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Abstract

This paperproposesand evaluatessofttimers, a new oper

ating systentacility that allows the efficient scheduling of

softwae eventsat a granularity downto tensof microsec-
onds.Softtimers canbeusedto avoidinterruptsandreduce
contet switchesassociatedvith networkprocessingvithout
sacrificinglow communicatiordelays.

More specifically softtimers enabletransportprotocols
like TCPto efficientlyperformrate-basealodking of padet
transmissions.Experimentshowthat rate-basedlodking
canimproveHTTPresponséimeoverconnectionsvith high
bandwidth-delayproductsby up to 89% andthat softtimers
allow a serverto employrate-basealodking with little CPU
overhead(2—-6%)at high aggregatebandwidths.

Softtimers canalsobeusedto performnetworkpolling,
which eliminatesnetworkinterruptsandincreasegshe mem-
ory accesdocality of the networksubsystemvithout sacri-
ficing delay Experimentshowthat this techniquecanim-
provethethroughputof a Web serverby up to 25%.

1 Introduction
We proposeand evaluatesoft timers, an operatingsystem
facility thatallows efficient schedulingof softwareeventsat
microsecondusec)granularity

The key ideabehindsoft timersis to take advantageof
certainstatesin the executionof a systemwherean event
handlercanbe invokedat low cost. Suchstatesncludethe
entrypointsof thevariousOSkernelhandlersyhich areex-
ecutedin responsdo systemcalls, exceptions(TLB miss,
pagefault, arithmetic) and hardware interrupts. In these
“trigger states” thecostof sasing andrestoringof CPUstate
andthe shift in memoryaccesdocality associatedvith the
switchto kernelmodehave alreadybeenincurred;invoking
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anadditionaleventhandlerfrom the trigger stateamortizes
this overheadbver alargeramountof usefulcomputation.

Of course the timesat which a systementersa trigger
stateareunpredictablenddependon the workload. There-
fore, soft timerscanschedulesventsonly probabilistically:
A soft timer event may be delayedpastits scheduledime
by a randombut boundedamountof time. In practice trig-
ger statesarereachedften enoughto allow the scheduling
of eventsat intervals down to afew tensof usecswith rare
delaysup to a few hundredusecs. As we will shaw, soft
timersallow the schedulingof eventsat theseintervalswith
verylow overheadwhile theuseof acorventionalhardware
interrupttimer atthe sameratewould resultin unacceptable
overheadbnthesystem.

We explore the useof a soft timersfacility to perform
two optimizationsin thenetwork subsystemSofttimersen-
ableatransporprotocollike TCPto efficiently performrate-
basedclodking, i.e.,to transmitpacletsat a givenrate,inde-
pendentof the arrival of acknavledgment(ACK) paclets.
Rate-basedlocking hasbeenproposedasa techniquethat
improvesthe utilization of networks with high bandwidth-
delay products[25, 18, 1, 10, 5]. Our experimentsshav
that a Web sener that employs rate-basedtlocking using
softtimerscanachieze up to 89%lower responséime than
a sener with a corventional TCP over networks with high
bandwidth-delayproduct.

A secondoptimization is soft timer based network
polling. Here,soft timer eventsareusedto poll the network
interface,thus avoiding interrupts. Experimentsshowv that
the performancef a Web sener usingthis optimizationcan
increaseby up to 25% over a corventionalinterrupt based
implementation.

The restof this paperis organizedas follows. In Sec-
tion 2, we provide backgroundandmotivationfor this work.
The soft timersfacility is presentedn Section3. Applica-
tions of soft timersare discussedn Section4. We present
empiricalresultsobtainedwith a prototypeimplementation
of softtimersin Section5, discusgelatedwork in Section6
andconcludein Section7. Backgroundnformationon the
needfor rate-basedlockingcanbefoundin the Appendix.



2 Background and motivation

ModernCPUsincreasinglyrely onpipeliningandcachingo
achieve high performanceAs aresult,the speedf program
executionis increasinglysensitve to unpredictablecontrol
transferoperations.Interruptsandcontect switchesarepar
ticularly expensve, asthey requirethe saving andrestoring
of the CPU stateandentail a shift in memoryaccesdocal-
ity. This shift typically causexacheand TLB missedn the
wake of the entryandthe exit from the interrupthandler or
the context switch,respectiely.

The costof interruptsand context switchesis generally
nota concernaslong asthey occuron a millisecond(msec)
timescale.For instance disk interrupts,corventionaltimer
interruptsusedfor time-slicing and the associatedontext
switchestypically occurat intervals on the order of tensof
msecs.

However, high-speedhetwork interfacescangeneratén-
terruptsand associateadontext switchesat intervals on the
orderof tensof usecs.A network recevve interrupttypically
entailsa context switchto a kernelthreadthatprocessethe
incomingpacket andpossiblytransmitsa new paclet. Only
after this threadfinishesis the actiity that was originally
interruptedresumed.

As we will shaw, theseinterruptsand context switches
canhave a significantimpacton the performanceof sener
systemsperforminglarge amountsof network 1/0. Evena
single FastEthernetinterfacecandeliver a full-sized paclet
every 120usecsandGigabit Ethernetis alreadyon the mar
ket. Moreover, mary high-endWeb seners alreadyhave
backboneconnectiongdo the Internetat Gigabitspeed.

2.1 Rate-based clocking

Achieving high network utilization on networks with in-
creasingly high bandwidth-delay products may require
transporiprotocolslike TCPto performrate-basedlodking,
thatis, to transmitpacletsat scheduledntervals,ratherthan
only in responseo the arrival of acknavledgment(ACK)
paclets.

CurrentTCP implementationsre strictly self-cloking,
i.e., paclettransmissionarepacedoy thereceptionof ACK
paclets from the recever. Adding the ability to transmit
pacletsata givenrate,independenof thereceptionof ACK
paclets (rate-basedclodking), hasbeenproposedio over-
come several known shortcomingsof current TCP imple-
mentations:

e Rate-baseclocking can allow a senderto skip the
slow-start phasein situationswherethe available network
capacityis known or can be estimated. This can lead to
significantly increasesn network utilization and achieved
throughput,particularly whentraffic is bursty andthe net-
work’s bandwidth-delayproductis high. Suchconditions
arise for instancewith Web (HTTP) traffic in today's Inter-
net[25, 1§].

¢ Rate-basedlocking canovercomethe effectsof ACK
compessionandbig ACKs. Eitherphenomenomay cause
a self-clocled sendetto transmita burst of pacletsin close
successionyhich canadwerselyaffect network congestion.
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¢ Rate-basedlocking allows a TCP sendetto shapéts
traffic in integratedservicesnetworks[10].

Rate-basedlockingrequiresa protocolimplementation
to transmitpaclketsat regularintervals. On high-bandwidth
networks, the requiredintervals are in the rangeof tensto
hundredsof usecs. For instance,transmitting 1500 byte
pacletsat 100Mbpsand 1Gbpsrequiresa paclet transmis-
sion every 120 pusecsand 12 usecs,respectrely. Sener
systemswith high-speedetwork connectiongransmitdata
at theseratesevenin today’s Internet. As we will show in
Section3, corventionalfacilities for eventschedulingavail-
ablein general-purposeperatingsystemsoday cannotef-
ficiently supporteventsat this granularity A moredetailed
discussiorof the needfor rate-basedlocking canbe found
in AppendixA.

To summarize this section, interrupts and context
switchesare increasinglycostly on moderncomputersys-
tems. At the sametime, high-speedhetwork interfacesal-
readygeneratanterruptsandassociatedontet switchesat
a rate that placesa significantburden on sener systems.
Rate-basedlockingin transportprotocols,which hasbeen
proposedasa techniqueto increasenetwork utilization and
performanceon high-speedVANs, necessitatesven more
interruptswhenimplementedisingcornventionaltimers.

In thefollowing sectionwe presenthedesignof thesoft
timers facility, which enablesefficient rate-basealocking
andcanbeusedto avoid network interrupts.

3 Design of the soft timersfacility

In this section we presenthe designof soft-timers,amech-
anismfor schedulindine-grainedeventsin anoperatingsys-
temwith low overhead.

Cornventionaltimer facilities scheduleeventsby invok-
ing a designatechandlerperiodically in the context of an
externalhardwareinterrupt. For example,anintel 8253pro-
grammableinterrupt timer chip is usually suppliedwith a
Pentium-base@€PU. The former canbe programmedo in-
terruptthe processoat a givenfrequeng.

Unfortunatelyusinghardwareinterruptsfor fine-grained
eventschedulingcausesigh CPU overheador the follow-
ing reasons:

e On a hardware interrupt, the systemhasto save the
context of thecurrentlyexecutingprogramand,afterexecut-
ing the interrupthandler restorethe interruptedprograms
state.

e Hardware interruptsare usually assignedhe highest
priority in the operatingsystem. Thus, irrespectve of the
processurrentlyrunningon the CPU, the interrupthandler
is allowedto interruptthe executionof the former. In gen-
eral,the dataandinstructionstouchedby the interrupthan-
dler are unrelatedto the interruptedentity, which can ad-
verselyaffect cacheandTLB locality.

In summarythe overheadf saving state restoringstate
andthe cache/TLBpollution associatedvith interruptslim-
its thegranularityatwhich acorventionalfacility cansched-
ule events.In Section5 we shav thatthetotal costof atimer
interruptin a busy Web sener amountsto on average4.45
psecson a 300MHz Pentium-limachinerunningFreeBSD-



2.2.6. This costis insignificantwhen interruptsare being
generatedvery msecbut it is unacceptable/heninterrupts
needto begeneratedsay)every 20 usecs.

The key ideabehindsoft timersis asfollows. During
normal operation,a systemfrequentlyreachesstatesin its
execution where an event handler could be invoked with
minimal overhead. Examplesof such opportunetrigger
statesare

e at the endof executinga systemcall, just beforere-
turningto theuserprogram,

e atthe endof executingan exceptionhandler suchas
the onestriggeredby a memoryexception(e.g., TLB*
or pagefault) or anarithmeticexception(e.g.,divide-
by-zero),

¢ attheendof executinganinterrupthandlerassociated
with a hardwaredevice interrupt,just beforereturning
from theinterrupt,

o whenerera CPUis executingtheidle loop.

In thesetrigger states,invoking an event handlercosts
no morethanafunctioncall andno saving/restoringof CPU
stateis necessaryFurthermorethe cacheandTLB contents
in thesetrigger stateshave alreadybeendisturbeddueto the
precedingactivity, potentiallyreducingtheimpactof further
cachepollution by the event handler Performanceesults
presentedn Section5 confirmthis reasoning.

Wheneer the systemreachesone of the trigger states,
the soft-timer facility checksfor ary pending soft timer
eventsandinvokesthe associatedhandlerswhen appropri-
ate.As such thefacility canexecutependingeventswithout
incurring the costof a hardwaretimer interrupt. Checking
for pendingsoft timer eventsin a trigger stateis very effi-
cient: it involvesreadingthe clock (usuallya CPUregister)
andacomparisorwith thescheduledime of theearliestsoft
timerevent?. Aswewill show, performingthis checkwhen-
everthe systenreachestrigger statehasno noticeablem-
pacton systemperformance.

A disadantageof the soft-timerfacility is thatthe time
at which an event handleris invoked may be delayedpast
its scheduledime, dependingon how muchtime passebe-
tweenthe instantwhena soft timer eventbecomeslue and
theinstantwhenthe systenmreaches triggerstate.

The maximaldelayexperienceddy a softtimer eventis
boundedbpecausehe soft timer facility still schedules pe-
riodic hardwareinterruptthatis usedto scheduleary over-
dueevents. The key pointto noticeis thataslong asa sys-
temreachegrigger stateswith sufficient frequeng, the soft
timer facility canschedulesventsat muchfiner granularity
thanwould befeasibleusinga periodichardwareinterrupt.

Resultgpresentedn Section5 shav thata 300MhzPen-
tium Il systemrunninga variety of workloadsreachegrig-
gerstatedrequentlyenoughto allow the schedulingof soft-
timer eventsat a granularityof tensof usecs.

11n somearchitecturege.g.,Pentium),TLB missesarehandled
in hardware;in thesemachinesTLB faultscannotbe usedastrig-
gerstates.

2A modified form of timing wheels[24] is usedto maintain
scheduledsofttimer events.
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Figure 1. Lower and upper bounds for event schedul-
ing

Thesoft-timerfacility providesthefollowing operations.

e neasur e_resol ution(). Returnsa 64-bit value
thatrepresentheresolutionof theclock (in Hz).

e nmeasure_time() returnsa 64-bit value represent-
ing thecurrentrealtimein ticks of aclockwhosereso-
lution is givenby neasur e_r esol uti on() . Since
thisoperationis intendedo measurdgime intervals,the
time neednot be synchronizedvith arny standardime
base.

e schedul e soft event (T, handl er): sched-
ulesthe function handlerto be calledat leastT ticks
in the future (theresolutionof T is specifiedby nea-
sure_resol ution()).

e interrupt cl ockresolution(): gives the
expectedminimal resolution(in Hz) at which the fa-
cility canscheduleeventsandequalsthe frequeng of
the systems periodictimer interrupt,which is usedto
“backup” softtimers.

The soft timer facility fires an event (by calling
the corresponding handler) when the value returned
by measure_ti me() exceedsthe value stored at the
time the event was scheduledby at leastT + 1 (the
incrementby one accountsfor the fact that the time at
which the event was scheduledmay not exactly coincide
with a clock tick). If X is the resolutionof the inter
rupt clock relative to the measurementlock (i.e., X =
measure_resolution() [interrupt_clock_resolution()),
thenthe soft timer facility putsthe following boundson the
actualtime (in ticks of the measurementlock) whenthe
eventfires:

T < Actual Event Time <T + X +1

Figurel givesexamplesof theabove boundswhenT =
1 and X = 2. It is to be notedthat the incrementby one
is negligible if the measurementlock is significantlyfiner



thanthe interruptclock (asis the casein mostmodernsys-
tems).

Thereasorfor the upperboundis thatthe soft-timerfa-
cility usesa periodictimer interruptto checkfor overdue
soft-timerevents.However, theactualtime atwhichthehan-
dleris invokedis likely to be muchcloserto T'. Expressed
differently, if we assumehat

Actual Event Time =T +d

whered is a randomvariablein the range[0..X + 1],
thenthe probability distribution of d would be uniform if a
corventionaltimer interruptbasedfacility wasused. With
typical valuesfor the measurementesolutionandinterrupt
clock resolutionof 1 MHz (1usecs)andl1 KHz (1msec)re-
spectvely, X is 1000andthemaximaldelayis 1001 usecs.

With soft timers, the probability distribution of d is de-
pendenbnthesystems workload,whichinfluenceshow of-
ten trigger statesare reached. Resultsshovn in Section5
shav thatamonga variety of workloads the worstcasedis-
tribution of d resultsin a meandelay of 31.6 usecsandis
heavily skewed towardslow values(medianis 18 usecs).
Therefore,applicationsthat can benefitfrom fine-grained
eventson the order of tensof psecsin the commoncase,
but cantoleraterare delaysup to the resolutionof the sys-
tem’s interruptclock (typically 1msec),arewell sened by
softtimers.

4 Applications of soft timers

In this section,we describetwo applicationsof soft timers,
rate-basealocking and network polling. In Section5, we
will presentempirical resultsto evaluatethe use of soft
timersin theseapplications.

4.1 Rate-based clocking

As discussedn Section2.1, achieving high utilization in
networks with large bandwidth-delayproductsmay require
transporiprotocolslike TCPto performrate-basedlocking.
In a corventionalimplementatiorof rate-basedlocking, a
periodic hardwaretimer event mustbe scheduledat the in-
tendedrate of paclet transmissions.At network speedof
severalhundredMbpsanda paclet sizeof 1500Bytes(Eth-
ernet),this would requiretimer interruptratesof oneevery
few tensof usecs. Given the overheadof hardwaretimer
interrupts(e.g.,4.45usecs)this would leadto unacceptable
overhead.

We obsene thattransmittingmultiple packetspertimer
eventwould leadto bursty paclet transmissionaind defeat
the purposeof rate-basedlocking,whichis to transmitdata
at arelatively constantate. However, paclettransmissions
on differentnetwork connectionghat have separatéottle-
necklinks couldbe performedn asingletimer event.

Soft timers allow the clocked transmissiorof network
pacletsat averageintervals of tensof usecswith low over-
head. Due to the probabilistic nature of soft timer event
scheduling,the resulting transmissiorrate is variable. In
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Section5, we will empirically shav the statisticsof the re-
sultingtransmissiorprocess.

An interestingquestionis how a protocol implemen-
tation should schedulesoft timer transmissionevents to
achieve agiventamettransmissiomate. Schedulinga series
of transmissioreventsat fixed intervals resultsin the cor-
rectaveragetransmissiorrate. However, this approachcan
leadto occasionabursty transmissionsvhenseveral trans-
missioneventsareall dueattheendof alonginterval during
which the systemdid not entera trigger state. A betterap-
proachis to scheduleonly onetransmissioreventat a time
andlet the protocolmaintaina runningaverageof theactual
transmissiomate. The next transmissioreventis thenadap-
tively scheduledn the context of the previouseventhandler
to smooththeratefluctuations.

Our prototypeimplementationemploys a simple algo-
rithm for schedulingthe next transmission.The algorithm
usestwo parametersthe target transmissionrate and the
maximal allowable burst transmissiorrate. The algorithm
keepsrackof the averagetransmissiomatesincethe begin-
ning of the currenttrain of transmittedpaclkets. Normally,
the next transmissioreventis scheduledat an interval ap-
propriatefor achieving the target transmissiorrate. How-
ever, whenthe actualtransmissiorratefalls behindthe tar
gettransmissiomatedueto soft timer delays,thenthe next
transmissiorns scheduleditaninterval correspondingo the
maximalallowablebursttransmissionate.

Wewill experimentallyevaluatetheuseof softtimersfor
rate-basedlockingin Section5.

4.2 Network polling

In conventional network subsystemimplementationsthe
network interfacesgeneratea hardware interruptto signal
the completionof a packetreceptioror transmissiof Upon
arecever interrupt,the systemacceptghe paclet, performs
protocolprocessin@ndsignalsary blockedprocesghathas
beenwaiting to receve data. Upon a transmitinterrupt,
the systemdecreasethe referencecounton the transmitted
paclets’ buffers, possiblydeallocatingthem. In busy sys-
temswith high-speedhetwork interfaces(e.g., sener sys-
tems), network interruptscan occur at a rate of one every
few tensof usecs.

Another approachto schedulingnetwork processings
polling, wherethe systemperiodicallyreadshe network in-
terfaces’statusregistersto testfor completedpaclet recep-
tions or transmissionslin a purepolling system the sched-
uler periodically calls upon the network driver to poll the
network interfaces.

Purepolling avoidsthe overheadf interruptsandit can
reducethe impact of memoryaccesdocality shifts by (1)
testingfor network eventsat “convenient’pointsin the exe-
cutionof thesystemandby (2) aggreyatingpaclet process-
ing. By performing polling whenthe scheduleiris active,
paclet processings performedat a time whenthe system
alreadysuffersalocality shift. By polling at anappropriate
averagerate,multiple packetsmayhave completecsincethe

3Someinterfacescanbe programmedo signalthe completion
of aburstof paclettransmissionsr receptions.



lastpoll, thusallowing theaggreyationof paclet processing,
increasingnemoryaccesdgocality.

However, the disadwantageof purepolling is thatit may
substantiallyincreasecommunicationlateng by delaying
paclet processing.As a result, hybrid schemesave been
proposedTraw andSmith[23] useperiodichardwaretimer
interruptsto initiate polling for packet completionswhen
using a Gigabit network interface. This approachinvolves
a tradeof betweeninterrupt overheadand communication
delay Mogul andRamakrishajl7] proposea systemthat
usednterruptsundemormalnetwork loadandpolling under
overload,in orderto avoid receverlivelock. Whenprocess-
ing of a packet completesthe systempolls the network in-
terfacefor more outstandingpaclets; only whenno further
pacletsarefoundarenetwork interruptsre-enabled.

Soft timersoffer a third designchoice. With soft timer
basednetwork polling, a soft timer eventis usedto poll the
network interfaces. As in pure polling, network interrupts
areavoidedandmemaoryaccesd$ocality isimprovedbecause
network polling andprocessingds performedonly whenthe
associatedoft timer event expires and the systemreaches
a trigger state. However, sincesoft timer eventscanbe ef-
ficiently scheduledat usecgranularity communicationga-
teng/ canbecloseto thatachievedwith interruptdrivennet-
work processingn thecommoncase.

In generalthesofttimer poll interval canbedynamically
chosenso asto attemptto find a certainnumberof paclets
per poll, on average. We call this numberthe aggregation
guota An aggreyationquotaof oneimpliesthatonepaclet
is found,on average perpoll.

Wewill experimentallyevaluatetheuseof softtimersfor
network polling in Section5.

5 Experimental results

In this section,we presentexperimentalresultsto evaluate
theproposedsofttimerfacility. We quantifytheoverheacdf
our proposedsoft timer facility andcompareit to the alter
native approactof schedulingeventsusing hardwaretimer
interrupts.We alsopresenmeasurementhatshawv thedis-
tribution of delaysin softtimer eventhandling,givenavari-
ety of systemworkloads.

Finally, we evaluatethe performancef softtimerswhen
usedto performrate-basedlockingandnetwork polling.

5.1 Baseoverhead of hardwaretimers

Our first experimentis designedo determinethe baseover-
headsof a corventionalhardwareinterrupttimer asa func-
tion of interruptfrequeng.

The experimental setup consists of four 300MHz
Pentium-limachineseachconfiguredwith 128MB of RAM
and connectedhrougha switched100MbpsEthernet. We
ranthe Apache-1.3.33] Web sener on oneof the PIl ma-
chineswhile the otherthreePIl machinesan a client pro-
gramthatrepeatedlyequested 6 Kbyte file from the Web
sener. The numberof simultaneousequestgo the Web
senerweresetsuchthatthe sener machinewassaturated.
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TheFreeBSD-2.2.®©Srunsonthesenermachine.The
kernelusesdts standardimerfacilitiesto scheduleall events
in the system.However, anadditionalhardwaretimer inter-
ruptwasscheduledvith varyingfrequeng. A “null handler”
(i.e.,ahandlerfunctionthatimmediatelyreturnsuponinvo-
cation) was invoked whenever this timer interruptfires, to
isolatethe overheadf thetimer facility alone.

We thenmeasuredhe throughputof the Apachesener
in the presencef the additionalhardwaretimer, asa func-
tion of frequeng. By measuringheimpactof hardwarein-
terruptson the performanceof a realisticworkload, we are
ableto capturethefull overheadbf hardwaretimers,includ-
ing secondargffectlike cacheandTLB pollutionthatresult
from handlingthetimer interrupt.

Figure2 plotsthe throughputof the ApacheWeb sener
astheinterruptfrequeng of the hardwaretimeris increased
to 100KHz. Figure 3 plots the percentagereductionin
throughputandis indicative of the overheadmposedby the
hardwareinterrupts.Theresultsshav thattheinterruptover-
headincreasesapproximatelylinearly with frequeng and
canbeashighas45%at aninterruptfrequeng of 100KHz
(oneinterruptevery 10 usecs).Fromtheseresults,it canbe
calculatedhatthe averagecombinedoverheadperinterrupt
is about4.45usec$.

We repeatedthe experiment on a machine with a
500MHzPentiumlil (Xeon)CPUrunningFreeBSD-3.&nd
found that the interrupt overheadwas 4.36usecs. This in-
dicatesthat interrupt overheaddoes not scale with CPU
speedand suggestghat the relative cost of interruptsin-
creasesas CPUsget faster Finally, a similar experiment
performedonanAlphaStatior600au(500MHz21164CPU)
runningFreeBSD-4.0-beteesultedn aninterruptoverhead
of 8.64usecs.This indicatesthat the high overheadassoci-
atedwith interrupthandlingis not uniqueto Intel PCs.

Notethatthe overheadof atimer interruptcanbe lower
on both platformswhenthe machineis idle, sincethe code,
dataandTLB entriesusedduringinterrupthandlingremain
fully cached.Our experimenttriesto obtaina more mean-
ingful measureof the overheadby evaluatingthe total im-
pactof timer interruptson the performanceof a real work-
loadthatstresseshe memorysystem.Theresultsshow that
timerinterruptshave a significantoverhead.

5.2 Baseoverhead of soft timers

The next experimentdetermineghe baseoverheadof soft
timers. We implementedsoft timersin the FreeBSDkernel.
Trigger stateswere addedin the obvious placesdescribed
in Section3. In practice,we found that the trigger interval
distribution could be improved by addinga few additional
trigger statesto ensurethat certainkernel loops containa
trigger state.Examplesof suchloopsarethe TCP/IPoutput
loop and the TCP timer processingoop. Since Intel x86
CPUshandleTLB missesin hardware, theseeventscould
notbe usedastriggerstatesn our prototype.

Theidle loop checkgor pendingsofttimerevents.How-
ever, to minimize power consumption,an idle CPU halts

“Measurementasingperformanceountergo measurghe av-
erageelapsedime spentin theinterrupthandlerconfirmthisresult.
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Figure 2. Apache throughput

when either (a) thereare no soft timer eventsscheduledat
timesprior to the next hardwaretimer interrupt, or (b) an-
otheridle CPUis alreadycheckingfor softtimer events.

