---++Cheat sheet for Matlab user: [[http://mathesaurus.sourceforge.net/octave-r.html][Matlab vs. R]] ---++Some useful R commands: *# command line execution of R scripts:* _R CMD BATCH < test.r_ *# get help (e.g.):* _> help ("write.table)_ *# write data to file:* _> write.table(sqd, file="test.dat", col.names = FALSE, quote=FALSE, row.names=FALSE)_ *# read data from file:* _> rtd <- read.table("uf100-0239-ws55-rtd.dat")_ _> median(rtd$V2)_ _> summary(rtd)_ | *V1* | *V2* | *V3* | | Min. :0.0010 | Min. : 95 | Min. :0.0001115 | | 1st Qu.:0.2507 | 1st Qu.: 3276 | 1st Qu.:0.0038440 | | Median :0.5005 | Median : 8318 | Median :0.0097611 | | Mean :0.5005 | Mean :12995 | Mean :0.0152500 | | 3rd Qu.:0.7502 | 3rd Qu.:18308 | 3rd Qu.:0.0214859 | | Max. :1.0000 | Max. :91660 | Max. :0.1075688 | *# produce histogram of column V2:* _> hist(rtd$V2)_ *# plot cdf:* _> library(stepfun)_ _> plot(ecdf(rtd$V2))_ *# qq plot against std normal:* _> qqnorm(rtd$V2); qqline(rtd$V2)_ *# wilcoxon rank sum test (compare rtds) = mann-whitney u-test:* _> library(ctest)_ _> wilcox.test(rtd$V2,rtd40$V2,paired=FALSE)_ Note: Wilcoxon rank sum test with continuity correction data: rtd$V2 and rtd40$V2 W = 440056, p-value = 3.45e-06 alternative hypothesis: true mu is not equal to 0 # -> reject null hyp (null hyp = med are equal) -> med are not equal *# kolmogorov-smirnoff test:* _> ks.test(rtd$V2,rtd50$V2)_ Note: Two-sample Kolmogorov-Smirnov test data: rtd$V2 and rtd50$V2 D = 0.029, p-value = 0.7944 alternative hypothesis: two.sided Warning message: cannot compute correct p-values with ties in: ks.test(rtd$V2, rtd50$V2) # -> do not reject null hyp (distr are equal) *# kendall's tau test:* _> corr <- read.table("flat100-corr-nov+.dat") # xxx_ _> cor.test(corr$V1,corr$V2, method="kendall")_ Note: Kendall's rank correlation tau data: corr$V1 and corr$V2 z.tau = 12.9965, p-value = < 2.2e-16 alternative hypothesis: true tau is not equal to 0 sample estimates: tau 0.8816162 # -> reject null hyp (no correlation between data) *# spearman's rank order test (alt to above):* _> cor.test(corr$V1,corr$V2, method="spear")_ *# wilcoxon matched pairs signed-rank test:* _> wilcox.test(corr$V1,corr$V2, paired=TRUE)_ Note: Wilcoxon signed rank test with continuity correction data: corr$V1 and corr$V2 V = 3919, p-value = 1.657e-06 alternative hypothesis: true mu is not equal to 0 # -> reject null hyp (no sign perf diff) *#kolmogorov-smirnov test against exp distr* _> ks.test(rtd$V2, pexp, 1/mean(rtd$V2))_ _> ks.test(rtd$V2, pexp, log(2)/29.4)_ Note: chisq.test is _not_ the goodness of fit test! *# qqplot of rtd vs. simple exp approx:* _> qqplot(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2)))_ _> qqplot(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2)),log="xy")_ _> rtd <- read.table("ihlk-restart-output-1000-7-rtd.dat")_ _> qqplot(rtd$V2,qexp(1:500/500,log(2)/29.4))_ *# combine columns into table (array):* _> qq <- cbind(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2)))_ *# write 2-dim table (array) to file:* _> write (t(qq), file="qq.dat", ncolumns=2)_ *# count number of inst for which alg A > alg B:* _> table(corr$V1 > corr$V2)_ *# compute correlation of vectors x,y* _> cor(x,y)_ *# test distribution for normality:* _> shapiro.test(x)_ Note: Shapiro-Wilk normality test [p-value < alpha: null hypothesis = data are normally distributed is rejected] _from Holger H. Hoos_ -- Main.xulin730 - 22 Apr 2009
This topic: BETA
>
TipsAndTricks
>
WebHome
>
EmpiricalAlgorithmics
>
R
Topic revision: r1 - 2009-04-22 - xulin730
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback