Tags:
tag this topic
create new tag
view all tags
<verbatim> # read data from file: > rtd <- read.table("uf100-0239-ws55-rtd.dat") > median(rtd$V2) > summary(rtd) V1 V2 V3 Min. :0.0010 Min. : 95 Min. :0.0001115 1st Qu.:0.2507 1st Qu.: 3276 1st Qu.:0.0038440 Median :0.5005 Median : 8318 Median :0.0097611 Mean :0.5005 Mean :12995 Mean :0.0152500 3rd Qu.:0.7502 3rd Qu.:18308 3rd Qu.:0.0214859 Max. :1.0000 Max. :91660 Max. :0.1075688 # produce histogram of column V2: > hist(rtd$V2) # plot cdf: > library(stepfun) > plot(ecdf(rtd$V2)) # qq plot against std normal: > qqnorm(rtd$V2); qqline(rtd$V2) # wilcoxon rank sum test (compare rtds): > library(ctest) > wilcox.test(rtd$V2,rtd40$V2) Wilcoxon rank sum test with continuity correction data: rtd$V2 and rtd40$V2 W = 440056, p-value = 3.45e-06 alternative hypothesis: true mu is not equal to 0 # -> reject null hyp (med are equal) # kolmogorov-smirnoff test: > ks.test(rtd$V2,rtd50$V2) Two-sample Kolmogorov-Smirnov test data: rtd$V2 and rtd50$V2 D = 0.029, p-value = 0.7944 alternative hypothesis: two.sided Warning message: cannot compute correct p-values with ties in: ks.test(rtd$V2, rtd50$V2) # -> do not reject null hyp (distr are equal) # kendall's tau test: > corr <- read.table("flat100-corr-nov+.dat") # xxx > cor.test(corr$V1,corr$V2, method="kendall") Kendall's rank correlation tau data: corr$V1 and corr$V2 z.tau = 12.9965, p-value = < 2.2e-16 alternative hypothesis: true tau is not equal to 0 sample estimates: tau 0.8816162 # -> reject null hyp (no correlation between data) # spearman's rank order test (alt to above): > cor.test(corr$V1,corr$V2, method="spear") # wilcoxon matched pairs signed-rank test: > wilcox.test(corr$V1,corr$V2, paired=TRUE) Wilcoxon signed rank test with continuity correction data: corr$V1 and corr$V2 V = 3919, p-value = 1.657e-06 alternative hypothesis: true mu is not equal to 0 # -> reject null hyp (no sign perf diff) #kolmogorov-smirnov test against exp distr > ks.test(rtd$V2, pexp, 1/mean(rtd$V2)) # note: chisq.test is _not_ the goodness of fit test! # qqplot of rtd vs. simple exp approx: > qqplot(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2))) > qqplot(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2)),log="xy") # combine columns into table (array): > qq <- cbind(rtd$V2,qexp(rtd$V1,1/mean(rtd$V2))) # write 2-dim table (array) to file: > write (t(qq), file="qq.dat", ncolumns=2) # count number of inst for which alg A > alg B: > table(corr$V1 > corr$V2) </verbatim> -- Main.DaveTompkins - 15 Jan 2006
E
dit
|
A
ttach
|
Watch
|
P
rint version
|
H
istory
: r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r1 - 2006-01-15
-
DaveTompkins
Home
Site map
BETA web
Communications web
Faculty web
Imager web
LCI web
Main web
SPL web
Sandbox web
TWiki web
TestCases web
BETA Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
P
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
E
dit
A
ttach
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback