
Aspect Mining Using Event Traces

Silvia Breu
MCT/NASA Ames, USA
silvia.breu@gmail.com

Jens Krinke
FernUniversiẗat in Hagen, Germany

krinke@acm.org

Abstract

Aspect mining tries to identify crosscutting concerns
in existing systems and thus supports the adaption to an
aspect-oriented design. This paper describes the first as-
pect mining approach that detects crosscutting concerns in
legacy systems based on dynamic analysis.

The analysis uses program traces that are generated in
different program executions as underlying data pool. These
traces are then investigated for recurring execution patterns
based on different constraints, such as the requirement that
the patterns have to exist in different calling contexts in the
program trace. The implemented approach was evaluated in
several case studies over systems with more than 80 kLoC.
The tool was able to identify automatically both existing and
seeded crosscutting concerns.

1. Introduction

The notion oftangled code[6] refers to code that exists
several times in a software system but cannot be encapsu-
lated by separate modules using traditional module systems
because it crosscuts the whole system. This makes software
more difficult to maintain, to understand, and to extend.
Aspect-Oriented Programming[6] provides new separation
mechanisms for such complexcrosscutting concerns[10].

A major problem in re-engineering legacy code based
on aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also calledaspect min-
ing. The detected concerns can be re-implemented as sep-
arate aspects, thereby improving maintainability and exten-
sibility as well as reducing complexity. Aspect mining can
also provide insights that enable us to classify common as-
pects which occur in different software systems, such as
logging, timing, and communication.

Several approaches based on static program analysis
techniques have been proposed for aspect mining [3, 4, 5, 7,
8, 12]. This paper describes the first dynamic program anal-
ysis approach that mines aspects based on program traces.
During program execution, program traces are generated,

which reflect the run-time behaviour of a software system.
These traces are then investigated for recurring execution
patterns. Different constraints specify when an execution
pattern is “recurring”. These include the requirement that
the patterns have to exist in different calling contexts in the
program trace. The dynamic analysis approach monitors ac-
tual (i.e., run-time) program behaviour instead of potential
behaviour, as static program analysis does. As the case stud-
ies in this paper show, the technique is able to identify au-
tomatically both existing and seeded crosscutting concerns
in software systems.

2. Aspect Analysis Algorithms

The basic idea behind dynamic analysis algorithms is to
observe run-time behaviour of software systems and to ex-
tract information from the execution of the programs. The
dynamic aspect mining approach introduced here is based
on the analysis of program traces which mirror a system’s
behaviour in certain program runs. Within these program
traces we identify recurring execution patterns which de-
scribe certain behavioural aspects of the software system.
We expect that recurring execution patterns are potential
crosscutting concerns which describe recurring functional-
ity in the program and thus are possible aspects.

In order to detect these recurring patterns in the program
traces, a classification of possible pattern forms is required.
Therefore, we introduce so-calledexecution relations. They
describe in which relation two method executions are in the
program trace.

2.1. Classification of Execution Relations

The definition of execution relations in our analysis ap-
proach is based on program traces. Intuitively, a program
trace is a sequence of method invocations and exits. We only
consider entries into and exits from method executions be-
cause we can then easily keep track of the relative order in
which method executions are started and finished. We focus
on method executions because we want to analyse object-
oriented systems where logically related functionality is en-
capsulated in methods. Formally, aprogram traceTP of a

1



programP with method signaturesNP is defined as a list
[t1, . . . , tn] of pairs ti ∈ (NP × {ent, ext}), whereent
marks entering a method execution, andext marks exiting
a method execution.

To make the program traces easier to read, theent- and
ext-points are represented by{ and} respectively, and the
redundantname-information is discarded from theext-
points as the trace structure implies to whichname theext
belongs. Figure 1 shows an example trace.