In our next experiment,we scheduleda periodic soft
timer event suchthat a handlerwas invoked wheneer the
systemreaches trigger state. Thatis, we programmedhe
soft timer facility to invoke a softtimer eventhandleratthe
maximal frequeng possible,given the Web sener work-
load. As with the hardwaretimer, a “null handler’wasin-
vokedwhenever the softtimer fired.

The softtimer handlerinvocationscausedo obsenable
differencein the Web sener’s throughput.This impliesthat
thebaseoverheadmposedoy our softtimerapproachs neg-
ligible. Thisis intuitive becausehe callsto the handlerex-
ecutewith theoverheadf a procedurecall, whereas hard-
wareinterruptinvolvessaving andrestoringthe CPU state.
With soft timers, the event handlerwas called every 31.5
psecson average.We obsene that usinga hardwareinter-
rupttimer at a frequeng of oneeventevery 30 usecs(33.3
KHz) would have a baseoverheadf approximatelyl5%.

5.3 Soft timer event granularity under differ-
ent wor kloads

Recallthatonceasofttimereventis due,theassociatetian-
dleris executedat the earliesttime whenthe systenreaches
a trigger state. The performanceof a soft timer facility,
i.e., the granularityand precisionwith which it cansched-
ule events,thereforedepend®on the frequeny at which the
systemreachedriggerstates.

We measuredhe distribution of timesbetweensucces-
sivetriggerstatedor avarietyof workloads.Figure4 shavs
thecumulative distribution functionof time betweersucces-
sivetriggerstates.

Theworkloadsareasfollows. “ST-Apache”corresponds
to the ApacheWeb sener workload from the previous ex-
periment.In “ST-Apache-compute’anadditionalcompute-
boundbackgroundorocesss runningconcurrentlywith the
Web sener. “ST-Flash”is a Web sener workload using a
fast event-driven Web sener called Flash [20]. “ST-real-
audio”wasmeasuredvith acopy of theRealPlayef22] run-
ning on the machine playingbacka live audiosourcefrom
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the Internet. “ST-nfs” reflectsthe trigger stateinter-arrival

timeswhenthe workloadis a NFSfilesener. Finally, “ST-

kernel-tuild” was measuredvhile a copy of the FreeBSD-
2.2.6kernelwasbuilt onthe machinefrom thesources.

Additional information aboutthe distribution with each
workloadis givenin Table 1. Two million sampleswere
takenin eachworkloadto measurehedistributions.

Theresultsshowv thatunderaworkloadtypical of abusy
Web sener, the soft timer facility can scheduleevents at
a meangranularity of tens of usecswith negligible over-
headandwith delaysover 100 usecsin lessthan6% of the
samples.As shavn belaw, this performances sufficient to
performrate-basedlocking of 1500byte pacletsat several
hundredof Mbits/secandit allows effective polling of net-
work interfaceeventsatthe samerate.

In a busy Web sener, it is intuitive that the mary net-
work pacletarrivals,disk device interruptsandsystemcalls
provide frequenttrigger states. One concernis that the
presencef compute-boundackgrounccomputationsnay
causelong periodswhere the systemdoesnot encounter
a trigger state, thus degradingthe performanceof the soft
timer facility.

To measurehis effect, we addeda compute-bountdack-
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Max (usec)| Mean(usec)| Median(usec)| StdDes (usec)| > 100usec(%) | > 150usec(%b)
ST-Apache 476 31.52 18 32 5.3 0.39
ST-Apache-computg 585 31.59 18 321 5.3 0.43
ST-Flash 1000 22.53 17 20.8 1.09 0.013
ST-real-audio 1000 8.47 6 13.2 0.025 0.013
ST-nfs 910 2.13 2 3.3 0.021 0.011
ST-kernel-huild 1000 5.63 2 47.9 0.038 0.033
[ SFApache(Xeon) | 1000 | 19.41 | 11 | 23 | 0.44 | 013 |

Table 1. Trigger state interval distribution

ground processto the Web sener, which executesin a
tight loop without performing systemcalls (“ST-Apache-
compute”). The resultsshown that the presenceof back-
groundprocessehasnotangibleimpactontheperformance
of thesofttimerfacility. Thereasoris thatabusyWebsener
experiencedrequentnetwork interruptsthathave higherpri-
ority thanapplicationprocessingandyield frequenttrigger
statesevenduring periodswherethe backgroundprocesss
executing.

“ST-nfs” is anotherexampleof a sener workload. The
NFSseneris saturatedut disk-bound]eaving the CPUidle
approximately90% of thetime. The vastmajority of sam-
plesindicatea trigger stateinterval around2usecson this
workload.

The RealPlaye(“ST-real-audio”)wasincludedbecause
it is anexampleof anapplicationthatsaturateshe CPU.De-
spitethefactthatthis workload performsmostly usekmode
processingandgenerates relatively low rateof interrupts,
it yieldsadistribution of triggerstateintervalswith very low
mean,due to the mary systemscalls that RealPlayemper
forms.

Finally, we measureaworkloadwherethe FreeBSDOS
kernelis built from the sourcecode.This workloadinvolves
extensive computation(compilation, etc.) aswell as disk
I/O.

To determingheimpactof CPU speecdbon thetriggerin-
terval distribution, we repeatedhe experimentwith the“ST-
Apache"workloadonamachinewith a500MHzPentiumill
(Xeon) CPU runningFreeBSD-3.3.The summaryinforma-
tion aboutthe resultingdistribution is includedin Table 1.
The resultsshow thatthe shapeof the distribution is simi-
lar to thatobtainedwith the slower CPU, howeverthemean
is reducedby a factorthat roughly reflectsthe CPU clock
speedatio of the CPUs. This indicatesthat the granularity
of soft timer eventsincreasesapproximatelylinearly with
CPUspeed.

While our selectionof measuredvorkloadsis necessar
ily limited, we believe thatthe softtimer facility canprovide
fine-grainedevent supportacrossa wide rangeof practical
workloads. The reasonis that (1) mostpracticalprograms
frequentlymake systemcalls, suffer pagefaults, TLB faults
or generateotherexceptionsthat causethe systemto reach
a trigger stateand (2) the soft timer facility can schedule
eventsat veryfine grainwhenerera CPUis idle.

In the mostpessimisticscenarioall CPUsarebusy, the
executingprogramsnale infrequentsystencalls,causdew
pagefaultsor otherexceptionsandtherearefew device I/O
interrupts. Theseconditionsmark the absenceof signifi-
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cantl/O or communicatioractiity in theworkload,andcan

arise,for instance,n scientificapplications.However, ob-

senethatusectimersareusedprimarily in networking, and

it is thusunlikely that any soft timer eventsare scheduled
undersuchconditions.

5.4 Changes in trigger interval distribution
over time

Thetriggerinterval distributionsshavn in the previous sec-
tion areaggreyatedover 2 million samplescorrespondingo
4—64secf executiontime for thevariousworkloads.A re-
latedquestioris how thetriggerinterval distributionchanges
during the runtime of a workload. For instance,it is con-
ceivablethat context switchingbetweendifferentprocesses
could causesignificantchangesn thetriggerinterval distri-
bution. To investigatethis questionwe computedhe medi-
ansof the triggerinterval distributionsduringintervals of 1
msand10ms. Resultsareplottedin Figure5 for a periodof
10 secsof the runtime of the “ST-Apache-computeWork-
load. The x-axisrepresentshe runtimeof theworkload,the
y-axis shavs the medianof the trigger interval distribution
duringagiveninterval (1 msand10ms).

With 1msintervals,thebulk of thetriggerinterval medi-
ansarein therangefrom 14to 26usecs A few intervals(less
than1.13%)have mediansabore 40usecs.The mediangor
the 10msintervals (which correspondso atimeslicein the
FreeBSDsystem),on the other hand,almostall fall into a
narrov bandbetweenl7 and19usecs.

Theseresultsindicatethat the dynamicbehaior of the
workloadappeardo causenoticeablevariability in the trig-
gerinterval distribution over 1msintervals. However, there
is little variability in the trigger interval distributions over
10msintervals.

55 Trigger interval distribution by event
source

A relatedquestionis what fraction of trigger statesis con-
tributed by each event sourceand how that contribution
affects the resulting trigger stateinterval distribution. To
answerthis questionswe separatelyaccountedor trigger
statesby event sourcefor the “ST-Apache”workload. Ta-
ble 2 shavs the fraction of trigger statesamplescontributed
by eacheventsource.

