
Schlieren Tomography
PSM Brainstorming Week

June 2011

Internal structure as well as surface geometry

Inhomogeneous translucent materials

f(�x) = �b

f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation

f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation

Physical artefact
Measurements

Noise
Problem-specific

f(�x) = �b

Image formation model
General function f
Linear A
Real world vs model

Model parameters
Refractive index field

Reflection, scattering, etc
Discretisation

Physical artefact
Measurements

Noise
Problem-specific

Equation
Forward & inverse problems

Background
LCD screen

Rotation
stage axis

Scan
volume

Translation
stage axis

Visual hull

Camera &
view frusta

M
e
a
s
u
re

m
e
n
t
s

Acquired data

Very repeatable
80-90dB scan-to-scan SNR

Model Parameters

• Refractive index field (scalar n)

• Discretised onto voxel grid (local basis functions)

• Grid resolution (increase iteratively)

• Regular vs unstructured grid

• Alternative: global wavelet basis functions

Image formation model
d

ds

�
n
d�x

ds

�
= ∇n

• Ray equation of geometric optics

• To system of 1st order ODEs

• RK4 IVP (although we have exit data)

• Adaptive steps: quickly jump over
empty/homogeneous regions

• Step-size plays large role in difficult
regions (glancing angles)

• 20k rays/sec in uniform 1k voxels

n
d�x

ds
= �d

d�d

ds
= ∇n

Gradient computation

• Automatic numerical estimation easy but
requires many function evals and large
storage

• Raytracer can compute Jacobian:
precompute gradient of local basis
functions then integrate those gradients
along ray path

The equation

• In general f(x) is nonlinear

• BPDN

• Constrained X

• Cast as general optimisation problem

• Trust-region, Gauss-Newton, Interior point,
Levenberg-Marquardt, Quasi-Newton...

• Implicit linear approximation made at each
iteration of the solver

min
�x∈X

||f(�x)−�b||2

min
�x∈X

||x||1 s.t. ||f(�x)−�b||2 < σ

Linearisation

• Implicit local approximations in nonlinear
solver

• Explicitly linearise at each iteration

• Approach used by Cha & Vest

• Trace rays, solve, retrace, resolve, retrace...

• Overlay pyramid resolution iteration, or
just use AMG (questionable benefits over
geometric multigrid)

Ax = b

Solving for gradients

• 3 equations, same f

• Integrate vector field to scalar

• Problems with nonuniform boundaries

• Replace vector equation with scalar

• delta = angle between in/out ray

• minimise norm of delta residual

f(nx) = δx

f(ny) = δy

f(nz) = δz

The matrix A

Inside visual hull
Outside visual hull

One column
per voxel

One row
per ray

⨉ =

δxδyδzx� y� z�

Advantages of A

• Fast and easy to compute Ax and ATb

• All the machinery of linear algebra

• Understand system properties (solution exists if
sufficient rank, solution stable if condition number
low, how does condition number change as camera
geometry changes...)

• Only useful in debugging/analysis sense. For just
solving system, matrix-free preferable.

Disadvantages of A

• Sheer size

• Sparse COO matrix: row/col indices highly
compressible, add ~10%

• Need not store whole A: trace one camera and
discard rays. Then trace again when we need to
perform ATb. Low mem for 2X time

voxels (V):
nonzeros/row (K):

5123 ∗ 1/10
3
√
V ∗ 9

V ∗K ∗ 4b/10243 = 107Gb

Linear Solvers

• QR

• least-squares solution

• requires full matrix

• adapt to IRLS for outlier reflections

• SART

• trace and store Ai each iteration, accumulate products

• SPGL1

• sparsity constraint on x

• supports matrix-free operation but implementing ATb without matrix
requires at least 2X tracing time per iteration

Nonlinear solvers

• No need for full matrix

• But useful for sparsity pattern of Jacobian

• However that pattern is fixed at
initialisation, so would need large kernel
support for conservative ray-tunnel

• Many function evals for Hessian

Conclusions

• Solve for indices rather than gradients

• Prefer matrix-free solver over explicit A

• Prefer analytical gradients to numerically
computed gradients from solver

