-
dence on their estimation. For the value-retrieving task (Type
1), Kruskal-Wallis non-parametric test revealed that the type
of interface had significant impact on the confidence level
(χ2(3) = 74.57p < 0.01). The mean rating for each inter-
face was for jitter (4.8), absolute (6.3), relative (6.0), and both
(6.25). A post-hoc Pairwise Wilcoxon Rank Sum test was
employed with Bonferroni correction to adjust errors. The
jitter interface was significantly lower than the other three
modes (p < 0.01 for all cases). There was no difference
between absolute, relative, and both interfaces.

For absolute-value tasks (Type 2 and 3), Kruskal-Wallis non-
parametric test revealed that the type of interface had signif-
icant impact on the confidence level (χ2(3) = 18.32, p <
0.01). The mean rating for each interface was jitter (5.4),
absolute (5.7), relative (5.0), and both (5.8). A post-hoc Pair-
wise Wilcoxon Rank Sum test was employed with Bonferroni
correction to adjust errors. The interface with both mode was
significantly higher than relative and jitter mode (p < 0.01 for
both), however no difference with the absolute mode. The in-
terface with absolute mode was significantly higher than rel-
ative and jitter mode (p < 0.01).

For relative-value tasks (Type 4 and 5), Kruskal-Wallis non-
parametric test revealed that the type of interface did not have
significant impact on the relative tasks (χ2(3) = 4.1, p =
0.2). The mean rating was jitter (4.7), absolute (4.9), relative
(4.9), and both (4.8).

One possibilities for result is that relative task might be harder
than others. The low correct percentage of questions are also
shown in Figure 12(c). To see that, we have tested the confi-
dence level among task types. Kruskal-Wallis non-parametric
test revealed that the type of task had significant impact on
the confidence level (χ2(2) = 148.1, p < 0.01). The mean
rating for retrieving value (5.9), absolute (5.5), and relative
(4.8). The post-hoc Pairwise Wilcoxon Rank Sum test was
employed with Bonferroni correction to adjust errors showed
that all three task types have significantly different (p < 0.01
for all cases).

DISCUSSIONS

Scalability
As the dataset tend to become large size, the scalability of vi-
sualization becomes an important issue. There are two main
tasks related to the scatterplots, which are an overview of cor-
relation and detection of outliers. Gatherplots are effective in
showing the overview as the dataset becomes large. How-
ever as the dataset increases, the dot size shrinks. And the
detection of outliers becomes less plausible. In this sense,
gatherplots are not scalable to the large datasets. It is more
applicable to the dataset of small to medium size, with multi-
dimensionality. Also as the dataset becomes large, individual
object identification becomes less relevant, and the gather-
plots resembles histograms itself, which is similar with Jean-
Francois et al. [20]. One particular worst case for gatherplots
are when there are severe concentration of value over spe-
cific values. As the dot size and visual space for clusters are

same over the categorical values, this makes overall dots size
very small. Relative mode by user interaction can alleviate
this problem, because it allows small outliers to become large
enough to be visible.

Evaluation Challenges
Conducting quantitative experiments with visualizations is
challenging. First, as visualizations support various cognitive
tasks, designing a representative task is challenging. Scatter-
plots supports diverse types of tasks such as detecting corre-
lation, clusters, or outliers. In this experiment we decided to
test a particular case with categorical data, which has distinc-
tive views compared to conventional scatterplots. Due to the
categorical data structure, the task types was also limited to
a specific context. Although it is a narrow case, the purpose
of this study was to show the effectiveness of different layout
modes in a quantitative way. The results indicated that the
users could understand the visualization and accomplish the
task that should be supported. However, we could also ob-
serve that the difficulty level was different for each task type.
In general, ranking tasks were more difficult than comparing
tasks and questions asking about relative values were more
difficult than those of absolute values. Therefore, maintaining
similar difficulty level among tasks should also be considered
while designing tasks. Second, when designing a study to
evaluate a new technique, it is challenging to design a proper
baseline condition. As visualizations have several features,
the baseline should be selected to be different only for key
features. If various parts are different, it is hard to under-
stand what part has affected user performance. In our study
we selected scatterplots with jittering as baseline as it is 1)
a technique for the scatterplots for overplotting, 2) it main-
tains individual objects, and 3) well-known technique. So it
provides base-line for the performance. But it would be also
desirable to compare the performance with a purpose-specific
technique, such as histograms or hieraxes.

