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ABSTRACT 

In order to reach targets on ever increasing smartphone 

touch displays, users tilt and shift the device in their 

hands. In this work, we use this grip change as a 

continuous information stream, useful for detecting where 

the user will touch while their finger is still en-route. We 

show that grip change detected using standard mobile 

motion sensors produces similar in the air touch point 

predictions to techniques that use auxiliary sensor arrays, 

even in varying physical scenarios (e.g. interacting in a 

moving vehicle). Finally, we show that a model 

combining grip change and the resulting touch point is 

able to predict where users intended to land, lowering 

error rates by 41%. 
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INTRODUCTION 

With the growing popularity of mobile devices, 

researchers have searched for ways of improving input 

accuracy on touch displays. Of note, researchers have 

identified a number of factors that affect touch patterns in 

systematic ways: hand posture used to touch a target, for 

example, using the dominant thumb versus two thumbs to 

type [1]; the location of the target on the screen [4]; and 

even the physical activity, such as walking [3] versus 

sitting at a desk, and whether or not users are interacting 

while carrying items in the offhand [6]. These are all 

significant factors that impact touch patterns and therefore 

touch accuracy on mobile devices. Adaptive systems take 

advantage of systematic patterns of user touch interaction 

under these conditions to adjust where the user touched to 

where they intended to touch. Yin et al. demonstrated 

improved touch accuracy using an adaptive soft keyboard 

that takes into consideration systematic offsets caused by 

hand posture and individual differences [7]. 

The need for these adaptations has, if anything, increased 

with the variability of form factors spanning compact 3.5 

inch displays (e.g. Nokia M8) and phone/tablet hybrids 

with near-6 inch touchscreens (e.g. Samsung Galaxy Note 

3). As mobile displays get larger, the ability to accurately 

target all around the screen suffers. Bergstrom-Lehtovirta 

et al. adaptively modeled user’s reach to define a 

functional area describing the maximum reach of their 

current hand posture [2].  

When users need to reach targets on the edge and outside 

their functional area, they change their grip of the phone. 

As Figure 1 shows, users tend to shift the device in their 

hand, extending the thumb’s reach. As Noor et al. 

showed, this grip change can be used to predict the touch 

point [5]—or rather a likely area around it, Figure 1b in 

green – while the finger is still en-route, a state we refer 

to as in the air prediction. Beyond in the air prediction, 

grip change can also be an indicator of where the user 

intended to land at the moment they touch down—which 

we refer to as on touchdown prediction. As the target in 

Figure 1c is outside their functional area, even at 

maximum reach, the user’s final touch point might miss a 

target but be close to one or more viable targets. The grip 

change motion preceding the touch is indicative of intent 
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Figure 1. Grip change as the user reaches for the target (blue

square): (a) device lays flat in palm, then (b) device is tilted 

towards the thumb by the other fingers enabling in the air 

prediction of an area  (green circle) around a likely touch 

point (green X), and finally (c) at thumb touchdown,

prediction can adjust actual input to intended target (red X)

). 



to reach to further targets. In other words, a model that 

uses the grip change and the touchdown point together, 

can better predict where the user intended to hit than 

models that only consider one of these factors.  

Noor et al. detected this grip change through adding extra 

hardware – a sensor array on the back of the device [5]. 

The authors used the grip change—as measured while the 

user reaches for the target—to predict the resulting touch 

down point while the finger is still en route (in the air). 

However, we wondered whether an extraneous sensor 

array is critical to in the air prediction, or whether internal 

motion sensors (i.e. accelerometers and gyroscopes 

common to present devices) can achieve similar results. 

Given the potential predictive power of grip change on 

touch accuracy, it is additionally important to understand 

whether detection of grip change is differentially affected 

by under common physical scenarios such as walking or 

interacting while in a moving vehicle. This is not 

addressed in the literature. 

Our work proposes using solely the motion sensors 

internal to present devices to detect grip change and use it 

to make in the air predictions of touch endpoints in four 

different physical scenarios (sitting at a desk, standing 

without support, interacting while walking, and while on a 

moving bus). Our prediction rates are similar to Noor et 

al. Additionally, we show that a model that combines both 

grip change and the actual touch point to adjust the final 

landing point lowers touch errors by 41% consistently 

throughout the four physical scenarios tested. 

In a nutshell, grip change can be used to continuously 

provide information about users’ intent, in the air and on 

touchdown, beyond where they actually touch. Predicting 

where the user will touch prior to touchdown allows for 

the potential of a virtual hover space for mobile devices, 

while touchdown models take into consideration user 

intent in lowering touch errors. 

STUDY 1 – IN THE AIR PREDICTION USING MOBILE 
MOTION SENSORS 

In order to verify that hand grip change can be reliably 

detected using solely mobile motion sensors (i.e. 

accelerometer and gyroscope) in the air, we ran a study 

that largely replicates Noor et al.’s touch target prediction 

experiment. Participants were asked to touch the single 

on-screen square target to complete a trial. The target size 

was chosen to be physically identical to Noor et al.’s 

setup on the mobile device (1cm
2
). The target was 

randomly placed on the surface of the display for each 

trial with a uniform distribution. As in Noor et al., once 

the user successfully clicked on the target, the next target 

was displayed after an enforced 500ms delay. 