1 B() {
2 C() {
3 G() {}
4 H() {}
5 }
6 }
7 A() {}
8 B() {
9 C() {}

10 }
11 A() {}
12 B() {
13 C() {
14 G() {}
15 H() {}
16 }

17 J() {}
18 }
19 F() {
20 K() {}
21 I() {}
22 }
23 J() {}
24 G() {}
25 H() {}
26 A() {}
27 B() {
28 C() {}
29 G() {}
30 F() {
31 K() {}
32 I() {}

33 }
34 }
35 D() {
36 C() {}
37 A() {}
38 B() {
39 C() {}
40 }
41 K() {}
42 I() {
43 J() {}
44 }
45 G() {}
46 E() {}
47 }

Figure 1. Example trace

Crosscutting concerns are now reflected by the two dif-
ferent execution relationsthat can be found in program
traces: A method can be executed either after the preceed-
ing method execution is terminated (e.g.,H() in line 4 is
executed afterG() in line 3), or inside the execution of the
preceeding method call (e.g.,C() in line 2 is executed in-
sideB() in line 1). We distinguish between these two cases
and say that there are outside- and inside-execution rela-
tions in program traces. However, this distinction alone is
not yet sufficient for aspect mining. For example, the exe-
cution ofB() in line 27 has three methods executed inside
its execution,C() , G() , andF() in lines28 ff., but the in-
formation which of those methods comes first is lost. We
thus define formally:

u ⇀ v, u, v ∈ NP , is called anoutside-before-execution
relation if [(u, ext), (v, ent)] is a sublist ofTP . S⇀(TP ) is
the set of all outside-before-execution relations in a program
traceTP . This relation can also be reversed, i.e.,v ↼ u is
an outside-after-execution relationif u ⇀ v ∈ S⇀(TP ).
The set of all outside-after-execution relations in a program
traceTP is then denoted withS↼(TP ).

u ∈> v, u, v ∈ NP is called aninside-first-execution re-
lation if [(v, ent), (u, ent)] is a sublist ofTP . u ∈⊥ v is
called aninside-last-execution relationif [(u, ext), (v, ext)]
is a sublist ofTP . S∈>(TP ) is the set of all inside-first-
execution relations in a program traceTP , S∈⊥(TP ) is the

set of all inside-last-execution relations. In the following,
we dropTP when it is clear from the context.

For the example trace shown in Figure 1 we thus get the
following setS⇀ of outside-before-execution relations:

S⇀ = {B() ⇀ A() , G() ⇀ H() , A() ⇀ B() , C() ⇀ J() ,

B() ⇀ F() , K() ⇀ I() , F() ⇀ J() , J() ⇀ G() ,

H() ⇀ A() , B() ⇀ D() , C() ⇀ G() , G() ⇀ F() ,

C() ⇀ A() , B() ⇀ K() , I() ⇀ G() , G() ⇀ E() }

The setS↼ of outside-after-execution relations can be
found directly in the trace or simply by reversingS⇀.
The setsS∈> of inside-first-execution relations andS∈⊥

of inside-last-execution relations are as follows:

S∈> = {C() ∈>B() , G() ∈>C() , K() ∈>F() , C() ∈>D() ,

J() ∈>I() }
S∈⊥ = {H() ∈⊥C() , C() ∈⊥B() , J() ∈⊥B() , I() ∈⊥F() ,

F() ∈⊥B() , J() ∈⊥I() , E() ∈⊥D() }

2.2. Execution Relation Constraints

Recurringexecution relations in the program traces can
be seen as indicators for more general execution patterns.
To decide under which circumstances certain execution re-
lations are recurring patterns in traces and thus potential
crosscutting concerns in a system, constraints have to be de-
fined. The constraints will implicitely also formalize what
crosscutting means.

However, for technical reasons we have to encode that
there is no further method execution between nested method
executions or between method invocation and method exit.
This absence of method executions is represented by the
designated empty method signatureε. Therefore, the defini-
tion of execution relations is extended such that each sub-
list of a program traceTP induces not only relations defined
above but also additional relations involvingε. Table 1 sum-
marises this conservative extension. It shows for each two-
element sublist of the trace (on the left side) the execution
relations that follow from that sublist (on the right side). The
execution relations added by the introduction ofε are anno-
tated with an asterisk (∗).