CONCLUSION AND FUTURE WORK
We have proposed the gatherplots, an extention of scatter-
plots, which enable overview without clutter for multidimen-
sional data including categorical variables. While gatherplots
are optimal for categorical variables, it can also be used to
ameliorate overplotting caused by continuous ordinal vari-
ables. We discussed several aspects of gatherplots includ-
ing layout, coloring, tick format, and matrix formations. We
also evaluated the technique with a crowdsourced user study
showing that gatherplots are more effective than the jittering,
and absolute and relative mode serves specific types of tasks
better. Finally, in-depth feedback from an expert review in-
volving visualization reviewers revealed several limitations
for the gatherplots technique. We addressed these weaknesses
and suggested possible remedies.

We believe that gathering is a general framework to formu-
late the transition of overlapping visualization to space-filling
visualization without sense of individual objects. In the fu-
ture, we plan on studying the application of this framework
to other visual representations to explore novel visualizations.



For example, parallel sets can be reconstructed to render indi-
vidual lines instead of block lines, which would enable com-
bining both categorical and continuous variables. Gathering
also enables mixing nominal variables and ordinal variables
in a single axis. This can be pursued further, for example in
a gathering lens that gathers underlying objects according to
a data property. If we apply this lens to selected boundary in
crowded region of scatterplots, the underlying distribution of
that region can be revealed.

ACKNOWLEDGMENTS
[Anonymized for double-blind review.]

REFERENCES
1. B. B. Bederson, B. Shneiderman, and M. Wattenberg.

Ordered and quantum treemaps: Making effective use of
2D space to display hierarchies. ACM Transactions on
Graphics, 21(4):833–854, 2002.

2. A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist,
and J.-D. Fekete. GraphDice: A system for exploring
multivariate social networks. Computer Graphics
Forum, 29(3):863–872, 2010.

3. D. Carr, W. Nicholson, R. Littlefield, and D. Hall.
Interactive color display methods for multivariate data.
In Naval Research Sponsored Workshop on Statistical
Image Processing and Graphics, pages 215–250, 1983.

4. H. Chernoff. The use of faces to represent points in
k-dimensional space graphically. Journal of the
American Statistical Association, 68(342):361–368,
1973.

5. W. S. Cleveland and M. E. McGill. Dynamic graphics
for statistics. CRC Press, 1988.

6. W. S. Cleveland and R. McGill. Graphical perception
and graphical methods for analyzing scientific data.
Science, 229(4716):828–833, 30 1985.

7. L. Cosmides and J. Tooby. Are humans good intuitive
statisticians after all? Rethinking some conclusions from
the literature on judgment under uncertainty. Cognition,
58(1):1–73, 1996.

8. T. N. Dang, L. Wilkinson, and A. Anand. Stacking
graphic elements to avoid over-plotting. IEEE
Transactions on Visualization and Computer Graphics,
16(6):1044–1052, 2010.

9. A. Dix and G. Ellis. By chance - enhancing interaction
with large data sets through statistical sampling. In
Proceedings of the ACM Conference on Advanced
Visual Interfaces, pages 167–176, 2002.

10. G. Ellis and A. Dix. A taxonomy of clutter reduction for
information visualisation. IEEE Transactions on
Visualization and Computer Graphics,
13(6):1216–1223, Nov. 2007.

11. N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the
dice: Multidimensional visual exploration using
scatterplot matrix navigation. IEEE Transactions on
Visualization and Computer Graphics,
14(6):1539–1148, 2008.

12. N. Elmqvist and J.-D. Fekete. Hierarchical aggregation
for information visualization: Overview, techniques and
design guidelines. IEEE Transactions on Visualization
and Computer Graphics, 16(3):439–454, 2010.

13. J.-D. Fekete and C. Plaisant. Interactive information
visualization of a million items. In Proceedings of the
IEEE Symposium on Information Visualization, pages
117–124, 2002.

14. Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner.
Hierarchical parallel coordinates for exploration of large
datasets. In Proceedings of the IEEE Conference on
Visualization, pages 43–50, 1999.

15. S. Haroz and D. Whitney. How capacity limits of
attention influence information visualization
effectiveness. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2402–2410, 2012.