The sources'syscalls” and“traps” are self-explanatory
The source"ip-output” generates trigger eventevery time
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Figure 5. Trigger interval medians during 1 ms and 10 ms intervals, ST-Apache-compute workload

an|P paclet (e.g.,TCP segment)is transmitted.The source
“tcpip-others”represents numberof othertrigger statesn
the network subsystemsuchasthe processindoop for TCP
timers. Network interfaceinterruptsarereflectedn the “ip-
intr” source.

Source | Fractionof sampleq%)
syscalls a47.7
ip-output 28
ip-intr 16.4
tcpip-others 5.4
traps 25

Table 2. Trigger state sources

Figure 6 shows the impactthat eachtrigger sourcehas
on the trigger interval distribution. The graphsshav the
CDFsof theresultingtriggerintenval distributionswhenone
of the trigger sourceds removed. For instance,'no ipintr”
shaws the CDF of the resultingtrigger interval distribution
whenthereis no trigger stateassociatedavith network inter-
rupts. “All” representshe original distribution for the “ST-
Apache”workloadfrom Figure4. It is evidentfrom there-
sultsthat systemcalls and IP paclet transmissionsre the
mostimportantsourceof triggereventsin this workload.

5.6 Rate-based clocking: timer overhead

In this section,we evaluatethe use of soft timersto per
form rate-basedlockingin TCP. We show resultsthatcom-
parethe overheadof performingrate-basecdtlocking with
softtimersversushardwaretimer interrupts,we evaluatethe
statisticsof the paclet transmissiorprocessandwe explore
the potentialfor network performanceémprovementsdueto
rate-basegacing.

Our first experimentis designedto explore the over
headof rate-basedlockingin TCP usingsofttimersversus
hardwaretimers. The experimentalsetupis the sameasin
the previous experimentexceptthat the Web sener’'s TCP
implementationusesrate-basedlocking using either soft
timersor a corventionalinterrupttimer to transmitpaclets.

Thesofttimerwasprogrammedo generataneventev-
ery time the systemreachesa trigger state. One paclet is
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transmittedvhenever the handleris invokedanda pacletis

pendingtransmissionOnalLAN, suchastheoneusedn our
testbedFreeBSDs TCPimplementatiordoesnot useslow-

start. Thus,all paclketsarenormally sentin a burst, asfast
asthe outgoingnetwork link cantransmitthem. Sincethe
transmissiorof a 1500 byte paclet takes 120 usecson our
100Mbpsnetwork, theuseof rate-basedlockinghasno ob-

senableimpacton the network. Therefore the experiment
isolatesthe overheadof using soft timers versushardware
timersfor rate-basealockingin TCPR, but doesnot expose
possiblebenefitsof rate-basedlocking.

Table 3 shavs the performanceaesultsobtainedin this
experiment. We presentresultsfor both the Apache-1.3.3
Web sener aswell asthe Flashsener. For the resultswith
hardwareinterrupttimers,the 8253wasprogrammedo in-
terruptonceevery 20 usecy50KHz frequeng), causinghe
dispatchof athread(BSD softwareinterrupt)thattransmits
apaclet. Fromthe previousexperimentswe know the base
overheadfor eventdispatchat this rateis about22%. The
extra overheadindicatedby the resultsis mostlikely due
to cachepollution, sincethe computationperformedby the
handleris exactly the sameasthat performedduring trans-



Apache]| Flash
BaseThroughput(conn/s) 774 | 1303
HW timer throughput(conn/s) 560 827
HW timer Ovhd (%) 28 36

HW timer Avg xmit intvl (usecs) 31 35
Softtimerthroughputconn/s) 756 1224

Softtimer Ovhd (%) 2 6

Softtimer Avg xmit intvl (usecs) 34 24

Table 3. Overhead of rate-based clocking

missionof a packetin theoriginal TCPimplementation.

The resultsindicate that the effect of cachepollution
with hardwaretimersis at least4% (28 — 22 — 2) and8%
(36 — 22 — 6) worsethanwith softtimersfor the Apacheand
the Flashsener, respectiely. The factthat Flashappears
to be moreaffectedby the cachepollution canbe explained
asfollows. Apacheis amulti-processener whosefrequent
contet switchingleadsto relatively poormemoryaccesso-
cality. Flash,on the otherhand,is a small, single-process
event-driven sener with presumablyrelatively good cache
locality. It is intuitive, therefore thatthe Flashsener’s per
formanceis moresignificantly affectedby the cachepollu-
tion resultingfrom thetimer interrupts.

The resultsalso showv that the averagetime between
transmissionaith soft timersis only slightly higher than
with the hardwaretimer whenusingthe Apachesener, and
it is lower whenusingthe Flashsener. This resultcanbe
explainedasfollows. With hardwaretimers, the transmis-
sionrateis lower thanthe rate at which the 8253 chip was
programmeddecausghetransmissioreventhandlermayin
generalbe delayeddueto disabledinterrupts. On the other
hand softtimersperformsubstantiallybetterwhentheFlash
seneris usedbecaus¢hatseneris muchfastethanApache
andthereforegeneratesrigger statesat a higherrate. The
combinedeffect is that soft timers with Flashresultin a
lower time betweertransmissionshanthe hardwaretimer.

In summarytheresultsof this experimentshav thatsoft
timerscanbe usedto do rate-basedlockingin TCPatrates
thatapproachGigabit speedwith very low overhead2-6%
in our experiment). Using a corventionalinterrupttimer at
this rate hasan overheadof 28-36%in our experimentand
is thereforenot practical.

5.7 Rate-based clocking:
cess statistics

transmission pro-

As discussedn Sectiond, ourimplementatiorof rate-based
clockingbasedn softtimersusesanadaptve algorithmfor
schedulingtransmissionsin orderto smoothvariationsin
the transmissiorrate causedby the probabilistic natureof
softtimers. Thealgorithmkeepstrack of the actualsending
rate,andwhenever this ratefalls behindthe target sending
rate,thenext transmissiomventis scheduledoasto achiere
the maximal allowable burst sendingrate, until the actual
sendingrate onceagaincatchesup with the target sending
rate.

We performedan experimentto determinethe actual
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achiezabletransmissiomateandtheresultingstatisticsof the
transmissiomprocessasafunctionof themaximalallowable
bursttransmissiorrate,assuminga targettransmissiorrate
of onepacletevery 40usecsand60usecsyespectiely. The
workloadin this experimentwasthatof the busyWebsener
(“ST-Apache”in Figure4), which is amongthe two work-
loadswith the largestmeantrigger stateinterval (i.e, worst
case).

We assumaen this experimentthatthe bandwidthof the
network link attachedo the sendelis 1Gbpsandthe paclet
sizeis 1500bytes.Thereforetheminimalinterval settingof
12 psecsreflectsthe maximaltransmissiorrate of the net-
work link. At thisminimalinterval setting,rate-basedlock-
ing is allowedto sendpacletsat the link bandwidthwhen-
evertheactualrateis below thetargettransmissiomate.

Theresultsareshavn in Tables4 and5 for targettrans-
missionintervals of 40usecsand60usecsrespectiely. For
comparison,results for hardware timer basedrate-based
clocking werealsoincluded. The hardwaretimer waspro-
grammedo fire regularly atthetargettransmissiorinterval.

The results shov that soft timers can support rate-
basedclocking up to ratesof onepaclet transmissiorevery
40usecs,if it is allowedto sendburstsat the link speedof
onepaclet every 12usecs. As the minimal allowable burst
interval is increasedthe soft timerscanno longermaintain
an averagetransmissiorinterval of 40usecs,and dropsto
65.9usecsataminimal allowableinterval of 35usecs.

At atamgetinterval of 60usecs softtimerscanmaintain
theaverageinterval up to a minimal allowableburstinterval
of 30usecs.Thestandardleviationis in all casesn the 30—
35usecsrangeandimproves as the minimal burstintenal
increasesasexpected.

We note that thesemeasurementapply to rate-based
clocking on a single connection.Soft timerscanbe usedto
clock transmissioron differentconnectionsimultaneously
evenat differentrates. (A sener may performmary trans-
missionsimultaneouslyresultingin large aggrejateband-
widths.) In this case,multiple packets may be transmitted
on differentconnectionsn a singlesofttimer event(i.e., in
thecontext of onetriggerstate).