The program trace remains as defined before with
method signatures fromNP whereas the execution rela-
tions now can consist of method signatures fromNP ∪ {ε}.
Thus, the setsS⇀, S↼, S∈> , andS∈⊥ also include exe-
cution relations involvingε. Now, we can define the con-
straints for the dynamic analysis.

Formally, an execution relations = u ◦ v ∈ S◦,
◦ ∈ {⇀,↼,∈>,∈⊥}, is calleduniform if ∀w ◦ v ∈ S◦ :
u = w, u, v, w ∈ NP ∪ {ε} holds, i.e., it exists in always the
same composition.̂U◦ is the set of execution relationss ∈
S◦ which satisfy this requirement. This constraint is easy
to explain. Consider an outside-before-execution relation

2



Trace-sublist (NP ) Relation s (NP ∪ {ε})
(u, ext) (v, ent) u ⇀ v, v ↼ u
(v, ent) (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> v
BOL (u, ent) ε ⇀ u∗, u ↼ ε∗, u ∈> ε∗

(u, ext) (v, ext) u ⇀ ε∗, ε ↼ u∗, u ∈⊥ v
(u, ext) EOL u ⇀ ε∗, ε ↼ u∗, u ∈⊥ ε∗

(w, ent) (w, ext) ε ∈> w∗, ε ∈⊥ w∗

BOL/EOL denote begin/end of list

Table 1. Extended execution relations

u ⇀ v. This is defined as recurring pattern if each execu-
tion of v is preceded by an execution ofu. The argumenta-
tion for outside-after-execution relations is analogous. The
uniformity-constraint also applies to inside-execution rela-
tions. An inside-execution relationu ∈> v (or u ∈⊥ v)
can only be a recurring pattern in the given program trace
if v never executes another method thanu as first (or last)
method inside its body.

We now drop theε-relations and define a further analy-
sis constraint: An execution relations = u ◦ v ∈ U◦ =
Û◦\{u ◦ v | u = ε ∨ v = ε} is calledcrosscuttingif
∃s′ = u ◦ w ∈ U◦ : w 6= v, u, v, w ∈ NP holds, i.e.,
it occurs in more than a single calling context in the pro-
gram traceTP . For inside-execution relationsu ∈> v (or
u ∈⊥ v) the calling context is the surrounding method exe-
cutionv. For outside-execution relationsu ⇀ v (or u ↼ v)
the calling context is the methodv invoked before (or af-
ter) which always methodu is executed.R◦ is the set of ex-
ecution relationss ∈ U◦ which satisfy this requirement.
Execution relationss ∈ R◦ are also calledaspect candi-
datesas they represent the potential crosscutting concerns
of the analysed software system.

2.3. Aspect Mining Algorithm

The constraints described above can be implemented by
a relatively straightforward algorithm to actually compute
the setsR◦ of uniform, crosscutting execution relations that
represent the aspect candidates. In our running example,
uniformity narrows down the potential aspect candidates to
the following sets of execution relations:

U⇀ = {B() ⇀ D() , G() ⇀ E() , G() ⇀ H() , K() ⇀ I() }
U↼ = {B() ↼ A() , I() ↼ K() }

U∈> = {C() ∈>B() , C() ∈>D() , K() ∈>F() }
U∈⊥ = {E() ∈⊥D() , I() ∈⊥F() }

After we enforce the crosscutting constraint, we obtain the
final setsR◦ of aspect candidates which comply with uni-
formity andcrosscutting.

R⇀ = {G() ⇀ H() , G() ⇀ E() }, R↼ = ∅
R∈> = {C() ∈>B() , C() ∈>D() }, R∈⊥ = ∅

The full example and details of theDynamicAspectMining
Tool (DynAMiT) implementing the aspect mining algo-
rithm can be found in [1].

3. Evaluation

This section presents two case studies usingDynAMiT.
All identified aspect candidates have been checked against
the source code of each analysed software system, and the
sources have been checked for possible aspects. Thus, the
interpretation of the results is not only based on the sug-
gestions from the algorithms but also on a manual valida-
tion using the existing program code. However, the gener-
ated traces do not monitor calls to any standard Java API
method. This can have effects on the analysis results which
are ignored for now.