16. J. A. Hartigan and B. Kleiner. Mosaics for contingency
tables. In Computer Science and Statistics: Proceedings
of the Symposium on the Interface, pages 268–273.
Springer, 1981.

17. S. Havre, B. Hetzler, and L. Nowell. ThemeRiver:
Visualizing theme changes over time. In Proceedings of
the IEEE Symposium on Information Visualization,
pages 115–123, 2000.

18. H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm.
Visualizing association rules with interactive mosaic
plots. In Proceedings of the ACM Conference on
Knowledge Discovery and Data Mining, pages 227–235,
2000.

19. S. Huron, R. Vuillemot, and J.-D. Fekete. Visual
sedimentation. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2446–2455, 2013.

20. J.-F. Im, M. J. McGuffin, and R. Leung. Gplom: The
generalized plot matrix for visualizing multidimensional
multivariate data. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2606–2614, 2013.

21. R. Kosara, F. Bendix, and H. Hauser. Parallel sets:
interactive exploration and visual analysis of categorical
data. IEEE Transactions on Visualization and Computer
Graphics, 12(4):558–568, 2006.

22. A. Mayorga and M. Gleicher. Splatterplots: Overcoming
overdraw in scatter plots. IEEE Transactions on
Visualization and Computer Graphics, 19(9), Sept.
2013.

23. B. McDonnel and N. Elmqvist. Towards utilizing GPUs
in information visualization: A model and
implementation of image-space operations. IEEE
Transactions on Visualization and Computer Graphics,
15(6):1105–1112, 2009.

24. L. Micallef, P. Dragicevic, and J.-D. Fekete. Assessing
the effect of visualizations on Bayesian reasoning
through crowdsourcing. IEEE Transactions on
Visualization and Computer Graphics,
18(12):2536–2545, 2012.



25. G. Paolacci, J. Chandler, and P. Ipeirotis. Running
experiments on Amazon Mechanical Turk. Judgment
and Decision Making, 5(5):411–419, 2010.

26. B. Shneiderman, D. Feldman, A. Rose, and X. F. Grau.
Visualizing digital library search results with categorical
and hierarchical axes. In Proceedings of the ACM
Conference on Digital Libraries, pages 57–66, 2000.

27. B. W. Silverman. Density Estimation for Statistics and
Data Analysis. Chapman and Hall, 1986.

28. S. S. Stevens. On the theory of scales of measurement.
Science, 103(2684):677–680, June 1946.

29. M. Trutschl, G. Grinstein, and U. Cvek. Intelligently
resolving point occlusion. In Proceedings of IEEE
Symposium on Information Visualization, pages
131–136, 2003.

30. E. R. Tufte. The visual display of quantitative
information. Graphics Press, Cheshire, CT, 1983.

31. J. M. Utts. Seeing Through Statistics. Duxbury Press,
1996.

32. L. Wilkinson. Dot plots. The American Statistician,
53(3):276–281, 1999.

33. W. Willett, S. Ginosar, A. Steinitz, B. Hartmann, and
M. Agrawala. Identifying redundancy and exposing
provenance in crowdsourced data analysis. IEEE
Transactions on Visualization and Computer Graphics,
19(12):2198–2206, 2013.

34. S. Zhai, W. Buxton, and P. Milgram. The
partial-occlusion effect: utilizing semitransparency in
3D human-computer interaction. ACM Transactions on
Computer-Human Interaction, 3(3):254–284, 1996.


	Introduction
	Background
	Characterizing Overplotting
	Appearance-based Methods
	Distortion-based Methods
	Visualizing Categorical Variables

	Design of Gatherplots
	Categorical Variable vs. Categorical Variable
	Area vs. Length Oriented Layout
	Uniform vs. Variable Area Allocation
	Role of Relative Mode

	Continuous ordinal Variable vs. Categorical Variable
	Visual Design and Interactions for gatherplots
	Continuous Color Dimension
	Shape for Items
	Design of Tick Marks 
	Applications for Continuous Variables
	Axis Folding Interaction


	Evaluation of Gatherplots
	Experiment Design
	Participants
	Task
	Hypotheses
	Results
	Accuracy
	Time spent
	Confidence


	Discussions
	Scalability
	Evaluation Challenges

	Conclusion and Future Work
	Acknowledgments
	REFERENCES 