With hardwaretimers,rate-basedlockingfalls shortof
thetargettransmissiomateby 3usecsand3.6usecsrespec-
tively. Thereasoris thatsometimer interruptsarelost dur-
ing periodswheninterruptsare disabledin FreeBSD.The
hardwaretimersachievze a somevhat betterstandarddevia-
tion thansofttimers,whichis to beexpectedgiventheprob-
abilistic natureof thelatter

We alsonotethatthe baseoverheadf usingtimerinter-
rupt at the target transmissiomratesof 40 and 60usecsis at
least13%and8.5%,respectiely (seeFigure3). Finally, we
obsenethatonly asinglehardwaretimer device is available
in mostsystem. It is impossible,therefore,to usea hard-
waretimer to simultaneouslyclock multiple transmissions
at differentrates,unlessonerateis a multiple of the othet
Moreover, reprogramminghe timer device frequentlyto a
differentrate may be too expensve, dueto thelong lateng
associateavith accessinglevice registers. In practice,this
may causeadditionaldeviation from the targettransmission
rate.

Combinedwith the high overheadtheseconcerngaise



Softtimers Hardwaretimers

Min interval (usec)| Avg interval (usec) | StdDev | Avg intenal (usec)| StdDev
12 (line speed) 34.5 43.6 26.8
15 48 31.6 - -

20 51.9 30.9 - -

25 575 30.9 - -

30 61 30.5 - -

35 65.9 30.1 - -

Table 4. Rate-based clocking (target transmission interval = 40usecs)

Softtimers Hardwaretimers

Min interval (usec)| Avg interval (usec) | StdDev | Avg intenal (usec)| StdDev
12 (line speed) 35.9 27.7
15 60 33.2 - -

20 60 32.3 - -

25 60 31.2 - -

30 61 30.5 - -

35 65.9 30 - -

Table 5. Rate-based clocking (target transmission interval = 60usecs)

guestionsaboutthe feasibility of rate-basedlocking with
hardwaretimersat high network speedsSofttimers,onthe
other hand,can supportmultiple transmissionst different
ratesandwith low overhead.

5.8 Rate-based clocking:
mance

network perfor-

Our next experimentattemptsto quantify the potentialim-

pactof rate-basedlockingontheachievedperformancef a
Web sener over network connectionsvith high bandwidth-
delayproducts.

In our prototypeimplementatiorof rate-basedlocking
in TCP, we assumehattheavailablecapacityin the network
is known. In practice,estimatingthe available capacityis
not a trivial problem. Practicalmechanismdor bandwidth
estimationand otherdetailsof the integrationof rate-based
clocking into TCP requirefurther researchand are beyond
thescopeof this paper Relatedvork in thisareais discussed
in Section6.

To show the potential effect of rate-basedtlocking on
TCPthroughputwe performedanexperimentwherea vari-
ableamountf datais transmittedbveranetwork connection
with high bandwidth-delayroduct. We modelthis connec-
tion in thelaboratoryby transmittingthe dataon a 100Mbps
Ethernetvia anintermediatéPentiumll machinethatactsas
a“WAN emulator”. This machinerunsa modifiedFreeBSD
kernelconfiguredasan IP router, exceptthatit delayseach
forwardedpaclet so asto emulatea WAN with a givende-
lay andbottleneckbandwidth.In our experimentwe choose
the WAN delayas50msandthe bottleneckbandwidthto be
either50Mbpsor 100Mbps.As aresult,the TCPconnection
betweenclient and sener machinehasa bandwidth-delay
productof either5Mbits or 10Mbits. Network connections
with thesecharacteristicarealreadyavailablein vBNS and
will soonbeavailablein thegeneralinternet.
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We performed HTTP requestsacrossthe laboratory
“WAN" connectionto an otherwiseunloadedsener. Ei-
ther the standard~=reeBSDTCP implementationwas used,
or alternatvely our modifiedimplementationwhich avoids
slow-start and instead uses soft-timer based rate-based
clockingataratecorrespondingpo thebottleneckbandwidth,
i.e., one paclet every 120usecs(100Mbps) or 60usecs
(50Mbps),respectiely. Sincea persistentonnectionis as-
sumedto be alreadyestablishegbrior to startingthe experi-
ment,thereis nodelaydueto connectiorestablishmentThe
resultsareshowvn in Tables6 and?.

We seethatrate-basedlocking canleadto dramaticim-
provementsin throughput,responsdime and network uti-
lization on networks with high bandwidth-delayproducts.
Responséime reductionsdueto rate-basealocking range
from 2% for large transferso 89% for mediumsizedtrans-
fers (100 paclets or 141 KBytes). Theseimprovements
aretheresultof rate-basealocking’s ability to avoid TCP
slow-start, which tendsto underutilizenetworks with large
bandwidth-delayroductson all but very largetransfers.

SincetheaverageHTTP transfersizeis reportedo bein
the 5-13KB range[4, 16], rate-basealocking canhave a
significantimpactonthe Weh

5.9 Network polling

Our final experimentevaluatesthe use of soft timers for
network polling. We implementednetwork polling in
the FreeBSD-2.2.&ernel, using soft timers to initiate the
polling. The polling interval is adaptiely setto attemptto
find a givennumberof receved paclet per poll interval, on
average(aggreyationquota).

In this experiment,a 333MHz Pentiumll machinewith
4 Fast Ethernetinterfaceswas used as the sener. Four
300MHz PIlI machineswere usedas the client machines,
eachconnectedo adifferentinterfaceon the sener.



regularTCP rate-basedlocking

Transfersize Xput | Responséime | Xput | Responséme | Resp.timereduction
(1448Byte paclets) | (Mbps) (msecs) (Mbps) (msecs) (%)

5 0.12 496 0.57 101.2 79

100 1.01 1145 9.36 123.7 89

1000 6.75 1714 34.07 340 80

10000 29.95 3867 46.33 2500 35

100000 45.54 25432 46.60 24863 2

Table 6. Rate-based clocking network performance (Bandwidth = 50Mbps, RTT = 100 msecs)

regularTCP rate-basedlocking
Transfersize Xput | Responséime | Xput | Responséime | Resp.timereduction
(1448Byte paclets) | (Mbps) (msecs) (Mbps) (msecs) (%)
5 0.16 350 0.58 100.6 71
100 1.09 1056 10.34 112 89
1000 6.38 1815 51.94 223 87
10000 38.46 3012 86.77 1335 55
100000 81.37 14235 91.92 12601 11

Table 7. Rate-based clocking network performance (Bandwidth = 100Mbps, RTT = 100 msecs)

We measuredthe throughput of two different Web
seners (Apache and Flash), given a syntheticworkload,
where clients repeatedlyrequestthe same6KB file. The
throughputvasmeasure@nanunmodifiedFreeBSDkernel
(corventionalinterruptbasednetwork processingandwith
soft timer basednetwork polling. Table8 shows the results
for thetwo differentseners,for aggreyationquotasranging
from 1 to 15, andfor cornventional(HTTP) and persistent
connectiorHTTP (P-HTTP).

The throughputimprovementswith soft timer based
polling rangefrom 3% to 25%. The benefitsof polling are
more pronouncedvith the fasterFlashsener, asit stresses
the network subsystensignificantly more thanthe Apache
sener and,owing to its betterlocality, is more sensitve to
cachepollution from interrupts. With P-HTTR amortizing
the costof establishinga TCP connectionover multiple re-
guestsallows muchhigherthroughputwith bothseners,in-
dependentf polling.

The differencebetweenthe resultsfor the corventional
interrupt-basedystemand network polling with an aggre-
gationquotaof 1 (i.e., one packet per poll on average)re-
flects the benefitof avoiding interruptsand the associated
improvementin locality. The network polling resultswith
aggrejation quotasgreaterthan one reflect the additional
benefitsof aggreyatingpacket processing.

In general aggreyationof paclet processingaisescon-
cernsaboutincreasedaclket delayand ACK compression.
However, we believe thataggrayationis practicalwith soft-
timer basednetwork polling, for two reasons.Firstly, soft-
timer basednetwork polling is turned off (and interrupts
are enabledinstead)whene&er a CPU entersthe idle loop.
This ensureghatpaclet processings never delayedunnec-
essarily Secondlywhenrate-basedlockingis used paclet
transmissionsire not pacedby incoming ACKs. With rate-
baseclocking,it is thereforenolongernecessaryo presere
the exacttiming of incomingACKs, i.e., ACK compression
is of lesserconcern.

Finally, we obsene that future improvementsin CPU
andnetwork speedwill continueto increaseherateof net-
work interruptsin corventionalnetwork subsystemmple-
mentations. Sincethe relative costof interrupthandlingis
likely toincreaseasCPUsgetfasterseeSection5.1), avoid-
ing interruptsbecomesncreasinglyimportant.