3.1. Case Study “Graffiti”

Graffiti [2] is an industrial-sized editor for graphs and
a toolkit for implementing graph visualisation algorithms,
developed using Java. It currently comprises about450 in-
terfaces and classes, 3.100 methods and 82.000 lines, in-
cluding comments. A tracing aspect, written in AspectJ, has
been woven into the existing Graffiti system and the system
obtained has been executed in seven different runs. In total,
the traces consist of 33706 events. The analysis revealed 40
aspect candidates from before-execution relations, 40 from
after-execution relations, 33 from first-execution relations,
and 25 from last-execution relations.

In particular, DynAMiT has detected a typical cross-
cutting concern in Graffiti: logging. The analysis of
the program traces found several calls to a method
format(LogRecord record) of class SimpleFor-

matter as first and/or last call inside several set- and
add-methods. A code investigation revealed that all execu-
tions of those methods are logged in a log-file. For that, a
logger provided by Java’s classLogger is used. We have
not traced calls to the Java API but the logger uses a for-
matter to transform the system’s log messages. The API
provides an abstract classFormatter which is imple-
mented by several special formatter classes but Graf-
fiti’s developers have chosen to write their own class
SimpleFormatter implementing only basic functional-
ity. The analysis detects the formatting of the log-messages
and therefore provides us with the information that log-
ging exists. Thus, the crosscutting logging functional-
ity is revealed and can be encapsulated into an aspect in a
re-engineering process.

Outside-aspect candidates.Figure 2(a) and (b) shows
some of the before- and after-aspect candidates, resp., that
DynAMiT has detected in Graffiti. Together, the results in-
dicate that wheneverisSessionListener is called,

3



(a) void editor.MainFrame.addSessionListener(SessionListener) ⇀
boolean plugin.tool.AbstractTool.isViewListener(),
String plugin.gui.AbstractGraffitiContainer.getId(),
boolean plugins.inspectors.defaults.Inspector.isSelectionListener()

(b) void editor.MainFrame.addSessionListener(SessionListener) ↼
void editor.StatusBar.updateGraphInfo(),
boolean plugin.tool.AbstractUndoableTool.isSessionListener(),
boolean plugins.modes.defaults.MegaMoveTool.isSessionListener(),
boolean plugins.inspectors.defaults.Inspector.isSessionListener()

(c) Algorithm[] plugin.GenericPluginAdapter.getAlgorithms() ⇀
String plugins.algorithms.bfs.BFS.getName(),
String plugins.algorithms.trivialgridrestricted.TrivialGridRestrictedAlgorithm.getName(),
String plugins.algorithms.generators.RandomGraphGeneratorNeighborConnecting.getName(),
String plugins.algorithms.connect.Connect.getName(),
String plugins.algorithms.bfstopsort.BFSTopSort.getName(),
String plugins.algorithms.numbernodes.NumberNodesAlgorithm.getName(),
String plugins.algorithms.connectspecial.ConnectSpecial.getName(),
String plugins.algorithms.apsp.DijkstraAlgorithm.getName(),
String plugins.algorithms.trivialgrid.TrivialGridAlgorithm.getName(),
String plugins.algorithms.randomizedlabeling.RandomEdgeLabelingAlgorithm.getName(),
String plugins.algorithms.fordfulkerson.FordFulkersonAlgorithm.getName(),
String plugins.algorithms.springembedder.KKSpringAlgorithm.getName(),
String plugins.algorithms.springembedderrestricted.KKSpringRestrictedAlgorithm.getName()

(d) boolean editor.MainFrame.isSessionActive() ∈>
boolean editor.actions.ViewNewAction.isEnabled(),
boolean editor.actions.RunAlgorithm.isEnabled(),
void editor.actions.EditUndoAction.update(),
void editor.actions.EditRedoAction.update(),
boolean editor.actions.FileCloseAction.isEnabled()

(e) boolean editor.MainFrame.isSessionActive() ∈⊥
boolean editor.actions.ViewNewAction.isEnabled(),
boolean editor.actions.RunAlgorithm.isEnabled(),
boolean editor.actions.FileCloseAction.isEnabled()

Figure 2. Example aspect candidates in Graffiti

this listener is added as aSessionListener to the af-
filiated Graffiti MainFrame . The remaining parts of the
found pattern just provide information about the con-
trol flow, e.g., that after adding aSessionListener it is
checked if a tool is aViewListener .