Participants and Apparatus 

Eight participants (mean age 25.7, 7 males), all right-

handed, were asked to perform 1000 trials each (8000 

trials in all), using the phone in their right hand and 

interacting with the thumb (i.e. a one-handed posture). All 

participants were regular and frequent mobile phone users 

Participants were presented with a custom application on 

a Nokia Lumia 920 with a 4.5” display at a 1280x720 

resolution. As the trial start button always covered the 

bottom 14% of the device’s touchscreen the total 

application area was instead 1094x720. Of note is that this 

device is significantly larger than the one used in Noor et 

al. (a Nokia N9 with a 3.9” display), which makes a direct 

comparison of prediction accuracy non-trivial. The 

application recorded 2D touch points on the surface of the 

display as well as 3-axis accelerometer and gyroscope 

readings at a sampling rate of 50Hz. 

Results 

In order to predict where participants touched based on 

hand grip change, we used the raw, time ordered 

accelerometer and gyroscope measures as features. As did 

Noor et al. [5], we used Gaussian Process (GP) 

Regression. It generated a nonlinear model that maps 

motion sensor values to 2D screen coordinates. Due to 

individual differences in how users grip and move the 

phone in their hand, the model was created on a per-user 

basis. Participant data was split between training and test 

trials using 10-fold cross validation.  

As Figure 2 shows, the resulting models (in blue) provide 

a root mean square error (RMSE) smaller than a baseline 

model that simply picks the center of the available area 

for its prediction (in red). Predicting 0.1s before the touch 

provides a RMSE of 20.3mm, and 21.8mm at 0.2s. 

Though our much larger device makes comparison 

difficult, our grip change model provides competitive 

results to Noor et al.’s 18mm (at 0.2s before touch) but 

without the added external sensor array. The ability to 

predict a touchdown area while the finger is still en route 

opens up the possibility of developing a hover space for 

touch interaction and improved feedback. 

 

Figure 2. Root mean square error (and ± standard error 

in dashed lines) of touch point prediction before touch 

contact using mobile sensor detected hand grip change. 



STUDY 2 – GRIP CHANGE ON THE MOVE 

The second experiment had two goals: (1) show how in 

the air prediction using grip change detected from mobile 

motion sensors performs in a more representative task and 

under a variety of physical conditions (e.g. while 

walking); and (2) show how grip change can provide 

information on users’ intent.  

Methodology 

The experiment was designed to gather touch and motion 

data from participants in a common task from every-day 

device use: selecting a particular target from an array of 

homescreen icons. In contrast to the first study, the 

participant selected one target, highlighted red, out of the 

always-visible array of 5x4 targets that simulate a Google 

Android and Apple iOS homescreen. Each target was 

sized 99x99 pixels, which corresponds to the Google 

Android recommended size for icons for the Lumia 920’s 

resolution and physical size [8].  

In order to see how well a grip change prediction model 

works under common motion scenarios, participants 

performed the study in four physical conditions: 

a) Sit: seated at a table, with their phone-handling hand 

partially resting on the table for stability 

b) Stand: free standing without any stability support 

c) Walk: walking around a closed outdoors course at a 

constant, researcher defined comfortable walking speed  

d) Bus: seated on a moving bus 

Each trial highlighted one out of the 20 targets available 

at random with a uniform distribution. In order to 

simulate realistic, continuous interaction, the application 

moved to the next trial as soon as the participant touched 

the screen, without the enforced delay of the first study. 

The study was designed to be approximately 1 hour in 

duration, which allowed 200 trials per physical condition. 

During the Bus scenario, data was only collected while 

the bus was moving – participants were asked to pause 

while the vehicle was stationary. 

Participants and Apparatus 

In all, 12 participants were recruited from a local 

university (mean age 26.1, 7 males, all right handed). All 

completed the study for a total of 9600 touch trials (200 

trials for each of the four conditions per participant) using 

a one-handed posture. All participants were regular and 

frequent mobile users. 

The custom experiment application ran on the same Nokia 

Lumia 920 device as in the first study. The application 

collected 2D touch coordinates for each trial, and 3-axis 

accelerometer and gyroscope readings sampled at 50Hz. 

Results – In the Air Prediction on the Move  

In order to verify whether target prediction is possible in 

different physical conditions, we once again trained user-

specific GP regression models mapping mobile motion 

sensor sequences to touch coordinates. Figure 3 shows 

touch prediction results using 10-fold cross validation for 

each condition, with the baseline model – always 

guessing in the center of the application area – shown in 

red. Note that the baseline error is higher (28mm) than the 

first experiment due to the static set of available targets to 

select from. First, we note that, as in Study 1, the 

prediction models created in the stationary conditions (Sit 

and Stand) have a lower RMSE than the baseline model. 