5.10 Discussion

Softtimersallow theefficientschedulingpf eventsatagran-
ularity below thatwhich canbe provided by a corventional
interval timer with acceptabl@verhead.The“useful range”
of softtimereventgranularitiess boundednoneendby the
highestgranularitythatcanbeprovidedby a hardwareinter-
rupttimerwith acceptableverheadandontheotherendby
the soft timer trigger interval. On our measuredvorkloads
ona300MHz PIl CPU,this usefulrangeis from a few tens
of usecsto a few hundredsof usecs. Moreover, the use-
ful rangeof soft timer eventgranularitiesappeargo widen
asCPUsgetfaster Ourmeasurementsn two generationsf
PentiumCPUs(300MHzPI1l and500MHzPIIl) indicatethat
the softtimer eventgranularityincreasespproximatelyin-
earlywith CPUspeedbut thattheinterruptoverheadwhich
limits hardwaretimer granularity)is almostconstant.

Softtimerscanbeeasilyintegratedwith anexisting, con-
ventionalinterval timer facility. The interval timer facility
providescornventionaltimer eventservices andits periodic
interruptis alsousedto scheduleoverduesoft timer events.
Corventionatimersshouldbeusedfor eventsthatneedo be
scheduledat or below the granularityof the interval timer's
periodicinterrupt. Softtimersshouldbe usedfor eventsthat
requireagranularityup to thetriggerstateinterval, provided
theseeventscantolerateprobabilisticdelaysup to thegran-
ularity of the corventionalinterval timer.
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InterruptXput (reg/sec) SoftPoll Xput (reg/sec)
Aggregation 1 1 2 | 5 | 10 15
HTTP
Apache 854(1.0) 915(1.07) | 933(1.09) | 939(1.10) | 944(1.11) | 945(1.11)
Flash 1376(1.0) 1568(1.14) | 1620(1.17) | 1690(1.23) | 1702(1.24) | 1719(1.25)
P-HTTP
Apache 1346(1.0) 1380(1.03) | 1395(1.04) | 1421(1.06) | 1439(1.07) | 1440(1.07)
Flash 4439(1.0) 4816(1.08) | 5071(1.14) | 5271(1.19) | 5376(1.21) | 5498(1.24)

Table 8. Network polling: throughput on 6KB HTTP requests

6 Related work

The implementationof soft timersis basedon the idea of
polling, which goesbackto the earliestdaysof computing.
In polling, amain-lineprogramperiodicallycheckgor asyn-
chronousevents,andinvokeshandlercodefor the event if
needed.

The novel ideain soft timersis to implementan effi-
cienttimerfacility by makingtheoperatingsystem‘poll” for
pendingsoft timer eventsin certainstratgyic states. These
“trigger states’areknown to bereachedveryfrequentlydur-
ing execution.Furthermorethesestatesareassociatedvith
a shift in memoryaccesdocality, thusallowing theinterpo-
sition of handlercodewith little impacton systemperfor
mance. The resultingfacility canthenbe usedto schedule
eventsat a granularitythat could not be efficiently achieved
with a corventionalhardwaretimer facility.

Traw and Smith[23] useperiodichardwaretimer inter
ruptstoinitiate polling for packetscompletionsvhenusinga
Gigabitnetwork interface.This approachnvolvesatradeof
betweerinterruptoverheacandcommunicatiordelay With
softtimer basechetwork polling, ontheotherhand,onecan
obtainbothlow delayandlow overhead.

Mogul and Ramakrishan17] describea systemthat
usesnterruptsundemormalnetwork loadandpolling under
overload,in orderto avoid recever livelock. Their scheme
disablesnterruptsduringthenetwork pacletprocessingnd
polls for additional packets whenerer the processingof a
paclet completeswhenno further pacletsarefound,inter-
ruptsarereenabled.

In comparisonsofttimerbasecetwork polling disables
interruptsandusespolling whenever the systemis saturated
(i.e.,no CPUis idle). Thatis, polling is usedevenwhenthe
paclet interarrival time is still larger thanthe time it takes
to procesgaclets.Moreover, softtimersallow the dynamic
adjustmentof the poll interval to achieve a predetermined
pacletaggrejationquota.

A numberof researcherbave pointedout the benefitsof
rate-basedlocking of TCPtransmission§25, 18, 1, 10, 5].
Ourwork shaws thatusingcornventionalhardwaretimersto
supportrate-basedlocking at high bandwidthis too costly,
andwe proposesofttimersasanefficientalternatve.

The use of rate-basectlocking has beenproposedin
the context of TCP slow-start, when an idle persistent
HTTP (P-HTTP) connectionbecomesactive [19, 16, 12].
Viswesvaraiahet. al. [25] obsenethatanidle P-HTTPcon-
nectioncausesl CP to closeits congestiorwindow andthe
ensuingslow-startphasdendso defeatP-HTTPsattempto
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utilize the network moreeffectively thatHTTP/1.0[7] con-
nections.A similar obsenationwasmadeby Padmanabhan
et.al. in [18]. Softtimerscanbe usedto efficiently clock
the transmissiorof paclketsuponrestartof anidle P-HTTP
connection.

Allman et. al. [1] shaw the limiting effect of slow-start
and congestioravoidanceschemesn TCP in utilizing the
bandwidthover satellitenetworks. Using rate-basedalock-
ing insteadof slow-startaddressetheformerconcern.Feng
et. al. [10] proposethe use of rate-basectlocking in TCP
to supportthe controlled-loadnetwork service[26], which
guaranteea minimal level of throughputo a givenconnec-
tion.

Balakrishnaret. al. [5] have proposedACK filtering, a
mechanisnthat attemptsto improve TCP performanceon
asymmetrimetwork pathsby discardingedundanACKs at
gatevays. They obsene thatthis methodcanleadto bursti-
nessdueto the big ACKs seenby the senderand suggest
pacingpaclettransmissionsoasto matchthe connections
sendingrate.

Besidesan efficient timer mechanismrate-basedlock-
ing alsodepend®nmechanismshatallow themeasurement
or estimationof the available network capacity A num-
ber of techniqueshave beenproposedn the literature. The
basicpaclet-pairtechniquewas proposedby Kesha [14].
Hoe et. al. [13] proposemethodsto improve TCP’s con-
gestioncontrol algorithms. They setthe slow-startthresh-
old (ssthresh)to an appropriatevalue by measuringthe
bandwidth-delayproductusing a variantof the packet-pair
technique.Paxson[21] suggestsa morerobustcapacityes-
timationtechniquecalledPBM thatforms estimatesisinga
rangeof paclet bunchsizes.A techniqueof this type could
be usedto supportrate-basedlocking. Allman and Pax-
son[2] compareseveral estimatorsandfind thatsendesside
estimationof bandwidthcan often give inaccurateresults
dueto thefailure of the ACK streamto preserethespacing
imposedon datasegmentsby the network path. They pro-
posea recever-side methodfor estimatingbandwidththat
worksconsiderabhbetter

7 Conclusions

This paperproposesa novel operatingsystemtimer facil-
ity thatallows the systemto efficiently scheduleaventsat a
granularitydown to tensof microsecondsSuchfine-grained
eventsarenecessaryo supportrate-basedlockingof trans-
mitted pacletson high-speechetworks and can be usedto



supportefficient network polling.

Unlike corventionaltimer facilities, soft timerstake ad-
vantageof certainstatesn the executionof a systemwhere
aneventhandlercanbeinvokedat low cost. In thesestates,
the saving and restoringof CPU state normally required
upon a hardware timer interruptis not necessaryand the
cache/TLBpollution causedy theeventhandleris likely to
have low impacton the systemperformance.

Experimentswith a prototypeimplementatiorshow that
soft timers can be usedto performrate-basedtlocking in
TCP at granularitiesdown to a few tensof microseconds.
At theserates softtimersimposeanoverheadf only 2—6%
while a corventionaltimer facility would have an overhead
of 26—38%.The useof rate-basedlockingin a Web sener
canimprove clientrespons¢ime overconnectionsvith high
bandwidth-delayproductsby upto 89%.

Softtimerscanalsobeusedto performnetwork polling,
thusavoiding network interruptswhile preservingow com-
municationglelays.Experimentshaw thattheperformance
of a Web sener usingthis optimizationcanincreaseby up
to 25%overacorventionalinterruptbasedmplementation.

Furthermore,the performanceimprovementsobtained
with soft timers can be expectedto increasewith network
andCPU speedsAs networksandCPUsgetfaster sodoes
therate of network interrupts. However, the speedof inter-
rupt handlingdoesnotincreaseasfastasCPUspeeddueto
its poor memoryaccesdocality. The relative costof inter-
rupt handlingthereforeincreasesiunderscoringhe needfor
techniqueghatavoid interrupts.