Graffiti can easily be extended with graph algorithms by
writing plugins. Before a plugin can be used, it has to be
registered, which requires a unique string as identifier. Thus,
every plugin has to implement methodgetName from inter-
faceAlgorithm that provides the name of the correspond-
ing algorithm. Figure 2(c) shows how this architectural
principle is reflected in aspect candidates. In all appropri-
ate algorithm classes,getName is always preceded by a call
to getAlgorithms of class GenericPluginAdapter .
Since Graffiti contains thirteen different algorithm plugins,
DynAMiT detects thirteen individual aspect candidates; the
automatic grouping as shown reveals that they all reflect the
same architecture.

Inside-aspect candidates.Figure 2(d) and (e) shows some
of the inside-aspect candidates detected byDynAMiT. In
particular, it shows that the methodisSessionActive

in MainFrame is called as both first and last method
within the method isEnabled in each of the classes
FileCloseAction, ViewNewAction , and RunAlgo-

rithm . In the system architecture, this is reflected
by the fact that these three classes all extend the ab-
stract classGraffitiAction . Therefore, the question
arises why this functionality has not been encapsulated into
GraffitiAction following established object-oriented
design principles. The answer to that is quite simple:
There are a lot more classes extendingGraffitiAction

which do not have the same functionality, e.g.,EditUndo-

Action or ExitAction . Hence, the detected pattern is a
distinct crosscutting pattern and thus a candidate for encap-
sulating into an aspect.

Moreover, isSessionActive was also found as
first-aspect candidate in theupdate method in the classes
EditRedoAction and EditUndoAction . A look into
the code shows thatEditRedoAction and EditUndo-

Action both extend the abstract classGraffitiAction .
So, the question is again why the developers did not choose
a better design. However, the analysis algorithm has de-
tected this pattern in only those two classes but not all of the
classes that extendGraffitiAction , and a quick investi-
gation of the source code confirms that result. This suggests
that the developers have not been able to provide a differ-
ent design by encapsulating this concern into the superclass
without overriding methods in subclasses, which would be
considered bad practice. The introduction of more inher-

4



itance levels would not cure the problem either—in fact,
there is no better solution since Java does not support mul-
tiple inheritance.

In summary, the analysis has shown that a lot of the func-
tionality concerning actions like opening, saving, or edit-
ing files or graphs is crosscutting Graffiti’s architecture. It
is worth to consider restructuring the system accordingly.

3.2. Case Study “AspectJ Example telecom”

In another case study we checked whetherDynAMiTcan
also detect crosscutting concerns in Java programs which
are already extended by aspects written in AspectJ. For that
purpose thetelecom example from the AspectJ distribu-
tion has been chosen. It includes a small simulation of cus-
tomers making telephone calls with different connection
types (local and long-distance). The simulation can be exe-
cuted at three different levels:BasicSimulation just per-
forms the calls with the basic functionality (e.g., call, ac-
cept, hang up).TimingSimulation is the extension with
a timing aspect which keeps track of a connection’s du-
ration and cumulates a customer’s connection durations.
BillingSimulation is a further extension with a billing
aspect that adds functionality to calculate charges for phone
calls of each customer based on connection type and dura-
tion. All three simulations have been traced and the result-
ing program traces have been fed intoDynAMiT.