At 0.1s before touch, the GP regression model created in 

the Sit condition had a RMSE of 23.7mm (with Stand at 

22.9mm), still lower than the baseline model (28.3mm).  

Specifically comparing the results between the two 

studies shows that Study 1’s was better; it produced an 

RMSE of 20.3mm at 0.1s before touch, whereas in Study 

2 for Sit it was 23.7mm. This can be explained by our 

more conservative approach in Study 2. We used a more 

realistic task and did not enforce a delay between trials; at 

times, more than one target was clicked within the 500ms 

prior to touch down. Due to this lack of clear 

segmentation and a more limited data set (200 trials per 

user, per condition) prediction RMSE in the Sit condition 

is higher than the first study. This more realistic scenario 

shows how in the air prediction using grip change 

degrades in a freeform homescreen task. 

Lastly, unpredictable motion such as interacting in a bus, 

leads to higher prediction RMSE (24.4mm at 0.1s before 

touch) than sitting at a table (23.7mm at 0.1s), though 

critically, still lower than baseline models (28.3mm). This 

shows that, even with a relatively small amount of prior 

data, touch prediction using hand grip change is viable in 

high motion, unpredictable physical conditions.  

Results – On Touchdown Prediction of Touch Intent 

The secondary goal of the study was to verify whether 

grip change can improve touch performance by providing 

insight into targeting intent (i.e. on touchdown). 

In order to separate user intent from their inherent touch 

patterns, we first built a baseline regression model 

  

Figure 3. Root mean square error for the predicted touch 

points in Experiment 2’s four different physical conditions. 



mapping the 2D touch coordinates to the center of the 

highlighted target (referred to as the XY Model). We use 

the center of the highlighted target as an approximation of 

where the user intended to touch. This model takes into 

consideration individual touch behavior but uses no other 

information other than touch down to infer user intent.  

Next, we built a GP regression model that uses both 

where the user touched, and the hand grip change as 

measured by the motion sensor readings of the 500ms 

prior to touch down (XY+Grip Model). Once again, the 

model attempts to map these features to the center of the 

highlighted target. We test the two models against the raw 

touch points (Raw). The models’ goal is to improve on the 

Raw accuracy rates by inferring where the user intended 

to touch, rather than where they actually touched. To 

build and test the models, we use 10-fold cross validation. 

An analysis of variance with Model (XY, XY+Grip, Raw) 

and Physical Condition (Sit, Stand, Walk, and Bus) as 

within-subject factors found a significant main effect of 

Model on touch accuracy (F2,22 = 25.162, p < 0.001). 

Bonferroni correction showed significant differences 

between all pairs of Models. As Figure 4 shows, 

participants had a Raw accuracy of 83% over all physical 

conditions. The XY Model which took into consideration 

user-specific touch behaviours improved accuracy to 

88%. Our XY+Grip Model further boosted accuracy to 

93% consistently over all physical conditions – a 41% 

reduction in error rates over raw touch performance. 

In summary, hand grip as measured by the phone’s 

motion sensors right before a touch provides valuable 

insight into where the user intended to touch. Leveraging 

this information in addition to touchdown XY coordinates 

significantly improves touch accuracy when compared to 

a model that adjusts based solely on the touch down point. 

CONCLUSIONS AND FUTURE WORK 

In contrast to more static models that take into 

consideration individual touch behaviour (e.g. hand 

posture), we consider grip change as a continuous 

information stream, valuable at multiple points in the 

interaction sequence. In the air, grip change detected 

using standard mobile motion sensors can help estimate a 

landing point which may be used as a virtual hover space 

and provide interactive support—e.g. constant feedback 

of a user’s landing point. On touchdown, grip change that 

preceded a touch point can be a useful predictor of where 

users intend to hit, rather than where they landed. Our 

results show that, although performance degrades in high 

motion scenarios, hand grip change can make reasonable 

landing predictions and reliably improves touch accuracy, 

reducing error rates by 41%.  

Importantly, our study trained a model to infer intent by 

having full knowledge of the intended target. A question 

remains of how well such models can be trained and 

perform online, with some user clicks being unintended 

(i.e. an erroneous click relative to their intended target). 

Furthermore, as our in the air and touchdown models are 

adaptive, they are not immune from a potential user 

feedback loop. Our models were evaluated offline, and it 

remains to be seen how users will adapt their touch when 

encountering a system that is itself adapting based on 

inferred intent (i.e., online). Continuous visual feedback 

of the model’s predicted touch point may be critical to 

help users correct their targeting motion. 

Finally, grip change was detected through data gathered 

on a relatively large smartphone. While the current trend 

is one of ever increasing displays, more research is 

needed to verify how grip change varies on different 

phone-to-hand ratios, and whether smaller devices have 

detectable and useful grip variations.  

In conclusion, our studies show that grip change is a 

promising information side channel that is detectable with 

internal motion sensors, reliable to physical movement, 

and makes valuable predictions both in the air and on 

touchdown to improve touch interaction. 
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