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Internal structure as well as surface geometry

Inhomogeneous translucent materials



f(�x) = �b



f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model



f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation



f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation

Physical artefact
Measurements

Noise
Problem-specific



f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation

Physical artefact
Measurements

Noise
Problem-specific

Equation
Forward & inverse problems



Background
LCD screen

Rotation
stage axis

Scan
volume

Translation
stage axis

Visual hull

Camera &
view frusta

M
e
a
s
u
re

m
e
n
t
s



Acquired data

Very repeatable
80-90dB scan-to-scan SNR



Model Parameters

• Refractive index field (scalar n)

• Discretised onto voxel grid (local basis functions)

• Grid resolution (increase iteratively)

• Regular vs unstructured grid

• Alternative: global wavelet basis functions



Image formation model
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• Ray equation of geometric optics

• To system of 1st order ODEs

• RK4 IVP (although we have exit data)

• Adaptive steps: quickly jump over 
empty/homogeneous regions

• Step-size plays large role in difficult 
regions (glancing angles)

• 20k rays/sec in uniform 1k voxels
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Gradient computation

• Automatic numerical estimation easy but 
requires many function evals and large 
storage

• Raytracer can compute Jacobian: 
precompute gradient of local basis 
functions then integrate those gradients 
along ray path 



The equation

• In general f(x) is nonlinear

• BPDN

• Constrained X

• Cast as general optimisation problem

• Trust-region, Gauss-Newton, Interior point, 
Levenberg-Marquardt, Quasi-Newton... 

• Implicit linear approximation made at each 
iteration of the solver

min
�x∈X

||f(�x)−�b||2

min
�x∈X

||x||1 s.t. ||f(�x)−�b||2 < σ



Linearisation

• Implicit local approximations in nonlinear 
solver

• Explicitly linearise at each iteration

• Approach used by Cha & Vest

• Trace rays, solve, retrace, resolve, retrace...

• Overlay pyramid resolution iteration, or 
just use AMG (questionable benefits over 
geometric multigrid)

Ax = b



Solving for gradients

• 3 equations, same f

• Integrate vector field to scalar

• Problems with nonuniform boundaries

• Replace vector equation with scalar

• delta = angle between in/out ray

• minimise norm of delta residual

f(nx) = δx

f(ny) = δy

f(nz) = δz



The matrix A

Inside visual hull
Outside visual hull

One column
per voxel

One row
per ray

⨉ =

δxδyδzx� y� z�



Advantages of A

• Fast and easy to compute Ax and ATb

• All the machinery of linear algebra

• Understand system properties (solution exists if 
sufficient rank, solution stable if condition number 
low, how does condition number change as camera 
geometry changes...)

• Only useful in debugging/analysis sense. For just 
solving system, matrix-free preferable.



Disadvantages of A

• Sheer size

• Sparse COO matrix: row/col indices highly 
compressible, add ~10%

• Need not store whole A: trace one camera and 
discard rays. Then trace again when we need to 
perform ATb. Low mem for 2X time

# voxels (V):
# nonzeros/row (K):

5123 ∗ 1/10
3
√
V ∗ 9

V ∗K ∗ 4b/10243 = 107Gb



Linear Solvers

• QR

• least-squares solution

• requires full matrix

• adapt to IRLS for outlier reflections

• SART

• trace and store Ai each iteration, accumulate products

• SPGL1

• sparsity constraint on x

• supports matrix-free operation but implementing ATb without matrix 
requires at least 2X tracing time per iteration



Nonlinear solvers

• No need for full matrix

• But useful for sparsity pattern of Jacobian

• However that pattern is fixed at 
initialisation, so would need large kernel 
support for conservative ray-tunnel

• Many function evals for Hessian



Conclusions

• Solve for indices rather than gradients

• Prefer matrix-free solver over explicit A

• Prefer analytical gradients to numerically 
computed gradients from solver