Soft timer performancepn the other hand, appeargo
scalewith CPU speed. Soft timers are cachefriendly and
fasterCPUspeedsmply thattriggerstatesarereachednore
frequently thus improving the granularity at which soft
timerscanschedulesvents.
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A Theneed for rate-based clocking

In this appendix,we provide further motivation for rate-
basedclocking. We restrictourseheshereto a generaldis-
cussionof how anappropriatdimer facility canbe usedfor
rate-basealocking of transmissions.The detailsof how a
specificprotocolslike TCP shouldbe extendedto addrate-
basedclocking may requirefurther researchithey are be-
yondthescopeof this paper
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A.1 ACK compression and big ACKs

Previous work hasdemonstratedhe phenomenorof ACK
compession where ACK paclets from the recever lose
their temporalspacingdue to queuingon the reversepath
from recever to sender[27, 15]. ACK compressiorcan
causeburstypaclettransmissiondy the TCPsenderwhich
contributesto network congestion.Balakrishnaret. al. [6]
have obsenedthe presenceof ACK compressionn a busy
Websener.

With rate-basedlocking, a TCP sendercankeeptrack
of the averagearrival rateof ACKs. Whena burstof ACKs
arrivesat a rate that significantly exceedsthe averagerate,
the sendemay chooseto pacethe transmissiorof the cor-
respondinghew datapacletsat the measuredverageACK
arrival rate,insteadof theburst'sinstantaneousateaswould
bedictatedby self-clocking.

A relatedphenomenons that of big ACKs i.e., ACK
pacletsthatacknavledgea large numberof pacletsor up-
datethe flow-controlwindow by alarge numberof paclets.
Uponreceving a big ACK, self-clocked senderamay send
a burst of pacletsat the bandwidthof the network link ad-
jacentto the senderhost. Transmittingsuchburstscanad-
verselyaffect congestiorin the network. A detaileddiscus-
sion of phenomendhat canleadto big ACKs (i.e., ACKs
that canleadto the transmissiorof morethan3 paclets)in
TCPis givenin SectionA.3.

Usingrate-basedlocking,it is possibleto avoid sending
paclet burstsin the sameway as was describedabove in
connectiorwith ACK compression.

A.2 Slow-start

Self-clocled protocolslike TCP usea slow-startphaseto
start transmittingdataat the beginning of a connectionor
afteranidle period. During slow-start,the sendettransmits
a small numberof paclets (typically two), andthentrans-
mits two morepaclketsfor every acknavliedgedpaclet, until
either paclet lossesoccur or the estimatedhetwork capac-
ity is reached.In this way, the sendelincreaseshe amount
of datatransmittecper RTT exponentiallyuntil the network
capacityis reached.

The disadwantageof slow-startis that despitethe ex-
ponentialgrowth of the transmitwindow, it cantake mary
RTTs beforethe sendeiis ableto fully utilize the network.
The larger the bandwidth-delayproductof the network, the
more time and transmitteddatait takesto reachthe point
of network saturation. In particular transmission®f rela-
tively small dataobjectsmay not allow the senderto reach
the point of network saturationat all, leadingto poor net-
work utilization andlow effective throughput.

The bulk of traffic in the Internet today consistsof
HTTP transfersthat are typically short (between5KB and
13KB) [16, 4]. A typical HTTP transferfinisheswell be-
fore TCP finishesits slow-startphase causinglow utiliza-
tion of availablenetwork bandwidthandlong userperceved
responsdimes|[16]. The magnitudeof this problemis ex-
pectedto increaseas higher network bandwidthbecomes
available.



Slow-startsenesa dual purpose lt startsatransmission
pipelinethatallows the sendetto self-clockits transmission
without sendinglarge burstsof paclets. At the sametime,
it probegheavailablenetwork capacitywithout overwhelm-
ing the network. The key ideato avoid slow-startis the fol-
lowing. If the available network capacityis known or can
be measured/estimatethena TCP sendeicanimmediately
userate-basealocking to transmitpaclets at the network
capacitywithout goingthroughslow-start[18].

The problemof measuringavailable network capacity
hasbeenaddressethy several prior researctefforts, for in-
stancepaclet pair algorithms[14, 9, 13] and PBM [21].
Moreover, when startingtransmissiorafter an idle period,
thenetwork capacityduringthelastbusyperiodcanbeused
asanestimatefor the currentcapacity[19, 16, 12]. Finally,
in future network with QoS support,the available network
capacitymaybeknown a priori.

A.3 Causesof big ACKs

In theprevioussectionwe discussedheeffectsof big ACKs
on TCP connectionsHere,we describeseveralphenomena
thatcancausebig ACKs.

Application read
Application @

Socket buffer

Transport Determine whether to send ACK
¥

Network layers

ﬁ Protocol

Network Interface input queue
layer

Software Interrupt (TCP/IP processing)

@ Device Interrupt

Network Adaptor

Figure 7. Packet processing path in OS

Figure7 shavs the processingf a paclet, startingfrom
its receptionby the network adaptorto its delivery to the
application. 1) A high priority device interrupt placesthe
paclet into the input queuesof the IP protocol,2) TCP/IP
processings donein the context of a softwareinterruptand
thepacletis placedin theapplications socletbuffer, 3) The
applicationreadsthe datafrom its soclet; in the context of
thisread,an ACK is sentbackto the TCP sendeiif needed.

Uponreceptionof a packet acknavledgingz paclets,a
TCP sendemormally injectsx new closely spacedpaclets
into the network. In normaloperation,z is 2 becausel CP
receversusuallydelayevery otherACK® to take advantage
of piggybackingopportunities. We now presentsomesce-
nariosthat causea TCP recever to sendbig ACKs (ACKs

SThepresencef TCP optionscauses CP receiersto sendan
ACK for every 3 paclets[8].
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thatacknavledgemorethan 3 paclets),causingthe sender
to inject a burstof pacletsthatcanadwerselyaffect conges-
tion in the network.

Figure 7 indicatesthat an ACK is senthy the recever
whenthe applicationreadsthe datafrom the soclet buffer
(or whenthe delayedACK timer fires). If the interarrial
time of pacletsis smallerthanthe paclet processingime,
thenowing to the higherpriorities of theinterruptsascom-
paredto applicationprocessingall closely spacedpaclets
sentby the TCP senderwill be receved beforeany ACK
is sent. Whenthe incoming paclet train stops(dueto flow
control),thereceverwill sendabig ACK to the senderac-
knowledgingall pacletssent. The samehappensf the de-
layed ACK timer fires first. The problemis self-sustaining
becaus¢he TCPsenderespondso thebig ACK by sending
aburstof closelyspacegaclets.

Ona300MHzPentiumll machinethepacletprocessing
time cantake morethan 100 psecswhile the minimumin-
terarrival time of 1500byte packetson 100Mbpsand1Gbps
Ethernetis 120 usecsand12 usecsrespectiely. This sug-
gestghatbig ACKs canbe prevalentin high-bandwidtmet-
works.

The situation describedabove is not necessarilyre-
stricted to high-bandwidthnetworks. It can also happen
whenthe recever applicationis slow in readingnewly ar
riveddatafrom the soclet buffers. This canhappenfor ex-
ample,whenaWebbrowser(TCPrecever)is renderingpre-
viously readgraphicsdataon the screen.During this time,
ACKsfor all pacletsfrom theWebsener(TCPsendershall
bedelayeduntil eitherthedelayedACK timerfires(onceev-
ery 200ms)or the browserreadsmoredatafrom the soclet
buffer. The ACK paclet when sentwould acknavledgea
large numberof paclets.

While high bandwidthis not yet widely available in
WANS, we have analyzedT CP paclet traceson a 100Mbps
LAN andhave obsered big ACKs on almostevery suffi-
ciently long transfer We have alsoanalyzedpaclet traces
fromtheRiceCSdepartmentaiVebsener. Ourresultsshov
that 40% of all transfersthat were greaterthan 20Kbytes
shaved the presencef big ACKs, thusconfirmingour hy-
pothesighatbig ACKs alsooccuron transfersover current
low-bandwidthWAN links.

Brakmo and Petersor[8] have also obsened thesebig
ACKs in the contet of recosery from large number of
pacletlossesandreorderingof paclets. They proposeto re-
duceTCP congestiorwindow uponreceving a big ACK so
thatslow-startis usedinsteadof sendingpaclet bursts. Fall
andFloyd [11] proposeto usea maxhurstparameteto limit
the potentialburstinessf the senderfor pacletssentaftera
lossrecovery phase(fastrecovery). While thesetechniques
canlimit the burstinessthey adwerselyaffectbandwidthuti-
lization asthe network pipelineis drainedof paclets.