Analysis Results for BasicSimulation.The analysis of the
telecom implementation with the basic functionality pro-
vides us with crosscutting concerns as well as some insights
into the usual sequence of actions in phone calls. The appli-
cation of the analysis constraints tells us that the simula-
tion visualises the steps a customer is doing, such as calling
someone, answering the phone, or hanging up. Also, when
someone calls another person, the addition of the call to the
pipeline of the customer is done as last thing. The same ap-
plies when a called person picks up the phone—the call is
added to his pipeline.

Analysis Results for TimingSimulation. The result-
ing sets of aspect candidates in theTimingSimulation

are larger. Generally, they include the aspect candidates al-
ready detected in theBasicSimulation . The analy-
sis also discovers functionality added by the application of
the timing aspect. Figure 3(a) shows these additional as-
pect candidates. They are clear crosscutting concerns: Be-
fore the timer can be started, stopped, or queried, one
has to get hold of the timer belonging to the correct con-
nection. Additionally, the timer is needed after a connec-
tion is completed or dropped, and when caller and re-
ceiver of a connection are determined. The reason is quite
clear, as the timer of the appropriate connection is re-
quired to calculate the connection’s duration.

(a) Timer telecom.Timing.getTimer(Connection) ⇀
void telecom.Timer.start(),
void telecom.Timer.stop(),
long telecom.Timer.getTime()

Timer telecom.Timing.getTimer(Connection) ↼
void telecom.Connection.complete(),
void telecom.Connection.drop(),
Customer telecom.Connection.getCaller(),
Customer telecom.Connection.getReceiver()

(b) long telecom.Timer.getTime() ⇀
Customer telecom.Connection.getReceiver(),
long telecom.Local.callRate(),
long telecom.LongDistance.callRate()

Customer telecom.Billing.getPayer(Connection) ↼
long telecom.Local.callRate(),
long telecom.LongDistance.callRate()

Figure 3. Add. aspect candidates in telecom

Analysis Results for BillingSimulation. Finally, the third
simulation, which includes the timing aspect as well as a
billing aspect on top of that, has been analysed. Again, the
functionality already detected in theBasicSimulation

and theTimingSimulation remains, and additional pat-
terns introduced by the billing aspect are found. Figure 3(b)
shows the additionally detected aspect candidates in the
BillingSimulation . Before the call rate (local or long
distance) for a connection or the receiver of a connection is
determined, the actual time of the timer is needed. Further-
more, the analysis tells us that—after the correct call rate
for a connection is determined—the connection’s payer has
to be found out.

A comparison of the analysis results for the three sim-
ulation versions clearly shows that the presented approach
identifies basic functionality and the functionality seeded by
the two different AspectJ aspects. The analysis is fully auto-
matic, complete, (i.e., detects all candidates) and produces
no false positives.

4. Related Work

One of the first aspect mining approaches that was de-
veloped is implemented in a tool called Aspect Browser
[3]. It identifies crosscutting concerns with textual-pattern
matching (much likegrep ) and highlights them. The tool
assumes that aspects have a signature which can be identi-
fied by a textual regular expression. Its success in finding
aspects thus strongly depends on naming conventions fol-
lowed in the analysed program code.

AMT [4] is based on a multi-modal analysis for an
advanced separation of concerns in legacy code. It com-
bines text- and type-based analysis to reduce false positives.
While the first works very well with strict naming conven-
tions, the latter works better for objects of different types
but similarly named. AMTex [12] has been built on top
of AMT and offers additional analytical functionality, e.g.,

5



composing mining activities, managing mining tasks, and
cross-analysing mining results.

The exploration tool JQuery [5] offers a generic browser
that allows the definition of logic queries in a specific query
language. The navigation/analysis of the source code can be
based on different structural relationships, regular expres-
sion matches, and complex searches for structural patterns.
The user can navigate through the browser’s tree and can ex-
tend it by making additional queries.

Loughran and Rashid [7] investigated representations
of aspects found in a legacy system in order to provide
tool support for aspect mining. They considered three ap-
proaches: direct aspect storage coupled with meta-data,
mapping of aspect anatomy to the database model, and a
hybrid approach that combines the previous two.

Ophir [8] identifies initial re-factoring candidates using
a control-based comparison. The initial identification phase
builds upon code clone detection using program depen-
dence graphs. The next step filters undesirable re-factoring
candidates. It looks for similar data dependencies in sub-
graphs representing code clones. The last phase identifies
similar candidates and coalesces them into sets of similar
candidates, which are the re-factoring candidate classes.

5. Conclusions and Future Work

This paper proposed a new analysis approach to iden-
tify crosscutting concerns in existing software systems
that relies on the analysis of the program’s run-time be-
haviour rather than its static structure. This is the first
dynamic analysis technique for aspect mining [11]. It in-
vestigates program traces and abstracts them into execution
relations calledoutside-before-, outside-after-, inside-first-,
and inside-last-execution relations. Based on these rela-
tions, we have defineduniformity and crosscuttingcon-
straints to formalize the meaning of crosscutting concerns.
An analysis algorithm that works on this abstract represen-
tation of program execution traces has been proposed; it
focuses on occurrences in different calling contexts. Un-
like other approaches that mine forspecificuser-defined
aspects, our approach can identify automatically both exist-
ing and seeded crosscutting concerns.

The algorithm has been implemented in theDynAMiT
tool that has been evaluated in several case studies. In the
first case study, an industrial-sized graph editor has been
analysed and many aspect candidates have been found.Dy-
nAMiT has helped to understand crosscutting concerns in
the system. The second case study investigated whether the
analysis approach can also be applied to detect crosscut-
ting concerns in programs which are already extended by
aspects. Here,DynAMiT identified the superimposed cross-
cutting behaviour of all these seeded aspects, without false
positives.

In future work, the presented technique can easily be ex-
tended. After crosscutting concerns have been identified,
they can be refactored into aspects. To validate that the
refactored version works as intended, dynamic interference
detection [9] can be used. This approach distinguishes in-
tended impact of aspect application from unwanted interfer-
ence by comparison of event traces. Futhermore, since our
technique observes run-time behaviour, it uses resolved dy-
namic binding which can lead to false positives. We plan
to additionally use static program information to eliminate
such false positives. Finally, we intend to use quantitative
information to identify crosscutting concerns in event traces
that almost confirm to the execution relation constraints.
This information can not only help to find more crosscut-
ting concerns but can also detect possible errors in software
systems. Known techniques from data mining can be used
for this purpose, e.g., association rules.

Acknowledgements.A big thank you to Bernd Fischer for
his valuable feedback.

References

[1] S. Breu. Aspect Mining Using Event Traces. Master’s thesis,
U Passau, March 2004.

[2] Gravisto homepage. http://www.gravisto.org.
[3] W. Griswold, Y. Kato, and J. Yuan. Aspect Browser: Tool

Support for Managing Dispersed Aspects. TR CS99-0640,
UCSD, 1999.

[4] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. InWorkshop on Advanced
Separation of Concerns, 2001.

[5] D. Janzen and K. D. Volder. Navigating and Querying Code
Without Getting Lost. In2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSD), pp. 178–187, 2003.

[6] G. Kiczales et. al. Aspect-Oriented Programming. In
ECOOP, 1997.

[7] N. Loughran and A. Rashid. Mining Aspects. InWorkshop
on Early Aspects: Aspect-Oriented Requirements Engineer-
ing and Architecture Design (AOSD Sat. workshop), 2002.

[8] D. Shepherd and L. Pollock. Ophir: A Framework for Au-
tomatic Mining and Refactoring of Aspects. TR 2004-03, U
Delaware, 2003.

[9] M. Stoerzer, J. Krinke, and S. Breu. Trace Analysis for
Aspect Application. InWorkshop on Analysis of Aspect-
Oriented Software (AAOS), 2003.

[10] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. InICSE-21, pp. 107–119, 1999.

[11] A. van Deursen, M. Marin, and L. Moonen. Aspect Min-
ing and Refactoring. InFirst Intl. Workshop on REFactor-
ing: Achievements, Challenges, Effects (REFACE), 2003.

[12] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in Mid-
dleware Platforms. In2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSD), pp. 130–139, 2003.

6


